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In a theory with linear confinement, such as QCD, the masses squared m2
n;S of mesons with high spin S

or high radial excitation number n are expected, from semiclassical arguments, to grow linearly with S and
n. We show that this behavior can be reproduced within a putative 5-dimensional theory holographically
dual to QCD (AdS/QCD). With the assumption that such a dual theory exists and describes highly excited
mesons as well, we show that an asymptotically linear m2 spectrum translates into a strong constraint on
the infrared behavior of that theory. In the simplest model which obeys such a constraint we find m2

n;S �
�n� S�.
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I. INTRODUCTION

Over the recent years it has become clear that gauge/
gravity correspondence [1] can be used to extract informa-
tion about four-dimensional strongly coupled gauge theo-
ries by mapping them onto gravitational theories in five
dimensions. The term AdS/QCD is often used to describe
the efforts to apply a five-dimensional theory on an anti-de
Sitter (AdS) gravity background to learn something about
QCD [2–17]. Although for QCD the exact form of the
gravity dual is not yet known, there are two complementary
approaches to the problem. One is to start from a string
theory, choosing the background in such a way as to
reproduce such essential ingredients of QCD as confine-
ment [3] or matter in the fundamental representation [4],
and study the resulting QCD-like theories. Another,
bottom-up, approach is to begin with QCD and attempt
to determine or constrain the dual theory properties by
matching them to known properties of QCD using gauge/
gravity correspondence. From a practical point of view,
one can model experimental data surprisingly well [12–14]
by a local effective theory on a cutoff AdS space (AdS
‘‘slice’’). The ultraviolet (UV) conformal invariance of
QCD (due to asymptotic freedom) is matched by the
conformal isometry of the AdS background of the dual
5d theory, while confinement, in the simplest realization, is
modeled by a hard wall cutting off AdS space in the
infrared (IR) region, as first introduced in [5]. The
bottom-up approach is related to an attempt undertaken
by A. A. Migdal in the 1970’s [18] to determine the meson
spectrum by imposing the requirement of conformal in-
variance on QCD two-point correlators and using the Padé
approximation, as well as to the open-moose models based

on an infinite number of hidden local symmetries [19], as
discussed in [20].

One criticism that has been brought against this program
is that it so far appeared to be unable to describe correctly
either (radially) excited rho mesons or higher spin mesons
[21,22]. The meson spectrum in AdS/QCD is determined
by solving for the eigenmodes of a 5d gauge field living on
the cutoff AdS. With the simplest cutoff—the hard IR
wall—the spectrum of squared masses m2

n is similar to
that of a Schrödinger equation for a particle in a box, i.e.,
for high excitation number, n� 1, m2

n grow as n2.
On the other hand, data shows growth consistent with

m2
n � n, see, e.g., Fig. 1 and [23]. Furthermore, for large n

a heuristic semiclassical argument in favor of the behavior
m2
n � n for QCD can be given [22]. The highly excited

mesons can be thought of as an ultrarelativistic quark-
antiquark pair executing the semiclassical motion in a
potential growing linearly with the separation (due to the
confining flux tube). With the typical momentum and
energy of the quark motion related to the mass of the
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FIG. 1. The squared masses of the first few � resonances
versus their consecutive number n [34]. The straight line is the
fit m2

n � n.
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meson as p � E � mn=2 and the energy related to the
typical separation L (the size of the meson) as E � �L,
where � is the confining string (chromoelectric flux tube)
tension, the typical size of an excited meson is

 L�mn=�: (1)

On the other hand, semiclassical Bohr-Sommerfeld quan-
tization requires

R
pdx� n, which means

 m2
n � �n: (2)

Such a behavior is also observed in the 1� 1 dimensional
’t Hooft model [24] where linear confinement can be
demonstrated analytically.

