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An improved analysis of the b! s� � decay in the minimal flavor violating case is given taking into
account additional contributions in the supersymmetric sector which enter in the next-to-leading-order
(NLO) and are enhanced by tan� factors. Specifically, we compute a set of 20 one-loop diagrams to give
the most complete analysis to date of the NLO supersymmetric corrections. These modifications are
computed from the effective charged Higgs and neutral Higgs couplings involving 12 loop diagrams for
the charged Higgs sector and eight loop diagrams for the neutral Higgs sector. While the computations of
these corrections are available in the literature, their full forms including the complex phase dependence
has not be considered. Our analysis takes account of the full allowed set of 20 one-loop diagrams and is
more general since it also includes the full dependence on CP phases in non universal SUGRA and MSSM
models. A numerical analysis is carried out to estimate the size of the corrections to b! s� �. We also
briefly discuss the implications of these results for the search for supersymmetry.
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I. INTRODUCTION

One of the most severe phenomenological constraints on
supersymmetric (SUSY) models arises from the measure-
ment of the inclusive rare decay B! Xs�. This decay only
occurs at the one-loop level in the standard model (SM)[1],
and therefore the supersymmetric radiative corrections are
important and might even be of the same order of magni-
tude as the SM contribution (For early work on super-
symmetric contributions to b! s� and implications see
Refs. [2,3]). In this paper we carry out an improved analy-
sis of the branching ratio BR�b! s�� assuming the ex-
tended minimal-flavor-violation (EMFV). By EMFV we
mean that the squark and quark mass matrices are diago-
nalized with the same unitary transformation, in which
case the only source of flavor violation is the Cabibbo-
Kobayashi-Maskawa (CKM) matrix but CP violation can
arise in our model from both the CKM matrix and also
from the soft SUSY-breaking parameters. The strong con-
straints on flavor changing neutral current, indeed suggest
a kind of organizing principle like EMFV for the case of
softly broken supersymmetry.

The new results presented in this paper consist of the
complete calculation of the supersymmetric one-loop cor-
rections to the Higgs sector couplings that enter into the
calculation of the next-to-leading-order contributions to
BR�b! s�� through corrections to vertex factors. These
beyond-leading-order SUSY corrections are parameterized
by three �’s; �b�t�, �t�s� and �bb and can have large effects
due to contributions that are enhanced by factors of tan�.
In this paper we derive the tan� enhanced as well as the
tan� nonenhanced contributions. Of course there exist

two-loop (NLO) supersymmetric corrections beyond the
ones parametrized by the �’s. However, such NLO correc-
tions are generally small or can be absorbed in a redefini-
tion of the SUSY parameters [4,5]. As is well known the
precision theoretical analyses of sparticle masses and cou-
plings are strongly affected by the b! s� constraint and
such predictions would be tested at colliders in the future.
The above provides the motivation for an improved b!
s� analysis which is the purpose of this analysis.

The current average value for the BR�b! s�� from the
experimental data [6] is,

 BR �b! s�� � �355� 24�9
�10 � 3� � 10�6; (1)

by the heavy flavor averaging group [7].
The standard model result depends sensitively on the

QCD corrections [8] and we will use the value [9]

 BR �B! Xs�� � �3:73� :30� � 10�4; (2)

which takes into account NLO QCD corrections. In this
analysis we largely follow the analysis of the
micrOMEGAs group [10], in the computation of the
BR�b! s��, with exception of the calculation of the
beyond-leading order SUSY corrections. Further, we ex-
tend to the case of nonzero CP-phases. In the following we
give the essential basics of the analysis and refer the reader
to the previous literature for more details (see, e.g.,
Ref. [10] and references therein). The theoretical analysis
of b! s� decay is based on the following effective
Hamiltonian

 Heff � �
4GF���

2
p V�tsVtb

X8

i�1

Ci�Q�Oi�Q� (3)

where Vtb and Vts are elements of the CKM matrix, Oi�Q�*Current address of T. I.
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are the operators defined below and Ci�Q� are the Wilson
coefficients evaluated at the scale Q. The only Wilson
coefficients that contribute are C2, C7 and C8 and the
corresponding operators are defined as follows (see e.g.,
Ref. [8])

 O2 � � �cL�
�bL���sL��cL�

O7 �
e

16�2 mb��sL�
��bR�F��

O8 �
gs

16�2 mb��sL���TabR�Ga
��:

(4)

Here e is the magnitude of the electronic charge, gs is the
strong coupling constant, Ta (a � 1; . . . ; 8) are the gener-
ators of SU�3�C and Ga

�� are the gluonic field strengths. As
is well known the decay width ��B! Xs�� has an m5

b
dependence and thus subject to significant uncertainty
arising from the uncertainty in the b quark mass measure-
ment. However, the semileptonic decay width ��B!
Xee ��� also has the same m5

b dependence but is experimen-
tally well determined. For this reason one considers the
ratio of the two decay widths where the strong mb depen-
dence cancels out. The ratio of interest including the
photon detection threshold is defined by [8,11]

 Rth��� �
��B! Xs��jE�>�1���Emax

�

��B! Xce ���

�
6	
�f�z�

��������V
�
tsVtb
Vcb

��������2
KNLO���; (5)

where f�z� � 1� 8z2 � 8z6 � z8 � 24z4 lnz is a phase
space factor and z � �mc=mb� is given in terms of pole
masses. We take �, which is related to the photon detection
threshold, to be 0.9 and ��B! Xce ��� to be 0.1045. KNLO

depend on the Wilson coefficients and is given in the form
[11,12]
 

KNLO��� �
X

i;j�2;7;8
i	j

kij��;Qb�Re
C�0�i �Qb�C
�0��
j �Qb��

� S���
	s�Qb�

2�
Re
C�1�7 �Qb�C

�0��
7 �Qb��

� S���
	

	s�Qb�
�2 Re
C�em�

7 �Qb�C
�0��
7 �Qb��

� k�em��Qb�jC
�0�
7 �Qb�j

2� (6)

where kij, S��� are as defined in Ref. [12], and we use the
running charm mass mc�mb� as suggested in Ref. [9]. We
take the renormalization scale, Qb, to be the b-quark mass.
Above the Wilson coefficients have been expanded in
terms of leading-order and next-to-leading order as follows
[11]

 Ci�Qb� � C�0�i �Qb� �
	s�Qb�

4�
C�1�i �Qb�

�
	

	s�Qb�
C�em�
i �Qb�: (7)

The coefficients to leading order at the scale of the b-quark
mass can be obtained from the Wilson coefficients at the
electroweak scale QW by renormalization group evolution
such that

 C�0�2 �Qb� �
1

2
�
�12=23 � 
6=23�;

C�0�7 �Qb� � 
16=23C�0�7 �MW� �
8

3
�
14=23

� 
16=23�C�0�8 �MW� �
X8

i�1

hi

ai ;

C�0�8 �Qb� � 
14=23

�
C�0�8 �MW� �

313063

363036

�
�
X4

i�1

�hi
bi ;

(8)

where 
 � 	s�MW�=	s�Qb� and hi, �hi, ai and bi are
numerical coefficients and are listed in Appendix A [8].
The next-to-leading order contributions and kem are de-
fined as in Refs. [8,10].

