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We study the implications of minimal flavor violating low energy supersymmetry scenarios for the
search of new physics in the B and Higgs sectors at the Tevatron collider and the LHC. We show that the
already stringent Tevatron bound on the decay rate Bs ! ���� sets strong constraints on the possibility
of generating large corrections to the mass difference �Ms of the Bs eigenstates. We also show that the
Bs ! ���� bound together with the constraint on the branching ratio of the rare decay b! s� has
strong implications for the search of light, nonstandard Higgs bosons at hadron colliders. In doing this, we
demonstrate that the former expressions derived for the analysis of the double penguin contributions in the
Kaon sector need to be corrected by additional terms for a realistic analysis of these effects. We also study
a specific nonminimal flavor violating scenario, where there are flavor changing gluino-squark-quark
interactions, governed by the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements, and show that the B
and Higgs physics constraints are similar to the ones in the minimal flavor violating case. Finally we show
that, in scenarios like electroweak baryogenesis which have light stops and charginos, there may be
enhanced effects on the B and K mixing parameters, without any significant effect on the rate of Bs !
����.
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I. INTRODUCTION

The standard model (SM) provides an accurate descrip-
tion of all the results from high energy physics experi-
ments, in particular, precision electroweak measurements
and flavor physics observables. These experiments put
strong constraints on extensions of the SM that have tree-
level flavor changing neutral current effects or large cus-
todial symmetry breaking effects. For renormalizable,
weakly interacting theories, where the new exotic particles
acquire large gauge invariant masses so that they decouple
from the low energy effective theory, these constraints can
be avoided. Low energy supersymmetry [1,2] is a particu-
larly attractive example of this kind of theory. The minimal
supersymmetric extension of the standard model or MSSM
(with gauge invariant SUSY breaking masses of the order
of 1 TeV) predicts an extended Higgs sector with a light
SM-like Higgs boson of mass lower than 135 GeV [3–13]
that agrees well with precision electroweak measurements.

However the structure of supersymmetry breaking pa-
rameters is not well defined. If there are no tree-level flavor
changing transitions in any gauge or supergauge interac-
tion, then the deviations from SM predictions are naturally
small. Such small deviations can be achieved if the quark
and squark mass matrices are block diagonalizable in the
same basis. For instance, this happens when the squark and
slepton supersymmetry breaking masses are flavor inde-
pendent. For these kinds of models, all flavor violating
effects are induced at the loop-level and are governed by
the CKM matrix elements, as in the SM. Many studies have

concentrated on the properties of these minimal flavor
violating scenarios (see, for example, Refs. [14–23]).

In this article we shall analyze their flavor violating
effects in two quite generic cases. In the first case, we
consider a low energy effective theory in which the quark
and squark mass matrices are aligned in flavor space and
can be simultaneously diagonalized in blocks, as described
in the next section. We will remain agnostic about how this
effective low energy theory is UV completed. However,
since the Yukawa-induced radiative corrections to the soft
supersymmetry breaking parameters tend to destroy the
alignment of the squark and quark mass matrices, this
situation may be only naturally realized in models of low
energy supersymmetry breaking, where these radiative
corrections are small. We call this low energy scenario
minimal flavor violation.

In order to study the possible effect of Yukawa depen-
dent radiative corrections we study a second case, in which
we assume a departure from the alignment condition by the
presence of flavor violating effects proportional to the
CKM matrix elements. These effects are induced by cor-
rections to the left-handed down squark mass matrices
proportional to the product of the up-quark Yukawa matrix
and its Hermitian conjugate (or, in general, powers of this
product). We furthermore assume that the right-handed
down squark masses are flavor independent. As we will
discuss in more detail in the next section, these conditions
at low energies are achieved, for instance, by Yukawa
dependent radiative corrections, if one starts from flavor
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independent squark masses at a high energy scale at mod-
erate values of tan�. One characteristics of this second
scenario is that there are flavor violating down-squark-
gluino vertices at tree-level. Since all flavor violating
effects are governed by the CKM matrix elements, this
scenario would also enter within the general definition of
minimal flavor violating models given in Ref. [21]. How-
ever, due to the presence of flavor violating couplings at
tree level, we will denote it as nonminimal flavor violation
in order distinguish it from the first scenario of flavor
alignment at the weak scale, in which such tree-level
effects are absent. As we will show, the phenomenological
predictions in this scenario are similar to those of the flavor
alignment case, unless the left-handed squarks and the
gluino are very light.

Apart from the structure of supersymmetry breaking
parameters, the phases associated with them are also im-
portant. In minimal flavor violating schemes there are at
least two phases that cannot be absorbed by redefining the
low energy fields. For real values of the � parameter, these
phases can be associated with a universal phase for the
gaugino masses and the trilinear mass parameter. In gen-
eral, however, one can choose independent phases for the
different gaugino masses and trilinear mass parameters.
CP-violating phases beyond the CKM one are required,
for instance, in models of electroweak baryogenesis [24–
29]. In this scenario, there could be significant effects on
�Ms, BR�Bs ! ����� and �K because of the presence
of a light stop and extra phases in the chargino, neutralino
and gluino sectors. We shall comment on the effects of
these new CP violating phases below.

In this paper we attempt to develop a systematic method
of treating the extra sources of flavor violation in the
minimal and nonminimal flavor violating models de-
scribed above. We show that the usual approach of calcu-
lating tan� enhanced flavor changing neutral currents
(FCNC) effects in the Kaon sector does not agree with
the exact results one finds in the limit of flavor independent
masses. Thus, we develop a perturbative approach that
leads to agreement with the exact result in this limit.

We shall emphasize the implications of the present
bounds on BR�Bs ! ����� for future measurements
at the Tevatron collider, both in Higgs as well as in
B-physics. In particular, we shall show that the present
bound on BR�Bs ! ����� leads to strong constraints on
possible corrections to both �Ms and the Kaon mixing
parameters in minimal flavor violating schemes. Moreover,
we shall show that this bound, together with the constraint
implied by the measurement of BR�b! s�� leads to
limits on the possibility detecting light, nonstandard
Higgs bosons in the MSSM at the Tevatron collider.
Throughout the paper we always take real values of �At,
and therefore the Higgs sector is approximately
CP-invariant [30,31], and will be treated as such.

This article is organized as follows. In Sec. II, we define
our theoretical setup, giving the basic expressions neces-

sary for the analysis of the flavor violating effects at large
values of tan�. In particular, we show how the first order
perturbative expressions in the CKM matrix elements are
inappropriate to define the corrections in the Kaon sector
where higher order effects need to be considered. In
Sec. III we show the implications of the constraint on
BR�Bs ! ����� for the mixing parameters of the
Kaon and B sectors in the large tan� regime. In Sec. IV,
we explain the implications for Higgs searches at the
Tevatron. We reserve Sec. V for our conclusions and
some technical details for the appendices.

II. THEORETICAL SETUP

A. The resummed effective Lagrangian and the spar-
ticle spectrum

The importance of large tan� FCNC effects in super-
symmetry has been known for sometime. The finite pieces
of the one-loop self energy diagrams lead to an effective
Lagrangian for the quark-Higgs sector, valid at energy
scales lower than the heavy squark masses, which has the
generic form [15–20,32,33]

 �Leff � �d0
RŶd��

0�
d ���0u ��̂0 � �̂YŶyuŶu��d

0
L

��0
u �u0

RŶuu
0
L � h:c: (1)

 �Lmass �
vd���

2
p �d0

RŶd�1� tan���̂0 � �̂YŶyuŶu��d
0
L

�
vu���

2
p �u0

RŶuu
0
L � h:c: (2)

in an arbitrary basis. The �̂0 and �̂Y matrices correspond to
radiative contributions [34] coming from the loops shown
in Fig. 1. Their exact dependence on the supersymmetric
mass parameters is given in the appendix.

The flavor structure of the loop correction factors are
independent of their momentum integrations. Therefore, in
an arbitrary basis, the flavor dependence of the loop cor-
rection parameters are the same as that of the mass matri-
ces and Yukawa couplings. Thus, the loop correction
factors have the following flavor structure

 Ŷ d�̂0 / M̂�2
~dR

ŶdM̂�2
~dL

(3)

dL
~ dR

~

dRdL g~ g~ dRdL
~~h2

−~~h1
−

Φ2
0 * Φ2

0 *

y
u

y
u
+y

d

y
d

R
~u L

~u

FIG. 1. SUSY radiative corrections to the self-energies of the
d-quarks in the mass insertion approximation.
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 Ŷ d�̂YŶyuŶu / ŶdM̂�2
~uL

ŶyuM̂�2
~uR

Ŷu (4)

where M̂�2 matrices are the nondiagonal inverse squark
mass squared matrices. Thus the sparticle spectrum is
intimately connected to the � parameters which in turn
affect the FCNC’s. We look at two possible choices that
connect the quark mass eigenstate basis to that of the
squarks.

1. Minimal flavor violation

This scenario is similar to that discussed in Refs. [15–
17,19], where one assumes an alignment of the quark and
squark mass matrices in flavor space. Therefore, in the low
energy effective theory, the diagonalization of the quark
mass matrices leads to squark mass matrices that are block
diagonal. Using the following transformation matrices
 

u0
L � UQ

LuL; d0
L � UQ

LV0dL;

u0
R � Uu

RuR; d0
R � Ud

RdR
(5)

to rotate the original quark supermultiplets into a basis
where the tree-level Yukawa couplings are diagonal, we get
 

Yd � Udy
R ŶdUQ

LV0; Yu � Uuy
R ŶuUQ

L;

M�2
~dR
� Udy

R M̂�2
~dR

Ud
R; M�2

~dL
� Vy0 UQy

L M̂�2
~dL

UQ
LV0;

M�2
~uR
� Uuy

R M̂�2
~uR

Uu
R; M�2

~uL
� UQy

L M̂�2
~uL

UQ
L;

�̂0 / UQ
LV0M�2

~dR
M�2

~dL
Vy0 UQy

L ; �̂0 � UQ
LV0�0Vy0 UQy

L ;

�̂Y / UQ
LM�2

~uL
M�2

~uR
UQy

L ; �̂Y � UQ
L�YUQy

L ; (6)

where the unhatted mass and Yukawa matrices are diago-
nal and V0 is the tree-level CKM matrix. Under this trans-
formation the effective mass Lagrangian becomes
 

�Lmass �
vd���

2
p �dRYd�1� tan���0 � Vy0�YjYuj

2V0��dL

�
vu���

2
p �uRYuuL � h:c: (7)

where the �0 and �Y terms, defined in Eq. (6) [see also the
appendix, Eqs. (A46) and (A47)], are diagonal. Therefore
the quark mass matrices receive off-diagonal terms pro-
portional to �Y at the 1-loop level and so need to be
rediagonalized perturbatively. This procedure has been
performed in Refs. [17,19]. However, the calculation of
the (2, 1) and (1, 2) components of the neutral-Higgs-
quark-quark coupling are affected by additional correc-
tions not included in Refs. [17,19]. In the appendix we
calculate the corrected couplings which we present here.
Defining the down-quark neutral Higgs interaction
Lagrangian to be