A similar situation occurs for high spin S� 1. The
well-known argument based on a picture of a high spin
meson as a semiclassically rotating relativistic open
string—the confining flux tube—predicts Regge behavior
m2
S � 2��S. However, as was shown in [14], in that case

one finds a very similar problem in the hard wall model:
while one can nicely match the experimental properties of
the first few resonances, the growth of the squared masses
with spin S is m2

S � S
2 as opposed to the expected Regge

behavior.
The purpose of this note is to point out that the asymp-

totic behavior of the spectrum of highly excited mesons
m2
n � n2 is by no means an intrinsic property of AdS/QCD.

We wish to emphasize that, contrary to thus far rather
common assumption, the spectrum of the highly excited
mesons is not determined by the ultraviolet behavior of the
AdS/QCD (which is already constrained to be asymptoti-
cally AdS). Rather, it crucially depends on the details of the
infrared region. That this must be so can be clearly seen by
recalling that the size L of the mesons grows with their
excitation number (1).

Below we shall give an explicit example of the IR wall
that gives the desired

 m2
n � n and m2

S � S (3)

growth of the masses at large n and S. At this point, we can
give no explicit example of a background in an ab initio
string theory that behaves in the way that we propose.
However, since the growth (3) is a generic property of
any linearly confining gauge theory, we may formulate
our result as an IR constraint on the holographic dual of
any such theory, including QCD. We shall speculate briefly
about how such an IR behavior could arise from tachyon
condensation in string theory.

II. BACKGROUND GEOMETRY AND OVERVIEW

The gravitational backgrounds we are interested in can
still be thought of as cutoff AdS spaces, but instead of the
hard-wall IR cutoff we shall look at spacetimes that
smoothly cap off. The only background fields we are
considering are the dilaton � and the metric gMN . The
mesons are described by 5d fields propagating on this

background with the action given by

 I �
Z
d5x

���
g
p
e��L; (4)

where L is the Lagrangian density and g � j detgMNj. We
shall begin by considering a generic background parame-
trized by two functions A�z� and ��z� such that:

 gMNdxMdxN � e2A�z��dz2 � ���dx�dx��; (5)

 � � ��z�; (6)

where ��� � diag��1; 1; 1; 1�. We shall then determine
the conditions that the background A�z� and ��z� should
obey to reproduce the Regge-like behavior of the mass
spectrum Eq. (3). By considering the spectrum of radial �
excitations only we conclude that the linear combination
�� Amust behave as z2 at large z to agree with Eq. (2). In
addition, conformal symmetry in the UV demands that
�� A� logz at small z. The simplest solution to both
these constraints is �� A � z2 � logz. It has the advan-
tage that the spectrum of excited � masses can be deter-
mined exactly: m2

n � 4�n� 1�.
In order to determine A and � functions separately we

then consider higher spin mesons. We find that the behav-
ior as in (3) requires that the metric function A does not
have any contribution growing as z2 at large z. In the
simplest case obeying this constraint, A � � logz, � �
z2, the spectrum can be found exactly: m2

n;S � 4�n� S�.

III. RHO MESONS

We shall work under the assumption that there exists a
local effective action on this background that is dual to
QCD, i.e., terms with a higher number of derivatives have
to be suppressed. An incomplete justification of this as-
sumption together with a discussion of the associated
limitations can be found in Sec. VI. For the vector and
axial meson sector the simplest action one can write down
containing up to 2 derivatives is the SU�NF�L � SU�NF�R
gauge field action with a bifundamental scalar whose
vacuum expectation value is responsible for both the ex-
plicit and the spontaneous chiral symmetry breaking. This
is the picture advertised in [12,13] and it directly imple-
ments the ideas of [4] regarding how flavor is included in
AdS/CFT as gauge fields living on the world volume of
flavor branes. The analogy with [4] also fixes the coupling
to the background dilaton to be an overall e�� as expected
from a D-brane. The gauge coupling g5 is fixed by match-
ing the UV asymptotics of current-current two-point func-
tion between bulk and boundary theories [12,19]. The
action at quadratic order in the fields and derivatives reads

 I �
Z
d5xe���z� ���

g
p

�
�jDXj2 � 3jXj2 �

1

4g2
5

�F2
L � F

2
R�

�
(7)
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with g2
5 � 12�2=Nc. The boundary condition on the gauge

fields AL and AR at z � 0 as required by the holographic
correspondence, is given by the value of the sources of the
currents JL and JR in 4d theory. The IR boundary condition
now, in the case of the smooth wall extending to z � 1, is
simply that the action is finite. The ambiguity of the choice
of the IR boundary condition in a theory with hard wall
[12] is not present in the theory with the smooth wall
cutoff.