The main focus of this paper is the next-to-leading-order
supersymmetric contributions to the Wilson coefficients
C7;8 at the electroweak scale. Here C7;8 are sums of the
standard model contribution arising from the exchange of
the W and from the exchange of the charged Higgs and the
charginos, so that

 C7;8�QW� � CW7;8�QW� � CH
�

7;8 �QW� � C
��

7;8�QW�: (9)

Additionally the gluino exchange contribution has been
computed in Ref. [13]. However, contributions to the
Wilson coefficients arising from gluino and neutralino
exchange are negligible in the MFV scenario. Studies of
BR�b! s�� beyond the MFV scenario, by looking at the
effects from generational squark mixing, has recently been
performed in Ref. [14]. In the analysis of the supersym-
metric contributions to the next-to-leading-order we will
take into account the CP phase dependence. It is now well
known that largeCP phases can appear in SUSY, string and
brane models while still allowing for the possibility of
electric dipole moments of the electron, of the neutron
and of the 199Hg atom consistent with experiment [15–
18]. (For the current experiment on the EDMs see
Refs. [19–21].) If phases are large they will have important
effects on a number of phenomena [22–30].

The outline of the rest of the paper is as follows: In
Sec. II we give the effective Lagrangian for the charged
Higgs and exhibit how the corrections �0b�t�, �

0
t�s� and �bb,

which bring in tan� factors, enter in the charged Higgs
Yukawa couplings. In Sec. III we exhibit the dependence
on �0b�t�, �

0
t�s� and �bb of the Wilson coefficients C7;8. In

Sec. IV we give a comparison of our work with previous
ones. A numerical analysis is given in Sec. V, and we
determine regions of the parameter space where sizeable
differences occur using the full formulas derived in this
paper relative to the partial results of some of the previous
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works. Conclusions are given in Sec. VI. In Appendix A,
the parameters hi, �hi, ai and bi that appear in Eq. (8) before
are listed. In Appendix B we give an analysis of �0b�t� by
computing the six diagrams in Fig. 1. In Appendix C we
give an analysis of �0t�s� by computing the six diagrams in
Fig. 2. In Appendix D we give an analysis of �bb by
computing the six diagrams in Fig. 3 and the two diagrams
of Fig. 4.

II. EFFECTIVE LAGRANGIAN

To discuss the beyond-leading-order supersymmetric
contribution it is convenient to look at the effective
Lagrangian describing the interactions of quarks with the
charged Higgs fields H� and the charged Goldstones G�.
We use the framework of the minimal supersymmetric
standard model (MSSM) which contains two isodoublets

(a) (b)

(c) (d)

(e) (f)

FIG. 1. Set of diagrams contributing to �0b�t�.

(a) (b)

(c) (d)

(e) (f)

FIG. 2. Set of diagrams contributing to �0t�s�.

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Set of diagrams contributing to �bb.

(a) (b)

FIG. 4. Additional diagrams contributing to �bb.
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of Higgs bosons. Thus for the Higgs sector we have

 �H1� �
H1

1

H2
1

� �
; �H2� �

H1
2

H2
2

� �
(10)

The components of H1 and H2 interact with the quarks at
the tree level through

 �L � �ijhb �bRHi
1Q

j
L � �ijht �tRH

i
2Q

j
L � H:c:: (11)

The SUSY QCD and the SUSY Electroweak loop correc-
tions produce shifts in these couplings and generate new
ones as follows

 �Leff � �ij�hb � �hib� �bRH
i
1Q

j
L ��hib �bRHi�

2 Q
i
L

� �ij�ht � �hit��tRHi
2Q

j
L � �hit �tRHi�

1 Q
i
L

� H:c:; (12)

where the complex conjugate is needed to get a gauge
invariant Leff . We note that in the approximation

 �h1
f � �h2

f; �h1
f � �h2

f; (13)

one finds that Eq. (12) preserves weak isospin. This is the
approximation that is often used in the literature. However,
in general the equalities of Eq. (13) will not hold and there
will be violations of weak isospin. It has been demon-
strated that the weak isospin violation can be quite signifi-
cant, i.e., as mush as 40%–50% or more of the total loop
correction to the Yukawa coupling [29].

The typical supersymmetric loop that contributes to the
shifts in the couplings �hif and �hif contains one heavy
fermion f and two heavy scalars S1 and S2 or one heavy
scalar S and two heavy fermions f1 and f2. The basic
integral that enters in the first case is

 I1 �
Z d4k

�2��4
mf � k6

�k2 �m2
f��k

2 �m2
S1
��k2 �m2

S2
�
: (14)

The basic integral that enters in the second case is

 I2 �
Z d4k

�2��4
�mf1

� k6 ��mf2
� k6 �

�k2 �m2
f1
��k2 �m2

f2
��k2 �m2

S�
: (15)

The largest finite parts of these integrals that contribute to
the vertex corrections, in the zero external momentum
analysis would read

 I1 �
1

16�2mf
H
�m2

S1

m2
f

;
m2
S2

m2
f

�

I2 �
mf1

mf2

16�2m2
S

H
�m2

f1

m2
S

;
m2
f2

m2
S

�
;

(16)

where the function H is given by

 H�x; y� �
x

�1� x��x� y�
lnx�

y
�1� y��y� x�

lny; (17)

in case x � y and

 H�x; y� � H�x� �
1

�x� 1�2

1� x� lnx�; (18)

for the case x � y.
Electroweak symmetry is broken spontaneously by giv-

ing vacuum expectation value v1=
���
2
p

to H1
1 and v2=

���
2
p

to
H2

2 . Then the mass terms for the quarks arising from
Eq. (12) would be

 �Lm � mb
�bRbL �mt �tRtL � H:c:; (19)

with mb and mt related to hb and ht as follows

 hb �

���
2
p
mb

v1�1� �bb tan��
ht �

���
2
p
mt

v2�1� �tt cot��
; (20)

where

 �bb �
�h2

b

hb
� cot�

�h1
b

hb
�tt �

�h1
t

ht
� tan�

�h2
t

ht
:

(21)

The electroweak eigenstates of charged Higgs interac-
tion with quarks in Eq. (12) is
 

Leff � �h
�
b � �h

2�
b ��tLbRH

2�
1 ��h1�

b
�tLbRH

1
2

� �ht � �h
1
t ��tRbLH

1
2 ��h2

t �tRbLH
2�
1 � H:c:: (22)

By going from the electroweak eigenstates basis to the
mass eigenstate H� and G� basis
 

H2�
1 � sin�H� � cos�G�

H1
2 � cos�H� � sin�G�;

(23)

and by using Eq. (20) one gets

 L eff �
g���

2
p
MW

G�
�
mt

1� �t�b� cot�
1� �tt cot�

�tRbL

�mb
1� �0b�t� tan�
1� ��bb tan�

�tLbR

�

�
g���

2
p
MW

H�
�
mt

1� �0t�b� tan�
1� �tt cot�

cot��tRbL

�mb
1� �b�t� cot�
1� ��bb tan�

tan��tLbR

�
� H:c:; (24)

with
 

�t�b� �
�h2

t

ht
� tan�

�h1
t

ht

�0b�t� �
�h1�

b

h�b
� cot�

�h2�
b

h�b

�0t�b� � �
�h2

t

ht
� cot�

�h1
t

ht

�b�t� � �
�h1�

b

h�b
� tan�

�h2�
b

h�b
:

(25)
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For flavor mixing to be considered we should have
worked out the analysis for three generations of quarks
from the beginning. Thus the general effective Lagrangian
would read

 L eff �
g���

2
p
MW

G�
�X
d

mtVtd
1� �t�d� cot�
1� �tt cot�

�tRdL

�
X
u

mbVub
1� �0b�u� tan�
1� ��bb tan�

�uLbR

�

�
g���

2
p
MW

H�
�X
d

mtVtd
1� �0t�d� tan�
1� �tt cot�

cot��tRdL

�
X
u

mbVub
1� �b�u� cot�
1� ��bb tan�

tan� �uLbR

�
� H:c:;

(26)

where Vqq0 here are the radiatively corrected CKM matrix
elements.1

The terms with �tt can be ignored since the radiative
corrections for the top quark mass are typically less than
1% [24]. As in [4,10,32] we will ignore the terms with
�t�d� and �b�u�. This is a good approximation in the large
tan� region, and for small values of tan� these �’s have
little or no influence on the rate of b! s�.