 �L � �dJR�X
S
RL�

JIdIL�S � h:c:; (8)

we find that the neutral Higgs flavor changing coupling,
with I � J, takes the form

 �XSRL�
JI �

�mdJy
2
t�

JI�xSu � xSd tan��

vd�1� �
J
0 tan���1� �3 tan��

V3J�
eff V

3I
eff (9)

where we have ignored the small effects proportional to the
first and second generation Yukawa couplings to find �J �
�J0 � �3J�Yy

2
t , xSu and xSd are the Higgs scalar components

on the neutral �0�
u and �0�

d fields [see the appendix,
Eq. (A26)] and

 �3I � �Y (10)

 �J3 �
�Y�1� �

�
3 tan�� � ��Y��3 � �J� tan�

1� �3�
0 tan�

(11)

 

�21 �
�Y

�1� �2 tan��j1� �3
0 tan�j2

	 ��1� �3
0 tan��j1� �3 tan�j2

� �Yy
2
t tan��1� ��3 tan���1� �2 tan��

� ��Yy
2
t tan��1� �2 tan��2� (12)

 

�12 �
�Y

�1� �2 tan��j1� �3
0 tan�j2

�
�1� �3

0 tan��j1� �3 tan�j2 � �Yy
2
t tan��1� ��3 tan���1� �2 tan��

� ��Yy
2
t tan��1� �2 tan���1� �1 tan�� �

�1 � �2

�Y

�
��Y tan�

1� ��2 tan�
�

���Y�
2y2
t tan2�

�1� ��2 tan���1� ��3 tan��

�
j�Y j2y2

t tan2�

j1� �3 tan�j2

��
: (13)

Here Veff is the CKM matrix obtained after diagonaliza-
tion of the one-loop mass matrix in Eq. (7). The relation
between this matrix and V0 is given in the appendix.
Observe that in the limit of universal squark soft SUSY
breaking masses the �0 diagonal matrix is proportional to
the identity and, in spite of their complicated form, all the
�IJ become equal to �Y . The difference between the above

expressions and those obtained before in the literature will
be discussed in more detail below.

2. Nonminimal flavor violation using the CKM matrix

As explained in the introduction, we shall discuss a
second scenario in which all flavor violating effects are
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proportional to CKM matrix elements, and there are tree-
level down-squark-gluino flavor violating vertices in the
low energy effective theory. This scenario is similar to that
discussed in Ref. [20]. For the present discussion, let us
assume that we perform the diagonalization procedure in a
single step under the transformation
 

u0
L � UQ

LuL; d0
L � UQ

LVeffdL;

u0
R � Uu

RuR; d0
R � Ud

RdR
(14)

where instead of V0 the tree-level CKM matrix we have
Veff the effective CKM matrix. This transformation leads
to a diagonal quark mass matrix and a mass Lagrangian of
the form
 

�Lmass�
vd���

2
p �dRUdy

R ŶdUQ
L �1� tan���0� �YjYuj

2��VeffdL

�
vu���

2
p �uRYuuL� h:c:; (15)

under the assumption that the matrices

 �0 � UQy
L �̂0UQ

L �Y � UQy
L �̂YUQ

L (16)

are diagonal [20]. The condition that UQy
L �̂YUQ

L is diagonal
is the same as Eq. (6) in minimal flavor violation (MFV).
Thus we again need the u-squark mass matrix to be block
diagonal in the u-quark eigenbasis. Therefore there are no
flavor changing effects in the neutral up supergauge
currents.

However the assumption that UQy
L �̂0UQ

L is diagonal
differs from Eq. (6) in MFV. From the flavor structure of
�̂0 in Eq. (3), we see that this can only be naturally fulfilled
if

 M�2
~dL
� UQy

L M̂�2
~dL

UQ
L ; and M�2

~dR
� Udy

R M̂�2
~dR

Ud
R

(17)

are diagonal and �M�2
~dR
;YdVyeff� � 0. The obvious way of

satisfying this commutation relation is to require the right-
handed d-squark mass matrix to be flavor independent or
M2

~dR
/ I. Observe that this analysis was not performed in

Ref. [20] and hence the above conditions were not required
in that work. As stressed in the introduction, the above
flavor structure of mass matrices may be achieved by
Yukawa-induced radiative corrections to universal, flavor
independent squark masses at high energy scales, at mod-
erate values of tan�. Assuming the squark masses are
flavor independent at high energies, the only one-loop
corrections that violate flavor are induced by the up and
down Yukawa matrices because the gauge interactions are
flavor blind. These corrections are given by [22]
 

�M2
~Q
’�

1

8�2 ��2m
2
0�M

2
Hu
�0��A2

0�Y
y
u Yu

��2m2
0�M

2
Hd
�0��A2

0�Y
y
d Yd� log

�
M

MSUSY

�
; (18)

where ~Q denote the left-handed squarks,m0 is the common
squark mass at the scale M at which supersymmetry break-
ing is transmitted to the observable sector, M2

Hu;d
�0� and A0

are the Higgs soft supersymmetry breaking masses and
squark-Higgs trilinear mass parameters at that scale, and
MSUSY is the characteristic low energy squark mass scale.

Similarly, the right-handed up and down squark mass
matrices receive one-loop Yukawa-induced corrections
proportional to

 �M2
~uR
� �

2

8�2 �2m
2
0 �M

2
Hu
�0� � A2

0�YuY
y
u log

�
M

MSUSY

�
;

(19)

and

 �M2
~dR
� �

2

8�2 �2m
2
0 �M

2
Hd
�0� � A2

0�YdY
y
d log

�
M

MSUSY

�
;

(20)

respectively.
Therefore, while the Yukawa-induced radiative correc-

tions to the right-handed squark mass matrices maintain
the alignment of these matrices with their corresponding
Yukawa matrices, the corrections to the left-handed squark
masses induced a misalignment between the quark and
squark mass matrices governed by CKM matrix elements.
Since the dominant effects are governed by the third gen-
eration Yukawa eigenvalues, the down-quark Yukawa ef-
fects may be neglected at small or moderate values of tan�
where the bottom Yukawa coupling is much smaller than
the top quark one. In this case, one arrives at the properties
of the squark mass matrices specified in the nonminimal
flavor violating scenario defined above.

In general, even at larger values of tan�, the only flavor
violating squark-gluino vertices will be in the left-handed
couplings (and the Higgs-squark-squark vertices) and they
will be governed by CKM matrix elements. The only
difference between the large tan� case with respect to
the nonminimal flavor violating model defined above is
that the masses of the right-handed down squarks will no
longer be flavor independent at low energies and therefore
the �̂0 matrix will not be aligned with the �̂Y one. However,
the flavor properties of the large tan� scenario are quite
similar the nonminimal flavor violating scenario specified
above and therefore this scenario will allow us to study the
possible effects of the Yukawa-induced radiative correc-
tions to the squark mass matrices, in particular, the ones
associated with the flavor violating down-squark-gluino
couplings at tree level.

Following the argument in Ref. [20] we can rewrite the
effective Lagrangian in terms of the mass eigenstates as
 

�Leff �

���
2
p

vu
��0�

d ��0�
u tan�� �dR �mdV

y
effR

�1VeffdL

�

���
2
p

vu
�0�
u

�dR �mddL ��0
u �uRYuuL � h:c: (21)

M. CARENA et al. PHYSICAL REVIEW D 74, 015009 (2006)

015009-4



where Veff is the effective CKM matrix, Yu is the diagonal
up Yukawa matrix, �md is the diagonal down-quark running
mass matrix, and

 R � 1� �0 tan�� �YjYuj
2 tan�: (22)

Therefore, neglecting1 yu and yc as compared to yt, and
defining

 �J � �J0 � �Yy
2
t �

J3 (23)

for all J, we find

 �R�1�JI �
1

1� �J tan�
�JI (24)

If we assume a generational mass splitting so that the
first two generations are equally massive and heavier than
the third generation we find �1

0 � �2
0 � �0. In this case the

flavor changing effects are not solely dependent on �Y , but
they also depend on the difference between the loop factors
��3 � �0�:

 �XSRL�
JI �

�mdJ ��3 � �0��xSu � x
S
d tan��

vd�1� �0 tan���1� �3 tan��
V3J�

eff V
3I
eff : (25)

The reason we call this scenario nonminimal flavor
violation is that the diagonalization procedure induces
flavor changing effects in the gluino-quark-squark cou-
plings which lead to additional contributions to flavor
changing processes. Indeed, the assumption that �0 and
�Y in Eq. (16) are diagonal leads to the appearance of CKM
elements in the down quark-squark-gluino coupling, as it is
clear from Eqs. (14) and (17). Because the left-handed
squarks are not diagonalized by the same rotation as the
left-handed quarks, the effective gluino Lagrangian be-
comes

 L ~g � �
���
2
p
gs� �uL~gaTa~uL � �uR~gaTa~uR�

�
���
2
p
gs� �dL~gaTaV ~dL � �dR~gaTa ~dR�: (26)

The appearance of the CKM matrix in the gluino couplings
induces flavor changing box diagrams that can in principle
produce large effects.

3. The uniform squark mass limit

The two flavor changing scenarios discussed above co-
incide for the case of uniform squark masses. Since, in this
limit, the transformation performed in Sec. II A 2 requires
no approximations or assumptions the expression for the
FCNC’s are exact. However, the perturbative approach in
Sec. II A 1 provides expressions for the FCNCs that are
only valid up to a certain order in the off-diagonal CKM
matrix elements. For the perturbative approach in

Sec. II A 1 to be valid we need the two expression for the
FCNC’s to be equal to at least quadratic order in the off-
diagonal CKM matrix elements. However, as discussed
above, comparing the results of Ref. [19,20] this is clearly
not true for the (2, 1) and (1, 2) components of the down
quark-Higgs couplings XRL.

