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We consider multiple TeV�1-size extra compact dimensions in an asymmetric string compactification
scenario in which the standard model (SM) gauge bosons can propagate into the TeV�1-size extra
dimensions while the SM fermions are confined to the usual SM D3-brane. We calculate the contributions
that the Kaluza-Klein (KK) excitations of the gluons, g�’s, make to the multijet cross sections in proton-
proton collisions at the LHC energy. At very high pT , the dijet signal will either be enhanced significantly
due to virtual g� exchanges or place a lower bound on the compactification scale of about 8 TeV. We find
that the dijet signal is very sensitive to three parameters—the compactification scale, the string scale, and
the number of extra dimensions. Thus, although the dijet signal is much more sensitive to KK effects, the
dijet signal alone does not provide sufficient information to deduce the number of extra dimensions nor the
compactification scale. However, the three-jet signal, which is not sensitive to the string scale, can be
analyzed in conjunction with the dijet signal to extract all three parameters. For proton-proton collisions at
the LHC energy, the three-jet signal can be significantly enhanced by KK contributions for a compacti-
fication scale of about 4–5 TeV.
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I. INTRODUCTION

Two broad classes of papers on the collider phenome-
nology of superstring-inspired [1] large extra compact
dimensions include papers in the spirit of the original
Arkani-Hamed, Dimopoulos, and Dvali (ADD) scenario
[2], in which only the gravitons propagate into the bulk [3],
and models where one or more of the standard model (SM)
fields can also propagate into one or more extra compact
dimensions. In the latter case, two subclasses include the
universal model [4–6], in which all of the SM fields can
propagate into one or more extra compact dimensions, and
the nonuniversal model [7–12], in which the SM gauge
fields can propagate into one or more extra compact di-
mensions while the SM fermions are confined to the usual
D3-brane. Much of the published research involving de-
tailed calculations in models in which one or more SM
fields can propagate into extra compact dimensions has
been done for a single extra compact dimension—partly
because the most stringent bounds arise from a single extra
compact dimension, and partly because the number of
parameters and complexity of the calculations increases
with increasing number of extra compact dimensions.
However, models in which the SM fields can propagate
into multiple extra compact dimensions can lead to inter-
esting collider phenomenology. Examples include dilepton
production at the Large Hadron Collider LHC [12], analy-
ses of various compactification schemes [12,13], and
bounds set by the Fermi constant [14].

In this work, we consider the nonuniversal model, in
which the gluons can propagate into multiple TeV�1-size

extra compact dimensions while the fermions are confined
to the SM D3-brane. More specifically, we examine how
the multijet production in high-energy hadronic colliders
such as the LHC depends on three parameters: the string
scale MS, and the number � and size 1=� of the large extra
compact dimensions. We calculate the contributions that
the Kaluza-Klein (KK) excitations of the gluons, g�’s,
make to the production of multijet final states which arise
from the direct production and exchanges of KK excita-
tions of the gluons. We find that the number of extra
compact dimensions does have a significant effect on the
production of g�’s in proton-proton collisions at the LHC
energy. For example, with a pT cut of 2 TeV, the KK
contribution to the total dijet cross section will be compa-
rable to the SM dijet cross section for compactification
scales up to 7 TeV if there is just one TeV�1-size extra
dimension, while if there are two TeV�1-size extra dimen-
sions the KK contribution to the total dijet cross section
will be comparable to the SM dijet cross section for
compactification scales up to 11–14 TeV if the string scale
MS is 4–10 times larger than the compactification scale �
(i.e. 4 � � � 10 where � � MS=�).

Our paper is organized as follows. We present our
formalism in Sec. II, supplemented by additional details
in the Appendix. The contributions that virtual g� ex-
changes make to dijet production are discussed in
Sec. III, while the contributions that single on-shell g�’s
make to three-jet production are presented in Sec. IV. We
draw our conclusions in Sec. V.