III. WILSON COEFFICIENTS

Using the above Lagrangian for the interactions of
quarks with the charged Higgs and the charged
Goldstone bosons along with the Lagrangian that describes
the interaction of quarks with W� bosons:

 L � g
X
d

Vtd �tL��dLW�� � H:c:; (27)

the contributions to C7;8 from the W-boson and from the
charged Higgs are given by

 CW7;8�QW� � F�1�7;8�xt� �
���bb � �

0
b�t�� tan�

1� ��bb tan�
F�2�7;8�xt� (28)

 CH
�

7;8 �QW� �
1

3tan2�
F�1�7;8�yt� �

1� �0t�s�
� tan�

1� ��bb tan�
F�2�7;8�yt�;

(29)

where xt and yt are defined by

 xt �
m2
t �QW�

M2
W

; yt �
m2
t �QW�

M2
H

; (30)

and F�1�7;8 and F�2�7;8 are given by

 F�1�7 �x� �
x�7� 5x� 8x2�

24�x� 1�3
�
x2�3x� 2�

4�x� 1�4
lnx

F�2�7 �x� �
x�3� 5x�

12�x� 1�3
�
x�3x� 2�

6�x� 1�3
lnx

F�1�8 �x� �
x�2� 5x� x2�

8�x� 1�3
�

3x2

4�x� 1�4
lnx

F�2�8 �x� �
x�3� x�

4�x� 1�3
�

x

2�x� 1�3
lnx:

(31)

In the limit where all the supersymmetric particles be-
comes heavy, the SUSY correction to the W contribution
vanishes. Thus, in this decoupling limit one finds ��bb �
�0b�t�.

The chargino exchange contribution to C7;8 with the
beyond-leading-order SUSY corrections, has been derived
in Ref. [4] and extended to the case of nonzero CP-phases
in Ref. [32]. We have

 C�
�

7;8�Qs� � �
X2

k�1

X2

i�1

�
2

3
jrkij

2 M
2
W

m2
~tk

F�1�7;8

�m2
~tk

m2
��i

�

� r�kir
0
ki

MW

m��i

F�3�7;8

�m2
~tk

m2
��i

��

�
X2

i�1

�
2

3
j~r1ij

2 M
2
W

m2
12

F�1�7;8

�
m2

12

m2
��i

�

� ~r�1i~r
0
1i
MW

m��i

F�3�7;8

�
m2

12

m2
��i

��
; (32)

where Qs is the soft SUSY scale and m12 is the mass of the
first and second generation up-type squarks, which we take
to be identical. Further,

 rij � D�t1iV
�
j1 �

mt�Qs����
2
p
MW sin�

D�t2iV
�
j2;

r0ij �
D�t1iUj2���

2
p

cos��1� ��bb tan��
;

(33)

and where ~rij and ~r0ij are obtained from rij and r0ij by
setting the matrix Dt to unity. Finally the loop functions
F�3�7;8�x� appearing in Eq. (32) are given by

 F�3�7 �x� �
�5� 7x�

6�x� 1�2
�
x�3x� 2�

3�x� 1�3
lnx;

F�3�8 �x� �
�1� x�

2�x� 1�2
�

x

�x� 1�3
lnx:

(34)

The value of the chargino contribution at the scale QW is
computed as in Ref. [4], where we use �0 � �7 corre-
sponding to six flavors. Only the chargino contribution
may give a CP-violating contribution at the leading order.
However, as the �’s may be complex all three contribu-
tions; the W, the charged Higgs as well as the chargino,

1For a precise analysis of introducing CKM matrix elements
into the Lagrangian and their radiative corrections, see [31].

AN IMPROVED ANALYSIS OF b! s� IN SUPERSYMMETRY PHYSICAL REVIEW D 74, 015015 (2006)

015015-5



may be complex at NLO order. We note that all the NLO
SUSY corrections scales with 1=�1� ��bb tan��. To com-
plete the analysis what remains to be done is the compu-
tation of �0b�t�, �

0
t�s� and �bb and as mentioned above we

will compute these in the zero external momentum analysis
[33]. However, we will calculate all one-loop SUSY QCD
and SUSY electroweak corrections to these for any tan�.
We collect the expressions for these corrections in
Appendices B, C, and D. While analyses for these exist
in the literature they are not fully general when CP phases
are present and the soft parameters are in general complex.

IV. COMPARISON WITH PREVIOUS WORKS

In this section we compare our results with previous
works.2 We start by comparing our results with the work of
[34] (BCRS), as this analysis is the most complete of the
previous works. It includes the exact one-loop results for
the �’s, but only in the limit of CP conservation. Thus
BCRS considered the one-loop corrections to the vertex of
the charged Higgs and charged Goldstones with quarks in
their Fig. 4. The ��FkL�

JI and ��FkR�
JI in Eqs. (A.8) and

(A.9) of Ref. [34], where J � 1, 2, 3 for u, c, t and I � 1,
2, 3 for d, s, b are related to our �’s as follows:

 ��F1
L�
JI � VJIhJ sin��0J�I�

��F2
L�
JI � VJIhJ cos��J�I�

��F1
R�
JI � VJIh

�
I cos��I�J�

��F2
R�
JI � �VJIh�I sin��0I�J�:

(35)

The first and third lines of the above set are for the charged
Higgs H� and the second and fourth are for the charged
GoldstoneG�. The relations relevant for the current analy-
sis are the first and the fourth ones and thus we will
explicitly check the validity of these.

In order to compare the �’s of our Appendices B and C
and vertex corrections presented in the appendix A.3 in
Ref. [34], we first establish a dictionary connecting the
notation in the two works. Thus the form factors in the two
works are related to each other by xC0�x; y; z� � �H�

y
x ;

z
x�,

where H�yx ;
z
x� is the form factor used in our work and

C0�x; y; z� is the form factor used by BCRS. The diagonal-
izing matrices Zij��Z

ij
�� of BCRS correspond to ourU�ji�V

�
ji�

and ZijN of BCRS corresponds to our Xij. In our analysis we
did not consider flavor mixing in the squark sector, so the
squark mass-squared matrices are 2� 2 and not 6� 6
ones. Thus in the case of �0b�t�, the sum in the expressions
for �F is over the squark mass eigenstates of the third
generation; In another words we sum over the third and
sixth entries in their matrices. So the ZIJ�D of BCRS corre-
sponds to our Dbij, ZIJU of BCRS corresponds to our Dtij

with I, J � 3i, 3j. In the case of �0t�s� we sum, for the ~s
squark over the second and fifth entries in their matrices
and the ZIJ�D of BCRS corresponds to our Dsij with I, J �
3i� 1, 3j� 1. As BCRS follows the conventions of
Ref. [35], the Higgs coupling hb in their Lagrangian is
our�hb and their ht is equal to ours. The trilinear coupling
At in their superpotential is our �htAt and their Ab is our
hbAb as can be seen by comparing the superpotential in
Sec. 3 of their Ref. 30 and the superpotential we are using
which is the same as in Eq. (4.15) of Gunion and Haber
[36]. Also the elements ZijH are defined in section 4 of
Ref. [35].

