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Using configuration space techniques, we calculate next-to-leading order (NLO) five-loop QCD
corrections to the correlators of interpolating pentaquark currents in the limit of massless quarks. We
obtain very large NLO corrections to the spectral density which makes a standard sum rule analysis
problematic. However, the NLO corrections to the correlator in configuration space are reasonable. We
discuss the implications of our results for the phenomenological sum rule analysis of pentaquark states.
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I. INTRODUCTION

There is a continuing interest in exotic states of strong
interactions that differ from the standard nonexotic mesons
and baryons (see e.g. [1,2]). Nonexotic three-quark bary-
ons have been intensively studied in [3,4]. Finite mass
effects were studied in [5–7] where the next-to-leading
order (NLO) QCD corrections to the correlators of finite
mass baryonic currents were determined. This led to an
improved precision of the sum rule analysis. Different
aspects of the physics of multiquark states in QCD have
been discussed long ago [8]. It is noteworthy that the
analysis of multiquark exotics can provide valuable infor-
mation on the details of quark-gluon interaction relevant to
nuclear physics [9,10].

Candidates to be described in QCD as multiquark states
are the deuteron [11,12] or Jaffe’s dihyperon H [13,14].
Since the dihyperon state can only decay weakly, it would
be expected to be quite narrow. To the best of our knowl-
edge the dihyperon state is the first state to attract attention
in the modern context of QCD. The discovery of gluon
bound states would be a triumphant confirmation of QCD
and would allow for a quantitative check of QCD in the
completely new sector of the glueball states [15,16].
Another class of multiquark states, the pentaquark states,
have recently become the focus of intense theoretical and
experimental studies.

The properties of all of these multiquark (or multigluon)
states can be studied in a model independent way through
the method of the QCD sum rule analysis. In the QCD sum
rule analysis one analyzes the operator product expansion
of current–current correlators of interpolating local fields
which have the quantum numbers of the multiquark states
under study. It is well known that radiative corrections have
a strong impact on the results of the sum rule analysis. In
this paper we derive the necessary tools that allow one to
compute the �S radiative corrections to multiquark sum
rules in the limit when the quarks (or antiquarks) are
massless. As a specific example we apply our method to
pentaquark correlators and calculate the NLO radiative

corrections to the pentaquark current correlator and the
spectral density of a specific pentaquark current.

II. CALCULATION

An important ingredient in the formulation of the opera-
tor product expansion (OPE) analysis for the pentaquark
states is the choice of the interpolating current. The result
depends strongly on the choice of the interpolating current
as has been pointed out before in the sum rule analysis of
the dibaryon [8]. The same holds true for the sum rule
analysis of pentaquark states [17–19]. A detailed analysis
of the dependence on the interpolating current is out of the
scope of a short letter, it will be published elsewhere [20].
In the following we shall present the tools needed to
calculate the NLO QCD corrections for interpolating quark
currents of any composition.

A. Generalities

In the QCD sum rule analysis the prime object of study
is the correlation function

 ��q� � i
Z
d4xeiqxh0jTj�x� �j�0�j0i; (1)

where the interpolating current j�x� is a local operator with
the quantum numbers of the pentaquark baryon state �. It
has to be constructed from four quark and one antiquark
fields such that its projection onto the pentaquark state
j��p�i is nonzero:

 h0jj�0�j��p�i � ��; p2 � m2
�: (2)

Since the interpolating current j�x� is not unique, one
immediately faces the question of the optimal choice for
the interpolating currents. Recall that the problem of
choosing the optimal current already arose in the case of
baryons [3,4] where the currents are constructed from
three-quark fields. In the pentaquark case there are five
quark (antiquark) fields to build the interpolating currents
and correspondingly the number of independent currents
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with the correct quantum numbers is much larger (see [18]
and references therein).

