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The quadratic divergences of the Higgs mass may be cancelled either accidentally or by the exchange of
some new particles. Alternatively its impact on naturalness may be weakened by raising the Higgs mass,
which requires changing the standard model below its natural cutoff. We show in detail how this can be
achieved, while preserving perturbativity and consistency with the electroweak precision tests, by
extending the standard model to include a second Higgs doublet that has neither a vev nor couplings
to quarks and leptons. This inert doublet model yields a perturbative and completely natural description of
electroweak physics at all energies up to 1.5 TeV. The discrete symmetry that yields the inert doublet is
unbroken, so that dark matter may be composed of neutral inert Higgs bosons, which may have escaped
detection at LEP2. Predictions are given for multilepton events with missing transverse energy at the
Large Hadron Collider, and for the direct detection of dark matter.
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I. INTRODUCTION

Unification, likely supersymmetric, as developed in the
seventies and eighties, is the most appealing and coherent
picture that we have for physics beyond the standard model
(SM). Clear experimental evidence for it would represent a
major breakthrough in physics and could orient the search
for further informative signals. Yet the current situation is
ambiguous. From the experimental viewpoint, on the posi-
tive side one has the unification of gauge couplings and,
with less numerical significance, the size of the neutrino
masses. On the negative side, however, one must consider
the failure to find any supersymmetric particle, any non-
SM effect in flavor physics, any evidence of proton decay,
or, finally, a light Higgs boson. While there are many
explanations for the absence of these signals so far, and
searches for these phenomena should and will continue, we
find it justified to consider possible alternative roads for
physics beyond the SM. Especially, although not only, in
these respects, the large hadron collider (LHC) should play
a crucial role. This is the general background behind this
work.

Our expectations for the LHC are based on two obser-
vations: 1) the Higgs mass gets quadratically divergent
contributions, the dominant one being due to virtual top
quarks, which become comparable to the physical mass for
the cutoff �t & 3:5mh, and need to be cancelled by new
physics to avoid unnatural fine-tuning. 2) ElectroWeak
Precision Tests (EWPT) indicate that the SM Higgs is light,
mh<186 GeV at 95% C.L. [1], with a central value con-
siderably below the lower bound of 114 GeV from direct
searches. From 1) and 2) the standard view emerges, that
the divergence-cancelling physics, whatever it is (super-
symmetry, Little Higgs, . . .) should be accessible at the
LHC.

In this paper we consider the alternative possibility that
the Higgs is heavy, say 500 GeV. In this case, the above
conclusion does not apply, since the naturalness cutoff
from 1) is now raised to �1:5 TeV. Instead of focusing
on the new physics which cancels the top quark divergence
(squarks, vector quarks, . . .), we must consider the modi-
fied electroweak theory below �t, that allows the heavy
Higgs to pass the EWPT. Admittedly, to guess which
physics may render a heavy Higgs compatible with the
EWPT is not easy. Some examples exist in the literature,
starting from the work of Einhorn, Jones, and Veltman [2]
and recently reviewed by Peskin and Wells [3]. We post-
pone a few comments on this until Sec. IV. Here we argue
that the most obvious way to do this, while keeping both
naturalness and perturbativity, may reside in introducing an
inert doublet (ID) scalar, i.e. a second Higgs without a
vacuum expectation value (vev) or couplings to matter.

In the ID model (IDM), the spectrum of the scalars, other
than the true Higgs, of mass mh, consists of a charged
state, of mass mH, and of two neutral states, of massmL (L
for lightest) andmNL (NL for next-to-lightest). The relation
between these masses imposed by the EWPT is fully
analogous to the one that relates the Higgs mass and
the Z mass in the SM. In the entire perturbative regime
of the IDM, we find that the range of the radiative correc-
tion effects has a large overlap with the corrections re-
quired to fit the precision data. We claim therefore that
these data do not prefer the light Higgs of the SM over
the heavy Higgs of the IDM. On the other hand, in the IDM
it is possible to raise the naturalness cutoff to about 1.5 TeV
without fine tunings. Other than consequences
for the LHC mentioned above, this certainly ameliorates
the problem posed by the ‘‘LEP paradox’’ [4], reducing
by one order of magnitude the fine-tuning apparently
needed to fix it. Indeed, this improvement in naturalness
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is a major motivation for raising the Higgs boson mass, and
occurs more readily than in 2 Higgs doublet models with a
light Higgs [5], and more simply than in ‘‘Little Higgs’’
models.1 Furthermore, preliminary results from the
TeVatron indicate a somewhat lighter top quark, strength-
ening the upper bound on the SM Higgs mass, and weak-
ening the improved naturalness of the 2 Higgs doublet
model with a light Higgs.

In most 2 Higgs doublet models a parity symmetry is
introduced to ensure that Higgs exchange does not give too
large flavor changing amplitudes. In the IDM the parity
acts only on the inert doublet, and ensures that the doublet
is inert. Unlike conventional 2 Higgs doublet models, the
parity is not spontaneously broken by doublet vevs, and
hence the lightest inert particle, or LIP, is stable. In much of
the parameter space the LIP contributes only a small
fraction to the dark matter of the universe. But if there is
a mild degree of cancellation in the LIP mass, so that it is in
the range of 70 GeV, all DM can be accounted for by a
neutral inert Higgs boson.

In Sec. II we set the stage by revisiting the SM with a
heavy Higgs, paying special attention to the improved
naturalness, the triviality bound on the Higgs mass, and
to its incompatibility with EWPT constraints. In Sec. III we
present the IDM, discussing in detail all the analogous
constraints. In the same section we give a first description
of the LHC signals of the IDM and we discuss the proper-
ties of the LIP as a dark matter candidate. In Sec. IV we
make a few comments on alternative models to render a
heavy Higgs compatible with the EWPT. Summary and
conclusions are given in Sec. V.

II. STANDARD MODEL WITH A HEAVY HIGGS

A. Improved naturalness

The SM is unnatural as a fundamental theory: the qua-
dratic divergence of the Higgs mass makes the electroweak
scale highly sensitive to the UV cutoff. Presumably, this
quadratic divergence should be cancelled in the theory that
extends the SM to higher energy scales. Two known
mechanisms for accomplishing this are supersymmetry
and realizing the Higgs as a pseudo-Goldstone boson.
Searching for such mechanisms amounts to what we might
call the qualitative use of the naturalness principle.
However, the principle has also its other, quantitative
side. Namely, it can be used to predict the energy scale
by which the divergence-cancelling physics is expected to
appear. Such a prediction follows from comparing the size
of the one-loop quadratic divergence to the physical mass.