In the uniform squark limit, the flavor violating coupling
given in Eq. (25) has the form

 �XSRL�
JI �

�mdJ�Yy
2
t �x

S
u � x

S
d tan��

vd�1� �3 tan���1� �0 tan��
V3J�

eff V
3I
eff : (27)

which does not agree with the results in Ref. [19], where
they find the corrected coupling to be
 

�XSRL�
21 �

�mdJ�Yy
2
t

vd

j1� �3 tan�j2

j1� �0 tan�j2�1� �0 tan��2

	 V3J�
eff V

3I5
eff �x

S
u � x

S
d tan��: (28)

To understand this difference between the results of
Refs. [19,20] we need to look at the approximations
made in Ref. [19]. Diagonalizing the tree-level quark
mass matrices in Eq. (7) leads to uncorrected diagonal
masses md and a CKM matrix V0. However the large
tan� enhanced radiative corrections lead to off-diagonal
terms in the mass matrix, which have the form

 �md ��md�
JI � mdJ ��1� �J tan���JI � �Yy2

t tan��JI0 �

(29)

where �JI0 � V3J�
0 V3I

0 for J � I and �J is defined in
Eq. (23). We have also neglected contributions to the
diagonal elements of the form jV3J

0 j
2 for J � 3 as they

are subdominant. Hence, to go to the physical quark basis
we need to further diagonalize this effective mass matrix
by unitary matrices DL;R so that

 e�i	J �DyR�md ��md�DL�
JI � �mdJ�

JI (30)

where 	J � arg�1� �J tan��. The approach taken in
Ref. [19] is to perturbatively expand the diagonalization
matrices DL and DR so that

 D L � 1��DL (31)

 D R � 1��DR (32)

where the unitarity of DL;R to linear order in � leads to
conditions ��DL;R�

y � ��DL;R, so that when J � I in
Eq. (30) we have the condition

 e�i	J ����DR� �md ��md � �md��DL��
JI � 0; (33)

where the �md includes higher order terms and higher orders
in � have been neglected. Using Eq. (33) and its dagger
along with the hierarchy in quark masses gives us

1This approximation breaks down in the limit 1� �0 tan�!
0, the singularity in [XdSRL] proportional to yt cancels against
those coming from yc and yu as discussed in Ref. [20].
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 ��DL�
JI �

8<
:�

�Yy2
t tan�

1��J tan��
JI
0 J > I

��Yy
2
t tan�

1���I tan��
JI
0 J < I

(34)

and

 ��DR�
JI �

8><
>:
�

�mdI
�mdJ
�
�Yy2

t tan�
1��J tan��

��Yy
2
t tan�

1���I tan��e
i�	J�	I��JI0 J> I

�mdJ
�mdI
�
�Yy2

t tan�
1��I tan��

��Yy
2
t tan�

1���J tan��e
i�	J�	I��JI0 J< I

(35)

Putting these matrices back into Eq. (33) with �J; I� �
�2; 1� the dominant terms have the form

 e�i	2� �md�DL�
21 � �

�ms�Yy2
t tan�

1� �2 tan�
�21

0 ; (36)

which are comparable to the terms that were neglected in
Eq. (33) like
 

e�i	2���md���DL��
21 ��

�ms�
2
Yy

4
t tan2�

�1� �2 tan���1� �3 tan��
�21

0 :

(37)

This is particularly true for values of �3 < 0 and large
values of tan�. Therefore the deviation between
Refs. [19,20] in the Kaon sector is due to a breakdown in
the perturbative series leading to first and second order
contributions being comparable. The expansion shown in
Ref. [19] works for the (1, 3), (2, 3), (3, 1) and (3, 2)
components as they expanded the mass matrices only to
first order. As mentioned above, an analysis of the second
order corrections, together with a derivation of Eqs. (12)
and (13) is presented in the appendix.

4. Flavor changing in the charged Higgs coupling

The process of calculating the flavor changing couplings
for the charged goldstone modes is exactly the same as in
Ref. [19]. As the couplings of the goldstone has to match
those of the W-bosons at tree level, so as to form its
longitudinal mode, the flavor changing effects have to be

 �PG�LR �
JI � �

���
2
p

v
VJIeff �mdI (38)

 �PG�RL �
JI �

���
2
p

v
�muIV

JI
eff (39)

The charged Higgs has the effective Lagrangian [33]
 

LH�
eff �

���
2
p

v
�uR

�
cot�mu �

vd���
2
p tan��Yu

�
VeffdLH�

�

���
2
p

v
�uLVeffD

y
L

�
tan�md �

vu���
2
p cot��Yd

�

	DRdRH� (40)

where

 ��Yu�
JI � yuJ ��

0J
0 �

JI � �0Yy
2
bV

J3
0 V

I3�
0 � (41)

 ��Yd�
JI � �ydJ ��

J
0�

JI � �Yy2
t V

3J�
0 V3I

0 � (42)

are the generic form of corrections to the down(up)
Yukawas after neglecting the Yukawas of the first two
generations. The matrices �00 and �0Y are closely related to
�0 and �Y and their form is given in the appendix. Hence,
we find for I � 1, 2, 3

 

�PH�RL �
3I �

���
2
p

v
mt cot�V3I

eff

�
1� tan�

�
�030 � �

0
Yy

2
b

�
1� �3 tan�

1� �0
3 tan�

�3I �
�Yy

2
t tan�

1� �0
3 tan�

���
; (43)

for J � 3
 

�PH�RL �
J3 �

���
2
p

v
muJ cot�VJ3

eff

�
1� tan�

�
�0J0 � �

0
Yy

2
b

1� ��3 tan�

1� �0�
3 tan�

��
(44)

and finally for �J; I� � �2; 1�, (1, 2), (1, 1) and (2, 2)

 �PH�RL �
JI �

���
2
p

v
muJ cot�VJIeff�1� tan��0J0 � (45)

which agrees with Ref. [19] if the phases are neglected. To find the left-right coupling we neglect the ��Yd� as it is
suppressed by cot� so that we have for I � 3

 �PH�LR �
3I �

���
2
p

v

�mdI tan��1� �3 tan��

�1� �3
0 tan���1� ��3 tan��

V3I
eff

�
1� �3�

0 tan�
1� ��I tan�

�
�Yy

2
t tan�

1� �3 tan�

�
; (46)

for J � 3

 �PH�LR �
J3 �

���
2
p

v
�mb tan�

1� �3�
0 tan�

VJ3
eff (47)

and for �J; I� � �3; 3� and J � 3 � I

 �PH�LR �
33 �

���
2
p

v
�mb tan�

1� ��3 tan�
V33

eff (48)
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 �PH�LR �
JI �

���
2
p

v

�mdI tan�

1� ��I tan�
VJIeff (49)

III. FLAVOR CHANGING PROCESSES IN THE
KAON AND Bs-MESON SYSTEMS

A. �F � 2 processes

The effective Hamiltonian that contributes to �F � 2
processes in the Kaon and Bs meson systems have the
generic form

 H �F�2
eff �

G2
fM

2
W

16�2

X
i

Ci���Qi��� (50)

where Ci��� are the Wilson coefficients evaluated at the
scale �. The �F operators for a meson of the form � �qJqI�
are

 

QVLL � � �qJL��q
I
L�� �q

J
L�

�qIL�

QSLL
1 � � �qJRq

I
L�� �q

J
Rq

I
L�

QSLL
2 � � �qJR
��q

I
L�� �q

J
R


��qIL�

QVRR � � �qJR��q
I
R�� �q

J
R�

�qIR�

QSRR
1 � � �qJLq

I
R�� �q

J
Lq

I
R�:

QSRR
2 � � �qJL
��q

I
R�� �q

J
L


��qIR�

QLR
1 � � �qJL��q

I
L�� �q

J
R�

�qIR�

QLR
2 � � �qJRq

I
L�� �q

J
Lq

I
R�

(51)

So for theK0 � �K0 system the quantities of interest to us
are �K and the eigenstate mass difference �MK, which to a
good approximation have the form
 

�MK � 2 Re�h �K0jH�S�2
eff jK0i�

�K �
ei�=4���
2
p

�MK

Im�h �K0jH�S�2
eff jK0i�:

(52)

The SUSY contribution to the matrix element for the
meson M may be written down as

 

h �MjH�S�2
eff jMiSUSY �

G2
fM

2
W

12�2 mMF
2
M�2B̂M� �PVLL�CVLL��SUSY� � C

VRR��SUSY�� � �PSLL1 �CSLL1 ��SUSY�

� CSRR1 ��SUSY�� � �PSLL2 �CSLL2 ��SUSY� � CSRR2 ��SUSY�� � �PLR1 CLR1 ��SUSY� � �PLR2 CLR2 ��SUSY��:

(53)

For the Kaon system mK � 0:498 GeV, FK � 0:16 GeV,
the values of the NLO QCD factors from Ref. [20] are
 

�PVLL1 � 0:25; �PLR1 � �18:6; �PLR2 � 30:6;

�PSLL1 � �9:3; �PSLL2 � �16:6
(54)

for which the values �2 � 0:57, B̂K � 0:85 have been
used. The dominant contributions as shown in
Refs. [19,20] come from the double penguin diagrams
which on matching give contributions to the Wilson coef-
ficients
 

CLR2 � �
16�2

G2
f�V

21
eff�

2M2
W

X3

S�1

1

M2
S

�XSRL�
21�XSLR�

21

CSLL1 � �
8�2

G2
f�V

21
eff�

2M2
W

X3

S�1

1

M2
S

�XSRL�
21�XSRL�

21

CSRR1 � �
8�2

G2
f�V

21
eff�

2M2
W

X3

S�1

1

M2
S

�XSLR�
21�XSLR�

21:

(55)

Additional subleading contributions at large tan� come
from the charged Higgs boson and chargino box-diagram
contributions to �K, and their form are given in the
Appendix A.4 of Ref. [19].

Similarly, for the Bs eigenstate mass differences �Ms,
using again Eq. (50) for �B � 2 processes, we get, ap-

proximately,

 �Ms � 2jh �BsjH
�B�2
eff jBsij (56)

Therefore, using Eq. (53), the mass difference in the �Bs �
Bs meson system can be found using mBs � 5:37 GeV,
FBs � 0:230 GeV and the values of NLO QCD factors
from Ref. [19] being
 

�PVLL1 � 0:254; �PLR1 � �0:71; �PLR2 � 0:90;

�PSLL1 � �0:37; �PSLL2 � �0:72 (57)

for which the values �B � 0:55, B̂BS � 1:3 have been
used. Again, the dominant contributions come from
double-penguin diagrams which have the same form as
Eq. (55) with the indices �2; 1� ! �3; 2� and there are
subdominant contributions from the box diagrams with
charged Higgs bosons and stop-charginos.