We now give details of the comparison. The first term in
��F1

L�
JI of Eq. (A.8) of Ref. [34] has the following corre-

spondence in our notation

 ��F1
L�
JI
1st term ! VJIhJ sin���0�1�J �I� � �

0�2�
J �I�� (36)

In comparing our results with theirs one finds that we have
an explicit gluino phase dependence �3 in our analysis.
This gives us the maximum freedom in the choice of the
independent set of phases in which to carry out the
analysis.

The second term in ��F1
L�
JI of Eq. (A.8) of Ref. [34] has

the following correspondence in our notation

 ��F1
L�
JI
2nd term ! VJIhJ sin���0�3�J �I� � �

0�4�
J �I��: (37)

Using e � g sinW and g1 � g tanW , one can prove that
 

�	JkDJ1j � �JkDJ2j� � �
1���
2
p VRJjk�uUN

���IkD
�
I1i � 	IkD

�
I2i� � �

1���
2
p VLIikdDN;

(38)

and we find complete agreement for this term.
The third term in ��F1

L�
JI of Eq. (A.8) of Ref. [34] has

the following correspondence in our notation

 ��F1
L�
JI
3rd term ! VJIhJ sin��0�5�J �I�: (39)

One can prove that
 

hJDI1jV�i2VJI � VRJji�uDC

g���
2
p sin���

���
2
p
X3kU

�
i1 � X2kU

�
i2 � tanWX1kU

�
i2� � VLki1NCH;

(40)

and we see that we again agree with BCRS. We notice here
that our expression does not have the form factor
C2�x; y; z�. This form factor comes from the k2 term in
the integral where a loop with two fermions and one scalar
is integrated. This part diverges and it is used to renormal-
ize the parameters of the theory and could be safely
ignored as we shall see when we compare with one of their
�’s later.

The fourth term in ��F1
L�
JI in their Eq. (A.8) corre-

sponds to our
2A brief comparison of partial analysis of the �’s with pre-

viously works was given in Ref. [28].
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 ��F1
L�
JI
4th term ! VJIhJ sin��0�6�J �I�: (41)

One can prove that

 g�V�i1D
�
J1j � KJV

�
i2D

�
J2j�VJI � �V

LIji
dUC; (42)

and we find once again agreement.
Next we compare with ��F2

R�
JI in Equation (A.9) of

BCRS. The first term in ��F2
R�
JI has the following corre-

spondence to our work

 ��F2
R�
JI
1st term ! �VJIh

�
I sin���0�1�I �J� � �

0�2�
I �J��: (43)

The only difference that appear from the comparison is that
the first term in BCRS should have an extra factor of ei�3 .
The second term in ��F2

R�
JI of Eq. (A.9) in BCRS has the

following correspondence to our work

 ��F2
R�
JI
2nd term ! �VJIh

�
I sin���0�3�I �J� � �

0�4�
I �J��: (44)

One can prove that
 

�	�IkD
�
I1j � �

�
IkD

�
I2j� � �

1���
2
p VRIjkdDN

��JkDJ1i � 	
�
JkDJ2i� � �

1���
2
p VLJik�uUN ;

(45)

and we find agreement between our result and that of
BCRS.

The third term in ��F2
R�
JI of their Eq. (A.9) has the

following correspondence to our work

 ��F2
R�
JI
3rd term ! �VJIh

�
I sin��0�6�I �J�: (46)

One can prove that
 

g�Ui1DI1j � KIUi2DI2j�VJI � �V
LJji�
uDC

g���
2
p sin��

���
2
p
X�4kVi1 � X

�
2kVi2 � tanWX

�
1kVi2� � �V

Rki2
NCH;

(47)

and we find no difference between our equations and theirs
for that term. The fourth term in ��F2

R�
JI of their Eq. (A.9)

has the following correspondence to our work

 ��F2
R�
JI
4th term ! �VJIh

�
I sin��0�5�I �J�: (48)

One can prove that

 gKIUi2D
�
J1jVJI � VRIjidUC; (49)

and comparing their result with ours, we find no difference
here either. To summarize, for the case with no CP phases
we find complete agreement with the work of BCRS.
However, for the case of CP-violation we have explicit
gluino phase dependence. We note that the BCRS analysis
did not take into account the CP violating effects in the
Higgs sector. Specifically, it is now known that in the
presence of complex phases in the soft SUSY-breaking
sector, the three neutral Higgs mass eigenstates are mix-

tures of CP-even and CP-odd fields with production and
decay properties different from those in the CP conserving
scenarios. The vertices of these mass eigenstates are af-
fected by this mixing moreover this mixing can lead to
important effects in SUSY phenomena [37]. We explain
now in further detail exactly where [34] misses these
effects. Thus in [34], the assignment of the neutral Higgs
as CP even h0 and H0 and CP odd A0 in Appendix A.3
where different �F elements of Sec. II are calculated does
not hold for the case with CP phases. Also the decom-
position of the electroweak eigenstates in Eq. (3.8) of
BCRS does not hold for the CP violating case. Eqs. of
sections (3.3), (6.1.2), (6.2) and Eq. (6.61) should also be
modified to take this mixing into account. We note, how-
ever, that the CPmixing effects in the neutral Higgs sector
do not affect the b! s� analysis in this paper.

Continuing with the comparison of our work with that of
BCRS we find that in Sec. (3) of [34], the authors did not
take into account violations of isospin in their analysis as
they are working in the approximation of Eq. (13) above. It
is known that the effects of violations of isospin can be
large, and if such violations were included, then in their
Eqs. (3.3) and (3.14) the corrections �dYd, �uYd, �uYu and
�dYu should have a suffix iwhere i labels the element of an
isopsin multiplet. In other words instead of the above four
corrections one should have eight. Specifically the correc-
tions that appear in Eqs. (3.35) and (3.41) are in general
different from those in Eqs. (3.9) and (3.16). We also note
that Eq. (3.37) of Ref. [34] is derived based on the assump-
tion of isospin invariant loop corrections.

However, compared to the analysis of the works of
[4,10,32] the analysis of Ref. [34] is more general as it
takes into account more loops. Thus the analysis of
Ref. [34] specifically considered the case where two heavy
fermions and one heavy scalar are running in the loops. So
in their Fig. (9) they considered the additional important
corrections to the charged Higgs boson couplings to
quarks. The loop in Fig. (9a) of [34] corresponds to our
loop 2(f) and the loop in Fig. (9b) corresponds to our
loop 2(e). By looking at their expression for �a�0t�I� we
note that there is no summation over the squark states.
Thus the first term of �a�0t�I� corresponds to the case of
squark j � 1 of our��0�6�t �I�. Using the following property
of the form factor function H�x; y�:

 

m1m2

m2
3
H
�
m2

2

m2
3

;
m2

1

m2
3

�
�
m1

m2
H
�
m2

1

m2
2

;
m2

3

m2
2

�
(50)

one can make the comparison between our expression and
theirs. So in the limit of vanishing Left-Right squark mix-
ings, our expressions limits to that of [34]. However there
is a minor correction to their equation even in that limit.
Thus in the first line of their expression for �a�0t�I�, Z

1j
N

should read Z4j
N and their parameter alj should be modified

a little to be
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 alj � Z2l
�
sWZ

1j
N � cWZ

2j
N � �

���
2
p
Z1l
�Z

3j
N cW; (51)

where the cosW factor in their last term is missing. The
second term of �a�0t�I� correspond to our ��0�6�t �I� with
j � 2 squark. By noting that

 �tk �
2

3
gX1k tanW; (52)

our expression reproduces their second term with the minor
change that Z4j

N should read Z1j
N and with the above new

form of the parameter alj of Eq. (51). One can repeat
the same analysis to compare �b�0t�I� of [34] with our
��0�5�t �I�. Here also the analysis of Ref. [34] ignores squark
mixing and their expression for �b�0t�I� corresponds to the
squark of j � 1 in our equation. We need the fact that