To determine the spectrum of the � mesons we need
only the quadratic part of the action for the vectorlike
gauge field V � AL � AR. We use the gauge invariance
of the action to go to the axial gauge Vz � 0 [12]. The
equation for the 4d-transverse components VT� (@�VT� � 0)
has normalizable solutions, vn, only for discrete values of
4d momentum q2 equal to m2

n:

 @z�e�B@zvn� �m2
ne�Bvn � 0; (8)

where B � ��z� � A�z�. Via the substitution

 vn � eB=2 n (9)

this equation can be brought into the form of a Schrödinger
equation

 �  00n � V�z� n � m2
n n; (10)

 V�z� � 1
4�B

0�2 � 1
2B
00: (11)

In the particular case of B � �� A � z2 � logz, we
have V � z2 � 3=�4z2� and the Schrödinger equation (10)
is exactly solvable. More generally, for the quantum me-
chanical system1

 �  00 �
�
z2 �

m2 � 1=4

z2

�
 � E (12)

the eigenvalues are (n � 0; 1; 2; . . . )

 E � 4n� 2m� 2 (13)

and the corresponding normalized eigenfunctions are

  n�z� � e�z
2=2zm�1=2

�������������������
2n!

�m� n�!

s
Lmn �z

2�; (14)

where Lmn are associated Laguerre polynomials. The �
meson mode Eq. (10) is of this form with m � 1. We can
easily read off the squared masses of the �s from this:

 m2
n � 4�n� 1�: (15)

The scale of the masses is fixed by the coefficient of the z2

term in B, which violates explicitly the scale invariance.2

Matching to Eq. (2) we conclude that this coefficient is
proportional to the QCD string tension �. We measure
masses in units in which this coefficient is equal to 1.

Undoing the change of variables (9), we get the original
mode functions vn � ez

2=2 ���
z
p
 n, hence

 vn�z� � z2

�����������������
2n!

�1� n�!

s
L1
n�z2�: (16)

From the analytic form of the wave function we also can
read off the corresponding decay constants [12]:

 F2
�n �

1

g2
5

	v00n�0�

2 �

8�n� 1�

g2
5

; (17)

whose large n behavior is also in accord with semiclassical
QCD arguments [22]. It is interesting to note that, since
F2
�n=m

2
n � 2=g2

5 is n-independent, our simplest choice of
the background B � z2 � logz reproduces the ad hoc reso-
nance model of duality discussed in [25].

Note that in order to get the correct m2
n � n behavior for

large n it was crucial that the analog Schrödinger potential
describes essentially a harmonic oscillator at large z. This
is easy to see applying the WKB approximation for large n.
The distance between successive levels m2

n of the
Schrödinger equation (10) is given by the frequency of
the classical oscillation in the potential V:

 

dm2
n

dn
� �

�Z z2

z1

dz����������������������
m2
n � V�z�

p �
�1
; (18)

where z1;2 are the turning points. For largemn, i.e., large z2,
and z1 ! 0, the integral is dominated by large z� z2 �
mn. This matches the expected growth of the size of the
highly excited mesons in QCD—L�mn [see Eq. (1)].3

By choosing a different function V�z� [i.e., a different
background B�z�] one can adjust the constant O�1� term in
m2
n, but as long as V�z� � z2 for large z, the spectrum will

remain equidistant at large n.4

Matching only the spectrum of the �mesons we are only
able to constrain the linear combination B � �� A of the
dilaton and the metrics background functions � and A. In
the next section we shall see that all the z2 asymptotics
must all be in � and none in A.