The quadratic divergence is given by (v � 174 GeV)

 �m2
h � �t�2

t � �g�2
g � �h�2

h; (1)

where

 �t �
3m2

t

4�2v2 ; �g � �
6m2

W � 3m2
Z

16�2v2 ;

�h � �
3m2

h

16�2v2 ;

(2)

and �i are the cutoffs on the momenta of the virtual top
quarks, gauge bosons, and the Higgs itself. We keep these
cutoffs separate, because generally there is no reason to
expect that the physics cancelling all three divergences will
appear at exactly the same scale. In a more fundamental
theory, the various �i may be correlated, but if we do not
specify the theory which extends the SM and cancels the
quadratic divergences, the relative weight of the various
terms in (1) cannot be determined.2

Knowing (1), we can compute the sensitivity of the
Higgs mass to the scale �i by the formula

 Di�mh� �

��������@ logm2
h

@ log�2
i

��������� j�ij�
2
i

m2
h

: (3)

The meaning of this quantity is that if Di > 1, the theory
needs fine-tuning of 1 part in Di. The no fine-tuning
conditionDi � 1 is equivalent to demanding that quadratic
contributions in (1) (taken separately) do not exceed the
physical mass squared. Using precise values of �i given in
(1), we obtain three no fine-tuning scales (for Di > 1 these
scales should be multiplied by

������
Di
p

):

 �t � 3:5mh �g � 9mh >�t �h � 1:3 TeV: (4)

These equations are the quantitative outcome of the natu-
ralness analysis—they bound the expected scale of the
divergence-cancelling physics. Not surprisingly, the pre-
cise value of this scale crucially depends on the assumed
value of the Higgs mass. The prevalent assumption nowa-
days is that the Higgs is light, withmh close to the 114 GeV
limit from the direct searches, so that the low value of �t
makes us reasonably sure that at least the physics cancel-
ling the virtual top divergence should be seen at the LHC.

But what if the Higgs is heavy, saymh * 400 GeV? The
scale �t is raised above 1.4 TeV (‘‘improved natural-
ness’’), and since �h is also rather large, we can no longer
be certain that the physics cancelling these divergences
will be observable at the LHC. While �i only provide
upper bounds on the scale of the cancellation physics, in
the absence of supersymmetry, given the LEP paradox, it is
likely that these bounds are saturated. What will the LHC
see in this case? This is the question we would like to
address.

1A possible connection between the fine-tuning and the Higgs
mass has also been considered in ‘‘Little Higgs’’ models. See,
e.g., Ref [6].

2Lumping all terms in (1) together with a common value of
�i � �, one arrives at the conclusion that the SM has no 1-loop
fine-tuning problem provided that the quadratic divergences in
(1) cancel, which occurs for mh � 300 GeV (the so-called
Veltman condition [7]). For the reasons mentioned, we do not
accept this argument.
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B. Perturbativity, or how heavy is heavy?

How high up in mh can one go? As the Higgs mass is
increased so the quartic scalar interaction becomes
stronger, and the maximum scale at which perturbation
theory is useful, �P, is decreased. Our aim is to have a
natural theory up to energies of 1.5 TeV, hence we must
require that �P > 1:5 TeV, placing an upper bound on the
Higgs mass. If this requirement is fulfilled, we can reason-
ably assume that the divergence-cancelling physics, which
is expected to appear just around that scale will also be able
to stop the growth of the Higgs quartic coupling and
prevent the Landau pole from appearing. The renormaliza-
tion group (RG) evolution of the Higgs quartic coupling is
reviewed in Appendix A. The results of that discussion can
be summarized in terms of two scales: the one-loop Landau
pole scale �L, and the perturbativity scale �P at which the
quartic coupling grows by 30% from its value in the IR.
The values of these two scales for mh � 400, 500,
600 GeV are given in Table I. We see that in all cases �P
is above 1.5 TeV, while �L is 5–30 times higher. The
conclusion is that all masses in the 400–600 GeV range
are suitable for the implementation of the improved natu-
ralness idea.

C. Electroweak precision tests

At this point the reader should ask: but what about the
EWPT, which predict that the Higgs is light? The answer of
course is that this ‘‘prediction‘‘ is true only in the absence
of new physics, which may contribute to the EWPT ob-
servables, but has nothing to do with cancelling the qua-
dratic divergences of the Higgs mass. Indeed, the Higgs
mass influences the EWPT via the logarithmic contribu-
tions to T and S:

 T � �
3

8�c2 ln
mh

mZ
(5)

 S �
1

6�
ln
mh

mZ
: (6)

For large mh these contributions violate experimental con-
straints (see Fig. 1). Assuming that no new physics influ-
ences the EWPT, one obtains mh � 91�45

�32 GeV, with the
upper bound mh < 186 GeV at 95% C.L. [1]. In particular
mh � 400 GeV is excluded at 99.9% C.L.

However, looking at Fig. 1 one immediately sees that the
heavy Higgs can be consistent with the EWPT if there is
new physics producing a compensating positive �T. If at

the same time the �S contribution of this new physics is
not too large, a good fit could be obtained. For mh �
400–600 GeV (black band in Fig. 1) the needed compen-
sating �T is

 �T � 0:25	 0:1; (7)

which would bring us near the central point of the 68% CL
ellipse (the uncertainty in this number is mostly due to the
experimental error on T). Rather than making a careful fit,
in this paper we will be content with this rough estimate.

Thus the answer to the question of what the LHC will
see is: If the Higgs is heavy, there must be new physics
producing a positive �T, and it is this new physics that the
LHC will study.

III. THE INERT DOUBLET MODEL

In this section we will present what seems to us the most
attractive realization of the improved naturalness idea.
Some alternatives are described in Sec. IV.

A. The model

We consider the most general two-Higgs doublet model
that possesses the parity

 H2 ! �H2; (8)

with all other fields invariant. This parity imposes natural
flavor conservation in the Higgs sector [8],3 implying that
only H1 couples to matter. The scalar potential is

TABLE I. Heavy Higgs perturbativity scale �P and Landau
pole �L.

mh, GeV �P, TeV �L, TeV

400 2.4 80
500 1.8 16
600 1.6 7.5

-0.4

-0.2

0

0.2

0.4

-0.4 -0.2 0 0.2 0.4

T

68 % CL

U=0

mt

mh

mt= 172.7 ± 2.9 GeV
mh= 114...1000 GeV

FIG. 1 (color online). (Adapted from [26].) Dependence of the
S, T parameters on the Higgs mass. The thick black band marks
mh � 400–600 GeV.