 ��Ik �
g
cW

�
1

6
sWX1k �

1

2
cWX2k

�
(53)

to reproduce their expression with the minor change of the
definition in Eq. (51) above. We note here that the authors
did not consider the part of the loop which has the form
factor C2�x; y; z� as mentioned earlier. Finally, Eq. (5.6)
of Ref. [34] calculates �0t�I� that corresponds to our
���0�1�t �I� � �

0�3�
t �I��. Our expressions are more general

and they limit to Eq. (5.6) of Ref. [34] if we ignore in
our formula, the first, third, fourth and fifth terms of �0�1�t �I�
and by ignoring 19 terms in our �0�3�t �I� as well. We should
notice here that they are using a different defintion of Ab. In
this part of the paper they use Ab to be our �Ab as this
could be seen from their footnote 3 of section 5.2. Also we
note that their expression for �0t�I� is only valid for the CP
conserving scenario. Thus for nonzero CP phases,� in the
first term should read �� and Ab in the second term should
read A�b. However, the assignment of the ZN matrix ele-
ments here is exactly like ours and is different from that in
the DGG paper (See our note after our Eq. (65)).

Finally we should mention here that, apart from the
small differences mentioned above with the approximate
formulas of BCRS, our formulas should be rather consid-
ered as extensions not corrections of them. Next we com-
pare our analysis to other earlier works where an effective
Lagrangian similar to ours has been used.

A. �0b�t�

First we compare our analysis with the work of Demir
and Olive (DO) [32]. We note that the �tb of DO is identical
to our �0b�t�. DO computed two one-loop contributions to
�0b�t�, which correspond to the contributions �0�1�b �t� and
�0�3�b �t�, in the limit of small squark mixings and large tan�.
Our �0�1�b �t� in this limit becomes

 

�0�1�b �t� � �
X2

i�1

X2

j�1

2	s
3�

ei�3 jDb2jj
2jDt1ij

2

�
�
jm~gj

H
� m2

~ti

jm~gj
2 ;

m2
~bj

jm~gj
2

�
; (54)

which is the same as the first part of �tb in Ref. [32]. (We
note that Cq of DO is ourDq and there is a typo in Ref. [32]
in that their jC2l

~t j
2 should be jC2l

~b
j2). Next using

 

2mt

mb
cot�	�bk	

�
tk � h2

t X�3kX
�
4k; (55)

we find that our �0�3�b �t� in the limit assumed by DO takes
the form

 �0�3�b �t� ’
h2
t

16�2

At
m�0

k

jDb1jj
2jDt2ij

2X�3kX
�
4kH

�m2
~ti

m2
�0
k

;
m2

~bj

m2
�0
k

�
:

(56)

To compare with Ref. [32] we define 	t � h2
t =4� and set

Co � X. One finds then that the overall sign of this term in
DO is opposite to ours. As will be discussed later the
overall sign of this term as computed in micrOMEGAs
[10] is also in disagreement with the sign given by DO, but
in agreement with our sign as given above. Furthermore, in
Ref. [32] �C0�4i�C

y
0 �3i should be �C�0�4i�C

�
0�3i. Aside from

these corrections, the results of Ref. [32] for �0b�t� for the
parts computed, are in agreement with our result.

Next we compare our results with the work of Degrassi
et al. (DGG) [4]. Eq. 15 of DGG can be obtained from
Eqs. (54) and (56) of our analysis. To compare with the
results of DGG we have to keep in mind that in the analysis
of DGG, Ab and mg are real. The relation between our X
and the N of DGG is XT � N� and thus we note that their
N4aN

�
a3 should read Na4N3a. Moreover, one finds that the

overall sign of the Yukawa contribution in DGG should be
reversed to agree with our sign.

The analysis of the micrOMEGAs group [10] takes into
account all the six �0b�t� contributions but restricted to the
case of real parameters and using certain approximations.
The value of �0�1�b �t� and �0�3�b �t� is identical to the ones of
DGG. The simplified formulas implemented in
micrOMEGAs for �0�2�;�4�b �t� was derived in Ref. [38] and
�0�5�;�6�b �t� was derived in Ref. [39].

We begin by displaying our �0�2�b �t� and �0�4�b �t� in the
limit of small squark mixings

 �0�2�b �t� �
X2

i�1

X2

j�1

2	s
3�

ei�3 jDb2jj
2jDt1ij

2 A�b
tan�

�
1

jm~gj
H
� m2

~ti

jm~gj
2 ;

m2
~bj

jm~gj
2

�
(57)
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�0�4�b �t� � �
X4

k�1

X2

i�1

X2

j�1

��

tan�
jDb1jj

2jDt2ij
2X�3kX

�
4k

h2
t

16�2

1

m�0
k

�H
�m2

~ti

m2
�0
k

;
m2

~bj

m2
�0
k

�
: (58)

To compare with the analysis of micrOMEGAs we keep in
mind that in their work mg, � and A are all real. With this
restriction our analysis is in agreement with Eq. (B.67) of
Ref. [10] specifically with the sign. (However, N�a4 in
Eq. (B.67) should read Na4.) Thus we support their dis-
agreement with the work of DO and of DGG as stated after
Eq. (B.67) in Ref. [10].

Appropriately extended to the complex case the simpli-
fied formulas for �0�5�b �t� read

 �0�5�b �t� �
	�MSUSY�

8s2
W�

�M2

�
jDt11j

2

m2
~t1

H
�
jM2j

2

m2
~t1

;
j�j2

m2
~t1

�

�
jDt12j

2

m2
~t2

H
�
jM2j

2

m2
~t2

;
j�j2

m2
~t2

��
; (59)

and �0�6�b �t� read

 �0�6�b �t� �
	�MSUSY�

4s2
W�

�M2

�
jDb11j

2

m2
~b1

H
�
jM2j

2

m2
~b1

;
j�j2

m2
~b1

�

�
jDb12j

2

m2
~b2

H
�
jM2j

2

m2
~b2

;
j�j2

m2
~b2

��
: (60)

These formulas are derived by using the corresponding
formulas for �bb and the decoupling limit. Moreover, one
approximates the chargino masses by � and M2 and ne-
glects mixing matrixes and U�1� contributions. We have
checked numerically that they approximate the full formu-
las given in Eqs. (B10) and (B13) of Appendix B rather
well over most of the complex parameter space.

B. �bb
In this section we carry out a similar analysis with the

three works [4,10,32] for the case of �bb. Comparing with
the computation of DO we find that the QCD part given in
Eq. (7) of Ref. [32] is the same as ours in the limit they are
considering. To compare with the Yukawa part contribu-
tion we note that their CL, CR are related to our U and V as
follows: CyL � V, and CyR � U�. Then using

 g2 mt

mb
cot�KtKb � h2

t ; (61)

we find agreement with their analysis provide their �CyR�2j
is substituted by �CyR�j2. Next, comparing with the work of

DGG, we agree with the QCD part of their Eq. (10) after
taking account of the fact that they have no CP phases. To
compare the contribution of the chargino in their work with
ours we note that their U is our U�. Also, Va2 in their work
should read V�a2. We note that there is also a disagreement
between DGG and DO on this point taking into account
that CyL in Ref. [32] is V in Ref. [4] and CyR in Ref. [32]
corresponds to the matrix U of Ref. [4]. Finally we com-
pare with the analysis of micrOMEGAs as given in
Eq. (B.66) in Ref. [10]. We agree with their result except
that their Va2 should read V�a2. The simplified formulas for
��1�bb � �

�2�
bb� and ��3�bb � �

�4�
bb extended to the complex case

reads

 ��1�bb � �
�2�
bb �

2	s�MSUSY�

3�

�
�Ab= tan�����

m~g
H
� m2

~b1

jm~gj
2 ;
m2

~b2

jm~gj
2

�
(62)

and

 

��3�bb � �
�4�
bb �

y2
t �MSUSY�

16�2

X
a�1;2

U�a2V
�
a2

�= tan�� A�t
m��a

�H
�m2

~t1

m2
��a

;
m2

~t2

m2
��a

�
: (63)

In micrOMEGAs the implementation of the terms 7 and 8
are given by �7

bb � 2��0�5�b �t��
� and �8

bb � ��
0�6�
b �t��

�=2 using
the results in Eqs. (59) and (60).

