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We formulate statistical isotropy of CMB anisotropy maps in its most general form. We also present a
fast and orientation independent statistical method to determine deviations from statistical isotropy in
CMB polarization maps. The importance of having statistical tests of departures from SI for CMB
polarization maps lies not only in interesting theoretical motivations but also in testing cleaned CMB
polarization maps for observational artifacts such as residuals from polarized foreground emission. We
propose a generalization of the bipolar power spectrum (BiPS) to polarization maps. Application to the
observed CMB polarization maps will be soon possible after the release of WMAP 3 yr data. As a
demonstration we show that for E-polarization this test can detect the breakdown of statistical isotropy
due to polarized synchrotron foreground.
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I. INTRODUCTION

In the very near future we are going to have the first
‘‘full’’ sky CMB polarization maps. The wealth of infor-
mation in the CMB polarization field will enable us to
determine the cosmological parameters and test and char-
acterize the initial perturbations and inflationary mecha-
nisms with great precision. Cosmological polarized
microwave radiation in a simply connected universe is
expected to be statistically isotropic. This is a very impor-
tant feature which allows us to fully describe the field by its
power spectrum that can have profound theoretical impli-
cations for cosmology. Violation of statistical isotropy (SI)
in CMB polarization maps is going to be very important
soon. It can now be tested with CMB polarization maps
over large sky fraction. The importance of having statisti-
cal tests of departures from SI for CMB polarization maps
lies not only in interesting theoretical motivations but also
in testing the cleaned CMB polarization maps for residuals
from polarized foreground emission. Unlike the fore-
grounds in temperature anisotropies, polarized foreground
emissions are on large scales. In these scales we expect to
see the primordial B-mode due to inflationary gravitational
waves at all frequencies. A robust discriminator between
the primordial polarized radiation and polarized fore-
ground emissions is the test of SI. In this paper we study
statistical isotropy in its most general form based on the
bipolar power spectrum (BiPS) that was proposed as a
measure of SI violation in CMB temperature [1–3]. The
BiPS has been applied to check for the SI of CMB tem-
perature maps based on the WMAP first year data [2,3]. We
present a simple formalism that works for all three scalar
fields that describe CMB temperature and polarization, T,
E, and B. Then we use BiPS as a diagnostic tool to check
for departures from SI in E and B polarization modes as
well as the cross terms such as TE. We present an example
of applying the method on simulated CMB polarization

maps that include polarized foreground from the synchro-
tron emission in our galaxy.

The rest of this paper is organized as follows: Sec. II is a
very brief introduction to polarization and temperature
anisotropy of CMB and shows how CMB anisotropy can
be fully described by three scalar fields, T, E, and B.
Section III is dedicated to the formulation of statistical
isotropy in general. Section IV defines an unbiased esti-
mator for BiPS which is shown to be a strong tool for
testing departures from statistical isotropy in a given map.
And finally Sec. V describes an example of how this
method works for an E-polarization where statistical iso-
tropy is violated due to large galactic foreground from
synchrotron emission. We provide some useful mathemati-
cal relations in the appendix.

II. CMB ANISOTROPY AND POLARIZATION
MAPS

CMB anisotropy is completely described by its tempera-
ture anisotropy and polarization. Temperature anisotropy is
a scalar random field, �T�n̂� � T�n̂� � T0, on a 2-
dimensional surface of a sphere (the sky), where n̂ �
��;�� is a unit vector on the sphere and T0 �

R d�n̂
4� T�n̂�

represents the mean temperature of the CMB. It is conve-
nient to expand the temperature anisotropy field into
spherical harmonics, the orthonormal basis on the sphere,
as

 �T�n̂� �
X
l;m

almYlm�n̂�; (1)

where the complex quantities alm are given by

 alm �
Z
d�n̂Y�lm�n̂��T�n̂�: (2)

The CMB polarization field is described by the Stokes
parameters, Q�n̂� and U�n̂�, which depend on the choice of
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a local Cartesian patch on the sky. One can combine these
Stokes parameters into two complex quantities, Q�n̂� �
iU�n̂� andQ�n̂� � iU�n̂� which transform like spin-2 fields
under rotations of the coordinates by an angle  ,

 �Q�n̂� � iU�n̂��0 � e�2i �Q�n̂� � iU�n̂��: (3)

One may thus expand each of them in terms of spin-
weighted spherical harmonics, �2Ylm,

 Q�n̂� � iU�n̂� �
X
lm

a2;lm2Ylm�n̂�; (4)

 Q�n̂� � iU�n̂� �
X
lm

a�2;lm�2Ylm�n̂�:

Applying spin-lowering (spin-raising) operators �ð (ð)
twice on �2P�n̂� � Q�n̂� � iU�n̂� one can construct two
spin-zero fields,

 

�ð 2
n̂2P�n̂� �

X
lm

�
�l� 2�!