3In standard nomenclature this would be called Type I 2HDM,
except that we reverse the usual roles of H1 and H2.
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V � �2
1jH1j

2 ��2
2jH2j

2 � �1jH1j
4 � �2jH2j

4

� �3jH1j
2jH2j

2 � �4jH
y
1H2j

2 �
�5

2

�Hy1H2�

2 � H:c:�:

(9)

We assume that the parameters of this potential yield an
asymmetric phase: H1 acquires a vev but H2 does not.4

This is not the well-studied standard phase of the theory
that has both vevs nonzero, and it cannot be obtained as the
small tan� limit of the standard phase, which is a fine tuned
limit. Rather, the asymmetric phase results in a parameter
region of comparable size to the standard phase, depending
essentially on the sign of �2

2. The doublet H1 is identified
as essentially the SM Higgs doublet—it gets a vev and
gives masses to W, Z and fermions. On the other hand, H2

does not couple to fermions and does not get a vev. We will
call it the inert doublet, although of course it does have
weak interactions and quartic interactions.

The scalar spectrum of the theory is obtained by ex-
panding the potential around the minimum

 H1 � �0; v�; H2 � �0; 0�: (10)

The physical fields appear in the parametrization of the
doublets as follows:

 H1 �
��

v� �h� i��=
���
2
p

� �
; H2 �

H�

�S� iA�=
���
2
p

� �
:

(11)

Here the Goldstones ��, � can be put to zero by choosing
the unitary gauge; they are included for future reference.
The usual Higgs boson is h, which we take to be heavy:

 mh � 400–600 GeV ��1 � m2
h=4v2 � 2�: (12)

In addition, we have three ‘‘inert’’ particles—a charged
scalar H� and two neutrals S, A with masses:

 m2
I � �2

2 � �Iv
2; I � fH; S; Ag �H � �3

�S � �3 � �4 � �5 �A � �3 � �4 � �5:
(13)

We assume that the potential (9) is bounded from below,
which happens if and only if

 �1;2 > 0; �3; �L � �3��4� j�5j>�2��1�2�
1=2:

(14)

Under this assumption, the minimum (10) is stable and
global, as long as all masses squared (13) are positive.

The way to visualize the parameter space of the 7
parameters of the potential (9) is as follows. These 7
parameters can be traded for the four physical scalar
masses, mh, mH, mA, mS, the vev v (or the Z-mass) and
the two quartic couplings, �2 and �3. The EWPT imply a

relation between the 5 parameters with dimension of mass,
analogous to the relation between mh and mZ in the SM.
Since the inert parity, (8), is unbroken, the lightest inert
particle (LIP) will be stable and will contribute to the dark
matter density. It may in fact constitute all of the DM if the
parameters have the right value, although the typical frac-
tion is small. In any case, to avoid conflicting with the
stringent limits on charged relics [10], we will always
assume that the LIP is neutral.5 In the limit of Peccei-
Quinn symmetry, �5 ! 0, the neutral inert scalars S and A
become degenerate. Direct detection of halo dark matter
places a limit on this degeneracy [11], because the mass
difference must be sufficient to kinematically suppress the
scattering of galactic LIPs on nuclei via tree-level Z boson
exchange.

Of the two dimensionless couplings, �2 only affects the
self-interactions between the inert particles. It is difficult to
even conceive how it could be measured. To avoid addi-
tional problems with perturbativity, we assume that it is
quite small,

 �2 & 1: (15)

On the contrary, �3 may affect some significant observ-
ables, like the width of h (see Eq. (49)) and (if parameters
take values to allow LIP DM) the interaction cross section
of the DM with nuclei (see Eq. (37)).

Analogously to the SM case, in the next subsections we
discuss constraints imposed on the IDM parameters by
perturbativity, naturalness, and the EWPT, and we summa-
rize the allowed regions of couplings in Sec. III E. In a
large region of parameter space we will find that the heavy
Higgs has naturalness and perturbativity properties very
similar to the SM heavy Higgs described in Sec. II. The
advantage of the IDM is that the mass splittings within the
inert doublet allow a satisfactory T parameter.

B. Perturbativity

Let us begin with perturbativity. The RG equations
satisfied by the two-Higgs doublet model couplings are
given in Appendix B. To determine the exact high-energy
behavior, one would have to find precise initial conditions
for all couplings, similarly to what we have done for the
SM in Appendix A. Here we will be content with deriving
some sufficient conditions for perturbativity. First let us
look at �1, whose beta-function equation is

 16�2 d�1

d log�
� 24�2

1 � 2�2
3 � 2�3�4 � �

2
4 � �

2
5: (16)

As we discussed in Sec. II B, the SM with a 500 GeV Higgs
stays perturbative up to a reasonably high scale�1:8 TeV.
In order that this conclusion be preserved in our model, we
will impose a requirement that the sum the of extra terms in

4This phase of the unbroken parity was considered recently in
[9] motivated by neutrino physics. We thank E. Ma for bringing
this to our attention.

5This can be avoided only by considering the parity (8) to be
an approximate symmetry.
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the right-hand side of (16) not exceed 50% of the SM term
24�2

1. Thus we get a constraint (see Eq. (12))

 j2�3��3 � �4� � �
2
4 � �

2
5j & 50 �perturbativity�:

(17)

How large can the couplings become consistent with this
inequality? One possibility is that j�4j becomes large,
while �5 stays relatively small. In this case we must have
�4 < 0 for the LIP to be neutral. This implies that �3 must
also become large, �3 * j�4j, to ensure the vacuum stabil-
ity (14) (remember that �2 is assumed to be small.) The
critical region is when �3 � j�4j so that the first term in
(17) vanishes. This way we get the bound

 j�4j & �3 & 7 ��4 < 0; �5 small�: (18)

The other possibility is that, on the contrary, it is �5

which becomes large, while �4 is small. In this case, the
vacuum stability condition (14) implies �3 * j�5j, leading
to a stricter bound

 j�5j & �3 & 4 ��4 small�: (19)

As we will see in Sec. III D below, it is only the first
possibility that will lead to �T > 0, as needed to compen-
sate for the heavy Higgs. However, for the time being we
want to explore all possibilities so that we can understand
the typical range of �T allowed in our model.

Finally, we have checked that, in the region allowed by
the constraints (18) or (19), the evolution of the remaining
couplings does not lead to any additional restrictions.
Essentially this happens because we assume that �2 is
sufficiently small and because �3;4;5 evolve slower than
�1 due to the smaller RG coefficients.6

C. Naturalness

Like the SM, the IDM is a natural effective theory only
up to some cutoff, which is determined by the quadratic
divergences in the dimensional parameters. For the IDM
there are two mass parameters, �2

1;2, and we must study
naturalness for each separately, obtaining conditions that
allow the theory to be natural for energies up to 1.5 TeV.

Since �2
1 is linear in the Higgs mass squared, as in the

SM case it is convenient to study the corrections to m2
h.