II. FORMALISM

In the nonuniversal model, the SM fermions are con-
strained to lie in the SM D3-brane while the gauge fields
can propagate into TeV�1-size extra compact dimensions.
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There may be additional much higher- or lower-scale extra
dimensions as in the asymmetric scenario [7]. Here we
present the Feynman rules in the effective 4D theory
needed to evaluate multijet cross sections in proton-proton
collisions at the LHC energy.

Straightforward generalization of the 4D SM
Lagrangian density leads to the (4� �)-D Lagrangian
density,

 L � � �
1

4
FMNaFaMN � i �q�

�D�q��y1���y2� . . .��y��

(1)

where FMNa � @MANa � @NAMa � g4��fabcAMbANc are
the (4� �)-D gluon field strength tensors, g4�� is the
(4� �)-D strong coupling, AMa is the (4� �)-D gluon
field, fa; b; cg are the usual gluon color indices, D� is the
usual 4D covariant derivative, f�; �g are the usual 4-D
spacetime indices, fM;Ng 2 f0; 1; . . . ; 3� �g are
(4� �)-D spacetime indices, and the product of delta
functions represents that the SM fermions are localized
to the SM D3-brane with y1 � y2 � . . . � y� � 0. For
� � 2 the 6D Lagrangian density is

 L 6 � �
1

4
F��aFa�� �

1

2
F�4aFa�4 �

1

2
F�5aFa�5

� i �q��D�q��y1���y2� (2)

where the gauge choice A4a � A5a � 0 has been imposed
[6,15]. As in Ref. [4], we consider compactification on an
�S1 � S1=Z2�

2 orbifold, corresponding to a 2D torus cut in
half along y1. That is, 0 � ’1 � � and -� � ’2 � �. The
fields A�a�x; y� can then be Fourier expanded in terms of
the compactified extra dimensions y1;2 � r’1;2 (assuming
that the TeV-scale extra dimensions are symmetric—i.e.
they have the same radius r) as

 

A�a�x; y� �
1���
2
p
�r

�
A�a0;0�x� �

���
2
p X1

n1;n2

A�an1;n2
�x�

� cos�n1’1 � n2’2���n1 � n2�

�
(3)

where the modified step function ��n1 � n2� � 1 if n1 �

n2 	 1 or n1 � �n2 	 1 and 0 otherwise. The
���
2
p

reflects
the rescaling of the gauge fields necessary to canonically
normalize the kinetic energy terms [9,16]. The summation
limits and modified step function reflect the compactifica-
tion scheme (0 � ’1 � � and -� � ’2 � �).

Integration over the compactified dimensions y1 and y2

then gives the effective 4D Lagrangian density. The masses
of the KK excitations of the gluons arise from the integra-
tion of F�4aF�4

a � F�5aF�5
a over y1 and y2:

 �
1

2

Z �r

y1�0

Z �r

y2���r
�F�4aFa�4 � F

�5aFa�5�dy1dy2

� �
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4�2r2

Z �r

y1�0

Z �r

y2���r
�@4A�a�x; y�@4Aa��x; y�

� @5A�a�x; y�@5A
a
��x; y��dy1dy2

� �
1

2

n2
1 � n

2
2

r2

X1
n1;n2

A�an1;n2
�x�An1;n2

�a �x���n1 � n2� (4)

The masses of the g�’s are identified as

 m�n1;n2�
� �

�����������������
n2

1 � n
2
2

q
(5)

where � is the compactification scale (� � 1=r). The
lowest-lying KK excitations up to ~n � 3 include g�1;0,
g�0;1, g�1;1, g�1;�1, g�2;0, g�0;2, g�2;1, g�2;�1, g�2;2, g�2;�2, g�3;0, and
g�0;3.