C. �0t�s�

First we compare our analysis with the result of DO,
where �ts corresponds to our �0t�s�. DO only considered
�0�1�t �s� and computed this in the limits mentioned in the
preceding discussion. Our result in the same limits is given
by

 

�0�1�t �s� �
X2

i�1

X2

j�1

2	s
3�

e�i�3��jDs1ij
2jDt2jj

2 1

jm~gj

�H
� m2

~si

jm~gj
2 ;

m2
~tj

jm~gj
2

�
: (64)

Using Ds11 ’ 1, Ds12 ’ 0, and m2
~s1
� Q2

12, we get exactly
the �ts of Eq. (7) in Ref. [32]. DGG only computed the
tan� enhanced QCD and Yukawa terms; �0�1�t �s� and
�0�3�t �s�. Our �0�1�t �s� � �

0�3�
t �s� corresponds to their

Eq. (16) reads
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�0�1�t �s� � �
0�3�
t �s� �

X2

i�1

X2

j�1

2	s
3�

e�i�3��jDs1ij
2jDt2jj

2 1

jm~gj
H
� m2

~si

jm~gj
2 ;

m2
~tj

jm~gj
2

�

�
h2
s

16�2

X4

k�1

A�s
m�0

k

X3kX4kjDs2ij
2jDt1jj

2H
�m2

~si

m2
�0
k

;
m2

~tj

m2
�0
k

�
: (65)

Using the definition of their Eq. (17) there is a disagreement with the sign of the second part of their Eq. (16). Also, their
N�4aNa3 should read N�a4N

�
a3. The micrOMEGAs group only computes �0�1�t �s� and �0�2�t �s� in our notation. Our approxi-

mation of the sum of these quantities gives

 �0�1�t �s� � �
0�2�
t �s� �

X2

i�1

X2

j�1

2	s
3�

e�i�3

�
�� �

At
tan�

�
jDs1ij

2jDt2jj
2 1

jm~gj
H
� m2

~si

jm~gj
2 ;

m2
~tj

jm~gj
2

�
: (66)

The analysis of the micrOMEGAs group does not include
CP phases. Setting the phases to zero;�� � �, and �3 � 0
etc. in Eq. (66) and taking into account that they use the
opposite sign convention for �0t�s�, we find that our result is
in complete agreement with Eq. (B.68) in Ref. [10].

V. NUMERICAL ANALYSIS AND SIZE ESTIMATES

We now present a numerical analysis of our analytic
results and also give a comparison with the previous works.
In the following we compare three different methods for
the calculation of the branching ratio of b! s�, by using
different computations of the �’s;

(1) F: This is the full calculation of this work.
(2) S1: Here the �’s are calculated using the simplified

formulas found in the micrOMEGAs manual. Thus,
we use the simplified formulas derived in
Refs. [4,38,39] appropriately extended to the com-
plex case, as derived in Sec. IV. Moreover, we
correct the neutralino mixings terms entering in
�0�3�b �t� and �0�4�b �t� as stated in Sec. IV.

(3) S2: Here the �’s are calculated using the simplified
formulas of Ref. [32]. But with the corrections
stated in this paper.

In the previous section we exhibited the equivalence of our
analysis and that of [34] for the case with no CP phases,
and showed that for the case with CP phases our analysis is
more complete. Thus we use our analysis in the numerical
computation since it is valid with and without CP phases.
In the numerical analysis we take the SUSY scale to be the
average of the stop-masses. We calculate the difference in
percent to the full b! s� calculation via the relation

 

BR�b! s��F � BR�b! s��S
BR�b! s��F

; (67)

where S � S1, S2. In our numerical analysis we investigate
several different supersymmetry breaking scenarios. These
are

(1) mSUGRAwith real soft terms and complex SUGRA
with universal value for the absolute soft terms.

(2) MSSM with real and complex soft breaking sector.
In the analysis we scan over the parameter-space in order to
find the qualitatively difference among the schemes above
and search for the parameter space where the allowed
points satisfy the experimentally measured rate for b!
s� within 2�, thus requiring

 2:3� 10�4 < BR�b! s��F < 4:7� 10�4: (68)

In addition we check that all bounds on sparticle masses
are satisfied, where we use the bounds given in Ref. [40].
Furthermore, we require the Higgs mass to be heavier than
110 GeV in the real case, as the theoretical error in the
calculation of its mass is of order a few GeV. In the
complex case we choose the lower bound 100 GeV for
the lightest Higgs mass, as in this case there is a possibility
for such a low mass being consistent with the LEP data
[41]. This choice has little influence on our results. For the
computation of the Higgs mass we use CPsuperH [42].

Clearly, some of the contributions in the �’s are numeri-
cally insignificant. We find that in �bb the contributions ��5�bb
and ��6�bb are small. Also the contributions �0�3�;�4�t �s� can be
safely neglected, as the terms that would have been domi-
nating are suppressed by the strange-quark Yukawa cou-
pling. However, the contribution �0�5�;�6�t �s�, which has not
been included in S1 and S2 calculations of the rate for b!
s� gives sizeable contribution, capable of changing the rate
by a few percent. The CKM elements Vqq0 that enter the
analysis above are radiatively corrected and are calculated
following the work of [31]. Numerically the radiative
corrections are found to be small in the part of parameter
space investigated but the corrections could be significant
in other parts of the parameter space.

Before proceeding further we exhibit the dependence of
the �’s and the b! s� branching ratio on phases. This is
done in Fig. 5 which shows sharp dependence of these
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quantities on the phases. Specifically the analysis ob b!
s� in Fig. 5 shows that the effect of phases can move the
branching ratio for a given point in the parameter space
from the experimentally forbidden area into the allowed
corridor of values in Eq. (68).

In the following we discuss the different scenarios in
detail.

A. mSUGRA and complex SUGRA with universalities

In this section we carry out an analysis in the framework
of extended mSUGRA model whose soft breaking sector is
described by the parameters m0, A0 � jA0jei	, tan�,�0 �
j�0jei� , ~mi � jm1=2jei�i (i � 1, 2, 3) where m0 is the
universal scalar mass, m1=2 is the universal gaugino
mass, A0 is the universal trilinear coupling, and �0 is the
Higgs mixing parameter, while 	, �, �i are the phases, all
taken at the GUT scale.

In the real mSUGRA case the scan is done by randomly
selecting points within the following parameter-space;
m0 2 
200 1000� GeV, m1=2 2 
200 1000� GeV, A0 2


�3m0; 3m0�, tan� 2 
5; 55� and both signs of the �
parameter. For the complex case we also vary the five
phases �, 	A, �1, �2, �3 within the range zero to �.