IV. HIGHER SPIN MESONS

In order to create higher spin mesons we need to act with
a higher spin current on the vacuum. Just like for the vector

1For integer values of m Eq. (12) can be viewed as a radial
equation for a two-dimensional harmonic oscillator with orbital
momentum m.

2In the theory with hard IR wall this role was played by the
position of the wall zm.

3The proper definition of the meson size should be based on
the meson form factor, which is determined by cubic terms in the
action. In this paper we only consider quadratic part of the action
and indirectly infer the size of the meson from the extent of its
wave function in the 5th dimension.

4One can also notice that the choice of B��z2 leads to the
same asymptotics of V�z� as the choice B� z2 we made. The
former, however, is physically unacceptable because it leads to
an m2

n � 0 solution to the � mode Eq. (8).
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mesons, on the gravity side, we have to introduce a higher
spin field whose normalizable modes determine meson
masses and decay constants. In the free theory in the far
UV the corresponding current becomes a conserved twist 2
current, so the higher spin field has to become a massless
higher spin field whose equations of motion are uniquely
fixed by gauge and coordinate invariance [26].

In the full theory the higher spin field will have to
acquire a mass in the IR by a generalization of the Higgs
mechanism. As long as the mass of the higher spin field
remains finite in the IR, it is easy to see that it will not
affect the highly excited modes. We will discuss this
phenomenon in detail in the next section in the special
case of the spin S � 1 axial vectors. For our discussion of
higher spin mesons we will only consider massless higher
spin fields in the 5d bulk.

Since we will only be concerned with the spectrum of
the higher spin mesons, we shall not consider the full 5d
action, but only its quadratic (free) part. It is known that
simultaneously gauge and general-coordinate invariant ac-
tion can be written for a higher spin field in a space with
vanishing Weyl tensor (the part of the Riemann tensor
which does not affect the Ricci tensor) [27–29]. The
background we consider (5) is conformally flat and obeys
this condition. Thus we proceed on assumption that such
action does exist.

The gauge field of spin S is represented by a tensor
�M1...MS

of rank S totally symmetric over its indices. As
discussed above, we require the action to be invariant with
respect to the gauge transformation with gauge parameter
�M2...MS

itself a symmetric rank S� 1 tensor:

 	�M1...MS
� r�M1

�M2...MS�
; (19)

where r is (general coordinate) covariant derivative and
parentheses denote index symmetrization.5 The quadratic
part of the gauge and coordinate invariant action for this
field must have the form

 I �
1

2

Z
d5x

���
g
p
e��frN�M1...MS

rN�M1...MS

�M2�z��M1...MS
�M1...MS � . . .g (20)

where the omitted terms are similar to the two written out
but with coordinate indices contracted in alternative ways.
The mass coefficient M2�z� would be zero for flat space,
but must be nonzero otherwise to cancel terms arising from
commutation of covariant derivatives to ensure gauge in-
variance of I. For the pure AdS space M2�z� is a constant
M2 � S2 � S� 4. Using the method outlined below we
can find M2�z� for a general metric (5), however, as we
shall see, the same method gives the mode equation di-
rectly, bypassing M2�z�.

First, similar to the S � 1 case (Sec. III), we utilize the
gauge invariance to go over to the axial gauge �z... � 0. In
this gauge, the part of the action involving the transverse
and traceless part of the field � (@���

... � 0 and ��
�... � 0)

decouples. It is also easy to see that this part of the action
only involves the terms explicitly written out in (20), while
the omitted terms do not contribute.