The Feynman rules for the effective 4D couplings are
derived in the Appendix. The results are tabulated in Fig. 1.
KK number conservation for triple and quartic gluonic
vertices involves an important subtlety. Consider, as an
illustration, g�m1;n1

coupling to g�m2;n2
and g�m3;n3

: KK num-
ber is conserved if m3 � m1 �m2 and n3 � n1 � n2, but
is not conserved if m3 � m1 �m2 and n1 � n2 � n3, for
example. However, a single g� can couple to a quark pair
with a

���
2
p

enhancement compared to the SM owing to the
delta function in the 6D Lagrangian density that confines
the fermions to the SM D3-brane. In this case, the SM
D3-brane absorbs the unbalanced four-momentum.
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FIG. 1. Relative coupling strengths of vertices involving g�’s.
Only the overall factors are shown: The q- �q-g� vertex also
involves the SU(3) matrix element and the Dirac �� matrix,
and triple gluonic vertices also include the usual SU(3) structure
functions and the momenta factors. In g�m;n, m must be positive,
while n may be negative if m� n 	 1 or m � �n 	 1. The
zeroes indicate vertex factors that are not allowed.
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The g� propagator in the unitary gauge is

 � i�ab
��~n � �i�

ab
g�� �

p�p�
m2
~n

p2 �m2
~n � im~n� ~n

(6)

where the tree-level decay width of the g� is �n1;n2
�

2�S�Q�mn1;n2
. The mass of the g� also enters into the

computations when external g�’s are present via summa-
tion over polarization states:

 

X
2a�
�~n �k;�� 2

b
�~n �k;�� �

�
�g�� �

k�k�
m2
~n

�
�ab (7)

III. DIJET PRODUCTION

The dijet1 cross section is enhanced by the exchange of
virtual g�’s in subprocesses with two initial quarks and two
final-state quarks:

 qiqi ! qiqi qiqj ! qiqj qi �qi ! qi �qi

qi �qi ! qj �qj qi �qj ! qi �qj

The amplitudes for these subprocesses are the same as in
the SM except for the replacement of the gluon propagator
by a tower of g� propagators:

 D�p2� �
1

p2 �
���
2
p X1

n1;n2

1

p2 �m2
~n � im ~n� ~n

��n1 � n2�

(8)

Thus, the amplitude-squared contains terms of the form

 

1

2

D��v̂�D�ŵ� �D�v̂�D��ŵ��

�
X1
~m; ~n

c ~mc~n
v̂0~mŵ

0
~n �m ~m� ~mm~n� ~n

�v̂02~m �m
2
~m�2

~m��ŵ
02
~n �m

2
~n�2

~n�
(9)

where v̂ and ŵ are any of the three usual subprocess
Mandelstam variables (i.e. v̂, ŵ 2 fŝ; t̂; ûg), v̂0~n represents
the subtraction of m2

~n from v̂ (i.e. v̂0~n � v̂�m2
~n), and the

coefficients c~n are defined according to c�0;0� � 1 and
c~n�0 �

���
2
p

. This sum diverges logarithmically for � � 2,
and even faster for � 	 2. In practice, the sum is truncated
when the g� mass reaches the string scale [10,17].
Therefore, the dijet signal is very sensitive not only to
the compactification scale and � but also to the cutoff
scale. For � � 2, the divergence is logarithmic:

 

X�
n1;n2

1

n2
1 � n

2
2

��n1 � n1� 

3� ln���

�� 1
(10)

where � represents the cutoff (related to the string scale

MS by MS � ��). For � 	 3, the multisum diverges as a
power law.