Introducing separate cutoffs for loops of virtual H1 and H2

particles, �H1;2
, we find a result similar to (1)

 �m2
h � �t�2

t � �g�2
g � �11�2

H1
� �12�2

H2
; (20)

where

 �11 � �
3�1

4�2 ; �12 � �
2�3 � �4

8�2 ; (21)

and �t;g are as in (2). The first three terms lead to the

bounds of (4), except that it is now �H1
, rather than �h,

that is limited by 1.3 TeV. This last bound cannot be
avoided without changing or cancelling the effect of the
usual Higgs quartic, which the IDM does not do. This is
why we content ourselves with a theory that is natural up to
about 1.5 TeV. The scales �t;g are raised to 1.5 TeVor more
by taking the Higgs mass heavier than 400 GeV. Requiring
that the last term of (20) not exceed the physical Higgs
mass squared gives the additional constraint

 j2�3 � �4j & 9: (22)

The one-loop quadratic divergences to �2
2 are

 ��2
2 � �

1
2��g�2

g � �22�2
H2
� �21�2

H1
�; (23)

where

 �22 � �
3�2

4�2 ; �21 � �
2�3 � �4

8�2 : (24)

Requiring each of these three corrections to be smaller than
the tree-level value, leads to the three naturalness con-
straints

 �2 * �1; 2:5
������
�2

p
;
�����������������������
j2�3 � �4j

q
�120 GeV; (25)

respectively.
We have required that our model is a natural effective

field theory in the sense that the sensitivity of Lagrangian
parameters to variations in the cutoff is small: Di��

2
1;2� &

1. We do not attempt to impose the stronger condition that
all observables have small such sensitivities. It may be that
some observables are small because of cancelling contri-
butions within the effective theory. For example, from (13)
we see that a LIP mass mL � �2 requires a cancellation
between �2

2 and �3;4;5v
2 terms. Another example is the Z

boson mass in the minimal supersymmetric standard model
with a heavy top squark. While these cancellations should
also be avoided, they differ from the cancellations at the
cutoff that are required between tree and loop contributions
to Lagrangian parameters. In particular they become ac-
ceptable if it is possible to measure sufficient quantities to
demonstrate that such cancellations occur in the low en-
ergy theory. Given the expression (13) for the inert scalar
masses, it is natural to expect that some inert scalars could
be somewhat lighter than �2, and some could be heavier.
Since it is reasonable that the terms in (13) for the LIP do
not all have the same sign, it is certainly natural for the LIP
to be lighter than �2. We consider mL to be natural if

 mL *
�2

2
: (26)

D. ElectroWeak precision tests

Finally, let us evaluate the IDM from the EWPT view-
point. The heavy Higgs contributions to T is given in (6)
and is to be compensated by the contribution from the inert
doublet, which is computed in Appendix C to be

6Also, in the first case, �3 grows faster than j�4j in the UV, and
thus the vacuum stability is preserved.
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 �T �
1

32�2�v2 
F�mH;mA� � F�mH;mS� � F�mA;mS��;

(27)

 F�m1; m2� �
m2

1 �m
2
2

2
�

m2
1m

2
2

m2
1 �m

2
2

ln
m2

1

m2
2

: (28)

This contribution comes from the �4;5 terms in the poten-
tial, since these are the terms breaking the custodial sym-
metry. From (13), it is clear that the same terms are
responsible for the mass splitting among the inert scalars.
The function F�m1; m2� is positive, symmetric, vanishes
for m1 � m2 and monotonically increases for m1  m2.
Moreover, to high accuracy, 2. . .5% for 1 � m1=m2 �
2 . . . 3, we have

 F�m1; m2� �
2
3�m1 �m2�

2: (29)

For our purposes it will always be sufficient to use this
approximation, allowing (27) to be simplified

 �T �
1

24�2�v2 �mH �mA��mH �mS�: (30)

Requiring this �T be in the range (7), we find a constraint
on the spectrum

 �mH �mS��mH �mA� � M2; M � 120�20
�30 GeV:

(31)

Since the LIP is neutral, we see that H should be heavier
than both S and A to have �T > 0.

The contribution of the inert doublet to S is also given in
Appendix C, Eq. (C4). It depends on the inert particle
masses only logarithmically, and remains small (j�Sj &

0:04) for the whole range of parameters considered below.
Thus its effect on the EWPT fit can be neglected.

To evaluate the success of the IDM in compensating for
the heavy Higgs, it is important to know the typical range
of �T allowed by naturalness and perturbativity. The rele-
vant constraints on the parameters are (14), (15), (18), (19),
(25), and (26). The resulting �T range is shown as a
function of mL in Fig. 2. For mL * 300 GeV the perturba-
tivity constraints (18) and (19) are more restrictive, while
for smaller mL the naturalness constraints become crucial.
The maximal �T > 0 occurs when �4 is large and nega-
tive, while �5 remains small. The maximal �T < 0 is
achieved in the opposite regime of �4 small, �5 large.
We see that �T is predominantly positive and is of the
typical size needed to compensate for the heavy Higgs in a
large region of the parameter space. We conclude that the
success of our model is not accidental. If it had turned out
that the needed �T was much smaller than the typical
value, then we would have imposed approximate custodial
symmetry on the potential. But we see that little, if any,
suppression from custodial symmetry is needed in most of
the range of mL.7

E. Summary of constraints on the spectrum and
couplings

Preparing for the discussion of signals, let us describe
the region of parameter space that leads to a natural,
perturbative effective theory up to 1.5 TeVand that satisfies
the EWPT constraint (31). It is convenient to use a pa-
rametrization in terms of the masses of the two neutral inert
particles, mL for the lightest and mNL for the next-to-
lightest. We consider the general case when �m � mNL �
mL can be sizeable. The charged scalar is always heavier
than both neutrals, and using (31), the second splitting can
be expressed in terms of �m and M

100 200 300 400 500 600 700 800
mL GeV

0.5

0

0.5

1

1.5

2

T

( )

T

FIG. 2. The maximal and minimal �T allowed by naturalness
and perturbativity as a function of mL. The horizontal gray band
marks the range needed to compensate for the heavy Higgs.
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FIG. 3. The relation between the first and the second spacing in
the inert particle spectrum following from the EWPT constraint
(31).

7If we, say, insist on a stricter upper bound j�4j & 2, then
�Tmax is lowered to 0.6.
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 mH �mNL �

���������������������������
M2 �

��m�2

4

s
�

�m
2
; (32)

and is shown in Fig. 3 for the range M � 120�20
�30 GeV.

The couplings �4;5 can be also expressed via mL, mNL

using (13) and (32), giving

 �4 � �
1

v2

�
M2 � �mL �mNL�

���������������������������
M2 �

��m�2

4

s �
< 0 (33)

 j�5j �
m2

NL �m
2
L

2v2 < j�4j: (34)

The sign of �5 depends on whether it is the scalar S or the
pseudoscalar A which is the heavier.