The treatment of the interpolating current j�x� in its most
general form, i.e. in the form of linear combinations of all
possible independent local operators with the correct pen-
taquark quantum numbers, is a very unwieldy problem. In
this pilot study of the NLO corrections to interpolating
pentaquark currents we limit ourselves to the study of only
one simple interpolating currents with the required penta-
quark quantum numbers. As in the case of mesons and
baryons, we construct our interpolating current j�x� from
quark fields without derivatives.

B. Tools for the NLO calculation

The LO diagram for the pentaquark correlator is given
by the four-loop diagram Fig. 1(a). There are two types of
NLO five-loop corrections. First there are the one-loop
corrections to single quark propagators S�x�, one of which
is shown in Fig. 1(b). We shall refer to these corrections as
the propagator corrections. Then there are the dipropagator
corrections connecting two different quark propagators,
one of which is shown in Fig. 1(c).

It turns out that it is very convenient to calculate these
corrections in configuration space, in particular, if the
quarks are treated as massless [21]. For the propagator
correction S1�x� we obtain

 S1�x�jNLO � S1�x�jLO

�
1� CF

�s
4�

1

"
��2

Xx
2�"
�

� S0�x
2���x�

�
1� CF

�s
4�

1

"
��2

Xx
2�"
�

(3)

where in the Euclidean domain one has

 S0�x2� �
�i��2� "�

2�2�"�x2�2�"
: (4)

�X is a renormalization scale in dimensional regularization
appropriate for calculations in configuration space. The
space-time dimension is parametrized by D � 4� 2".
This choice of renormalization scale avoids the appearance
of ln�4�� and �E factors in configuration space calcula-
tions. The relation of �X and the usual renormalization
scale � of the MS-scheme is given by

 �X � �e�E=2:

The dipropagator two-loop amplitude for a pair of quarks
with open Dirac indices leads to an integral that is a bit
more difficult to calculate. The result for the dipropagator
correction including the LO term reads
 

S2�x�jNLO � S0�x2�2
�
��x� � ��x�

� ta � ta
�s
4�

1

"
��2

Xx
2�"��� � ���a1x�x�

� b1x2g��� � a3����3 � �3
�
��x�x��

�
(5)

where the coefficients a1, b1 and a3 are given by

 a1 � �1�
11

2
"; b1 � �1�

1

2
";

a3 � �
1

2
�

1

4
";

and where

 ����3 �
1

2
������� � �������: (6)

Equations (3) and (5) allow one to calculate the NLO
corrections to n-quark(antiquark) current correlators of
any composition using purely algebraically algorithms
without having to compute any integrals.

C. Renormalization of the interpolating current

In a NLO calculation one has to account for mixing
effects between operators when going through the renor-
malization program. Mixing can occur when gluons are
exchanged between the lines in the pentaquark correlator
(dipropagator corrections). In order to keep track of fla-
vours we first treat the case of an interpolating current
composed of five massless quark(antiquark) fields with
different flavours,

 j � "ijk�qiT1 Cq
j
2�q

k
3� �q

l
4q

l
5� (7)

where C is the charge conjugation matrix. The interpolat-
ing current consists of a baryonic part B � "ijk�qiT1 Cq

j
2�q

k
3

and a mesonic part M � � �ql4q
l
5�. If the gluon is exchanged

within the mesonic part, the renormalization factor is the
usual one for the mesonic operator (see e.g. [22]),

 ZM � 1�
�s
�"

: (8)

If the gluon is exchanged within the baryonic part, the
renormalization factor is given by the known renormaliza-
tion factor for the baryonic operator [22],

 ZB � 1�
�s

2�"
: (9)

These two contributions will be referred to as factorizing
contributions. When the gluon is exchanged between the

(a) (b) (c)

FIG. 1. LO contribution (a) and examples for the NLO propa-
gator (b) and dipropagator corrections (c).
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mesonic and baryonic part one obtains new operators
which do not have the structure of the original current.
There are two contributions of this kind which we refer to
as mixed contributions. If the gluon is exchanged between
the mesonic part and the �qiT1 Cq

j
2� piece of the baryonic

part, we obtain a contribution of the operator

 O1 � "ijkf�qiT1 C	
��ql2� � �q

lT
1 C	

��qi2�gq
k
3� �q

l
4	

��qj5�

(10)

where 	�� � i
2 ��

�; ���. If the gluon is exchanged be-
tween the mesonic part and the qk3 piece of the baryonic
part one obtains a contribution of the operator