The total dijet cross section ��pp! 2 jets� is given by

 ��pp! 2 jets� �
X

ab!cd

Z 1

��4p2
T=S

dL
d�

�̂�ab! cd�d�

(11)

where �̂�ab! cd� is the subprocess cross section and
dL=d� is the parton luminosity:

 

dL
d�
�
Z 1

xA��
fa=A�xA;Q�fb=B�xB;Q�

dxA
xA

(12)

Here, fa=A�xA;Q� represents a parton distribution function
evaluated at energy Q, x is the momentum fraction, and pT
is the transverse momentum. We employ the CTEQ distri-
bution functions [18] in the parton luminosity evaluated at
Q � pT . We restrict the rapidity y to lie within the range
jyj � 2:5 and the transverse momentum pT to lie above
pmin
T .
We compute the KK signal and SM background at the

tree-level. Although the relative uncertainty in the dijet
cross section can be quite high, say 40%, at the tree-level
due to the dependence on the arbitrary (at tree-level)
parameter Q and other factors, such as the choice of parton
distributions, these uncertainties should cancel somewhat
in the ratio of the similar calculations of the KK signal to
the SM background. However, since this ratio cannot be
measured directly, in order to be sure that a signal for new
physics significantly stands out above the inherent uncer-
tainties, we look for a KK contribution comparable to the
SM background in which 
200 events per year are pre-
dicted at a proton-proton collider running at the LHC
energy.

We denote by �KK the KK contribution to the total dijet
cross section �: � � �SM � �KK. This contribution, �KK,
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FIG. 2. The ratio of the KK contribution �KK � �� �SM

toward the total dijet cross section � to the SM dijet cross
section �SM at the LHC is illustrated as a function of the
compactification scale � for various transverse momentum
cuts pmin

T with � � 2 and � � 10. (For pmin
T � 3:5 TeV, �KK

is less than 0.001 pb for �> 11 TeV.)

1We neglect the contributions from (2� N)-jet production
where only two jets pass the experimental cuts.
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is illustrated in Figs. 2 and 3 for proton-proton collisions at
the LHC energy for � � 2 and � � 10. The effect is
actually quite large: For example, for a cut of 2 TeV, the
KK contribution exceeds the SM contribution for compac-
tification scales up to 13 TeV. This is much larger than the
KK effect for � � 1 [11] where the KK contribution ex-
ceeds the SM contribution for compactification scales up to
7 TeV, and is enhanced even further for higher values of �,
as shown in Fig. 4. Thus, the dijet cross section is very
sensitive to the number of large extra dimensions.
Furthermore, Fig. 5 illustrates that the dijet cross section
is also very sensitive to the cutoff scale � � MS=� for
� 	 2, owing to the divergent form of the sum in the
effective propagator for the virtual g� exchanges.

The total dijet cross section will be significantly en-
hanced if there is at least one nonuniversal extra dimension
with a compactification scale less than 7 TeV. However, the
KK dijet cross section is sensitive to three parameters—the

string scale, and the size 1=� and number � of extra
dimensions. Thus, if a proton-proton collider at the LHC
energy does not observe a significant enhancement to the
SM dijet cross section at very high pT , then a minimum
bound may be placed on the compactification scale based
on the case of one extra dimension (because one extra
dimension yields the smallest KK effects). However, if a
proton-proton collider at the LHC energy observes a new
physics enhancement to the SM dijet cross section, the
total dijet production rate itself is not enough to deduce the
number, structure, or size of the extra dimensions, or the
string scale. For example, with a pT cut of 2 TeV, a total
dijet cross section on the order of 0.1 pb could be caused by
a single nonuniversal extra dimension with a compactifi-
cation scale of 7 TeV, but it could also be caused by two
nonuniversal extra dimensions with a compactification
scale of 13 TeV and a string scale of 130 TeV or two
nonuniversal extra dimension with a compactification scale
of 10 TeV and a string scale of 40 TeV, etc. This ambiguity
can be removed by analyzing additional signals. For ex-
ample, three-jet production is not sensitive to the string
scale. Dilepton production [12] also shows promise for
helping to differentiate among compactification schemes.