�l� 2�!

�
1=2
a2;lmYlm�n̂�;

ð2
n̂�2P�n̂� �

X
lm

�
�l� 2�!

�l� 2�!

�
1=2
a�2;lmYlm�n̂�:

(5)

For full sky maps, the above spin-2 fields can be linearly
combined to construct two scalar fields [4,5]

 E�n̂� �
1

2
	�ð2
n̂2P�n̂� � ð2

n̂�2P�n̂�
;

B�n̂� �
1

2i
	�ð2
n̂2P�n̂� � ð2

n̂�2P�n̂�
:

(6)

Now, expanding these in terms of spherical harmonics,

 E�n̂� �
X
lm

aElmYlm�n̂�; B�n̂� �
X
lm

aBlmYlm�n̂� (7)

we get,

 aElm�
1

2
�a2;lm�a�2;lm�; aBlm�

1

2i
�a2;lm�a�2;lm�: (8)

Therefore one can characterize CMB anisotropy in the sky
maps by three scalar random fields: T�n̂�, E�n̂�, and B�n̂�
with no loss of information. For cut sky, E�n̂� and B�n̂�
mode decomposition is not unique [6,7]. But since mixing
is linear there always exist two linearly independent
modes. It is possible to formulate the SI of these linear
independent modes. Statistical properties of each of these
fields can be characterized by N-point correlation func-
tions, hX�n̂1�X�n̂2� � � �X�n̂n�i. Here the bracket denotes the
ensemble average, i.e. an average over all possible con-
figurations of the field, and X�n̂� can be any of the T�n̂�,
E�n̂�, or B�n̂� fields. CMB anisotropy is believed to be
Gaussian [8,9]. Hence the connected part of N-point func-
tions disappears for N > 2. Nonzero (even-N)-point corre-
lation functions can be expressed in terms of the 2-point
correlation function. As a result, a Gaussian distribution is
completely described by 2-point correlation functions of
X�n̂�,

 CXX
0
�n̂; n̂0� � hX�n̂�X0�n̂0�i: (9)

Equivalently, as it is seen from linear relations in Eqs. (2)
and (7), for a Gaussian CMB anisotropy, aXlm are Gaussian
random variables too. Therefore, the covariance matrix,
haXlma

X0�
l0m0 i, fully describes the whole field. Throughout this

paper we assume Gaussianity to be valid.

III. STATISTICAL ISOTROPY

Two-point correlations of CMB anisotropy,
CXX

0
�n̂1; n̂2�, are 2-point functions on S2 � S2, and hence

can be expanded as

 CXX
0
�n̂1; n̂2� �

X
l1;l2;‘;M

AXX
0

‘Mjl1l2
Yl1l2‘M �n̂1; n̂2�: (10)

Here AXX
0

‘Mjl1l2
are coefficients of the expansion (hereafter

BipoSH coefficients) and Yl1l2‘M �n̂1; n̂2� are bipolar spherical
harmonics defined by Eq. (A1). Bipolar spherical harmon-
ics form an orthonormal basis on S2 � S2 and transform in
the same manner as the spherical harmonic function with ‘,
M with respect to rotations [10]. We can inverse-transform
CXX

0
�n̂1; n̂2� in Eq. (10) to get the coefficients of expansion,

AXX
0

‘Mjl1l2
, by multiplying both sides of Eq. (10) by

Y
�l01l

0
2

‘0M0 �n̂1; n̂2� and integrating over all angles. Then the
orthonormality of bipolar harmonics, Eq. (A2), implies
that

 AXX
0

‘Mjl1l2
�
Z
d�n̂1

Z
d�n̂2

CXX
0
�n̂1; n̂2�Y

�l1l2
‘M �n̂1; n̂2�: (11)