Our results are shown in Fig. 6. We find a significant
correlation of the increase of the differences with tan�.
This is very natural as the physical important parameter is
� tan� compared to one. Thus, in order for the � parame-

ters to have a substantial influence tan� must be large. We
see that in both cases the micrOMEGAs approximation is
better (once we include the appropriate phases on their
expressions) for the real case the differences remain below
2% using method S1 and for method S2 it is less than about
4%. In the complex case while the S1 approximation
remain below 4%, the differences in the S2 approximation
can reach 8%. This can be attributed to the fact that S2 does
not include the electroweak contributions to �bb and �0b�t�.
These contributions can induce a relatively large error at
small values of m1=2 (indeed all the points with S2 � 8%
correspond to m0 < 400 GeV and m1=2 < 250 GeV).
These results can be applied also to the supersymmetric
corrections to the b-quark mass, �mb, which is given by
�bb tan�. We find that in the mSUGRA and complex
SUGRA cases the simplification of S2 provides an accu-
racy of about 40% and the simplification of S1 an accuracy
of about 5%.

We would like to stress the importance of using the
correct signs and complex-conjugates. In Fig. 7 we com-
pare again the methods S1 and S2 against our full calcu-
lations, but this time we use the original formulas, as
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FIG. 6 (color online). The percentage difference between the
approximate formulas of S1 and S2 and our full calculation in the
SUGRA scenario. The left graph is the case with no phases, and
the right graph is the case with phases. Each group contains
about 1800 models where each point in the parameter space
defines a model.
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presented in Refs. [10,32].3 The difference is seen to
increase substantial being as much as 15%. This can be
understood since often there are cancellations among the
epsilons contribution to the Wilson Coefficients. For in-
stance the SUSY corrections to the W-contribution scale
with ��bb � �

0
b�t� and this factor is much smaller than the

�’s themselves due to cancellation. Thus, having a wrong
sign on one of the terms can cause a large effect on the
SUSY correction.

To compare the accuracy of the various methods of
evaluation of the �’s we focus on the point:

 m0 � 350; m1=2 � 200; A0 � 700; �1 � 0;

�2 � 0:75; �3 � 0:5; � � 0:6 	 � �;

(69)

where all the phases are given in radians and masses in
GeV. Our results are shown in Fig. 8. For method S1 the
differences can be attributed to the simplification of the
calculations of some terms and to neglecting the terms
�0�5�t �s� and �0�6�t �s�. We note that the inclusion of the
electroweak contributions in �bb and �0b�t�, is an improve-
ment as compared to the simplified S2 method.

Overall the corrections given in this paper to the
BR�b! s�� are relatively small in the SUGRA scenario.
Clearly, the SUGRA scenario constrains the MSSM mass
spectra to have certain hierarchies. Moreover, due to the
RGE evolution in SUGRA one normally finds the low-
energy trilinear top term to be At ��M3, unless the GUT
scale A0 is very large. As we now discuss, these constraints
in the SUGRA scenario give rise to various cancellations.
The phase of the LO chargino contribution (see Eq. (32)),
assuming the hierarchy imposed in SUGRA scenarios, is
given by arg��At� and the phase of the NLO chargino
contribution is arg���M3�. The LO Higgsino contribution
as well asW contribution are always positive. Thus, for the
Higgsino and the chargino contribution to cancel against
each other one needs arg��At� � �. If such a cancellation
occurs the SUSY corrections are allowed to be large. As
noted in Sec. III all SUSY corrections scales with 1=�1�
��bb tan�� and thus these corrections will be large if
��bb tan� is close to minus one. The leading SUSY QCD
contribution to �bb has a phase of arg��M3�. And this term
is positive in the case of a negative chargino contribution.
Thus, in mSUGRA one can never have a cancellation
between the Chargino and the Higgsino contributions and
at the same time have a negative value of �bb. This is the
main reason that the differences in the SUGRA case are
rather small. Another reason is that in general in the
SUGRA scenario the different contributions to the �’s

cancels against each other. Thus, for instance for the �bb
correction, the leading SUSY QCD correction has the
opposite sign as compared to the Yukawa and the electro-
weak contributions. Again this cancellation arises due to
the relation between the trilinear top term and the gluino
mass. Thus, in the SUGRA scenario the �’s are numerically
smaller than in the general MSSM scenario.

B. MSSM with real and complex soft breaking sector

In the MSSM case the scan is done by randomly choos-
ing the soft-masses in the range 200 to 1000 GeV and the
trilinear terms between �3000, 3000. We also run with
plus and minus sign on the �-term, the trilinear terms and
the gaugino masses. In the complex case we take the phases
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FIG. 8 (color online). Variation of the �’s with tan� for the
parameters of Eq. (69) and the corresponding prediction of
BR�b! s�� using S1, S2 and the complete calculation (F).
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FIG. 9 (color online). The percentage difference between the
approximate formulas of S1 and S2 and our full calculation in the
MSSM scenario. The data sets contain about 1000 models. We
only plot points that are experimentally acceptable. Left graph is
the case with no phases, and right graph is the case with phases.

3We note that the calculation in micrOMEGAs, is indeed
performed correctly, despite of the error in the analytical for-
mula. This is due to the fact that they use the a real N and thus
allow for negative mass-eigenvalues, which is numerically a
valid procedure in case of real parameters.

GÓMEZ, IBRAHIM, NATH, AND SKADHAUGE PHYSICAL REVIEW D 74, 015015 (2006)

015015-12



between 0 to �. We take the first and the second generation
squarks and sleptons to be degenerate and we parameterize
their masses by msl. In the CP-violating case we use fairly
heavy first and second generation, msl � 2000 GeV, in
order not to generate large EDMs. The first and second
generations do not influence our calculation a lot, but they
do enter in the evaluation of the chargino contribution to
the Wilson coefficients. They also enter in the evaluation of
�0t�s�, but only in the terms �0�3�t �s� and �0�4�t �s�, that can be
safely neglected as they are numerically very small.

In the MSSM case Fig. 9 shows that the difference using
method S1 can be as large as 60% and for method S2 we
find roughly the same upper bound but the average differ-
ence is larger. Although on average the simplified formulas
do a good job, there are cases with large errors in the rate
for b! s�. The large difference occurs in the MSSM case,
particularly when there is a large sbottom mixing and/or
large stop mixing. It is not difficult to realize this by
looking at the formulas for the �’s. Looking at the simpli-
fied formula for ��1�bb , one notice that these neglect the
sbottom mixing, as compared to the full formulas.
However, in the limit that the sbottom masses are equal
the dominant term in the full formulas is invariant under
sbottom mixing. Thus, in order for this correction to be

important one needs a large sbottom mixing and a large
sbottom mass difference, which occurs ‘‘rarely’’. As an
example, in the formula for �0�1�b �t�, the first term (neglected
in previous works) is

 �
X2

i�1

X2

j�1

2	s
3�

ei�3
mt

mb

� cot�AtDb1jD�t2iD
�
b2jDt1i

1

jm~gj
H
� m2

~ti

jm~gj
2 ;

m2
~bj

jm~gj
2

�
:

(70)

The factor mt=mb easily overcomes the suppression by
cot�. However, this term is zero in the limit of no sbottom
or stop mixing. But, when the sbottom and stop mixing is
large it can contribute significantly. Even the term with
m2
t =mb cot�Db1jD�t1i can give non-negligible contribution.

For point (i) defined in Table I we have the particular
situation of both large stop as well as large sbottom mixing.
We show the values of the �’s and the rate of b! s� in
Fig. 10. It is seen that in particular the value of �0b�t� is
deviating from the value of the simplified formulas. Notice
that this point with � negative is excluded with the sim-

TABLE I. Values of the parameters for point (i) and point (ii) in GeV. The value of tan� is not
fixed and in both cases we have used msl � 500 GeV.

