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We study the oblique corrections to the electroweak interaction in the holographic model of technicolor
theories. The oblique S parameter is expressed in terms of a solution to the equations of motion for the anti
de Sitter bulk gauge fields. By analyzing the solution, we establish a rigorous proof that the S parameter is
positive and is reduced by walking. We also present the precise numerical values for the S parameter of
various technicolor models by solving the equations numerically.
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The development of the anti de Sitter/conformal field
theory (AdS/CFT) correspondence [1] has attracted a lot of
interest in recent years, since it may shed some light on
strongly coupled gauge theories, whose understanding has
been otherwise quite limited. Inspired by recent success
[2,3] in understanding the infrared (IR) dynamics of quan-
tum chromodynamics (QCD) with its holographic dual, we
apply the AdS/CFT correspondence to estimate the oblique
corrections of technicolor theories.

The precision electroweak data have shown that the
standard model of electroweak interaction is extremely
stable radiatively, which is often expressed in terms of
vanishingly small Peskin-Takeuchi S, T, U parameters
[4,5]. Nonzero values of those parameters indicate new
physics beyond the standard model. Any model for the
new physics is highly constrained by the measured values.
Since the oblique correction of technicolor is dominated by
the nonperturbative dynamics in the IR region, its precise
estimate has been a major hurdle for technicolor theories to
be candidates for physics beyond the standard model.
Recently, however, a new class of technicolor models
(techni-orientifold) [6,7], which uses a higher-dimensional
representation for techniquarks and the correspondence
with N � 1 super Yang-Mills theory at large N [8], has
been proposed. The models need only a small number of
technifermions to be in the conformal window, free from
the flavor-changing neutral-current problem, and thus have
naturally small oblique corrections [7,9,10].

In this article we attempt to calculate precisely the S
parameter for technicolor theories, using the AdS/CFT
correspondence. (Similar attempts were made in 5-
dimensional Higgsless models [11].) We also show rigor-
ously that the S parameter is strictly positive for the holo-
graphic dual models of dynamical electroweak symmetry
breaking and the walking behavior of the technicolor dy-
namics reduces the S parameter substantially.

According to AdS/CFT correspondence, to every opera-
tors in CFT there correspond AdS bulk fields. The bulk

fields that satisfy the equations of motion are the sources
for the CFT operators, when evaluated at the ultraviolet
(UV) boundary of the AdS space, and their action at the
UV boundary is nothing but the generating functional for
the connected Green functions of those operators in CFT.

For a near conformal theory whose IR scale is generated
far below the UV scale, we may take a slice of the AdS
metric as

 ds2 �
1

z2 ��dz
2 � ���dx�dx��; � � z � zm; (1)

where z � � (z � zm) is the UV (IR) boundary, and ��� is
the four-dimensional Minkowski metric. For the boundary
conformal field theory we choose a strongly coupled tech-
nicolor theory with the SU�N�TC gauge group and NTF

massless techniquarks, q� (� � 1; . . . ; NTF), which may
be fundamental under the technicolor gauge group as in the
walking technicolor [12] or second-rank tensor as in the
techni-orientifold [6,7]. Since the technicolor model we
choose for the boundary field theory is not exactly confor-
mal, the AdS/CFT correspondence does not hold in a strict
sense. We expect, however, the holographic dual descrip-
tion of technicolor to work reasonably well, as the confor-
mal symmetry is mildly broken, especially for the
technicolor theories in the conformal window. The bound-
ary operators we are interested in are the scalar, �q�q

�, and
the (axial) vector current, Ja�V�A� � �q����5�t

aq, of techni-
quarks. [ta’s are the SU�NTF� generators, normalized as
Trtatb � 1=2�ab.] The corresponding bulk action is then
given as

 S �
Z
d5x

���
g
p

Tr
�
jDXj2 �m2

5jXj
2 �

1

2g2
5

�F2
L � F

2
R�

�

(2)

where m5 is the mass of the bulk scalar field X and the
covariant derivative D�X � @�X� iAL�X� iXAR�. The
bulk mass is determined by the relation [13,14] ����
4� � m2

5, where � is the dimension of the corresponding
boundary operator �q�q�. FL and FR are the field strength
tensors of the SU�NTF�L � SU�NTF�R bulk gauge fields AL
and AR, respectively. The values of vector and axial gauge
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fields, defined as V � �AL � AR�=
���
2
p

and A �
�AL � AR�=

���
2
p

, at the UV boundary couple to JaV� and
JaA�, respectively.