Second, we use the fact that the axial gauge still allows
residual gauge transformations obeying �z... � 0 and

 	�z... � rz�... �r�:�...�z � �0... � 2�S� 1�A0�... � 0:

(21)

This can be easily integrated to find that the z dependence
of the residual gauge parameter � is given by

 ��2...�S
�z; x�� � e2�S�1�A�z� ~��2...�S

�x��: (22)

The action (20) for transverse traceless modes must be
invariant under the gauge transformations with parameter
(22). As in [14] this requirement is easiest to implement
working in terms of a rescaled higher spin field ~� defined
by

 �... � e2�S�1�A ~�...: (23)

This field simply shifts by a value independent of z under
gauge transformations (22), 	 ~�... � @�: ~�...�. Therefore the
action written in terms of ~� should contain only derivatives
of ~�. Thus if we are to substitute (23) into action (20) we
must find (discarding appropriate boundary terms)
 

I �
1

2

Z
d5xe5A

� e��fe4�S�1�Ae�2A�1�S�@N ~��1...�S
@N ~��1...�S

g: (24)

The equation for the modes ~�n of the transverse traceless
field ~�... can be now easily derived from the action (24):

 @z�e
�2S�1�Ae��@z ~�n� �m

2
ne
�2S�1�Ae�� ~�n � 0 (25)

which has the form (8) with B � �� �2S� 1�A.
Converting to Schrödinger form using the procedure

from Sec. III we see that the only way to have the slope
dm2

n=dn independent of S is to keep all z2 asymptotics in �
and none in A. For A � � logz and � � z2 the
Schrödinger potential reads

 V�z� � z2 � 2�S� 1� �
S2 � 1=4

z2 : (26)

This has the same form as the potential in Eq. (12). The
eigenvalues corresponding to the squared masses of the
mesons now can easily be read off using (13)

 m2
n;S � 4�n� S�; (27)

which generalizes our result (15) to higher S.
We can also read off the UV conformal dimension of the

operators O... in QCD dual to the higher spin field �....

5It is known that gauge invariance can be imposed at most for a
restricted class of gauge transformations with traceless �NN... � 0
gauge parameter. This fact will not play a role in our discussion.
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Since the rescaled field ~� allows a solution going to a
constant at z � 0 boundary, its boundary value should be
identified with the source of the operator O.... The scaling
dimension of the field ~� is 	 ~�...
 � 	�...
 � 2�S� 1� �
2� S (in units in which 	z
 � �1). Thus 	O...
 �

4� 	 ~�...
 � 2� S, i.e., the twist is indeed equal to 2.

V. THE AXIAL SECTOR

Similar to the � mesons, the axial vector meson a1

masses and decay constants can be obtained from the
modes of the axial gauge field A � 1

2 �AL � AR� in the
bulk. Unlike the vector sector however the axial field picks
up a z-dependent 5d mass via the Higgs mechanism from
the background scalar X that encodes the chiral symmetry
breaking [12]. The axial vector meson mode equation,
which follows from Eq. (7), reads:
 

@z�e
���z�eA�z�@zan�

� 	m2
n � g2

5e
2A�z�X�z�2
e���z�eA�z�an�z� � 0: (28)

The linearized equation of motion for the field X reads:

 @z�e
���z�e3A�z�@zX�z�� � 3e���z�e5A�z�X�z� � 0: (29)

We are looking for a solution with asymptotic form

 X�z�!
z!01

2Mz�
1
2�z

3 (30)

around z � 0 (in the UV), where the coefficient M is the
UV (z � 0) boundary condition given by the quark mass
matrix, while the coefficient �—the chiral condensate—
is determined dynamically by the boundary condition in
the IR. For large z (in the IR) on the background � � z2

the equation for X becomes

 X00 � 2zX0 �
3

z2 X � 0 �z� 1�: (31)

Two linearly independent solutions of this equation have
asymptotics ez

2
! 1 and expf��3=4�z�2g ! 1. Since the

equation is linear, selecting one of the solutions in the IR
(the X <1 one, of course) gives � simply proportional to
M. This is not what one wants in a theory with spontaneous
symmetry breaking such as QCD. It is clear that one has to
consider higher order terms in the potential U�X; . . .� for X
and all other scalar condensates. Such a potential would
introduce nonlinearity in the Eq. (29) for X and conse-
quently in the relation between � and M. In addition, one
expects higher order derivative terms to become important
in determining the precise background at intermediate
values of z.

