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Mimicking the description of spinning particles in General Relativity, the Fermat Principle is extended
to spinning photons. Linearization of the resulting Papapetrou-Souriau type equations yields the
semiclassical model used recently to derive the ‘‘Optical Hall Effect’’ for polarized light (alias the
‘‘Optical Magnus Effect’’).
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Light is an electromagnetic wave, whose propagation is
described by Maxwell’s theory. It can also be viewed,
however, as a particle (a ‘‘photon’’). Here we adhere to
the second approach: we describe light by a bona fide
mechanical model in that we use a Lagrangian.

In traditional geometrical optics the spin degree of free-
dom is neglected, and the light rays obey the Fermat
Principle [1]. In the intermediate model advocated by
Landau and Lifchitz [2], the photon is polarized, but the
polarization is simply carried along by the light rays, and
has no influence on the trajectory of light. Recent ap-
proaches [3,4] go one step further: the feedback from the
polarization deviates the trajectory from that given by the
Fermat Principle. A dramatic consequence is that, for
polarized light, the Snel(-Descartes) law of refraction re-
quires correction: the plane of the refracted (or reflected)
ray is shifted perpendicularly to that of the incident ray [3].
This ‘‘Hall Effect for light’’ is a manifestation of the
Magnus-type interaction between the refractive medium
and the photon’s polarization [4]. It can be derived in a
semiclassical framework, which also includes a Berry-type
term [5–7].

In this Rapid Communication, we argue that the devia-
tion of polarized light from the trajectory predicted by
ordinary geometrical optics is indeed analogous to the
deviation of a spinning particle from geodesic motion in
General Relativity. The resulting equations are reminiscent
of those of Papapetrou and Souriau [8].

In detail, the Fermat Principle of geometrical optics says
that light in an isotropic medium of refractive index n �
n�r� propagates along curves that minimize the optical

length. Light rays are hence geodesics of the ‘‘optical’’
metric gij � n2�r��ij of 3-space. To extend this theory to
spin we consider the bundle of positively oriented ortho-
normal frames over a 3-manifold endowed with a
Riemannian metric gij. At each point, such a ‘‘Dreibein’’
is given by three orthogonal vectors Ui, Vi, Wi of unit
length that span unit volume. We stress that the [6-
dimensional] orthonormal frame bundle we are using
here is a mere artifact that allows us to define a variational
formalism. Eliminating unphysical degrees of freedom will
leave us with 4 independent physical variables.

Introducing the covariant exterior derivative associated
with the Levi-Civita connection, DUk � dUk � �kijdx

iUj,
we posit the reparametrization-invariant action

 S � SFermat � Sspin � �
Z
Ui
dxi

d�
d�� s

Z
Vi
DWi

d�
d�;

(1)

where � is some parameter along the light ray. The pa-
rameters s and � > 0 are interpreted as the spin and the
color, respectively. Upon first quantization, � becomes
indeed, for a monochromatic wave, 2�@=�, where � is
the wavelength [9]. For the photon s � �@, but we keep it
arbitrary for future convenience. Equation (1) is supple-
mented with the constraints UiUi � ViVi � WiWi � 1,
and UiVi � UiWi � ViWi � 0.

The first term in (1) is [� times] the usual optical length;
the second, ‘‘Wess-Zumino-type’’ [10] term, that arises
naturally in the geometric framework of [11], corresponds
to the Berry connection, and is indeed analogous to the
torsion term considered by Polyakov [12].

The Euler-Lagrange equations are obtained as follows.
Variation of the first term in (1) yields

 �SFermat � �
Z �
��xk

DUk

d�
�
dxk

d�
��Uk

�
d�; (2)

where ��Uk � �Uk � �klm�x
lUm is the covariant variation
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of the vector field Ui. For the spin term, straightforward
calculation yields

 �Sspin �
Z �

��Uj
DUk

d�
�

1

2
�xi

dx‘

d�
Rjki‘

�
Sjkd�; (3)

where Rjki‘ � gim�@j�
m
k‘ � @k�

m
j‘ � � � �� is the Riemann

tensor and Sij � �s�ViWj �WiVj� is the spin tensor.
Then the variational principle �S � 0 allows us to infer
the pair of equations

 �gik
dxk

d�
� Sik

DUk

d�
� �Ui; (4)