The classical solution of the bulk field X for �> 2 is
given as X0�z� � c1z4�� � c2z�, where the constants c1

and c2 are determined by the boundary conditions. The
chiral condensate of techniquarks is (formally) defined as

 h �qLqRi � i
�
�S

eiW�S	
��������S�0


 i
�
�S
he�i

R
x
� �qLSqR�H:c:�iS�0;

(3)

where S is the source for the chiral condensate and the
generating functional is given by the AdS/CFT correspon-
dence

 W�S	 �
Z
x

�
�

1

4z3 @zX0X
y
0 � H:c:

�
z��

(4)

with the identification S�x� � 2X0�x; z�=z4��jz��. Since
the source for the chiral condensate is the (bare) mass,
we find the UV boundary condition for X0,

 

2

z4��
X0jz�� � M or c1 �

1

2
M: (5)

Then, c2 � 4h �qqi=� in the chiral limit (c1 ! 0).
The oblique S parameter is defined in terms of the two-

point function of the techniquark currents,

 i
Z
x
eiq�xhJ��x�J��0�i � �

�
g�� �

q�q�
q2

�
���q2� (6)

as

 S � 4	
d

dq2 ��V��q
2� ��A��q

2�	q2�0; (7)

where �V (�A) is the (axial) vector current correlator.
Since the source for the current is given by the bulk gauge
fields, the generating functional for the current correlation
functions becomes

 W�V; A	 � �
1

2g2
5

Z
x

�
1

z
Va�@zV�a �

1

z
Aa�@zA�a

�
z��
; (8)

using the equations of motion. The UV boundary is iden-
tified as the extended technicolor (ETC) scale, � �
1=�ETC. The IR boundary is given by the technicolor scale,
zm � 1=�TC, at which all techniquarks get mass and
decouple.

The gauge fields in Eq. (8) satisfy the bulk equations of
motion in unitary gauge,
 ��

@2 � z@z
1

z
@z

�
��� � @�@�

�
V� � 0;

��
@2 � z@z

1

z
@z �

g2
5X

2
0

z2

�
��� � @�@�

�
A� � 0;

(9)

where @2 � ���@�@� and X0 is a solution to the equation

of motion for the bulk scalar field X, together with suitable
boundary conditions that satisfy

 

���
g
p

Tr��AL�F
�z
L � �AR�F

�z
R �j

zm
� � 0: (10)

For simplicity we choose �AL� � 0 � �AR� at z � � and
F�zL � 0 � F�zR at z � zm. Furthermore, we will work with
the gauge ALz � 0 � ARz to have @zAL� � 0 � @zAR� at
z � zm. We have neglected the nonlinear terms for the
gauge fields in Eq. (9), since we are interested only in
the two-point functions of the gauge fields, and this corre-
sponds to keeping the leading term in the large NTC

expansion.
From Eqs. (8) and (9) it is simple to read off the two-

point correlation functions of currents in momentum space.
We write the 4D Fourier transform of the vector and axial
gauge fields as V��q; z� � �g�� � q�q�=q2�V�q; z�,
A��q;z�� �g���q�q�=q2�A�q;z��q�q�=q2A�0;z� with
V�q; �� � A�q; �� � 1 and @zV�q; zm� � @zA�q; zm� � 0,
where V�q; z� and A�q; z� satisfy
 �

z@z

�
1

z
@z

�
� q2

�
V�q; z� � 0;

�
z@z

�
1

z
@z

�
� q2 �

g2
5X

2
0

z2

�
A�q; z� � 0:

(11)

Then we have

 �V��q2� �
@zV�q; z�

zg2
5

jz��;

�A��q2� �
@zA�q; z�

zg2
5

jz��:

(12)

The solution for V�q; z� is given as, with jqj �
��������
jq2j

p
,

 V�q; z� � a1jqjzY1�jqjz� � a2jqjzJ1�jqjz�; (13)

where J1 and Y1 are the first order Bessel and Neumann
functions, respectively. The constants a1 and a2 are to be
fixed by the boundary conditions V�q; �� � 1 and
@zV�q; zm� � 0. From this we have

 �V��q2� �
jqj

g2
5�

J0�jqjzm�Y0�jqj�� � Y0�jqjzm�J0�jqj��
J0�jqjzm�Y1�jqj�� � Y0�jqjzm�J1�jqj��

;