B. �F � 1 processes contributing to Bs ! ����

The effective Hamiltonian that contributes to �F � 1
processes in the Bs meson system has the form

 H �B�1
eff �

Gfem���
2
p
�s2

w

VtbeffV
ts
eff

X
i

ci���Oi��� (58)

where the operators O are
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OA � � �bL�
�sL���l���5l� O0A � � �bR�

�sR���l���5l�

OS � mb� �bRsL���ll� O0S � ms� �bLsR���ll�

OP � mb� �bRsL���l�5l� O0S � ms� �bLsR���l�5l�: (59)

The operators OA and O0A can be dropped as cA and c0A are
proportional to the muon mass and so are small at large
tan�. Also the other primed operators are suppressed with
respect to the unprimed ones due to the hierarchy of quark
masses. So the dominant contributions at large tan� come
from the penguin diagrams leading to the contributions

 cS � �
4�2m� tan�

�mbM2
W27=4G3=2Vtseff sin�

X3

I�1

1

M2
I

�XIRL�
32O1I

cP � i
4�2m� tan�

�mbM
2
W27=4G3=2Vtseff

X3

I�1

1

M2
I

�XIRL�
32O3I:

(60)

where OIJ is the neutral Higgs diagonalization matrix and
related to xSu and xSd through Eq. (A26). Hence, in the large
tan� limit we find [19]

 BR�Bs ! ����� � 2:32	 10�6M2
Bs
�jcSj2 � jcPj2�

(61)

IV. NUMERICAL RESULTS: MINIMAL FLAVOR
VIOLATION

In this section we will study some of the phenomeno-
logical implications of the scenarios of minimal flavor
violation. The quantities of interest in the following section
are �MK, �K, and, in particular, the observables in the B
sector, �Ms and BR�Bs ! �����. The standard model
theoretical prediction of �Ms has errors associated with
the quantities �mt, Vts, and FBs

��������
BBs

p
that lead to large

theoretical uncertainties [35,36]. There is good agreement
between the central values for the SM prediction for �Ms
obtained by the CKMfitter and UTFit groups. Their evalu-
ation of the uncertainties is somewhat different. The UTFit
group finds the 2
 range [37]

 16:7 ps�1 
 ��Ms�
SM 
 26:9 ps�1 (62)

with central value 21:5 ps�1, which is consistent with the
CKMfitter groups’ 2
 range [38]

 14:9 ps�1 
 ��Ms�
SM 
 31:4 ps�1 (63)

and central value 21:7 ps�1. Additionally, the D0 collabo-
ration has reported a signal consistent with values of �Ms
in the range

 21 �ps��1 >�Ms > 19 ps�1 (64)

at the 90% confidence level [39]. More recently, the CDF
collaboration has made a measurement of �Ms [40],

 �Ms � �17:33�0:42
�0:21 � 0:07�syst�� ps�1: (65)

The experimental bound [41,42]

 BR�Bs ! ����� 
 1	 10�7 (66)

puts strong restrictions on possible flavor violating effects
induced by the double penguin contributions in the large
tan� regime. The dominant contributions for large tan� to
�Ms and BR�Bs ! ����� come from the same penguin
diagrams. The dominant contributions to �J0 and �Y come
from the gluino d-squark loop and the chargino u-squark
loop, respectively. Hence, for heavy squarks, the form of
these loop corrections can be written approximately as

 j�3
0j �

2s
3�
jM3jj�jC0�m2

~b1
; m2

~b2
; jM3j

2� (67)

 j�Y j �
1

16�2 jAtjj�jC0�m2
~t1
; m2

~t2
; j�j2�; (68)

where C0 is the standard Passarino-Veltman function.

A. Phenomenological constraints on double penguin
contributions in the MFV scenario

1. The effect of BR�Bs ! ����� constraint on �Ms

As has been shown in Ref. [19] the chargino box dia-
grams can be neglected if all the squark masses are greater
than about 0.5 TeV. We are now interested in setting an
upper bound on the FCNC effects induced by the double
penguin contributions. From the form of Eqs. (67) and (68)
it is clear that the loop integrals are larger for smaller
values of the squark masses. The value of �0 is maximized
for large values of � and for values of M3 about twice the
overall squark mass value. The value of �Y on the other
hand, is maximized for large values of At and values of �
that are of order 2 times the overall squark mass value. At
the same time, large values of � and/or At may induce the
presence of color breaking minima [43,44]. Hence, values
of M3  2m~q � maximize �Y , while pushing �0 to large
values. For these values of the parameters, the loop cor-
rections are given by

 j��3
0�maxj  2:7	 10�2 (69)

 j��Y�maxj  1	 10�2; (70)

where we have constrained the trilinear mass parameter
At & 3m~q, so as not to create color breaking minima
[43,44]. Let us stress that the bounds on the parameters
coming from color breaking minima may be avoided by
assuming metastability of the electroweak symmetry
breaking vacuum. However, the somewhat extreme values
of the parameters given above induce additional anomalies
in the low energy spectrum. For instance, values of At *

3:2m~q, decrease the physical Higgs mass to values lower
than the current experimental bound on this quantity [3–
13]. It is also important to stress that for negative values of
�M3, the coupling XJIRL may be enhanced by taking even
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larger values of j�j. Indeed, �Y only falls off slowly for
larger j�j, while �J0 increases linearly and therefore XJIRL
grows with increasing �. We shall comment on the effect
of taking larger values of j�j below.

In the region of large tan� the heavy CP-even and
CP-odd masses are approximately equal and the Higgs
mixing angle  1= tan�, so that the dominant contribu-
tion to BR�Bs ! ����� is given by

 BR�Bs ! ����� � 4:64	 10�6M2
Bs

�
4�2m� tan�

�mbM2
W27=4G3=2jVtseff j

�
2 j�XARL�

32j2

M4
A

: (71)

Similarly we find the dominant SUSY contribution to
�Ms comes from the CLR2 coefficient. To understand why
the CLR2 term is dominant over the CSLL1 we consider the
case when there is no CP violation in the neutral Higgs
sector. In the basis �H0; h0; A� we have xSu �
�sin; cos;�i cos�� and xSd � �cos;� sin; i sin��,
where  is the Higgs mixing angle. Putting these values
into Eq. (55) for the (3,2) component, we find [19],

 CLR2 / �mb �mstan4�
�
sin2�� ��

M2
H0

�
cos2�� ��

M2
h0

�
1

M2
A

�

(72)

 CSLL1 / �m2
btan4�

�
sin2�� ��

M2
H0

�
cos2�� ��

M2
h0

�
1

M2
A

�
:

(73)

From a cursory inspection of these two equation it is not
clear which term is dominant, at large tan�, as CLR2 is
suppressed by a factor of �ms= �mb with respect to CSLL1 .
However, using the constraint equations that relate Mh0 , 
and � at tree-level in the MSSM [11] we find

 M2
h0 � M2

Z

�
1�

4

tan2�

�
(74)

 

cos2�� ��

M2
h0

�
M2
Z �M

2
h0

M2
A�M

2
H0 �M2

h0�
�

4M2
Z

M4
Atan2�

(75)

where only the lowest order terms in �M2
Z=M

2
A� have been

kept. Using these tree-level approximations we find that

 CLR2 / �mb �mstan4�
2

M2
A

(76)

 CSLL1 / �m2
btan2�

4M2
Z

M4
A

: (77)

Thus at large tan� and moderate or large MA, CLR2 clearly
dominates over CSLL1 .2 The value of �Ms, including the
corrections from new physics, may be represented as
��Ms�

SMj1� fsj, where fs is the total SUSY contribution.
Because of CLR2 being dominant we find

 fs � �
16�2P2

LR

G2
fM

2
WS0�xt��V32

eff�
2

2

M2
A

�XARL�
32�XALR�

32: (78)

In the limit of universal squark masses, for fixed values
of the supersymmetry breaking mass parameters, the ratio
between �Ms and BR�Bs ! ����� is proportional to
�MA= tan��2. Furthermore, fs is negative [17–19].
Therefore, unless jfsj> 2, the double penguin contribu-
tions to �Ms always interferes destructively with the SM
contribution, at large tan�. This result, showing the sup-
pression of �Ms for enhanced BR�Bs ! �����, has
been known for some time and was first shown in
Refs. [17–19].

In Figs. 2 and 3 we show the correlation between �Ms
and BR�Bs ! ����� for different squark spectra and
gaugino phases. In Fig. 2 the black curves show the corre-
lation between the double penguin contributions to �Ms
and BR�Bs ! ����� for uniform squark masses
2 TeV. We have chosen the uniform squark masses to
be 2 TeV so as to ensure that for MA 
 1 TeV the
effective Lagrangian in Eqs. (1) and (2) remains valid.
Had we chosen squark masses of the order of 1 TeV, then
the low-energy effective theory would break down for MA
close to 1 TeV, and a more detailed analysis of the �i’s
momentum dependence would be required for these large
values of MA. Each of the black curves have different
values of MA= tan�. The contours represent the maximal
values of j�Msj

DP, for a given value of BR�Bs ! �����,
and for a given range of values of MA. Because of the fact
that for fixed MA, the ratio of j�Msj

DP to BR�Bs !
����� goes like 1=tan2�, in order to maximize j�Msj
for any given value of BR�Bs ! ����� we need to
minimize the value of tan�. Inspection of the expressions
given above shows that this may be achieved by choosing
positive values of �, arg�M3� � arg�At� � � and maximal
values of j�0j and j�Y j. In order to define the contours we
have taken the values of the loop corrections given in
Eq. (70). The horizontal black and red ( gray) line corre-
sponds to an upper bound on the largest possible contribu-
tion to �Ms from new physics using the 2
 values
obtained by the UTFit and CKMfitter collaborations,
Eqs. (62) and (63), respectively. In order to get a precise
evaluation of this bound, a complete fit to the flavor violat-
ing processes within the MSSM should be performed,
something that is beyond the scope of this paper.
However, since in this region of parameters the only rele-

2When the loop factors and phases are included the approxi-
mation for CSLL1 still holds up to a factor of order 1.

CONSTRAINTS ON B AND HIGGS PHYSICS IN . . . PHYSICAL REVIEW D 74, 015009 (2006)

015009-9



vant new flavor violating contributions are from the double
penguin diagrams, we can make an estimate of this bound
in the following way: From Eq. (62) or Eq. (63) we have a
2-
 range that goes from values consistent with the ex-
perimentally measured value up to values much larger than
the measured values. Therefore the negative double pen-
guin contribution can be as large as the difference between
the maximum allowed SM value and the smallest allowed
experimental value. This leads to an upper bound on the
magnitude of the double penguin contributions to �Ms of
about 10 ps�1 for the UTFit limits in Eq. (62) or
14:5 ps�1 for the CKMfitter limits in Eq. (63). From
Fig. 2 it is clear that, for CP-odd Higgs masses below
1 TeV, this bound does not lead to any further constraint
beyond the one already obtained by the nonobservation of
the branching ratio of the decay Bs ! ����.

It is possible to enhance the value of �Ms beyond what
we have explored, by allowing values of j�j> 2m~q. If, for
instance, we consider values of � * 3m~q, for the same

value of BR�Bs ! ����� we can enhance �Ms by a
factor1:5. This suggests that the contours in Figs. 2 and 3
are not strict upper bounds, and can be further enhanced,
almost in a linear way, by pushing j�j=m~q to larger values.
However, due to the extreme values of the mass parameters
selected in defining the contours, these are indicative of the
upper bound on the double penguin contributions to �Ms
for a given value of BR�Bs ! ����� for natural values
of the mass parameters.

In Fig. 3 we depart from the limit of universal squark
masses, by setting the third generation squark masses
0:5 TeV while the first two generation squark masses
are 5 TeV, which leads to �3

0 having its maximal value, but
�1

0 and �2
0 being 100 times smaller. Hence, this splitting of

the squark masses spoils the linear correlation between
�Ms and BR�Bs ! ����� due to the different para-
metric dependences of X32

RL and X23
RL for split masses. In

both Figs. 2 and 3 the vertical red (gray) line is the
experimental bound on BR�Bs ! ����� in Eq. (66).