 �gik
DUk

d�
�

1

2
Rjki‘S

jk dx
‘

d�
� 0; (5)

where � is a Lagrange multiplier which enforces the
orthogonality of Ui and ��Ui. Inserting DUk=d� into
Eq. (4) and redefining the parameter along the ray by dt �
��=��d� yields the Papapetrou-Souriau type [8] equations,

 

dxi

dt
� Ui �

1

2

SijR�S�
j
kU

k

��2 � s2E‘mU‘Um�
; (6)

 s
DUi

dt
� �

1

2�
R�S�ij

dxj

dt
; (7)

where Eij � Rij �
1
2Rgij is the Einstein tensor and the

matrix R�S�‘k � R‘ijkS
ij represents the interaction of spin

with the curvature, responsible for tidal forces. Because of
the spin-curvature coupling, the direction of the velocity
differs, in general, from that of the spin vector sUi �

� 1
2

���
g
p
�ijkSjk.

For the optical metric, the Christoffel symbols are �kij �
1
n �@in�

k
j � @jn�

k
i � @

kn�ij�. (The optical metric is hence
not flat unless the refraction index is constant.) Putting r �
�xi�, ui � nUi, vi � nVi, wi � nWi introducing the mo-
mentum,

 p � n
�
�u� sr

�
1

n

�
� u

�
; (8)

and denoting the derivative w.r.t. t by a ‘‘dot’’, our
Lagrangian in (1) can also be presented as L � p � _r� sv �
_w. The equations of motion for r and p read, in this case,

 

_r � aAp�
s2

n�2r

�
r

�
1

n

��
Ap; (9)

 

_p � �n�p � _r�r
�

1

n

�
�
s
�
r

�
r

�
1

n

��
Ap� _r; (10)

where a � 1� �s2=�2���r�1=n��2 � �1=n���1=n�� and

 

Ap �
1

1� �s=��2�r�1n��
2
�

�
p�

s
�
r

�
1

n

�
� p

�
s2

�2

�
r

�
1

n

�
� p
�
r

�
1

n

��
: (11)

These equations describe spinning light in an inhomoge-
neous medium. Let us mention, for completeness, that the
evolution of the spin vector, which follows from (7), is
given by s _u � �n�	 _r� s

�r�
1
n� � _r
 � u:

If the medium is spherically symmetric, n � n�r�, con-
served angular momentum is readily derived using
Noether’s theorem. It reads

 J � r� p� su: (12)

Let us now discuss some particular cases of our general
theory.

(i) For s � 0 we have p2 � n2�2, a � 1 and Ap � p.
Introducing the elementary arc length d� � n�dt,
we recognize the usual Fermat equations,
ndr=d� � p=�; d�p=��=d� � rn [1].

(ii) In a homogeneous medium, n � const: we get, for
any color, �, and spin, s, the same equations: light
propagates along straight lines parallel to p �
n�u. The model is invariant w.r.t. the Euclidean
group SE(3) consisting of space translations and
rotations. The associated conserved quantities are
the linear momentum, p � n�u, and the angular
momentum, (12), which is now J � r� p� sp=p.

(iii) In a medium with slowly varying refractive index,
terms involving second-order derivatives and qua-
dratic expressions in r�1=n� can be neglected, e.g.,
Rij �

2@in@jn
n2 �

@i@jn
n �

�n
n �ij � 0. Hence the tra-

jectory of light is approximately tangent to the
spin and the latter is approximately parallel trans-
ported,

 

dxi

d�
� Ui;

DUi

d�
� 0: (13)

In p-terms, p2 � n2�2, and the general Eqs. (9) and (10)
are approximated by

 

_r � p�
s
�
r

�
1

n

�
� p; _p � �n3�2r

�
1

n

�
: (14)

In the case of spherical symmetry, the general angular
momentum (12) reduces, up to the approximately con-
served extra term �s2=��r�1=n� � u, to the expression
used by Onoda et al. in [3], namely, to

 J OMN � r� p� s
p
p
: (15)