For a genericU�X; . . .� there will be a solution approach-
ing a constant as z! 1. For such a solution, as z! 1, the

term X00 becomes negligible (together with all other higher
derivatives) compared to�2zX0, and equation behaves as a
1st order, rather than a 2nd order equation. That means
only one parameter family of solutions exist in the IR
region [that parameter being the value X�1�]. Continuing
each such solution into the UV we find corresponding
value for M and �, therefore determining (parametrically)
the function ��M�, which is nonlinear for generic non-
linear U�X; . . .�.

We conclude that the spectrum in the axial sector de-
pends sensitively on the precise form of the 5d potential
U�X; . . .�, as well as other higher order terms. However, we
expect that in the IR X will have a solution that goes to a
constant as z! 1. The constant value that X approaches
gives the IR value of the mass of the axial gauge field. As
can be seen from the axial mode Eq. (28), the contribution
from finite X is suppressed by a factor e2A � z�2.
Therefore, the large z asymptotics of the Schrödinger
equation potential V�z� will be the same as for the �
mesons. Hence, the slope of the a1 radial excitation trajec-
tory will be the same as the slope for the �-mesons
dm2

n=dn � 4 as expected from semiclassical arguments
in the Introduction.

As we mentioned in the previous section, the higher spin
mesons find themselves in a similar situation. We know
that the corresponding currents will not be conserved in the
interacting theory, so the dual higher spin field has to pick
up a mass in the IR and hence our analysis based on
massless higher spin fields will not be valid. However, as
long as the mass of the higher spin field remains finite in
the IR, at large z and hence at large n the mass term can be
neglected and our result

 m2
n;S � 4�n� S� (32)

is reliable for large n and S.

VI. CONCLUSIONS AND DISCUSSION

In this paper we demonstrated that under the assumption
of a local 5d bulk description of QCD there is a smoothing
of the IR wall (asymptotically unique) that gives the right
large n and large S behavior for highly radially or orbitally
excited mesons characteristic of linear confinementm2

n;S �

�n� S�. We have found that such a spectrum can be
achieved in a nontrivial dilaton background � in (4) with
the following large z (IR) asymptotics: �� z2. We have
also found that the metric background function A in (4)
cannot have a z2 contribution at large z if the slope of the
radial excitation trajectories dm2

n;S=dn is to be the same for
all S.

It is interesting to observe that in such a dilaton/metric
background the slopes of n and S trajectories automatically
coincide:
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dm2
n;S

dn
�
dm2

n;S

dS
: (33)

This matches the expectation from QCD if one considers
highly excited mesons as semiclassically oscillating (n�
1) or rotating (S� 1) strings—the confining flux tubes
connecting quark and antiquark. Indeed, the frequencies of
the classical oscillatory and rotational motions of the rela-
tivistic Nambu-Goto open string at the same energy coin-
cide [30]. The poles of the Veneziano amplitude also
correspond to the spectrum obeying (33) [23].

We also found the size of the mesons growing linearly
with their mass as required by semiclassical arguments in
QCD Eq. (1). In comparison, with hard IR wall at zm,
excited mesons would have all the same size L� zm.

It is worth pointing out that the semiclassical arguments
which picture highly excited mesons as excited confining
flux tubes apply in the limit of large Nc when the string
breaking is suppressed. In the dual theory, the meson
coupling g2

5 � 12�2=Nc is small in this limit, making
resonances narrow and allowing us to neglect loop correc-
tions to the action (7).

One interesting phenomenological aspect of the qua-
dratic dilaton is that the coupling g2

5e
� becomes strong

in the IR. Modes of excitation number n explore z values of
order

���
n
p

. Thus their self-coupling grows as ez
2
� en. For

any given excitation number n the modes will be weakly
coupled for sufficiently large Nc: gnnn � en=Nc. This then
suggests that for a fixed largeNc the meson resonances will
become strongly coupled not at n� Nc but already at n�
log�Nc�.