The coupling �3 (or �L � �3 � �4 � j�5j) is the only
free parameter; it should be chosen in agreement with the
perturbativity (15) and (18), naturalness (22), (25), and
(26), and vacuum stability (14) constraints. These con-
straints can be used to derive a range of allowed values:

 �min
L �mL� & �L & �max

L �mL;�m�: (35)

The (iso)plots of �4;5 �
min
L , �max

L are given in Fig. 4 and 5.
The white region has �min

L > �max
L or j�4j> 7 and is dis-

favored by naturalness and/or perturbativity.
Thus we conclude that the IDM is a fully natural effec-

tive field theory up to 1.5 TeV for a large region of
parameter space where the Higgs is heavy and EWPT are
satisfied. Of the 7 parameters in the potential, �2

1 and �1

can be traded for v and mh, while �2
2 and �3;4;5 can be

traded for mL, mNL, mH, and �L. EWPT constrains mH �
mNL as shown in Fig. 3. The allowed ranges of mL and �m
are shown shaded in Fig. 4, and the allowed range of �L is
shown in Fig. 5. From perturbativity, �2 & 1.

F. Dark matter

We now begin the discussion of signals. As we already
mentioned, the LIP is stable, and thus provides a cold dark

matter candidate.8 Here we will estimate its relic abun-
dance and discuss prospects for direct detection.

1. Relic abundance

Case I mL * mW This case is of significant interest, since
it includes most of the region of parameter space
preferred by naturalness. The dominant annihila-
tion process is into gauge bosons, with s-wave
cross section 	annvrel � 130 pb for mL �mW , de-
creasing to �10 pb for mL � 400 GeV (see
Appendix D 1). A particular feature of our model
is that this cross section does not decrease further
due to the contribution of the longitudinal final
states. Using the standard formalism [12], we find
the relic density �DMh

2 & 0:02 in the whole range
of mL, decreasing to 0:002 for mL �mW . This
number can be trusted as an order-of-magnitude
estimate all the way down to the WW production
threshold. Since this is much lower than the ob-
served �DMh2 � 0:1, we conclude that in this re-
gion of parameter space the LIP provides only a
subdominant component of the dark matter.

Case II mL <mW Let us focus on the region mL �
�60–80� GeV. While some cancellations in (13)
for the LIP mass are required, they are mild and
satisfy (26).

As the temperature of the early universe falls well below
mL, thermal equilibrium is maintained via p-wave sup-
pressed coannihilations of S and A into fermions, and the
relic abundance critically depends on �m. In appendix D 2,
we find the thermally averaged cross section, for �m�
Tf �m=25, to be h	coannvreli � �60� 15� pb, for mL �
�60–80� GeV. This leads to the relic density �DMh2 �
�0:5–2:5� � 10�2, still below the observed value. On the
other hand, for �m * Tf the density of the heavier com-
ponent is thermally suppressed and the coannihilation rate
decreases. A formalism to compute the relic abundance in

FIG. 4. �4;5 in the allowed region as functions of m, �m computed from (33) and (34) with M � 120 GeV.

8A possibility also mentioned in [9].
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such nonstandard situations was developed in [13].
However, the final result can be predicted without making
difficult calculations. Roughly, the resulting relic density
will be a factor ��1=2� exp��m=Tf� larger than in the
unsplit case, where 1=2 takes into account that only the
lighter component now contributes to the final abundancy.
This way we deduce that �mnaive � 8 GeV should be
enough to yield the observed DM density.

The above naive argument can be expected to work at
least for mL & mW � 3Tf=2 � 75 GeV; for higher masses
the annihilation into WW becomes thermally allowed and
suppresses the relic abundance. Using the above-
mentioned formalism of [13], these numbers can be con-
firmed (see Fig. 6). In particular we find �m � �8–9� GeV
for mL � �60–73� GeV, increasing to 12 GeV for mL �
75 GeV, while for mL  76 GeV no splitting gives the
observed DM density.

2. Direct detection

The S and A have a vectorlike interaction with the
Z-boson, which produces a spin-independent elastic cross
section on a nucleus N

 	Z�LN ! LN � �
G2

Fm
2
r

2�

N � �1� 4s2

w�Z�
2; (36)

where N and Z are the numbers of neutrons and protons in
the nucleus, and mr � mLmN =�mL �mN � is the reduced
mass. The resulting per nucleon cross section is 8–9 orders
of magnitude above the existing limits [11]. Thus we have
to assume that there exists a nonzero splitting between S
and A larger than the kinetic energy of DM in our galactic
halo, so that the process (36) is forbidden kinematically.
This constraint must be imposed whether mL is above or
below mW —even though the LIP relic density for mL *

mW is small, it is still too large to allow elastic scattering
from nuclei via tree-level Z-exchange.

Tree-level h exchange produces a spin-independent
cross section [14]:

 	h�LN ! LN � �
m2
r

4�

�
�L

mLm2
h

�
2
f2m2

N ; (37)

where f� 0:3 is the usual nucleonic matrix element:

 

�
N

��������Xmqq �q
��������N

�
� fmN hN jN i: (38)

Another allowed process, the exchange of two gauge
bosons at one loop, gives an effective coupling to nucleons
similar to the tree-level h exchange (see [15] for a recent
discussion). For mNL �mL � mZ, the resulting spin-
independent cross section is independent of mLand can
be estimated as

 	VV�LN ! LN � �
m2
r

4�

�
�g=2cw�

4

16�2m3
Z

�
2
f2m2

N ; (39)

while for larger splittings a cross section estimate can be
obtained by replacing m3

Z in the amplitude by mLm2
Z.

60 62 64 66 68 70 72 74
mL
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FIG. 6. The mass splitting between the neutral inert particles
needed to get the observed DM abundance below the WW
threshold (obtained using the formalism from [13]). For mL 
76 GeV no splitting works.
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FIG. 5. �min
L and �max

L for M � 120 GeV. Notice that �min
L depends only on mL and is constant for mL * 180 GeV.

BARBIERI, HALL, AND RYCHKOV PHYSICAL REVIEW D 74, 015007 (2006)

015007-8



The numerical value of the cross section (37) for scat-
tering from a proton is

 	h�Lp! Lp�

� 2� 10�9 pb
�
�L
0:5

�
2
�
70 GeV

mL

�
2
�
500 GeV

mh

�
4
:

(40)

Our mass choices follow because the relic LIP abundance
can yield the observed DM for mL � 60–75 GeV, and the
cutoff scales of the theory are quite high if the Higgs is
heavy, mh � 400–600 GeV. These ranges for mL and mh
do lot lead to a wide variation of 	h. The largest uncer-
tainty in 	h arises from j�Lj � ��

2
2 �m

2
L�=v

2. From (25)
and (26) naturalness suggests that, for this interesting case
of a light LIP,�2 should be close to its lowest natural value
of 120 GeV, giving j�Lj � 0:5, the value used in (40). In
this region of parameter space, the cross section as esti-
mated in (39) is typically an order of magnitude smaller.
Thus we expect a signal 2 orders of magnitude below the
present limit from Ge detectors [11] and within the sensi-
tivity of experiments currently under study.