Let first consider the free case, n � 1. The variable r
used so far has been an arbitrary point of the light ray. Now,
the ray itself can be labeled by its direction u and q �
r� �u � r�u; which is in fact the shortest vector drawn
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from the origin to the ray (orthogonal to the unit vector u),
and can be thought of as the ‘‘position’’ of the ray. The 4-
dimensional manifold, M, of light rays described by u and
q, has the topology of the tangent bundle of the two-sphere
and can be identified with a coadjoint orbit of SE(3). The
Casimir invariants of the orbit (which determine unitary

irreducible representations) are � � p��
�����
p2

p
� and s � J �

p=p. The corresponding orbit, M, is endowed with the
canonical symplectic structure

 !0 � �dui ^ dqi �
s
2
�ijkuiduj ^ duk; (16)

see [9]. The monopolelike term in (16) is the Berry curva-
ture, 1

2 s�ijkp
idpj ^ dpk=p3. It makes the components of q

noncommuting [11], i.e., Cartesian coordinates q1 and q2

have nonvanishing Poisson bracket, fq1; q2g � s=�2. Upon
(first) quantization, in the case s � @, the quantum position
operators q̂1 and q̂2 satisfy

 	q̂1; q̂2
 � i��=2��2; (17)

where � � 2�@=�. The Heisenberg uncertainty relation
read, therefore, �q̂1 ��q̂2 �

1
2 ��=2��2, which provide a

new interpretation of the localization defect of spinning
light rays, limiting the resolving power of optical instru-
ments to the order of the wavelength, �q̂ � O���.

In a nontrivial refractive medium the (exact) twoform
(16) is replaced by
 

! � �DUi ^ dx
i �

1

4
R�S�ijdx

i ^ dxj

�
s
2

���
g
p
�ijkUiDUj ^DUk (18)

on the orthonormal frame bundle. The Euler-Lagrange
Eqs. (6) and (7) correspond in fact to the kernel of the
twoform (18), see [11]. Conversely, the spin term in our
Lagrangian comes from a potential for the spin terms in the
twoform (18).

Now putting p! p=� and �! ��, our linearized
Eqs. (14) become those proposed in [4].

The relation to the model of Onoda et al. [3] is more
subtle. In their approach, polarization is an additional
variable, represented by a two-component complex vector,
z � �za� with a � �, such that jz�j2 � jz�j2 � 1, acted
upon by su(2). Their semiclassical equations of motion can
be written as

 r 0 �
1

nk
k� k0 ��ab �zazb; k0 � �r

�
1

n

�
k; (19)

supplemented with

 z0a � kr
�

1

n

�
��abzb; (20)

where k is the wave vector and �ab�k� is an su(2)-valued
nonabelian ‘‘Berry’’ vector potential. The Berry curvature
can be represented by an su(2)-valued vector � �

�3k=k3, a Dirac monopole in k-space, diagonally em-
bedded into su(2). The vector potential for � can, there-
fore, be chosen as �ab � i���3�

ab where ��k� is a
monopole potential, rot� � k=k3. The number of equa-
tions in (19) and (20) can be reduced to two. The polar-
ization Eq. (20) can in fact be solved formally by parallel
transport, za � eia	z0

a, where the phase is given by the
nonintegrable phase factor 	 �

R
k�r�1n� ���d�. Then

the Berry term becomes simply �ab �zazb � sk=k3 where
s � jz�j2 � jz�j2 � jz0

�j
2 � jz0

�j
2, since the jzaj2 are

separately conserved. Notice that this s is a constant of
the motion, which can take any value between�1 and�1.
Identifying the wave vector, k, with our momentum, p, and
putting ���0 � �n2��d=dt transforms finally (19) into our
Eqs. (14).

We did not consider the polarization in our framework.
As long as we are only interested in describing light rays,
polarization is a secondary quantity, whose only role is to
generate spin, which in turn deviates the trajectory from
that of conventional geometrical optics. It is hence more
appropriate to speak of spinning light than of polarized
light. Let us nevertheless mention that first quantization
along the lines of [9] of the classical model (16), with
Casimirs � and s � �@, yields, in the gauge divA � 0, the
vectorial Helmholtz equation

 ��� k2�A � 0; (21)

where k � �=@. It follows that E � ikA and B � rot A
satisfy the field equations

 r ot E� ikB � 0; (22)

 r ot B� ikE � 0; (23)

associated with our Euclidean model. Promoting the pa-
rameter t as ‘‘time’’, these are indeed the vacuum Maxwell
equations for the stationary fields Ee�ikt and Be�ikt, re-
spectively, (c � 1). In an isotropic medium, Eqn (23) is
generalized [1] to

 r ot H� ikD � 0; (24)

where D � �E and B � �H, with � and � the permittiv-
ity and permeability, respectively. The refractive index is
n �

�������
��
p

. Remarkably, the field equations can, again, be
rewritten in terms of optical metric, namely, in the form
(22) and (24) above, replacing the operator rot by its
curved-space form, rot X! n�3rot�n2X�, and rescaling
the fields, E! n�2E, H! n�2H, B! n�3B, D!
n�3D and �! n�1�, �! n�1�.