Figures 2 and 3 suggest that large double penguin con-
tributions to j�Msj may not be obtained, for values of �J0
and �Y close to their maximal values in Eqs. (69) and (70),
without violating the BR�Bs ! ����� bound. Because
of these bounds, for values of MA < 1 TeV, the double
penguin corrections to �Ms are restricted to be negative
and relatively small, so that j�Msj

SUSY & 4	 10�12 GeV,
or equivalently j�Msj

SUSY & 6 ps�1.
The BR�Bs ! ����� bound also constrains contribu-

tions to �Md and �MK to values within experimental
errors. For example, in Fig. 4, the SUSY contributions to
�MK in the Kaon system for uniform squarks masses are
below the experimental error of 6	 10�18 GeV or
0:01 ns�1, even for large values of �MA= tan��2. These
results seem to be at variance with those obtained in
Ref. [20]. This is mainly due to the fact that the authors
of Ref. [20] represented results in regions of parameters
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FIG. 4 (color online). Correlation between BR�Bs ! �����
and �MK. The squark masses are all uniform and have been set
to 2 TeV. The rest of the SUSY parameters have been chosen so
that j�0j and j�Y j have their maximal values. The black lines
have fixed values of MA= tan�. The contours are the double
penguin contributions to �MK for gluino mass and At phases
equal to �, but varying tan�. The left red (gray) vertical line is
the present experimental bound on BR�Bs ! ����� while the
right blue (black) vertical line is the previous limit.
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FIG. 2 (color online). Correlation between BR�Bs ! �����
and �Ms. The squark masses are all uniform and have been set
to 2 TeV. The rest of the SUSY parameters have been chosen so
that j�0j and j�Y j have their maximal values. The black lines
have fixed values of MA= tan�, but varying gluino phase. The
contours represent �Ms for different ranges of MA (MA � 500,
1000, 2000 GeV) for gluino mass and At phases equal to �, and
varying tan� values. The red (gray) vertical line is the experi-
mental bound on BR�Bs ! �����. The horizontal black line
is the 2
 upper bound on the double penguin contributions to
�Ms from the UTFit group while red (gray) horizontal line is the
same bound from the CKMfitter group.
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where the value of BR�Bs ! ����� is well above the
present limit. Observe that, to arrive at this conclusion, the
new limit on BR�Bs ! ����� is essential. From Fig. 4
we can also see how the improvement in the limit on
BR�Bs ! ����� forces the double penguin contribu-
tions to j�MKj from SUSY to be small. Finally, Fig. 5
shows similar results for �K. As happens in the case of
�MK, the results for values of MA < 1 TeV are far below
the current experimental value of 2:282	 10�3.

However, within the minimal flavor violation scheme,
large contributions to �Ms are possible for scenarios in
which the stops and charginos are light, so that the
chargino-stop box diagrams become larger. Furthermore,
the bound on BR�Bs ! ����� can be satisfied by going
to regions of large MA or low tan� as chargino-stop box
contributions are not very sensitive to tan�. This scenario
is similar to that discussed in Ref. [29] where low values of
tan� satisfy both the dark matter and baryogenesis con-
straints. In Fig. 6, we choose SUSY parameters
 

MA � 200 GeV; M3 � 1000 GeV;

MD3
� MSUSY � 2000 GeV; M2

U3
� �902 GeV2;

At � �1000 GeV tan� � 10

and 100 GeV & 2M1;M2; � & 500 GeV

that agree with dark matter and baryogenesis constraints
and produce a value of �Ms that is enhanced with respect
to the SM value. For this kind of particle spectrum the
double penguin contributions to �Ms are small compared
to that of chargino stop diagrams. Although the enhance-
ment of �Ms is small, a comparison of the SM prediction,
Eqs. (62) and (63), and the experimentally measured value
leads to disfavor additional positive contributions of �Ms,
larger than about 3:5 ps�1, where we have taken into
account the SM allowed range given by the CKMfitter
collaboration Eq. (63), at the 2-
 level. Even stronger
constraints would be obtained if the UTfit values in
Eq. (63) for ��Ms�

SM were used. Therefore the smallest
values of�, smaller than 200 GeV, would be disfavored. A
global fit to all flavor dependent observables within this

scenario would be necessary in order to determine the
precise lower bound on �, something that is beyond the
scope of this article. Also observe that for larger values of
tan� there may be relevant double penguin contributions
that could cancel the positive box-diagram contributions
and therefore the bound on � could be relaxed in this case.

Although this scenario leads to contributions to �MK
that are smaller than the present experimental errors on this
quantity, as can be seen in Fig. 7, it leads to interesting
corrections to �K, as shown in Fig. 8. The results in Fig. 8
were obtained for a value of the CKM phase � � �=3 (the
best fit value within the SM). Experimentally we know that

 j�Kj � �2:282� 0:014� 	 10�3: (79)

and therefore the SUSY corrections are significant. For
lower values of the CKM phase, however, the SUSY con-
tributions to j�Kj within this scenario can be smaller. The
experimental value of �K is usually used to put a constraint
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FIG. 5 (color online). Same as Fig. 4, but for �K . Only the
current bound on BR�Bs ! ����� is shown, by the vertical
red (gray) line and the horizontal blue (black) line is the
experimentally measured value of �K.
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on the ��� �� plane.3 The SM contributions to �K leads to
the constraint equation [45]
 

5:3	 10�4 � BKA2 ����1� ���A2�4��2S�x
�
t � � ��3S�x

�
c; x�t �

� ��1x
�
c� (80)

where BK � 0:75� 0:10, A 0:85, � � 0:22, ��1 �
1:32�0:21

�0:23, ��2 � 0:57�0:00
�0:01, ��3 � 0:47�0:03

�0:04 and S�xt� and
S�xc; xt� are the Inami-Lim functions. Because the stops
are light the dominant contributions to �K come from the
chargino stop diagram. Under these approximations we
find the �K constraint equation in ��� �� plane is modified
to become

 5:3	 10�4 � BKA2 ����1� ����1� ��A2�4��2S�x
�
t �

� ��3S�x
�
c; x
�
t � � �

�
1x
�
c�: (81)

where � hides all the SUSY dependences. The dominant
contribution to �K from SUSY comes from the CVLL
Wilson coefficient. Thus we have approximately,

 � 
�PVLL

8G2
FM

2
WS�x

�
t �
D2�m

2
~t2
; m2

~t2
; m2

�2
; m2

�2
� (82)

where m~t2 is the lightest stop mass, m�2
is the lightest

chargino mass and D2 is the Passarino-Veltmann function

 D2�x; y; z; t� �
y2

�y� x��y� z��y� t�
log

�
y
x

�

�
z2

�z� x��z� y��z� t�
log

�
z
x

�

�
t2

�t� x��t� y��t� z�
log

�
t
x

�
: (83)

Taking the lightest stop mass to be 120 GeVand approx-
imating the lightest chargino mass by j�j we can estimate
�  0:4 for values of � 100 GeV. However as jM2j ’
j�j there are also relevant contributions from the heavier
chargino. Including these contributions, we obtain � 
0:55. Including this value of � in the theoretical prediction
for �K will lead to a modification of the values of �� and ��
extracted from the fit to the flavor observables. Although a
global fit to these quantities within the light stop scenario is
beyond the scope of this article, we notice that for � &

0:55, the new constraint equation, Eq. (81), is still consis-
tent with the limits coming from jVubj=jVcbj, sin�2��eff

and �Ms;d and therefore this scenario is not ruled out by
these considerations.

2. The effect of BR�Bs ! ����� constraint on Higgs
physics at the Tevatron and the LHC

As shown above, in the minimal flavor violating scheme,
all dominant FCNC effects at large tan� are proportional
to �Y , which is directly proportional to the product of the�
and At, but inversely proportional to the square of the
squark masses. The FCNC effects are strongly enhanced
for large values of tan� and small values of the CP-odd
Higgs mass. The Tevatron collider is performing searches
for nonstandard Higgs bosons, which become efficient for
exactly the same conditions. Therefore, in minimal flavor
violating models, current bounds on the rate Bs ! ����

impose strong constraints on the possibility of finding
nonstandard Higgs bosons at the Tevatron collider (for
related studies, see Refs. [46– 48]). This is particularly
true for large values of the At and � parameters, for which
�Y is enhanced.

Low values of the CP-odd Higgs mass are also associ-
ated with low values of the charged Higgs mass. These
values of the charged Higgs mass induce large positive
corrections to the branching ratio BR�b! s��. Since the
measured value of BR�b! s�� agrees well with the SM
prediction, these large charged Higgs induced corrections
to the rare decay rate needs to be cancelled by similarly
large corrections induced by supersymmetric particles. In
minimal flavor violating schemes, these SUSY corrections
are associated with stop-chargino loops [14,49–54]. For
positive (negative) values of At�, the corrections to the
amplitude of the decay b! s� have the same (opposite)
sign to the ones associated with the charged Higgs correc-
tions, and grow linearly with tan�. Therefore, agreement
of the theoretical predictions with the experimental values
of BR�b! s�� for small values of MA demands negative
values of At�.

Additional constraints come from the CP-even Higgs
sector. For a given value of the overall squark masses, the
mass of the lightest CP-even Higgs boson in the large tan�
regime depends strongly on the parameter At. In particular,
this mass is maximized for a value of Xt � At �
�= tan� ’ 2:4MSUSY (whereMSUSY is equal to the average
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FIG. 8. Variation of SUSY contributions to �K with input
parameters MA � 200 GeV, M3 � 1000 GeV, MD3
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MSUSY � 2000 GeV, 2M1 � M2 � �, M2
U3
� �902 GeV2

At � �1000 GeV and tan� � 10.

3 �� and �� are the usual corrected Wolfenstein parameters of the
CKM matrix.
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stop mass) and minimized for values of Xt � 0 [3].
Because of the complicated dependence of the Higgs bo-
son properties on the supersymmetric mass parameters,
searches for Higgs bosons at the Tevatron and the LHC
are usually interpreted in terms of benchmark scenarios
[55]. For instance, the scenario with Xt=MSUSY ’ 2:4 is
named the maximal mixing scenario, since it is associated
with the values of the stop mixing parameters that max-
imize the lightest CP-even Higgs mass. Similarly, Xt � 0
defines the minimal mixing scenario. While for the maxi-
mal mixing scenario the constraints coming from FCNC
are particularly strong, no constraint fromBs ! ���� are
expected to be obtained in the minimal mixing scenario.