Finally, for mL * mW we are penalized by a smaller
relic density and by the m�2

L decrease of (37). The pros-
pects for near-future direct detection in this case are dim.

G. Collider signals

1. Production and decay of the inert particles

The inert particles can be only pair-produced. If mL �
70 GeV and �m is small, as preferred in the DM region,
SA pairs were produced at LEP2. Assuming �m� mL,
the production cross section is
 

	�e�e� ! SA� �
�
g

2cw

�
4
�
1

2
� 2s2

w � 4s4
w

�
1

48�s

�

1� 4m2=s�3=2


1�m2
Z=s�

2 � 0:2 pb; (41)

for
���
s
p
� 200 GeV. The heavier state, which for definite-

ness we take to be A, decays into the lighter plus Z�. The
resulting dilepton events with missing energy were looked
for in the context of searches for the lightest superpartner.
For small mass differences, �m & 10 GeV, the production
cross section (41) is below the existing limits set by the
separate LEP collaborations [16]. However, our signal is
close to these limits, so that a combined reanalysis of the
old data may be useful.

At the LHC pairs of inert particles will be produced by

 pp! W� ! HA or HS (42)

 pp! Z��
�� ! SA or H�H�; (43)

and will decay by

 H ! AW or SW (44)

 A! SZ���: (45)

One can thus imagine various decay chains, with final
states containing several leptons, jets and missing trans-
verse energy.

For the purposes of detection, the events with charged
leptons in the final state seem most promising. In the region
preferred by DM, the decay (45) gives events having the
lepton pair invariant mass sharply peaked at low values,
with a cutoff determined by �m & 10 GeV. An extra
charged lepton coming from H via (44) is likely needed
to help discriminate against the SM background. We have
estimated the number of the inert particle pair production
events at the LHC with at least 3 charged leptons in the
final states using PYTHIA [17]. In the region preferred by
DM, the process (42) has cross section �0:25 pb, and a
branching ratio (BR) into at least 3 electrons or muons of
�1:5%. The effective cross section of signal events with 3
charged leptons is thus estimated as

 	signal � 3:5 fb: (46)

The H�H� pair production has cross section about an
order of magnitude smaller because of the higher mass.
The dominant irreducible background is likely to be the
WZ pair production with the W decaying into electrons or
muons and the Z into �-pairs, with the �’s also decaying
into electrons or muons. We assume that the background
from direct decays of the Z into electrons or muons can be
easily eliminated. In this case we estimate the effective
cross section of background events as

 	bg � 20 fb: (47)

An integrated luminosity L� 30 fb�1 might therefore
allow a detection of the signal. It would be very interesting
to perform a complete study going beyond these rough
estimates. We are aware of the problems that might arise
from other sources of backgrounds, like the production of
t�t pairs, which has been studied in an analogous super-
symmetric context [18], or the W
� production.

2. The Higgs width

The existence of the new states may be inferred indi-
rectly from the increase of the width of the usual Higgs.
The new decay channels are

 h! SS; AA;H�H�; (48)

and the resulting increase in the width of h is
 

�� �
v2

16�mh

�
�2
S

�
1�

4m2
S

m2
h

�
1=2
� �2

A

�
1�

4m2
A

m2
h

�
1=2

� 2�2
3

�
1�

4m2
H

m2
h

�
1=2
�
; (49)

where �S;A are given in (13).
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The width of a 500 GeV Higgs in the SM is �SM �
68 GeV [19] (mostly due to decays into WW,ZZ and t�t). If
�� reaches 0:1�SM, it can be seen with high luminosity at
the LHC. The size of �� is uncertain, with strong depen-
dence on �3 and on how many channels are open. The
maximal �� attainable for a given mLand �m is possible
to estimate by letting �L vary in the range (35) determined
by the naturalness and perturbativity. The resulting ��max

is plotted in Fig. 7. We see that there is a region where
��max * 7 GeV with prospects for the LHC observation.

IV. ALTERNATIVES

Given the indirect nature of the information contained in
the EWPT, there may be and there are in fact other ways to
make a heavy Higgs compatible with them. A discussion of
some of the explored possibilities has been given in
Ref. [3]. With reference to this discussion, we point out
two related facts:

(1) If the new physics responsible for allowing a heavy
Higgs brings in new 4-fermion interactions, it is
crucial to check that such new interactions pass
the constraints set by LEP2. A relevant example in
this sense is provided by the way the Kaluza Klein
excitations of the SM gauge bosons affect the
EWPT. While their exchange gives effects that in-
deed allow a good fit of the EWPT with a heavy
Higgs (up to 500 GeV) [20], this fit becomes dis-
favored by the newer LEP2 data [21].

(2) If one tries a fit of the EWPT with a heavy Higgs,
including also the LEP2 data, by adding, one at a
time, the four dimension-6 operators involving the

SM Higgs and gauge bosons, but not the fermions, a
successful fit is obtained only from the 4-Higgs
operator that corrects T [21]

 O H � jH
yD�Hj

2: (50)

This may be of some significance, since this opera-
tor is the only one that breaks custodial symmetry.
So it is relatively easier to correct T only, by adjust-
ing the symmetry breaking parameter(s) that control
custodial symmetry, as we do in the inert doublet
model.

As already said, there are other ways of correcting only,
or predominantly, T by some perturbative new physics. As
examples, we mention here two possibilities.

(i) A scalar triplet of zero hypercharge, �, [22] coupled
to the SM Higgs via the potential

 �V � M2�2 �m�aHy	aH: (51)

(ii) A vectorlike fermion doublet F, Fc of hypercharge
1=2 and a singlet fermion S with mass and interac-
tion Lagrangian

 �L � �FHS� �cFcHyS�MFFc ��S2: (52)

Both these cases allow to correct predominantly T, so
that a heavy Higgs becomes consistent with all current
information. In our view, the drawback of the triplet model
is that it corrects T at tree level, so that, depending on the
ratio m=M all the extra particles can be hidden at inacces-
sible energies, up to 4–5 TeV. The fermionic example is
definitely more constrained since T receives one-loop cor-
rections. It also contains a DM candidate. We nevertheless
find it less compelling than the IDM.

It is in fact natural at this point to ask how the IDM
compares with the case where the second Higgs doublet
acquires a nonzero vev. This can also be a way to improve
naturalness [5]. It should be noted, however, that distrib-
uting the vevs among the 2 doublets, each smaller than v,
strengthens the bounds on the cutoff of the loops induced
by the quartic self-couplings. Furthermore, insisting on
natural flavor conservation leads to unobserved massless
Goldstone bosons in the limit of exact custodial symmetry.
In particular, to make the charged scalar heavy enough not
to conflict with direct bounds may lead to large contribu-
tions to the T parameter. A study of the consistency of the
2HDM with the EWPT in the space of its parameters has
been discussed in Ref. [23].