The above expression and the fact that CXX�n̂1; n̂2� is
symmetric under the exchange of n̂1 and n̂2 lead to the
following symmetries of AXX‘Mjl1l2

 AXX‘Mjl2l1 � ��1��l1�l2�L�AXX‘Mjl1l2 ;

AXX‘Mjll � AXX‘Mjll�‘;2k�1; k � 1; 2; 3; � � � :
(12)

It has been shown [11] that bipolar spherical harmonic
(BipoSH) coefficients AXX

0

‘Mjl1l2
are in fact linear combina-

tions of off diagonal elements of the covariance matrix,

 AXX
0

‘Mjl1l2
�

X
m1m2

haXl1m1
a�X

0

l2m2
i��1�m2C‘Ml1m1l2�m2

; (13)

where C‘Ml1m1l2m2
are Clebsch-Gordan coefficients. This

clearly shows that AXX
0

‘Mjl1l2
completely represent the infor-

mation of the covariance matrix. When statistical isotropy
holds, it is guaranteed that the covariance matrix is diago-
nal,

 haXlma
�X0
l0m0 i � CXX

0

l �ll0�mm0 ; (14)

and hence the angular power spectra carry all information
of the field. Substituting this into Eq. (13) gives
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 AXX
0

‘Mjll0 � ��1�lCXX
0

l �2l� 1�1=2�ll0�‘0�M0: (15)

The above expression tells us that when statistical isotropy
holds, all BipoSH coefficients, AXX

0

‘Mjll0 , are zero except
those with ‘ � 0, M � 0 which are equal to the angular
power spectra up to a ��1�l�2l� 1�1=2 factor. BipoSH
expansion is the most general way of studying 2-point
correlation functions of CMB anisotropy. The well-known
angular power spectrum Cl is in fact a subset of the
corresponding BipoSH coefficients,

 CXX
0

l �
��1�l��������������
2l� 1
p AXX

0

00jll: (16)

Therefore to test a CMB map for statistical isotropy, it is
enough to compute the BipoSH coefficients for the maps
and check for nonzero BipoSH coefficients. Every statis-
tically significant deviation of BipoSH coefficients from
zero would mean violation of statistical isotropy. In the
next section we discuss this in more details.

IV. UNBIASED ESTIMATOR

In statistics, an estimator is a function of the known data
that is used to estimate an observable quantity. An estimate
is the result of the actual application of the function to a
particular set of data. Different estimators may be defined
for a given observable. The above theory can be used to
construct an estimator for measuring BipoSH coefficients
from a given CMB map as,

 AXX
0

‘Mjll0 �
X
mm0

�������������
WlWl0

p
aXlma

X0
l0m0C

‘M
lml0m0 ; (17)

where Wl is the Legendre transform of the window an
isotropic smoothing function that can be applied to the
data. The ensemble average of this estimator is given by

 hAXX
0

‘Mjll0 i �
X
mm0

�������������
WlWl0

p
haXlma

X0
l0m0 iC

‘M
lml0m0 ; (18)

which is its true value. Akin to the well-known quadratic
estimator Ĉl �

1
2l�1

P
mjalmj

2 for Cl, the above estimator is
an unbiased estimator of the BipoSH coefficient. However
it is impossible to measure all AXX

0

‘Mjll0 individually because
of cosmic variance. Combining BipoSH coefficients helps
to reduce the cosmic variance. Among the several possible
combinations of BipoSH coefficients, the BiPS has proved
to be a useful tool with interesting features. BiPS of CMB
anisotropy is defined as a quadratic contraction of the
BipoSH coefficients

 �XX
0

‘ �
X
l;l0;M

jAXX
0

‘Mjll0 j
2  0: (19)

Some interesting properties of BiPS are as follows: it is
orientation independent, i.e. invariant under rotations of
the sky. For models in which statistical isotropy is valid,
BipoSH coefficients are given by Eq. (16), and therefore

lead to a null BiPS, i.e. �‘ � 0 for every ‘ > 0,

 �XX
0

‘ � �0�‘0: (20)

Nonzero components of BiPS imply the breakdown of
statistical isotropy, and this introduces BiPS as a measure
of statistical isotropy,