In Fig. 9, we display the constraints in the MA � tan�
plane that are induced by the requirement of obtaining a
good agreement with the BR�b! s�� and the nonobser-
vation of Bs ! ���� at the Tevatron collider. The results
are presented for different values of Xt and � parameters
and supersymmetry breaking squark masses equal to

1 TeV. The region of parameter space consistent with Bs !
���� for � � �100 GeV and � � �200 GeV is below
the dotted and dashed lines, respectively. For each value of
At, larger values of j�j imply consistency with larger
values of MA and smaller values of tan�. On the other
hand, the regions in the MA � tan� plane that are consis-
tent with the observed values of

 BR�b! s��exp � 3:38�0:3
�0:28 	 10�4 (84)

and the estimated theoretical uncertainty [56]

 jBR�b! s��exp � BR�b! s��SMj< 1:3	 10�4 (85)

are given by the colored bands. For larger values of j�j the
bands move to smaller values of MA or smaller values of
tan�. Actually, the approximate cancellation of the
charged Higgs and chargino stop contributions implies a
correlation between 1=M2

A and At� tan�. We have also
plotted the projection of the CDF limit for nonstandard
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FIG. 9 (color online). The dashed (dotted) line is the BR�Bs ! ����� experimental bound in the MA � tan� plane for � �
�200��100� GeV and the yellow (light gray) and blue (dark gray) bands are the b! s� allowed regions for � � �200 GeV and
�100 GeV, respectively, in the uniform squark limit with MSUSY � 1 TeV, jM3j � 0:8 TeV, and 2M1 � M2 � 110 GeV. The red (
gray) line is the projected CDF limit on H ! �� for 1 fb�1 luminosity. Larger luminosities would probe larger MA and smaller tan�.
Also changing � from �200 GeV to �100 GeV does not affect the CDF limit significantly. Figures (a), (c) and (e) have different
values of Xt � At ��= tan� for arg�M3� � 0 while (b), (d) and (f) have a arg�M3� � �.

CONSTRAINTS ON B AND HIGGS PHYSICS IN . . . PHYSICAL REVIEW D 74, 015009 (2006)

015009-13



MSSM Higgs boson inclusive searches in the A, H ! �� channel for a total integrated luminosity of 1 fb�1. In order to
obtain this limit we have used the approximate relation given in Ref. [57]

 
�gg; b �b! A� 	BR�A! �����  
�gg; b �b! A�SM
tan2�

�1� �3 tan��2 � 9
; (86)

along with the Tevatron’s reach for scenario of maximal
mixing with ��200 GeV and a luminosity of 1 fb�1

shown in Ref. [58].
The Tevatron collider is only sensitive to values of MA

smaller than about 300 GeV and values of tan� larger than
about 40. For maximal mixing, Fig. 9(a) shows that the
constraints coming from flavor physics are sufficiently
strong so as to restrict the parameter space consistent
with the search for nonstandard Higgs bosons at the
Tevatron collider. On the other hand, for values of At ’
1 TeV, Fig. 9(c) shows that one can obtain borderline
consistency with the constraints coming from the flavor
sector, but only for the smaller values of � and MA ’
200 GeV. Finally, for values of At � 500 GeV or smaller,
Fig. 9(e) shows that the bounds coming from BR�b! s��
are sufficiently strong as to strongly restrict the parameter
space consistent with nonstandard Higgs boson searches at
the Tevatron collider.

The situation is ameliorated for positive values of �M3,
keeping negative values of �At. In Figs. 9(b), 9(d), and
9(f) we have changed the sign of the gluino mass (the same
results would be obtained by keeping the gluino mass fixed
but changing the sign of� and At). Positive values of�M3

diminish the �0 contributions and hence make the bound
coming from BR�Bs ! ����� slightly less severe. The
bound coming from BR�b! s�� is also improved, with
the colored bands being slightly lower. Thus for Xt &

1 TeV the region of MA  200 GeV, small � and tan�
50, that is not excluded by flavor physics, will be probed by
the Tevatron Higgs searches in the near future.

Finally, we consider the minimal mixing scenario, Xt ’
0. In this case, the constraints coming from the nonobser-
vation of Bs ! ���� become very weak, even for large
values of j�j. As we will explain below, this opens up an
interesting possibility: The dominant charged Higgs con-
tribution to the b! s� amplitude at large tan� is propor-
tional to the charged Higgs coupling to top and bottom
quarks given in Eq. (44). Setting, for simplicity, Ab � 0
makes the �0Y � 0 while

 �30
0 �

2s
3�

�M3�cos2	~tC0�m2
~sL
; m2

~t1
;M2

3�

� sin2	~tC0�m
2
~sL
; m2

~t2
;M2

3��: (87)

Therefore, in this case, the charged Higgs contribution to
the BR�b! s�� becomes proportional to [51,52]

 AH� /
1� 2s

3� �M3 tan��cos2	~tC0�m
2
~sL
; m2

~t1
;M2

3� � sin2	~tC0�m
2
~sL
; m2

~t2
;M2

3��

1� �3 tan�
; (88)

where 	~t is the stop mixing angle. From Eq. (88) we can
clearly see that for large positive values of M3� and tan�,
the charged Higgs amplitude can be strongly reduced.
Furthermore when Xt ’ 0 the chargino stop contribution
to b! s� is also small. Since, for these parameters, the
beyond the standard model contributions to the BR�b!
s�� are small, the experimental limit in Eq. (84) puts only a
weak constraint on the allowed value of MA. Moreover, as
stressed above, for this parameter region Bs ! ���� also
provides no constraint because Xt  0 implies small values
of �Y .

Additionally, for the values of the parameters for which
a cancellation of the charged Higgs contribution to
BR�b! s�� occurs, the usual bound on tan� that comes
from requiring that yb be perturbative up to the GUT scale
may be relaxed: The bottom Yukawa has the form

 yb ’

���
2
p
mb tan�

v�1� �3 tan��
(89)

and as �3 tan� is real and positive, and of order one for the
cancellation to occur, the denominator suppresses the

Yukawa for large values of tan�. This leads to an enhance-
ment of the upper bound on tan� coming from perturbative
consistency in the bottom quark sector.

In Fig. 10 we illustrate such a scenario for different
values of j�j. Because both the Bs ! ���� and b!
s� constraints allow essentially any value of MA *

100 GeV a large region of the MA � tan� can be probed
by the heavy MSSM Higgs searches at the Tevatron.
Interestingly enough, the lightest Higgs boson mass is
also close to the experimental bound mh ’ 115 GeV in
this region of parameters, and therefore it could be at the
reach of the Tevatron collider searches.

In conclusion, for minimal flavor violating schemes, the
discovery of a nonstandard Higgs signature at the Tevatron
collider would point to a definite region of parameter
space, with values of Xt of order of the squark masses or
smaller. Larger values are strongly restricted by the present
Tevatron, CLEO and B-factory experimental constraints. It
is important to remark that, as the luminosity of the
Tevatron increases, the probability of measuring Bs !
���� increases, and so does the one of measuring a
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nonstandard Higgs boson signal. However, as it becomes
clear from the above discussion, an improvement of the
bound on Bs ! ���� would put strong restrictions on the
possibility of measuring a nonstandard Higgs boson sig-
nature for moderate or large values of Xt. Conversely, if a
Higgs boson signature were observed, with absence of
observation of Bs ! ����, it would imply either small
values of Xt, or a strong departure from minimal flavor
violating scenarios.

It is interesting to analyze the constraints that the non-
observation of Bs ! ���� at the LHC, for a total inte-

grated luminosity of order of 10 fb�1, would put on the
MSSM parameter space. The projected Atlas bound on
BR�Bs ! ����� in this case would be of order 5:5	
10�9 [59], and therefore would imply strong constraints on
theMA � tan� parameter space (The final Tevatron bound,
in case of nonobservation of Bs ! ����, assuming a
total integrated luminosity of order 8 fb�1, will be close
to 2	 10�8 [60] and therefore it will set similarly strong
bounds on the parameter space). In order to study the
possible implications for searches of nonstandard Higgs
bosons at the LHC, we have considered the projected reach
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FIG. 10 (color online). (a)–(c) corresponds to � � 500–1500 GeV with the blue (dark gray) band showing b! s� allowed regions
for these values of � in the uniform squark mass limit with a common value of the squark masses MSUSY � 1 TeV, M3 � 0:8 TeV,
2M1 � M2 � 110 GeV. The red (gray) line is the projected CDF limit on H ! �� for 1 fb�1 luminosity. The dashed part of the
projected Tevatron reach is an extrapolation of the curve. (d) shows the effect of including the squark loop correction to PH�RL vertex,
proportional to �30

0 , on b! s� rate for � � 1 TeV. The dashed line corresponds to the case when corrections are not included while
the solid line corresponds to the case when they are included.
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FIG. 11 (color online). Comparison of the projected reach for nonstandard Higgs bosons at the LHC in the inclusive pp! �� X,
�! ���� mode [red (gray) line] with the limits that would be obtained in case of nonobservation of the decay mode Bs ! ���� for
an integrated luminosity of 10 fb�1 for � � �100 GeV (dotted line) and � � �300 GeV (dashed line). Blue (dark gray) and yellow
(light gray) areas correspond to the bounds coming from BR�b! s�� for � � �100 GeV and � � �300 GeV, respectively. The
upper edge of the � � �300 GeV area is denoted by the dot-dashed line. We show these results for a common value of the squark
masses MSUSY � 1 TeV and (a) Xt � 2:4 TeV, (b) Xt � 1 TeV, and positive (negative) values of �M3 (�At), and jM3j ’ 0:8 TeV.
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of the CMS searches in the inclusive pp! �� X, �!
���� mode, at a luminosity of 30 fb�1 [61].

From Fig. 11 we can see that even for the most restrictive
case of maximal mixing and negative values of �M3, the
bound coming from the nonobservation of Bs ! ����

would be consistent with the observation of a nonstandard
Higgs boson for small values of j�j ’ 100 GeV and some-
what large values of 350 & MA & 500 GeV. These bounds
are strongly relaxed for smaller values of Xt. For instance,
for Xt & 1 TeV, observation of nonstandard Higgs bosons
would be still allowed for any value ofMA, provided j�j &

300 GeV.

V. NONMINIMAL FLAVOR VIOLATION

A. Gluino contributions to �Ms

The results in the case of nonminimal flavor violation
discussed in section II A 2 are quite similar to the case of
minimal flavor violation. As in the case of MFV for large
tan�, the dominant contribution to �Ms comes from the
DP diagrams. However, in the nonminimal flavor violation
scenario introduced here, the effects of gluino boxes can
also be important and compete with the double penguin
contributions. The appearance of the gluino-box contribu-
tions is a direct consequence of the quark-squark-gluino
vertices not being diagonal in the flavor basis. In the case of
uniform squarks masses these contributions disappear due
to the CKM matrix being unitary.

The double penguin contributions to BR�Bs ! �����
in the nonminimal flavor scenario may be significantly
larger than in the case of MVF. For instance, assuming
that the third generation left-handed and right-handed
down squark masses are light implies that the vertices in
Eq. (25) are proportional to

 XJIRL / V
3J�
eff V

3I
eff

��
1�

1

�2

�
�3

0 � �Y

�
(90)

where � � m~q1;2
=m~q3

. Therefore when the squark mass
splitting is large these vertices can give large contributions
to �Ms and BR�Bs ! �����. However, the linear cor-
relation between �Ms and BR�Bs ! ����� is not
spoiled by the splitting of the squark masses as there is
no flavor dependence in the factor multiplying mdJV

3J�
eff V

3I
eff

in Eq. (25). Therefore the BR�Bs ! ����� bound is still
a severe constraint on large double penguin contributions
to �Ms like in the MFV scenario.