V. CONCLUSIONS

The large hadron collider will explore for the first time
an energy domain well above the Fermi scale. Having in
mind that �QCD is the only other fundamental scale known
in particle physics, the importance of this fact cannot be
overestimated. At the same time we are faced with the
success of the SM, minimally extended to account for

FIG. 7. Contours of the increase in the width of a 500 GeV
Higgs, ��, computed with the maximal couplings allowed by
naturalness and perturbativity.
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neutrino masses, in describing all known data in particle
physics. Which physics will be revealed by the LHC?

Among the many lines of thought that have been fol-
lowed to try to answer this question, on one view there is a
quite general consensus: the SM is likely to be the low
energy approximation of a more complete theory charac-
terized by one or more higher physical scales. Is this telling
us something about the complete theory itself? Not the
least property of the SM is that its Lagrangian is the most
general renormalizable one for the given gauge symmetry
and particle content. Indeed this apparently allows the SM
to be viewed as the infrared physics of a broad class of
theories. All that one needs is to maintain gauge invariance
and to produce a low energy spectrum that matches the
degrees of freedom of the SM. Yet, this last property
appears to be nontrivial due to the presence of the Higgs
field. On one side, the Higgs is crucial to the success of the
SM in its perturbative description of the data. On the other
side, well identified quantum corrections act to push away
the Higgs from the low energy spectrum of the more
complete theory. This is the naturalness problem of the
SM. The problem is particularly compelling in view of the
relatively large numerical size of the relevant quantum
corrections, even cutoff at an energy scale well inside the
putative range of energies directly explorable at the LHC.
Hence the effort to search for compensating effects that
could be present in the complete theory, of which super-
symmetry is the neatest example. In this view, the LHC
will discover the new physics that cancels the leading
quadratic divergences of the SM.

In this paper we have pursued a different line to attack
the naturalness problem of the SM, more modest in scope
but physically well motivated, we believe. The sensitivity
of the Higgs mass to the cutoff is after all a quantitative
issue, both for the impact on the physics expected at the
LHC and in connection with the ‘‘LEP paradox’’ or the
‘‘little hierarchy problem’’[4]. What then if a new physics
effect exists which does not counteract the quadratic di-
vergence of the Higgs mass but nevertheless relaxes the
constraint on the cutoff that is inferred from it? We propose
that such an effect may be due to the presence of a second
Higgs doublet which, however, does not acquire a vev. We
find this the simplest way to allow a heavier mass for the
SM Higgs, between 400 and 600 GeV, while keeping full
consistency with the EWPT. In turn a heavier Higgs makes
the size of its quantum corrections less significant: the most
important effect is no longer due to the top loop, as in the
unmodified SM, but rather to the loop due to the Higgs self-
coupling. As a consequence, strictly without any cancella-
tion, the cutoff is pushed to about 1.5 TeV, against a value
of 400 GeV in the SM with a Higgs mass of 115 GeV. All
this happens in a perfectly controllable perturbative regime
for the entire extended model.

The potential of the extended Higgs sector, with a parity
symmetry to keep natural flavor conservation, has 7 pa-

rameters, which can be traded for the Zmass (the vev of the
SM Higgs), 4 masses of the scalar particles, 3 neutral and
one charged, and 2 quartic couplings. This potential can
support 2 approximate global symmetries: a custodial
symmetry, which controls the splittings among the 3 inert
scalars, and a Peccei-Quinn symmetry, which governs
specifically the splitting among the two neutral inert bo-
sons. While the SM Higgs mass is between 400 and
600 GeV, the other scalars have a mass ranging from
60 GeV to about 1 TeV. They are always produced in pairs
and do not couple to fermions. It is an interesting question
to see if in the low mass range, their signals can be seen
above background at the LHC.

The lightest of the inert scalars is necessarily stable and
is required by cosmology to be neutral. If the dark matter is
fully accounted for by this scalar, its mass is predicted to be
around 70 GeV, with a small splitting of 5–10 GeV, con-
trolled by the Peccei-Quinn symmetry, relative to the other
neutral inert scalar, of opposite parity. The pair production
of these neutral bosons may have barely escaped detection
at LEP2, due to the small mass splitting. The cross section
on protons of the DM particle is predicted to be a few times
10�9 pb, giving a signal below the present limits on direct
DM searches but within the sensitivity of experiments
currently under study.

We have stated in the very first paragraph of the
Introduction how we view the status of the EWSB problem
in this last year of the pre-LHC era. The predominant
picture, rooted on supersymmetry and theoretically very
appealing, is not without problems. Even more impor-
tantly, we find it difficult to say anything new on it without
further experimental inputs. On the other hand we wonder
if alternative roads to LHC physics cannot still be explored.
We have proposed one based on a fully explicit model.
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APPENDIX A: HEAVY HIGGS RG FLOW

Detailed treatments of the Landau pole constraint in the
SM exist [24]. We will find it instructive to rederive some
of the known results from first principles, focussing on the
heavy Higgs case. The one-loop RG equation for the SM
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Higgs self-coupling is

 

d�
d ln�

�
3�2

2�2 � . . . ; (A1)

where . . . stands for the gauge boson and top quark con-
tributions, which are subdominant for heavy Higgs. As
discussed below, the appropriate initial condition for the
RG evolution is

 ��1:36mh� �
m2
h

4v2 � �phys; (A2)

where the physical Higgs mass mh and its vev v are
observable quantities. The coupling thus evolves as

 ���� �
�phys

1�
3�phys

2�2 ln �
1:36mh

; (A3)

and blows up at the Landau pole

 �L � 1:36mh exp
�

2�2

3�phys

�
: (A4)

In practice, perturbation theory will break down before �L

is reached. Let us therefore loosely define the perturbativ-
ity scale �P at which the one-loop correction to � reaches
30% of the tree-level value

 �P � 1:36mh exp
�
0:3

2�2

3�phys

�
: (A5)

The values of �L;P for the Higgs masses in the 400–
600 GeV range are given in Table I and discussed in
Sec. II B.

Let us now derive the initial condition (A2) for the RG
evolution (A1). These initial conditions can be read off
from the leading logarithmic dependence of the physical
coupling �phys on the bare parameters of the Lagrangian,
provided that we take care to compute the precise denomi-
nator in the logarithm. We start from the bare Higgs
Lagrangian

 L� j@Hj2� ���2
0jHj

2��0jHj4�; �0 � ����; (A6)

defined with a cutoff �. At the tree level we have

 v2 � �2
0=2�0; m2

h � 2�2
0: (A7)

At the one-loop level the vev should be determined by
imposing the vanishing tadpole condition hhi � 0. The
Higgs self-energy gets nontrivial contributions only from
the virtual Higgs pair and Goldstone pair diagrams. We
find the following relation between the (one-loop cor-
rected) vev and the physical Higgs mass

 

m2
h

4v2
� �0 �

3�2
0

2�2 ln
�

Cmh
; C � 1:36: (A8)

Notice that the coefficient of the logarithm agrees with
(A1), as it should. Since the self-energy correction is

evaluated at the external momentum p2 � m2
h, it come as

no suprise that mh appears in the denominator; the exact
coefficient 1.36 is found by keeping track of finite terms.
The initial condition (A2) follows immediately, since the
correction vanishes precisely at � � 1:36mh.