Intuitively, it might seem beneficial to look for the
resonant production of the just the lightest KK gluons—
i.e. g�1;0, g�0;1, g�1;1, and g�1;�1 —instead of comparing the
entire dijet signal to the SM background. However, in
Ref. [11], in the context of a single extra nonuniversal
dimension, the dijet differential cross section d�

dm did not
provide a good signal when plotted as a function of the
invariant massm of the g�, which subsequently decays into
a q �q pair. One reason for this is that the g� has a large decay
width, �n1;n2

� 2�S�Q�mn1;n2
, so the signal is not as tall

nor sharp as it is in many other resonant productions. Also,
the decay of the g� results in two high-pT jets, meaning
that the KK signal will only be significant compared to the
SM background for very high-pT cuts, which in turn
severely limit the total number of anticipated events. The
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FIG. 4. The KK contribution �KK � �� �SM toward the total
dijet cross section � at the LHC is illustrated as a function of the
compactification scale � for different numbers of extra nonun-
iversal dimensions � with pmin

T � 2 TeV and � � 4 for � 	 2
(no cutoff � is imposed for � � 1 because the propagator sum
converges rapidly).
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net result is that a greater KK enhancement is expected for
the total dijet cross section at a proton-proton collider
running at the LHC energy.

IV. THREE-JET PRODUCTION

The production of one jet and an on-shell g� that decays
to two jets leads to a three-jet event. The subprocesses
leading to the production of one jet and an on-shell g�

include:

 q �q! gg�m;n qg! qg�m;n �qg! �qg�m;n

KK number conservation demands that any g� propagators
have the same mode �m; n� as the external g� such that
there is no summation over modes in these propagators (in
contrast to the case of dijet production). Instead, the three-
jet cross section involves a double summation over pos-
sible final-state modes �m; n�—finite as restricted by the
available collider energy.

The amplitudes-squared for these subprocesses have the
same form as in Ref. [11]. The difference is that there is a
greater degeneracy of KK states with increasing number of
large extra dimensions. In the case of one extra dimension,
the three-jet cross section is dominated by the first mode—
the contribution of the g�2 is on the order of 1%. In the case
of two or more extra dimensions, the three-jet cross section
is dominated by the � lowest-order KK modes (e.g. the g�1;0
and g�0;1), and the lowest-lying mixed modes (e.g. the g�1;1
and g�1;�1) also make a significant contribution. Thus, the
three-jet cross section in � extra dimensions is somewhat
greater than � times the three-jet cross section in one extra
dimension.

In addition to the dijet cuts, for three jets we also
constrain the azimuthal angle 	 and pseudorapidity 
 of

the final-state jets to satisfy R �
���������������������������������
��	�2 � ��
�2

p
	 0:4.

We neglect the contributions to the three-jet cross section
that arise from virtual g� exchanges when no external g�’s
are produced since these processes include an extra factor
of �S�Q�. We employ FORM [19], a symbolic manipula-
tion program, to compute the amplitude-squares for the KK
signal, and compute the SM three-jet background accord-
ing to the outline of Ref. [20]—all at the tree level. As in
the case of dijet production, in order to be sure that a signal
for new physics significantly stands out above the inherent
uncertainties, we look for a KK contribution comparable to
the SM background in which 
200 events per year are
predicted at a proton-proton collider running at the LHC
energy.

The three-jet cross section is illustrated in Figs. 6 and 7.
Figure 6 shows peaks at pmin

T � k�
2 where k 2 f1; 2; . . .g

corresponding to g�k;0 and g�0;k, and peaks at k�
��
2
p

2 corre-
sponding to mk;k � k�

���
2
p

. The effect that the number of
extra dimensions has on the three-jet cross section is shown
in Fig. 8. In contrast to dijet production, the three-jet cross
section is not sensitive to the string scaleMS: Whereas dijet

production effectively involves a sum over KK excitations
in the propagator, each three-jet process involves only a
few Feynman diagrams (in order to conserve KK number at
the tree-level). Although three-jet production does include
a sum over processes, involving all of the KK modes, the
primary contributions to the three-jet cross section arise
from the lowest-lying KK modes (e.g., for � � 2, g�1;0, g�0;1,
g�1;1, g�1;�1). If � 	 2, then the value of � has virtually no
effect on the three-jet cross section. Thus, the three-jet
cross section effectively depends only upon the number
of extra dimensions � and the compactification scale �.