An interesting case is one in which the gluino box
diagrams dominate over the double penguin contributions
to �Ms for moderate values of � 2 or 3. Similar to the
light-stop scenario for MFV there are situations in which
the gluino box diagram contributions are sizeable and the
other contributions are suppressed. The double penguin
contributions are suppressed for low values of tan�. On
the other hand, large values of� andM2 suppress the stop-
chargino box diagrams. Since the gluino box diagram

effects are larger for small values of the left-handed squark
and gluino masses, we shall investigate the case in which
the third generation left-squark soft supersymmetry break-
ing parameters are about 100 GeV. To avoid the Tevatron
bound on sbottoms we also assume that the lightest neu-
tralino is within 20 GeV of the sbottom mass [62]. We can
achieve this mass difference by choosing an appropriate
value of M1. For larger values of the soft SUSY breaking
sbottom mass parameter, of about 200 GeV the gluino
box contribution becomes negligible.

Light left-handed squarks tend to lead to large values of
the T-parameter and hence are constrained by precision
electroweak data. These large contributions to the
T-parameter are induced by the large difference between
the left-handed sbottom and stop masses and are propor-
tional to the top quark mass. However, for some range of
values of the right-handed stop mass parameter, these large
contributions may be minimized. Indeed, for large values
of the right-handed stop mass parameter M ~UR

and Xt ’
M ~UR

, the lightest stop mass becomes mainly left-handed
and its mass is given by

 m2
~t1
’ M2

~UL
�m2

t

�
1�

X2
t

M2
~UR

�
�Dt

L (91)

where Dt
L is the small D-term contribution to the left-

handed stop mass. Observe that for Xt ’ M ~UR
, the top-

quark mass contribution is strongly suppressed and hence
the contribution to the T-parameter becomes small [63]. In
our analysis we have chosen the stop mass parameters so
that the relation Xt � M ~UR

is fulfilled.
In Fig. 13 we see that for gluino masses below 200 GeV,

the gluino-sbottom box contribution yields a value of �Ms
that is greater than the 1
 bound coming from the SM.
Similarly, in Fig. 14 we that there are large negative con-
tributions to �K from the gluino box-diagrams for M3 &

200 GeV. The total value �Ms drops below that of the SM,
for M3 * 200 GeV, because of the interference between

bL

bL

s L

s L

bL

bL

bL

bL

bL

bL

s L

s L

s L

s L s L

s L

(a) (b)

(d)(c)

FIG. 12. Gluino box diagrams that make contributions to �Ms
for the Nonminimal flavor violation. Diagrams (b) and (d) are
possible because of the gluinos are Majorana and the lower
diagrams have a relative sign difference with respect to the upper
ones [65].
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the diagrams in Fig. 12. For the region M3 & 200 GeV,
where �Ms is large, the contributions to �K are also larger
but negative, which seems to predict a total value of �K
much smaller than the experimentally observed one.
Therefore, the gluino box contributions to �Ms, in this
nonminimal flavor violating scenario with flavor changing
effects induced by the CKM matrix elements, are generally
small and are at most as large as those in the light stop
scenario discussed above. In addition this scenario is in
general highly contrived as the experimental constraints
from light gluino and sbottom searches [62] can be avoided
only by going to a small corner of the MSSM parameter
space.

VI. CONCLUSIONS

In this article, we have studied the constraints on the
parameter space of minimal flavor violating SUSY models
coming from the latest constraints on Bs ! ����, �Ms,
�K and BR�b! s��. First, we have shown that the analysis
of the double penguin contributions to observables in the

Kaon sector could not be done with the available formulae
in the literature. We derived a new formula that describes
well the Kaon sector contributions and show that the
present constraints on Bs ! ���� eliminate the possibil-
ity of inducing relevant double penguin corrections in this
sector. Alternative contributions, coming from chargino
and stop loop corrections can produce large contributions
to �K, which, considering the present theoretical uncertain-
ties, are consistent with the bounds coming from other
flavor observables.

We have also verified that the double penguin contribu-
tions to �Ms interfere destructively with the SM contribu-
tion and are strongly constrained by the nonobservation of
Bs ! ���� at the Tevatron collider. Analyzing the de-
pendence of �Ms on the supersymmetric loop corrections,
we obtained upper bounds on this quantity for any given
value of Bs ! ����, for natural values of the supersym-
metric mass parameters. We have also shown that for
MA < 1 TeV, under the current theoretical and experimen-
tal uncertainties, this bound is stronger than the bound on
the new physics contributions that is obtained from the
comparison of the SM predictions and the experimentally
measured values. Finally, if the theoretical errors on �Ms
were reduced and the SM central value was to remain the
same then negative corrections to �Ms, like that of the
double penguin contribution, would be necessary. However
such double penguin corrections to �Ms of about a few
ps�1’s can be obtained only if BR�Bs ! ����� * 3	
10�8 for MA 
 1 TeV, which is within the future sensi-
tivity of the Tevatron collider.

On the other hand, relevant, positive contributions to
�Ms may be obtained for light stops and charginos. The
contributions may be as large as 25% of the SM values,
almost independently of the value of tan�. Contrary to the
double penguin contribution, the chargino-stop contribu-
tions are positive and they are more strongly constrained
than the negative double penguin ones. Small values of the
Higgsino mass, �< 200 GeV tend to be disfavored for
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FIG. 14. Variation of the gluino contributions to �K with the
gluino mass M3 for the same input parameters as in Fig. 13.

FIG. 13. Variation of SUSY contributions to �Ms with input parameters MA � 250 GeV, MSUSY � 1000 GeV, M1 � 110 GeV
M2 � 1000 GeV, � � 1100 GeV, M� ~UL; ~DL�12

� M ~UR; ~DR
� 1000 GeV, M� ~UL; ~DL�3

� 100 GeV, At � 1110 GeV, tan� � 10 and all
relevant SUSY phases are zero. (a) shows the variation of �Ms over small values of gluino mass, while (b) shows that in limit of large
gluino mass we recover the SM value.
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mass parameters consistent with the scenario of electro-
weak baryogenesis. We have also analyzed a scenario in
which there are flavor violating effects proportional to
CKM matrix elements in the left-handed down squark-
gluino vertices at tree-level. Although the box-diagrams
may lead to significant contributions to �Ms for suffi-
ciently small gluino and down squark masses, this contri-
butions are constrained to be small once the bounds on �K
are taken into account.

We have also analyzed the complementarity of these
FCNC constraints with direct Tevatron searches for heavy
MSSM Higgs bosons. We have analyzed different scenar-
ios and showed that BR�b! s�� and BR�Bs ! �����
puts strong constraints on theMA � tan� plane. This study
suggests that within minimal flavor violating scenarios, the
observation of nonstandard MSSM Higgs bosons at the
Tevatron collider would imply either moderate values of
jXt=MSUSYj & 1 and small values of j�j, or very small
values of Xt and large values of j�j. Interestingly enough,
for values Xt & MSUSY, the lightest CP-even Higgs boson
mass is smaller than 120 GeV and therefore possibly at the
reach of Tevatron high luminosity searches.

Finally, we have analyzed the implications of nonobser-
vation of Bs ! ���� at the LHC, for a total integrated
luminosity of order of 10 fb�1, on searches for nonstan-
dard MSSM Higgs bosons at this collider. Even for the
most restrictive case of maximal mixing and negative
values of �M3, this situation would be consistent with
the observation of a nonstandard Higgs boson for small
values of j�j ’ 100 GeV and somewhat large values of
350 & MA & 500 GeV. For Xt & 1 TeV, instead, obser-
vation would be still allowed for any value ofMA, provided
j�j & 300 GeV.
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APPENDIX

1. A corrected perturbative approach for calculating
FCNC

We would like to develop a perturbative approach to
calculating flavor changing vertices which in the limit of
uniform �̂0 should reproduce the exact result in Eq. (27).

a. Basic setup and notation

As a starting point, we assume the form of the mass
matrix

 �Md�
JI � mdJ ��1� �J tan���JI � �Yy

2
t tan��JI0 �: (A1)

As the off-diagonal elements are suppressed by CKM
factors with respect to the diagonal elements we expand
in terms of the CKM factors. Therefore first order terms are
proportional to V3J

0 for J � 3 and second terms are pro-
portional to V�32

0 V31
0 . Strictly speaking we should probably

expand in the Wolfenstein parameter � and not in the CKM
elements, however as all we want is the leading behavior, it
is sufficient to expand in terms of the CKM elements. So
Md has both first and second order terms present and can
be expanded to be

 M d � �Md�0 � �Md � �2Md: (A2)

where � symbolizes terms linear in V3J
0 for J � 3 and �2

symbolizes terms proportional to V�3J0 V3I
0 for J, I � 3, so

that

 �Md�
JI
0 � mdJ �1� �J tan�� (A3)

 ��Md�
JI �

8<
:
mdJ�Yy

2
t tan�V3J�

0 J � 3 � I
mb�Yy2

t tan�V3I
0 J � 3 � I

0 otherwise
(A4)

 ��2Md�
JI �

�
mdJ�Yy

2
t tan�V3J�

0 V3I
0 �J; I� � �1;2�; �2;1�

0 otherwise
:

(A5)

Now as we have second order terms explicitly in the
mass matrix we need to expand the diagonalization matri-
ces to second order. Additionally they have to be unitary to
second order and the mass eigenvalues need to be real,
which leads to the form

 �DL�
JI � �1� �DL � �2DL �

1
2�DL�DL�

JI (A6)

 �DyL�
JI � �1� �DL � �

2DL �
1
2�DL�DL�

JI (A7)

 �DR�
JI � �1� �DR � �2DR �

1
2�DR�DR�

JIei	I (A8)

 �DyR�
JI � �1� �DR � �2DR �

1
2�DR�DR�

JIe�i	J :

(A9)

where �DyL;R � ��DL;R and �2DyL;R � ��
2DL;R. Now

the requirement DL;R diagonalize the mass matrix Md for
diagonal elements gives us the condition

 �mdJ � mdJ j1� �J tan�j (A10)

 	J � arg�1� �J tan�� (A11)
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where we have only kept the leading order behavior (i.e. �2

terms have been neglected).
All off-diagonal terms automatically vanish at the zeroth

order and the first order contributions are the same as in
Ref. [19]

 e�i	J ����DR��Md�0 � �Md � �Md�0��DL��
JI � 0;

(A12)

which give us the results

 ��DL�
JI � �

�MyJJ
d �0��Md�

JI � ��Myd �
JI�Md

II�0
j�Md

JJ�0j
2 � j�Md

II�0j
2

(A13)

 ��DR�
JI � �

�MJJ
d �0��My

d �
JI � ��Md�

JI�MyII
d �0

j�Md
JJ�0j

2 � j�Md
II�0j

2 :

(A14)