APPENDIX B: 2HDM RENORMALIZATION
GROUP EQUATIONS

The one-loop renormalization group equations of the
two-Higgs doublet model, referred to in Sec. III B, are
 

16�2 d�i
d log�

� �i���

�1 � 24�2
1� 2�2

3� 2�3�4��
2
4��

2
5

�2 � 24�2
2� 2�2

3� 2�3�4��
2
4��

2
5

�3 � �12�3� 4�4���1��2� � 4�2
3� 2�2

4� 2�2
5

�4 � 4�4��1��2� � 4�2
4� 8�3�4� 8�2

5

�5 � 4�5��1��2� � 8�3�5� 12�4�5: (B1)

APPENDIX C: INERT DOUBLET
CONTRIBUTIONS TO S, T

We will derive one-loop EWPT corrections induced by
the inert doublet. The �� is easiest to compute by relating
it to the wave-function renormalization of the Goldstones
�� and � induced by the presence of new particles [25]

 �� � �Z� � �Z�: (C1)

The relevant cubic interaction Lagrangian between the
Goldstones and the inert particles is the last line of
Eq. (D2) below. Goldstone self-energies get corrected by
the diagrams with virtual inert particle pairs. We find
 

�� � ��4 � �5�
2f�mH;mS� � ��4 � �5�

2f�mH;mA�

� 4�2
5f�mH;mS� (C2)

 f�m1; m2� �
v2

32�2

Z 1

0

dxx�1� x�

xm2
1 � �1� x�m

2
2

: (C3)

Using (13), it is not difficult to show that this expression is
equivalent to (27).

To find �S, we look at the gauge boson self-energy
correction ��BW3 due to the virtual H�H� and SA loops.
We find

 �S �
1

2�

Z
dxx�1� x� ln

xm2
S � �1� x�m

2
A

m2
H

: (C4)

This �S is typically small: j�Sj & 0:1 in the region sat-
isfying the naturalness and perturbativity constraints (the
same region as used for determining the typical range of
�T, Fig. 2), �0:04 & �S & �0:01 if the �T constraint
(31) is imposed. Thus it has no significant effect on the
EWPT fit.
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APPENDIX D: DARK MATTER
(CO)ANNIHILATION CROSS SECTIONS

1. Annihilation into gauge bosons

This process is dominant above theWW threshold. Since
the resulting DM abundance will be very small, we will be
content with a rough estimate of the cross section. In
particular, we will compute the annihilation amplitudes
in the massless final state approximation. This will be
accurate for m� mW , and will provide an order-of-
magnitude estimate otherwise. The threshold behavior
can be approximated by multiplying with phase space
suppression factors.

We consider annihilation into transverse and longitudi-
nal states separately. For transverse final states the ampli-
tude is due to the contact term interactions
 

�	LL!??�vrel �
g4

64�m2
L

�2� 1=c4� � 130 pb

�100 GeV=mL�
2: (D1)

Annihilation into longitudinal states can be approximated
by annihilation into massless Goldstones. The relevant
terms in the expansion of (9) are
 

V �
1

4
�A2 � S2�
2�3�

��� � ��3 � �4��
2�

�
�5

4
�A2 � S2��2 �

v���
2
p 
2�1�2���� � �2�

� �AA
2 � �SS

2�h�
v���
2
p f
��4 � �5�S

� i��4 � �5�A�H��� � c:c:g �
���
2
p
v�5SA�: (D2)

We find
 

MSS;AA!�� � �A;S �
�S;Am

2
h

s�m2
h

� 2�2
5v

2

�
1

t�m2
A;S

�
1

u�m2
A;S

�
(D3)

 

MSS;AA!���� � �3 �
�S;Am

2
h

s�m2
h

�
��4 	 �5�

2v2

2

�
1

t�m2
H

�
1

u�m2
H

�
(D4)

 M SA!���� � i
��2

4 � �
2
5�v

2

2

�
1

t�m2
H

�
1

u�m2
H

�
:

(D5)

At freeze-out we can neglect t, u compared to m2
I ;, in

particular, coannihilations are suppressed. The LIP annihi-
lation amplitudes can be written as

 M LL!�� �
�Ls

s�m2
h

� 2j�5j �
4�2

5v
2

m2
NL

MLL!���� �
�Ls

s�m2
h

� j�4j � j�5j �
�j�4j � j�5j�

2v2

m2
H

:

(D6)

We see that these amplitudes depend on �L, which can vary
in a certain range (see Sec. III E). Because of this it can
happen that one of the two amplitudes (D6) is small, but
not both. Indeed, the total annihilation cross section into
longitudinal states can be bounded from below in a
�L-independent way as follows:

 �	LL!kk�vrel �
1

64�m2
L

�jMLL!��j
2 � 2jMLL!����j

2�

(D7)

 
1

64�m2
L

2

3

MLL!�� �MLL!�����

2 (D8)

 �
1

96�m2
L

�
j�4j � j�5j �

�j�4j � j�5j�
2v2

m2
H

�
4�2

5v
2

m2
NL

�
2
:

(D9)

We have studied the last expression (which in most cases
will be an underestimate) in the typical range of masses
mL, mNL described in Sec. III E and found that it gives a
numerical lower bound
 

�	LL!??�	LL!kk�vrel

* min
130 pb�100 GeV=mL�
2;10 pb�;

for mL��100–800�GeV: (D10)

The important point is that bound (D9) is increasing with
mL, because the growth of the couplings more than com-
pensates for the m�2

L suppression. As a result, the sum of
(D1) and (D9) is above 10 pb in the whole range of mL.

2. Coannihilation into fermions

Below the WW threshold, the p-wave suppressed pro-
cess SA! Z� ! �ff is dominant. The cross section is

 	vrel � bv2
rel (D11)

 b �
�
g

2cw

�
4

P
�g2
V � g

2
A�

96�m2
L
1�m

2
Z=�4m

2
L��

2 ; (D12)

where the sum is over all SM fermions, f, except for the
top quark, and �m� mL. In the range of interest, we have

 b � �250–60� pb; mL � �60–80� GeV: (D13)

For �m< T, the thermally averaged cross section which
enters the Boltzmann equation is h	vreli � 6b=x, x �
m=T.
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