 O2 � "ijk�qiT1 Cq
j
2�	

��
�
ql3� �q

l
4	��q

k
5� �

1

3
qk3� �q

l
4	��q

l
5�

�
:

(11)

The renormalized current reads

 jNLO
R � ZMZBjNLO �

�s
16�"

�O1 �O2�: (12)

III. NLO RESULTS

In order to obtain NLO results, let us consider the
interpolating current

 j � "abc�uaTCdb�dc��seue� (13)

with the quantum numbers of the pentaquark baryon �.
The current is constructed in such a way that it cannot
directly dissociate into a neutron and a kaon since the
respective color singlet parts have the wrong parity.

The result of our NLO calculation for the bare correlator
reads � �j � "abc� �daC�1 �ubT� �dc� �uese��

 h0jTj�x� �j�0�j0i � S0�x2�5�x2�2��x���x2� (14)

where
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: (15)

The first line contains the factorizing NLO contibutions
while the second and third lines contain the mixing con-
tributions. The counter term contains contributions from
the renormalization factors ZM and ZB as well as from the
operators O1 and O2. It reads

 �� � �
�s
�

�
360

3

"
� 6

�
11

"
�
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3

�
� 4 	 6

�
9

"
� 7

��
:

(16)

Adding Eqs. (15) and (16) one obtains the renormalized
correlator

 

�R�x2� � ��x2� � ��

� 360
�
1�

�s
�
�3� 3Lx�

�

� 6
�
1�

�s
�
�7� 11Lx�
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� 4 	 6
�
1�

�s
�
�6� 9Lx�

�
(17)

with Lx � ln�x2�2
X� � ln�x2e2�E=4�.

The spectral density is obtained by calculating the dis-
continuity of

 2�2�"
Z 1

0

�
px
2

�
"�1

J1�"�px��x
2��ax3�2"dx (18)

for the cases a � 7 and a � 7� ", where J��z� is the
Bessel function of the first kind [21]. One obtains (s � p2)

 


�s�=
0�s� � 360
�
1�

�s
�

�
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� 3L

��

� 6
�
1�

�s
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6367
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� 11L
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�

�
1746

35
� 9L

��
(19)

with L � ln��2=s� and 
0�s� � s5=378000�4��8.

IV. DISCUSSION

The first NLO contribution in both the correlator and the
spectral density comes from the factorizing part of the
diagrams, i.e. the case where baryon and meson correlators
are multiplied in configuration space and do not mix by
gluon exchange. This contribution dominates the final
result but is probably irrelevant for physics as it does not
contain a pentaquark bound state. The physically relevant
mixing contributions are smaller since they are suppressed
both in the number of colorsNc and a factor 4 coming from
the evaluation of Dirac traces.

The result for the spectral density (19) shows that the
NLO corrections to the spectral density are large, where
the NLO corrections to the factorizing parts are somewhat
smaller (note, however, that the relevant scale is not s but
rather s=5 because of the number of lines in the correlator).
This spoils the conventional momentum space QCD sum
rule analysis. The NLO corrections to the correlator func-
tion (17) in configuration space are more reasonable. This
suggests a sum rule analysis in configuration space, based
on the correlator (17). However, it is not clear whether the
accuracy of such a sum rule analysis in configuration space
will be sufficient for physical applications.
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V. CONCLUSION

We have calculated NLO perturbative QCD corrections
for pentaquark current correlators which turn out to be very
large. One has to conclude that the NLO QCD sum rule
analysis of pentaquark states is fraught with difficulties.
This complicates the mass determination of the pentaquark
states using a QCD sum rule analysis. One may have to
take recourse to model calculations to determine the prop-
erties of pentaquark states such as the one based on chiral
solitons [23].
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