Point M�H � M1 M2 M3 M ~Q M ~U M ~D M ~L M ~E At Ab A�

(i) 450 �950 200 �300 400 950 900 700 300 300 2500 1000 0
(ii) 300 700 200 300 �700 550 600 500 300 300 �1000 0 0
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FIG. 10 (color online). The values of the �’s and the rate for
b! s� for the three different methods at point point (i).
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FIG. 11 (color online). The values of the �’s and the rate for
b! s� for the three different methods at point point (ii).
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plified formulas, but allowed with the full calculation. The
opposite might also occur as shown in Fig. 11.

The phase of the chargino contribution in the MSSM
case depends on the mass hierarchies of the sparticles, and
is thus less restricted than in the SUGRA scenario. Also, in
the MSSM we are no longer confined to have 	� �� �3.
Therefore, it is possible to have points where the chargino
and the Higgsino contribution have opposite signs and at
the same time have ��bb tan� negative. Indeed all points
with a difference of more than 20%, assuming real parame-
ters, have a value of �bb tan� less than minus one half. For
the point (i) plotted in Fig. 10, the chargino and Higgsino
contribution are even larger than the SM contribution but
as they cancels against each other, one finds a BR�b! s��
in agreement with experiment.

VI. CONCLUSION

In this paper we have given a more complete analysis of
the next-to-leading-order contributions which are en-
hanced by tan� factors. Such corrections affect the
Wilson coefficients C7 and C8 arising from the W, Higgs
H�, and chargino �� exchange contributions. There are 20
supersymmetric one-loop diagrams that contribute to these
corrections. Some of these loops have been computed in
previous works. In this paper we have given an analytic
analysis of the full set of these corrections which involves
computations of the six diagrams of Figs. 1–3 each and the
two diagrams of Fig. 4. The analysis presented here also
includes the full CP phase dependence allowed within the
general soft breaking in MSSM. The new analytic results
of this paper are contained in Appendices B, C, and D. In

Sec. IV we gave a comparison of the current work with
previous analyses. In Sec. V a numerical analysis of the
corrections was given and the effect of corrections found to
be significant specifically when there are large sbottom and
stop mixings in the general MSSM case. The vertex cor-
rections derived in this paper are relevant for a variety of
phenomena where sparticles enter in the loops or are
directly produced in the laboratory, such as Higgs decay
widths and lifetimes and for the supersymmetric correc-
tions to the b-quark mass. Since the analysis presented here
takes full account of the effect ofCP phases on b! s� �,
it should serve as an important tool for testing supersym-
metric models.
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APPENDIX A

Here we list the numerical values of the coefficients hi,
�hi, ai, bi that appear in Eq. (8) [8].

 hi �
�

626126

272277
;�

56281

51730
;�

3

7
;�

1

14
;�0:6494;�0:0380;�0:0186;�0:0057

�

ai �
�

14

23
;
16

23
;

6

23
;�

12

23
; 0:04086;�0:4230;�0:8994; 0:1456

�
�hi � ��0:9135; 0:0873;�0:0571; 0:0209�

bi � �0:4086;�0:4230;�0:8994; 0:1456�:

(A1)

APPENDIX B: ANALYSIS OF �0b�t�

The analysis of �0b�t� as well as of �0t�s� and of �bb
depends on the soft breaking parameters. We shall carry
out the analysis in the framework of MSSM which has a
pair of Higgs doublets with Higgs mixing parameter �
which is in general complex, assuming a general set of soft
breaking parameters. Specifically we will assume for the �
analysis a general set of squark masses, and of trilinear
couplings Aq which we assume in general to be complex.
Similarly, we assume the gaugino masses ~mi (i � 1, 2, 3)
to be complex. Thus our analytic analysis will not be tied to
any specific model of soft breaking. There are six different
loop diagrams that contribute to �0b�t� so that

 �0b�t� �
X6

i�1

�0�i�b �t�: (B1)

We exhibit now each of the above contributions.
From Fig. 1(a) we find

 

�0�1�b �t� � �
X2

i�1

X2

j�1

2	s
3�

ei�3D�b2jDt1i

�
mt

mb
cot�AtDb1jD

�
t2i

��Db2jD
�
t1i �mt cot�Db2jD

�
t2i

�
m2
t

mb
cot�Db1jD�t1i �

m2
W

mb
sin� cos�Db1jD�t1i

�

�
1

jm~gj
H
� m2

~ti

jm~gj
2 ;

m2
~bj

jm~gj
2

�
; (B2)
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where Dq is the matrix that diagonalizes the squark mass-
squared matrix, i.e.,

 DyqM2
~qDq � diag�M2

~q1
;M2

~q2
�: (B3)

From Fig. 1(b) we find
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: (B4)

This diagram is not enhanced by tan�. From Fig. 1(c) we
find
 

�0�3�b �t� � 2
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(B5)

In the above 	, �, and � for the b and t quarks are defined
so that

 	b�t�k �
gmb�t�X3�4�k

2mW cos��sin��

�b�t�k � eQb�t�X0�1k �
g

cosW
X0�2k�T3b�t� �Qb�t�sin2W�

�b�t�k � eQb�t�X
0
1k �

gQb�t�sin2W
cosW

X02k;

(B6)

where Qb�t� � �
1
3 �

2
3� and T3b�t� � �

1
2 �

1
2� and where

 

X01k � X1k cosW � X2k sinW;

X02k � �X1k sinW � X2k cosW;
(B7)

and X diagonalizes the neutralino mass matrix.

 XTM�0X � diag�m�0
1
; m�0

2
; m�0

3
; m�0

4
�: (B8)

From Fig. 1(d), which is non- tan� enhanced, we find
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From Fig. 1(e) we find
 

�0�5�b �t� �
X4

k�1

X2

i�1

X2

j�1

���
2
p

g
mW

mb
cos�
KbUi2D�t1j�

� �
���
2
p
X�4kVi1 � X

�
2kVi2 � tanWX�1kVi2�

�
1

16�2

m��i
m�0

k

m2
~tj

��tkDt1j � 	
�
tkDt2j�

�H
�m2

��i

m2
~tj

;
m2
�0
k

m2
~tj

�
: (B10)

In the above U and V are the matrices that diagonalize the
chargino mass matrix

 U�M��V
�1 � diag�m��1

; m��2
�; (B11)

and Kb is given by

 Kb �
mb���

2
p
mW cos�

: (B12)

Finally, from Fig. 1(f) we get
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APPENDIX C: ANALYSIS OF �0t�s�

Next we look at the �0t�s� analysis. Here we have

 �0t�s� �
X6

i�1

�0�i�t �s�: (C1)

The individual contributions �0�i�t �s� are exhibited below.
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From Fig. 2(a) we find
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From Fig. 2(b), which is non- tan� enhanced, we find
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From Fig. 2(c) we find
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From Fig. 2(d) we find the non- tan� enhanced contribu-
tion
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From Fig. 2(e) we find
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where

 Kt �
mt���

2
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: (C7)

From Fig. 2(f) we find
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APPENDIX D: ANALYSIS OF �bb

We proceed now to compute the �bb. It is given by
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X8
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We exhibit the individual contributions below.
From Fig. 3(a) we find
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From Fig. 3(b) we find the SUSY QCD non- tan� en-
hanced contribution
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From Fig. 3(c) we find
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From Fig. 3(d), which is non- tan� enhanced, we find
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From Fig. 3(e) we find
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From Fig. 3(f), which is non- tan� enhanced, we find
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From Fig. 4(a) we find
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From Fig. 4(b) we find
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In the above Q, R, Q00 and R00 are defined by
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and by
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