(14)

which becomes q2 ln�zm=��=g2
5 as q2 ! 0. Comparing it

also with the perturbative calculation at large momentum,
�q2 ! 1,

 �V��q
2� �

dR
24	2 q

2 ln��q2� � � � � ; (15)

we match g2
5 � 12	2=dR, where dR � NTC and

NTC�NTC � 1�=2 are the dimensions for fundamental and
symmetric second-rank tensor representations, respec-
tively. We resort, however, to numerical analysis for
A�q; z� and correspondingly for the S parameter.
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In technicolor theory, quarks and leptons get mass
through coupling to techniquarks by an ETC interaction
[15], whose scale has both lower and upper bounds, com-
ing from the constraint to generate the observed mass,
while suppressing the flavor-changing neutral-current pro-
cesses. The QCD-like technicolor fails to generate an ETC
scale that satisfies the constraint. However, if the � func-
tion of the technicolor theory has a quasi-IR fixed point,
����� � 0, the coupling is almost constant near the fixed
point and thus the strength of the bilinear operator gets
enhanced at low energy as

 �qqj�ETC
’

�
�ETC

�TC

�
�m

�qqj�TC
; (16)

where �m is the anomalous dimension of the bilinear
operator near the fixed point. The Schwinger-Dyson analy-
sis shows �m � 1 in the phase where the chiral symmetry
is broken [16,17]. Therefore, in the technicolor theories
with a quasi-IR fixed point, which will be called conformal
technicolor theories in short, a large enough mass for
quarks and leptons is possible even with a large hierarchy
between �ETC and �TC.

The holographic dual of such conformal technicolor is
very different from that of QCD-like technicolor. The mass
of the bulk scalar becomes m2

5 � �4, saturating the
Breitenlohner-Freedman bound, since the scaling
dimension of �qq in the conformal technicolor is 2 instead
of 3. The classical solution becomes X0�z� � c1z2 �
c2z2 ln�z=��. The UV boundary condition fixes the constant
c1 � 0 in the chiral limit and by AdS/CFT correspondence
c2 � h �qqi=4.

To estimate the S parameter of conformal technicolor
theories using holography, we solve

 

�
z@z

�
1

z
@z

�
� q2 �

g2
5X

2
0

z2

�
A�q; z� � 0; (17)

with the boundary conditions A�q; �� � 1 and
@zA�q; zm� � 0. Since Eq. (17) is linear in A�q; z� and
�A�q2� is related to @zA�q; ��, it is convenient to work
instead with T�q; z� 
 @z lnA�q; z� with a single boundary
condition, T�q; zm� � 0. Then, �A��q2� simply becomes
T�q; ��=�g2

5��. Expanding T�q; z� � T�0��z� � q2T�1��z� �
� � � , we rewrite Eq. (17) as

 z@z

�
1

z
T�0�

�
� �T�0��2 �

g2
5X

2
0

z2 ; (18)

 z@z

�
1

z
T�1�

�
� 2T�0�T�1� � �1; (19)

and so on. Solving Eq. (19), we get

 T�1��z� � �z
Z z

zm

dz0

z0
exp

�
2
Z z0

z
d!T�0��!�

�
: (20)

Since g2
5�V��q2� � ln�zm=��q2 �O�q4� for small q2, the

S parameter becomes

 S �
4	

g2
5

Z zm

�

dz0

z0
�1� e2

R
z0

�
d!T�0��!�	: (21)

To calculate the S parameter, we solve T�0� in (18) numeri-
cally with the boundary conditions T�0��zm� � 0 and

 ��A�0� � �
1

g2
5

T�0��z�
z

���������
� F2

T; (22)

where the technipion decay constant FT �

246
��������������
2=NTF

p
GeV.

We solve Eq. (18) for the given boundary conditions,
T�0��zm� � 0 and T�0����=� � �g2

5F
2
T, using two different

bulk scalar fields: X0 � cWz2 ln�z=�� for the technicolor
with walking behavior (namely, for the techni-orientifold
and the walking technicolor) and X0 � cQ�z

3 � z�2� for
the QCD-like technicolor. Since @zT

�0�jzm � g2
5X

2
0=z

2
m,

there is a unique value for cW;Q or h �qqi which allows a
solution for T�0�. Therefore, in the holographic dual FT
determines h �qqi or vice versa.

In the ladder approximation the fermion self energy
becomes ��p� � 
=p for a large Euclidean momentum,
p! 1, which then gives h �qqi � �
 at a scale �, if
compared with the operator product expansion [16]. By
analyzing the gap equation in the ladder approximation,
one further finds that 
 � �2�0� [17]. Since the dynamical
mass of techniquarks ��0� ’ �TC, h �qqi ’ 1=z3

m at �TC or
cWz3

m ’ 1=4.
Our results for the S parameter depend only on two

dimensionless parameters, �=zm and FTzm. For the former,
we take 1=300 � �TC=�ETC, while the latter must be
estimated by other means. If we use the ladder approxima-
tion value cWz

3
m � 1=4, we obtain FTzm ’ 0:86=g5 by

solving Eq. (18). The corresponding S parameters are listed
in the first row of Table I. If the chiral perturbation theory is
valid up to the scale m�, which is the first pole of �V in
Eq. (14), we have 4	FT ’ m� or FT ’ 0:19=zm. Finally,

TABLE I. The S parameter for conformal technicolor with techniquarks in the symmetric
second-rank tensor (S) and fundamental (F) representations.