The presence of two nonuniversal extra dimensions will
have a significant effect on the three-jet cross section in
proton-proton collisions at the LHC energy with a pT cut of
1 TeV if the compactification scale is on the order of 3 TeV
or less. Two nonuniversal extra dimensions has a substan-
tial effect compared to one extra dimension. For � 	 3,
each additional extra dimension stretches the bound on the
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compactification scale by about 0.2 TeV. Even higher pT
cuts can stretch the bound up to another TeV.

V. CONCLUSIONS

In this work, we have investigated the phenomenology
of a class of string-inspired models with multiple nonun-
iversal extra dimensions where the SM fermions are con-
fined to the SM D3-brane while the gluons can propagate
into multiple TeV�1-size extra dimensions. Specifically,
we have calculated the effects that the KK excitations of
the gluons have on multijet final states at proton-proton
colliders at the LHC energy. We find that the KK excita-
tions make a significant contribution to the total dijet cross
section relative to the SM background for very high pT if
there is at least one nonuniversal extra dimension and the
compactification scale is less than 7 TeV. We also find that
the dijet cross section is sensitive to the number, size, and
structure of the extra dimensions, in addition to the string
scale. For example, with a pT cut of 2 TeV, a proton-proton
collider at the LHC energy could observe a significant
enhancement to the total dijet cross section with a single
nonuniversal extra dimension with a compactification scale
up to 7 TeV, or with two nonuniversal extra dimensions
with a compactification scale up to 13 TeV and a string
scale up to 130 TeV, or two nonuniversal extra dimension
with a compactification scale up to 10 TeV and a string
scale up to 40 TeV, etc.

In contrast to dijet production, we find that three-jet
production is sensitive to the number, size, and structure
of the extra dimensions, but is effectively independent of
the string scale. Two nonuniversal extra dimensions will
have a significant effect on the three-jet cross section in
proton-proton collisions at the LHC energy with a pT cut of
1 TeV if the compactification scale is on the order of 3 TeV
or less. For three or more non- universal extra dimensions,
each additional extra dimension stretches the bound on the

compactification scale by about 0.2 TeV. The bound can be
stretched up to another TeV with very high pT cuts.

If a proton-proton collider at the LHC energy does not
observe a significant enhancement to the SM dijet cross
section at very high pT , then a minimum bound may be
placed on the compactification scale based on the case of
one extra dimension (because one extra dimension yields
the smallest KK effects). However, if a proton-proton
collider at the LHC energy observes a new physics en-
hancement to the SM dijet cross section, the total dijet
production rate itself is not enough to deduce the number,
structure, or size of the extra dimensions, or the string
scale. This ambiguity can be removed by analyzing addi-
tional signals. For example, three-jet and four-jet produc-
tion are not sensitive to the string scale.
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APPENDIX

Here we present the Feynman rules in the effective 4D
theory needed to evaluate multijet cross sections in proton-
proton collisions at the LHC energy. For � � 2 the 6D
Lagrangian density is

 L 6 � �
1

4
F��aFa�� �

1

2
F�4aFa�4 �

1

2
F�5aFa�5

� i �q��D�q��y1���y2� (A1)

where the gauge choice A4a � A5a � 0 has been imposed.
We consider compactification on an (�S1 � S1=Z2�

2 orbi-
fold, corresponding to a 2D torus cut in half along y1. That
is, 0 � ’1 � � and -� � ’2 � �. The fields A�a�x; y�
can then be Fourier expanded in terms of the compactified
extra dimensions y1;2 � r’1;2 (assuming that the TeV-scale
extra dimensions are symmetric—i.e. they have the same
radius r) as
 

A�a�x; y� �
1���

2
p
��

�
A�a0;0�x� �

���
2
p X1

n1;n1

A�an1;n2
�x�

� cos�n1’1 � n2’2���n1 � n2�

�
(A2)

where the modified step function ��n1 � n2� � 1 if n1 �

n2 	 1 or n1 � �n2 	 1 and 0 otherwise. The
���
2
p

reflects
the rescaling of the gauge fields necessary to canonically
normalize the kinetic energy terms. The summation limits
and modified step function reflect the compactification
scheme (0 � ’1 � � and -� � ’2 � �).