 STATISTICAL ISOTROPY ���! �‘� 0 8 ‘� 0: (21)

It is important to note that although BiPS is quartic in alm,
it is designed to detect SI violation and not non-
Gaussianity [1–3,11,12]. An unbiased estimator of BiPS
is given by

 ~� XX0
‘ �

X
ll0M

jAXX
0

‘Mjll0 j
2 �BXX0

‘ ; (22)

where BXX0
‘ is the bias related to the SI part of the map and

given by the angular power spectrum Cl,

 B XX0
‘ � h~�B‘ iSI

� �2‘� 1�
X
l1

X‘�l1
l2�j‘�l1j

Wl1Wl2	C
XX
l1
CX

0X0
l2

� ��1�‘�l1l2�C
XX0
l1
�2
: (23)

The above expression for B‘ is obtained by assuming
Gaussian statistics of the temperature fluctuations [1,11].
Note the estimator ~�‘ is unbiased, only for SI correlation.
In that case, the ensemble average of ~�‘ is the same as its
true value which is zero for ‘ � 0, i.e., h~�‘i � 0.

V. EXAMPLE: POLARIZED SYNCHROTRON
CONTAMINATION

As an example of how one can detect deviations from
statistical isotropy in CMB polarization maps, we make
statistically anisotropic polarization maps and estimate the
BiPS from them. This can be done in many different ways
but here we choose a simple method which results in severe
violation of SI and therefore is good for a demonstration of
the method. We add the polarized synchrotron emission
template to the background CMB polarization map. The
polarized synchrotron template (30 GHz) is made using the
Planck simulator [13] which uses the model by [14], i.e. the
polarization degree is a function of the intensity spectral
index while polarization angles are derived from a
Gaussian distribution. Here we restrict our attention to
E-mode polarization only. It is obvious that everything
can be done in the same way for B-mode as well. The
estimator will then be

 AEE‘Mjll0 �
X
mm0

�������������
WlWl0

p
aElma

E
l0m0C

‘M
lml0m0 ; (24)

where aElm are the spherical harmonic transform of the
background CMB polarization map plus the polarized
synchrotron radiation,
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 aElm � aEcmb
lm � a

Esync

lm ; (25)

and Wl is an isotropic filter that allows us to target angular
scales of interest by filtering out power on other scales.

We simulate 1000 statistically isotropic CMB polariza-
tion maps, add the synchrotron template to each of them,
and compute the BiPS for them using the estimators of
Eqs. (22) and (24). Filters that we use here can be divided
into two categories: low pass Gaussian filters

 WG
l � NG exp

�
�

�
2l� 1

2ls � 1

�
2
�

(26)

that cut power on scales l � ls and band pass filters of the
form

 WS
l � 2NS

�
1� J0

�
2l� 1

2lt � 1

��
exp

�
�

�
2l� 1

2ls � 1

�
2
�
; (27)

that retain power on scales lt � l � ls, where J0 is the
spherical Bessel function andNG andNS are normalization
constants chosen such that

P
l
�2l�1�Wl
2l�l�1� � 1, i.e., unit rms for

unit flat band angular power spectrum, l�l� 1�CXX
0

l � 2�.
Results of this computation are shown in Figs. 1 and 2.

We see that CMB polarization maps with no foregrounds
are statistically isotropic and have null bipolar power
spectrum. Adding polarized synchrotron emission violates
statistical isotropy at large angular scales and results in a
detectable nonzero BiPS. Retaining only 5% of the polar-
ized synchrotron emission just violates statistical isotropy

at the threshold of 1� �. At 7.5% of the polarized syn-
chrotron emission clearly shows the violation of statistical
isotropy and results in a sharply detectable nonzero bipolar
power spectrum at �4.