FTzm N � 2, S N � 2, F N � 3, S N � 3, F N � 4, S N � 4, F

0:86=g5 0.086 0.057 0.17 0.086 0.29 0.12
0.19 0.15 0.14 0.17 0.15 0.17 0.16
0.29 0.28 0.22 0.34 0.26 0.37 0.31
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we include the QCD value, m�=FT ’ 8:85 or FT ’

0:29=zm, for comparison. (For a strict comparison one
should take into account that both FT and zm depend on
NTC and the representation of techniquarks.)

For the QCD-like technicolor with FT � 0:29=zm, we
find S � 0:24, 0.30, 0.34 for NTC � 2, 3, 4, respectively,
which agrees well with the estimate by rescaling the QCD
data [4]. In Table I, we list our numerical results for other
technicolor models. Several comments are in order. First,
we note that all the S parameters we calculated are positive.
In fact, one can prove that the S parameter is always
positive in the holographic dual of any models for dynami-
cal electroweak symmetry breaking. By examining
Eq. (18) one can show that T�0� is always negative for
any value of X0. Suppose T�0��z� has one more zero for z <
zm. Since the right-hand side of Eq. (18) is always positive,
the slope of T�0�=z has to be positive at those zeros, which
is, however, impossible for a continuous function.
Therefore T�0� must have no zeros and thus be negative
for z < zm. The S parameter in Eq. (21) is hence always
positive.

Second, we find that the S parameter is reduced by about
10%–20% by walking when FT and dR are the same,
which agrees with the Weinberg sum rule [18]. This can
be seen easily, since the profile �T�0��z� is always smaller
for the walking technicolor than for the QCD-like techni-
color with the same FT and dR and so is the S parameter.
(See Fig. 1, where we take zm � 1.) Suppose @z�T�0�=z� �
0 at z � z� > �. Then, @z�T�0�=z� ’ h�z� z�� near z�.
Expanding Eq. (18) around z � z� for the walking case,
we find h > 0 and z� � �eh=�2g

2
5
c2
W �. The slope of T�0�=z

therefore vanishes only at a point very close to the UV

boundary. @z�T�0�=z� is positive for 0< z � zm if we take
�! 0. On the other hand, for the QCD-like technicolor,
the slope vanishes whenever (taking �! 0)

 

1

z
T�0��z� � �g5cQz: (23)

Since T�0��z�=z is finite at z � 0 but vanishes at zm while
the right-hand side of Eq. (23) is monotonically decreas-
ing, there must exist a solution z� to Eq. (23), remaining
finite when �! 0. We now note that the bulk fieldsX0’s for
the walking technicolor and the QCD-like technicolor are
monotonically increasing functions and meet together only
at two points, z � � and z � z0. If z0 > zm, the slope of
T�0�=z at zm is bigger for the walking case and the T�0�=z
profiles must meet at a point between z� of the QCD-like
technicolor and zm, which is impossible, however, because
then the slope has to be smaller for the walking case at the
point, though its X0 is bigger. Therefore z0 < zm or the
slope of T�0�=z at zm has to be smaller for the walking
technicolor and thus its profile �T�0��z� is always smaller
than that of QCD-like technicolor. The S parameter is
therefore somewhat reduced by walking. However, we
expect further reduction in the S parameter for the walking
case, since FT=�TC may be quite small in the walking
technicolor [19].

Finally, we find that a slight change in FT results in a
substantial change in the S parameter. As shown in Fig. 1,
the area sustained by �T�0�=z mainly depends on its value
at z � �. If FT is much smaller than �TC, the S parameter
gets reduced substantially.

To conclude, we have analyzed the oblique S parameter
in the holographic dual of technicolor theories. The AdS/
CFT correspondence allows us to investigate the general
aspects of the S parameter and also to obtain its numerical
values precisely, which therefore removes a major hurdle
for technicolor theories. We have also shown that the S
parameter is strictly positive in the holographic dual mod-
els of technicolor and is reduced at least 10%–20% by
walking. We predict FT=�TC � 0:86=g5 in terms of the 5D
gauge coupling in the ladder approximation, which results
in small S parameters. For the technicolor models with
NTF > 2, the S parameter will increase but not much since
FT decreases as 1=

��������
NTF

p
.
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