Integration over the compactified dimensions y1 and y2

then gives the effective 4D Lagrangian density. The masses
of the KK excitations of the gluons arise from the integra-

0.0001

0.001

0.01

0.1

1

10

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

1
2
3
4
SM

δ

(pb)

KKσ

(TeV)µ

FIG. 8. The KK contribution �KK � �� �SM toward the total
three-jet cross section � at the LHC is illustrated as a function of
the compactification scale � for different numbers of extra
nonuniversal dimensions � with pmin

T � 1 TeV.
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tion of F�4aF�4
a � F�5aF�5

a over y1 and y2:

 �
1

2

Z �r

y1�0

Z �r

y2���r
�F�4aFa�4�F

�5aFa�5�dy1dy2

��
1

4�2r2

Z �r

y1�0

Z �r

y2���r
�@4A�a�x; y�@4Aa��x; y�

� @5A�a�x; y�@5Aa��x; y��dy1dy2

��
1

2

n2
1� n

2
2

r2

X1
n1;n2

A�an1;n2
�x�An1;n2

�a �x���n1�n2� (A3)

The masses of the g�’s are identified as

 m�n1;n2�
� �

�����������������
n2

1 � n
2
2

q
(A4)

where � is the compactification scale (� � 1=r).
The Feynman rules for vertices involving g�’s follow

from the interaction terms in the effective 4D Lagrangian
density. The q-q-g� interaction term in the effective 4D
Lagrangian density is

 � g6

Z �r

y1�0

Z �r

y2���r
�q�x���TaAa��x; y�q�x���y1���y2�dy1dy2

� �g �q�x���Taq�x�
�
Aa�0�x� �

���
2
p X1

n1;n2

An1;n2
�a �x���n1 � n2�

�
(A5)

where the 4D strong coupling constant g is related to g6 by g � g6=
���
2
p
�r. Thus, the q- �q-g� vertex receives a factor of

���
2
p

enhancement, compared to the SM q- �q-g vertex. The cubic interaction terms in the effective 4D Lagrangian density are

 � i
g6

2
fabc

Z �r

y1�0

Z �r

y2���r
Ab��x; y�A

b
��x; y�
@

�A�a�x; y� � @�A�a�x; y��dy1dy2

� �i
g
2
fabc

�
A�0;0��b A

�0;0�
�c �@�A

�0;0�
�a � @�A

�0;0�
�a � � 3A�0;0��b

X
m;n

�@�A�m;n��a � @�A�m;n��a �

�
1���
2
p

X
m1;n1;p1;m2;n2;p2

A�m1;m2�
�b A�n1;n2�

�c �@�A�p1;p2�
�a � @�A�p1;p2�

�a ���m1; n1; p1; m2; n2; p2�

�
3���
2
p

X
m1;n1;p1;n2

A�m1;0�
�b A�n1;n2�

�c �@�A�p1;n2�
�a � @�A�p1;p2�

�a ���m1�n1;p1
� �m1�p1;n1

�

�
3���
2
p

X
n1;m2;n2;p2

A�0;m2�
�b A�n1;n2�

�c �@�A�n1;p2�
�a � @�A�n1;p2�

�a ���m2�n2;p2
� �m2�p2;n2

�

�

(A6)

where ��m1; n1; p1; m2; n2; p2� � �m1�n1;p1
�m2�n2;p2

� �m1�p1;n1
�m2�p2;n2

� �n1�p1;m1
�n2�p2;m2

. The relative coupling
strengths are summarized in Fig. 1.
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