As �Md � 0 for �J; I� � �1; 2�, (2,1) these first order
corrections are zero for these elements. To find the leading
order contributions to DL;R for these components we need
to go to quadratic order in the expansion parameter.
Therefore the condition on the leading contributions to
DL;R for �J; I� � �1; 2�, (2,1) are

 e�i	J ����2DR��Md�0 ��� �Md�0��
2DL��

JI � 0

(A15)

where
 

�JI � ��DR�
J3���Md�

3I � ��DL�
3I�Md�

33
0 �

� 1
2��DR�

J3��DR�
3I � ��2Md�

JI

� ��Md�
J3��DL�

3I � 1
2��DL�

J3��DL�
3I�Md�

33
0

(A16)

 

� 1
2��DR�

J3��DR�
3I � ��2Md�

JI � ��Md�
J3��DL�

3I

� 1
2��DL�

J3��DL�
3I�Md�

33
0 : (A17)

To arrive at Eq. (A17) we used Eq. (A12) and neglected
terms of order O�mdI=mb�. Using Eq. (A15) leads to a
relation similar to the one in Eq. (A13) and (A14), except
that �Md ! �

 ��2DL�
JI � �

�MyJJ
d �0���

JI � ��y�JI�Md
II�0

j�Md
JJ�0j

2 � j�Md
II�0j

2 (A18)

 ��2DR�
JI � �

�Md
JJ�0��y�JI ��JI�MyII

d �0
j�Md

JJ�0j
2 � j�Md

II�0j
2 : (A19)

Substituting these equations into Eqs. (A13) and (A14) and
neglecting all terms suppressed by the mass hierarchy we
find

 ��DL�
JI �

8>><
>>:
�

�Yy2
t tan�

1��J tan�V
3I
0 J � 3 � I

��Yy
2
t tan�

1���I tan�V
3J�
0 J � 3 � I

0 otherwise

(A20)

and

 ��DR�
JI �

8>><
>>:
�

�mdI
�mb
�
�Yy2

t tan�
1��3 tan��

��Yy
2
t tan�

1���I tan��e
i�	3�	I�V3I

0 J � 3 � I
�mdJ
�mb
�
�Yy2

t tan�
1��J tan��

��Yy
2
t tan�

1���3 tan��e
i�	J�	3�V3J�

0 J � 3 � I
0 otherwise

: (A21)

Now to calculate the leading order corrections to the �J; I� � �2; 1�, (1, 2) elements we substitute the independent and
linear order terms into Eq. (A18) and (A19) to find

 ��2DL�
21 � V32�

0 V31
0

�
�

�Yy
2
t tan�

1� �2 tan�
�

�2
Yy

4
t tan2�

�1� �2 tan���1� �3 tan��
�
j�Y j

2y4
t tan2�

2j1� �3 tan�j2

�
(A22)

 

��2DR�
21 � V32�

0 V31
0

�md

�ms
ei�	2�	1�

�
�

�
�Yy

2
t tan�

1� �2 tan�
�

��Yy
2
t tan�

1� ��1 tan�

�
�
j�Y j

2y4
t tan2�

j1� �3 tan�j2
�

���Y�
2y4
t tan2�

�1� ��1 tan���1� ��3 tan��

�
�2
Yy

4
t tan2�

�1� �2 tan���1� �3 tan��

�
: (A23)

Using Eqs. (A20)–(A23), we find the same corrections to the effective CKM matrix to leading order as in Refs. [15–17,19]
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 VJI0 �

8>>><
>>>:
V3I

eff
1��3 tan�
1��3

0 tan�
J � 3 � I

VJ3
eff

1���3 tan�
1��3�

0 tan�
J � 3 � I

VJIeff otherwise.

(A24)

b. Flavor changing effective couplings of the neutral
Higgs bosons

Using the relations derived in the previous section, it is
relatively straightforward to calculate the coupling of the
neutral Higgs bosons to the quarks. The effective
Lagrangian in the initial basis has the form

 L eff � �� �d
0
J�RFdS

L �d
0
I �LS

0 � � �d0
J�LFdS

R �d
0
I �RS

0 (A25)

where S0 can be any of the three neutral scalars which has
mixing matrix elements xSd for the �0�

d Higgs and xSu for the
�0�
u Higgs. So if OIJ diagonalizes the neutral Higgs mass

matrix, we have

 xSd � O1S � i sin�O3S xSu � O2S � i cos�O3S:

(A26)

Now if we rotate quarks into the physical basis the
Lagrangian has the form
 

Leff � �� �dJ�R�D
y
RFdS

L DL��dI�LS0 � � �dJ�L�D
y
RFdS

L DR�

	 �d0
I �RS

0: (A27)

Therefore, assuming a mass matrix of the form given in
Eq. (A1), we obtain,

 �Fds
L �

JI �
mdJ

vd
��xSd � �Jx

S
u��

JI � �Yy
2
t x
s
u�

JI
0 �: (A28)

which has a dependence up to second order on the CKM

elements. Therefore, we obtain the following expansion in
terms of CKM elements

 F d
LS � �FdS

L �0 � �FdS
L � �

2FdS
L (A29)

where

 �FdS
L �

JI
0 �

�mdJe
i	J

vd�1� �J tan��
�xSd � �Jx

S
u��JI (A30)

 ��FdS
L �

JI �

8>><
>>:

�mdJ
ei	J �Yy2

t x
S
u

vd�1��J tan�� V
3J�
0 J � 3 � I

�md3
ei	3�Yy2

t x
S
u

vd�1��3 tan��V
3I
0 J � 3 � I

0 otherwise

(A31)

 ��2FdS
L �

JI �

� �mdJ
ei	J �Yy2

t x
S
u

vd�1��J tan�� V
3J�
0 V3I�

0 �J; I� � �1; 2�; �2; 1�
0 otherwise.

(A32)

Therefore the leading order contribution to the diagonal
terms of ddS0 coupling is just Eq. (A30). Again the zeroth
term makes no contribution to the off-diagonal elements of
the ddS couplings. Hence, at linear order we have for J �

I
 

��DyRFdS
L DL�

JI � e�i	J ����DR�
JI�FdS

L �
II
0 � ��FdS

L �
JI

� �FdS
L �

JJ
0 ��DL�

JI� (A33)

which also disappears for �J; I� � �1; 2�, (2, 1). So the only
contributions that are none zero at this order are when
either J � 3 or I � 3. Using Eq. (A20), (A21), (A24),
and (A31) and neglecting terms suppressed by the mass
hierarchy we find that

 �XSRL�
JI � ��DyRFdS

L DL�
JI �

8>><
>>:

�mb�Yy2
t

vd�1��3 tan���1��3
0 tan��

V3I
eff�x

S
u � x

S
d tan�� J � 3 � I

�mdJ
y2
t �

J3

vd�1��3 tan���1��J tan��V
3J�
eff �x

S
u � x

S
d tan�� J � 3 � I

0 otherwise

(A34)

where

 �J3 �
�Y�1� �

�
3 tan�� � ��Y��3 � �J� tan�

1� �3�
0 tan�

: (A35)

Finally to find the leading corrections to qqH coupling for �J; I� � �2; 1�, (1, 2) we need to go to quadratic order in which
case we have

 �XSRL�
21 � �2�DyRFdS

L DL�
21;�

�msy
2
t�

21�xSu � x
S
d tan��

vd�1� �2 tan���1� �3 tan��
V32�

eff V
31
eff (A36)

 �XSRL�
12 � �2�DyRFdS

L DL�
12 �

�mdy
2
t�

12�xSu � x
S
d tan��

vd�1� �1 tan���1� �3 tan��
V31�

eff V
32
eff ; (A37)

where
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�21 �
�Y

�1� �2 tan��j1� �3
0 tan�j2

��1� �3
0 tan��j1� �3 tan�j2 � �Yy

2
t tan��1� ��3 tan���1� �2 tan��

� ��Yy
2
t tan��1� �2 tan��2�; (A38)

 

�12 �
�Y

�1� �2 tan��j1� �3
0 tan�j2

�
�1� �3

0 tan��j1� �3 tan�j2 � �Yy
2
t tan��1� ��3 tan���1� �2 tan��

� ��Yy
2
t tan��1� �2 tan���1� �1 tan�� �

�1 � �2

�Y

�
��Y tan�

1� ��2 tan�
�

���Y�
2tan2�y2

t

�1� ��2 tan���1� ��3 tan��

�
j�Yj2tan2�y2

t

j1� �3 tan�j2
�

��
: (A39)

In the limit that �J0’s are uniform then of leading order
contributions will collapse to Eq. (27) as each of �IJ

elements go to �Y . As the effective Lagrangian is real,
the LR couplings are related to RL, so that

 XSLR � �X
S
RL�
y: (A40)

2. Calculation of loop factors

The assumption that the squark mass matrices are block
diagonal in the tree-level CKM basis gives us

 M 2
D �

�M2
Q�J�

JI 1��
2
p ydJ �̂

�
Jvu�

JI

1��
2
p ydJ �̂Jvu�

JI �M2
D�J�

JI

 !
(A41)

 M 2
U �

�M2
Q�J�

JI�m2
t �

J3�I3 � 1��
2
p yuJ ~��Jvu�

JI

� 1��
2
p yuJ ~�Jvu�

JI �M2
U�J�

JI�m2
t �

J3�I3

 !

(A42)

where ~�J �
�

tan�� AuJ and �̂J � ��
AdJ
tan� . Therefore the

diagonalization matrices have the simple form

 Z�U;D� �
�IJ cos�U;D�I �IJe�i�

�U;D�
I sin�U;D�I

��IJei�
�U;D�
I sin�U;D�I �IJ cos�U;D�I

 !

(A43)

where �D
I (�U

I ) is the phase of �̂ ( ~�) and

 cot2DJ � �
�m2

Q�J � �m
2
D�J���

2
p
ydJ j�̂Jjvu

(A44)

 cot2UJ �
�m2

Q�J � �m
2
U�J���

2
p
yuJ j ~�Jjvu

: (A45)

Following the notation of Ref. [64] Z� and Z� diagonalize
the chargino mass matrix and ZN and ZTN diagonalize the
neutralino mass matrix. Additionally, if there is a splitting
in the mass spectrum so that the squarks of the first two
generation have uniform masses (i.e. mD1

� mD2
�

mD4
� mD5

� mU1
� mU2

� mU4
� mU5

� MSUSY) we
find
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(A46)
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(A47)

where Ci are the Passarino-Veltman functions, mi are the physical squark masses, Mi are the squark soft mass parameters
and

 PlJD � Z3l
N �g1Z

1l
N � g2Z

2l
N � (A48)
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Similarly for the antiholomorphic corrections to the up Yukawas have the form
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where

 PlJU � �Z
4l
N �g1Z1l

N � g2Z2l
N � (A52)
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The infinities present in C2 in �Y’s clearly cancel, however the infinities in �0’s need to be absorbed by counter terms in the
effective Lagrangian. So that the C2 contributions to the ��’s in the above formulas are purely the finite pieces.
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