Conventional geometric optics can be derived from the
eikonal approximation of Maxwell’s electrodynamics [1].
Here we followed the opposite way: we started with a
classical model and derived the stationary Maxwell
Eqs. (22)–(24) by (first) quantization. Although we have
not yet been able to deduce our action (1) from taking a
suitable semiclassical limit of (22)–(24), we emphasize
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that our model actually comes from first principles—but
of those of Mechanics [11]. Firstly, the free model is
constructed along the lines suggested by Souriau’s [9],
applied to the Euclidean group. The second step is minimal
gravitational coupling, which amounts to replacing the
ordinary scalar product by the one associated with the
optical metric and the ordinary derivatives by covariant
derivatives; this yields the twoform (18). The latter is in
turn associated with first-order variational calculus on
‘‘phase space’’, whose Lagrangian is precisely our (1).

Our model reproduces, at first order, the phenomeno-
logical descriptions proposed in [3,4] which can, in turn, be
derived by taking an improved semiclassical limit of the
Maxwell equations [4]. Does a similar procedure work for
our model ? The question is open.

Our theory is neither relativistic nor nonrelativistic,
since it does not involve time at all; it is based on the
Euclidean group—which is indeed a subgroup of both the
Galilei and of the Poincaré groups. Our Euclidean model
arises in fact as a reduction by time translations of the zero-
mass spinning orbits of both the Galilei and the Poincaré
groups [11]—which constitute the conventional descrip-
tions of ‘‘classical light’’ [9,10]).

An application of our semiclassical model is the deriva-
tion of the modified laws of refraction and reflection at the
interface of two homogeneous media with different refrac-
tive indices. As found by Onoda et al. [3], polarized light
suffers, in fact, a transverse shift. This ‘‘Optical Hall
effect’’ [3] is indeed an optical version of the spin-Hall
effect [7]. Their shift formula can be rederived [11], fol-
lowing Souriau [9], who argues that the two ‘‘mechanical’’
states on both sides of the interface are related by a
symplectic transformation, S, which is indeed the classical
counterpart of the quantum scattering matrix. This trans-
formation commutes with the symmetries of the optical
device; in our case, this is plainly the Euclidean group

generated by translations of the separating plane and rota-
tions around its normal direction, N. Tedious calculation
provides us with the ‘‘classical scattering matrix’’, S [11].

Firstly, the conservation of planar linear momentum
extends Snel’s laws to spinning light, namely

 nin sin	in � nout sin	out; (25)

for refraction, and 	in � �� 	out, for reflection, respec-
tively, where nin resp. nout denote the refractive indices on
both sides of the interface.

Next, the conservation of the (planar) angular momen-
tum implies that light is shifted transversally [3,11], viz.

 q out � qin �
	sout cos	out � sin cos	in


�ninj sin	inj

N� uin

jN� uinj
; (26)

where sin � sout for refraction.
Notice that the shift depends in general on the wave-

length, � � 2�@=�, white light is split, in general, into
colors, shifted by different amounts. For nout � �nin,
however, Snel’s laws entail that the shift (26) vanishes:
white light is not decomposed and is indeed refracted
following the classic Snel law, as if it had no spin!

This case is not of pure academic interest, owing to the
existence of left-handed media (with a negative refractive
index) [13]. In the ideal case, one can have n � �1, and a
simple slab with parallel sides [14] provides us with a
‘‘perfect lens’’ with no chromatic aberration.

We note that the shift (26) vanishes also for a reflection,
since then sin � �sout. This does not contradict the results
in Imbert [15], which are indeed of higher-order.

We are indebted to Professor M. Berry and to Dr. K.
Bliokh for correspondence.
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