We should emphasize that this is simply an example to
demonstrate how violation of statistical isotropy can be
quantified in CMB polarization maps. In reality, we usually
expect to deal with cleaned polarized maps which would
contain some residuals that have different angular struc-
ture. The signal would be much weaker and also have
different BiPS characteristics. Hunting tiny residuals
from foregrounds in maps of temperature anisotropy using
statistical isotropy has been studied [15] and a similar
strategy can be applied to polarization maps when they
are available. In addition, other observational artifacts such
as anisotropic noise or incomplete (masked) sky can also
cause violation of statistical isotropy in a polarization map.
In the latter case, the incomplete sky coverage immediately
induces a contamination of E-mode of polarization by its
B-mode and vice versa. Then the modified temperature and
polarization fields are related to their actual values of full
sky coverage by a window matrix [6,7] whose elements are
basically window functions for temperature and polariza-
tion in harmonic space. It can be shown that the estimated
BipoSH coefficients are in fact linear combinations of that
for full sky CMB maps

 

~A ‘Mjll0 �
X

‘0M0l1l2

N‘Mll0
‘0M0l1l2

A‘Mjl1l2 : (28)
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FIG. 1 (color online). CMB polarization maps with no fore-
grounds are statistically isotropic and have null bipolar power
spectrum (top). Adding polarized synchrotron emission violates
statistical isotropy and results in a detectable nonzero bipolar
power spectrum (bottom). Dots show the BiPS after bias sub-
traction and lines show the 1� � of the cosmic variance.
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FIG. 2 (color online). Adding 5% of the polarized synchrotron
emission just violates statistical isotropy (top). Adding 7.5% of
the polarized synchrotron emission clearly violates statistical
isotropy and results in a detectable nonzero bipolar power
spectrum (bottom). Dots show the BiPS after bias subtraction
and lines show the 1� � of the cosmic variance.
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Here bold-faced ~A‘Mjll0 and A‘Mjl1l2 are the column matri-
ces corresponding to estimated and true BipoSH coeffi-
cients, respectively, for the auto and cross correlations (TT,
TE, TB, ET, EE, EB, BT, BE, BB) of temperature anisot-
ropy and polarization. The elements of the matrix N‘Mll0

‘0M0l1l2
depend on Clebsch-Gordan coefficients and window func-
tions in harmonic space. Hence, the true BipoSH coeffi-
cients can be estimated from the pseudo-BipoSH
coefficients by inverting the above equation. We defer
this to a future publication, a SI analysis of CMB polar-
ization when this effect is important. However, we have
verified using simulations that the BiPS of polarization
maps is insensitive to the breakdown of SI due to galactic
cut when it is filtered at low l using, WG

l �ls � 10; lt � 0�
and WS

l �ls � 20; lt � 10� in Eqs. (26) and (27). (This is
consistent with the result for cut-sky CMB temperature
maps discussed in the paper [11].) As a result, the BiPS
signature of the polarized galactic foregrounds presented
here would not change if the maps are masked by a galactic
cut. CMB polarization maps filtered with windows peaked
at higher multipoles (e.g. WS

l �ls � 90; lt � 80�) do reflect
the SI violation arising from a galactic cut. The complica-
tions of quantifying statistical isotropy in cut-sky polariza-
tion CMB maps are formally encoded by Eq. (28) but its
implementation is a challenging task which is currently
under progress. (The effects can also be estimated through
extensive simulations.)

VI. SUMMARY

We present a novel approach to quantify the violation of
statistical isotropy in CMB polarization maps for the first
time. We present a fast and orientation independent method
which allows for a general test of isotropy using bipolar
power spectrum. This method has been previously applied
to the temperature anisotropy maps and many various
aspects of that are well studied in details. In this paper

we extend BiPS to the CMB polarization maps and present
a working example to demonstrate its potential.
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APPENDIX: USEFUL MATHEMATICAL
RELATIONS

Bipolar spherical harmonics form an orthonormal basis
of S2 � S2 and are defined as

 Yl1l2‘M �n̂1; n̂2� �
X
m1m2

C‘Ml1m1l2m2
Yl1m1

�n̂1�Yl2m2
�n̂2�; (A1)

in which C‘Ml1m1l2m2
are Clebsch-Gordan coefficients.

Clebsch-Gordan coefficients are nonzero only if the trian-
gularity relation holds, fl1l2‘g and M � m1 �m2. Where
the 3j symbol fabcg is defined by

 fabcg�
�

1 if a�b�c is integer andja�bj�c��a�b�;
0 otherwise:

Orthonormality of bipolar spherical harmonics

 

Z
d�n̂1

d�n̂2
Yl1l2‘M �n̂1; n̂2�Y

�l01l
0
2

‘0M0 �n̂1; n̂2�

� �l1l01�l2l02�‘‘0�MM0 : (A2)
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