Let us close with a detailed discussion of the assump-
tions we made and the limitations of this line of thought.
Our approach relies on the proposition that QCD can be
described holographically by a local 5d action, that is, the
terms with a higher number of derivatives are suppressed.
In this local description all higher spin fields have to be
included as elementary fields. One should think of this as
being the spacetime action corresponding to string field
theory where all excitations of the string get explicitly
incorporated as spacetime fields.

Since in QCD there is no parametric separation between
the string tension and the mass gap, the dual gravity will
have curvatures of order the string scale and hence there
will be no scale separation between the massless and
massive string modes; it is hence very natural to include
them all on an equal footing. However, it appears unjusti-
fied from this point of view to expect the action of those
fields to be dominated by the low derivative terms, that is,
to be local. Without separation of scales, it is not clear what
is suppressing the higher derivative terms. And without
that knowledge, it is not clear how to improve systemati-
cally on the approximations made.

Nevertheless, our assumption that such a local action is
sensible from the string-theory point of view might be
supported by a theorem proposed in [31], stating that at

large Nc the action should always be local.6 If this claim is
correct, it would be the large Nc that is suppressing the
nonlocal terms, quite contrary to standard AdS/CFT
intuition.

A conservative point of view on the 5d Lagrangian
would be to consider it as a phenomenologically driven
approach, along the line of Refs. [12,13], intelligently
interpolating between the low-energy and high-energy
limits of QCD. This approach, while being inspired by
the AdS/CFT correspondence, may or may not have any
direct relationship to the latter.

The background we found has an AdS geometry with a
quadratic dilation �� z2 turned on. Obviously, one inter-
esting question is how such a background would arise from
a string theory. That is, what other fields have to be turned
on in order to make this a good background for strings to
propagate on? This would require us to construct the
classical string theory on a spacetime with stringy curva-
ture and presumably RR-fluxes turned on. This type of
background has been sought after now for over a decade
without significant progress. While such a construction
would obviously be desirable, our construction shows
that as long as the assumption of locality holds many of
the spacetime properties of such a theory can be
reconstructed.

At least qualitatively we can see how the quadratic
dilaton might arise. Confinement in the gauge theory is
believed to be dual to closed string tachyon condensation
in the bulk, so the simplest hypothesis is that in addition to
the dilaton the only other field that is turned on is a closed
string tachyon of a noncritical super string theory. It was
shown in [33] that quite generically it is possible to engi-
neer a closed string tachyon condensation process in which
the only fields turned on are the dilaton and the tachyon,
while all other fields, in particular, the metric, can retain
the background values. So it seems to be completely con-
sistent in this framework to have an undisturbed back-
ground on top of which the closed string tachyon and the
dilaton run. Of course from this point of view it is far from
obvious why the dilaton profile should be quadratic. So in
this respect our finding raises the interesting prospect that
QCD data and/or semiclassical arguments using confining
flux tubes can actually be used to gain new insights into the
fascinating process of closed string tachyon condensation.

Last but not least, one might wonder why none of the
known string theory duals to confining gauge theories
exhibit the particular IR behavior we found. The point

6One can argue that as long as one is only interested in on-shell
properties described by the quadratic part of the action, like the
masses and decay constants, all higher derivative terms are
essentially equivalent to the standard quadratic terms on a
modified background [32]. However we want to claim that in
the effective action fields of all spins propagate on the same
background geometry, which would not be justified by the
arguments in [32] alone.
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here is that up to this date the only 4d examples of the
gauge/string theory correspondence that are worked out
have the string theory be well approximated by its low
energy supergravity. On the gauge theory side this is
reflected in a separation of scales—the string tension is
much larger than the mass gap in the theory. Only the
modes with masses above the mass gap but below the
string tension are described by fields propagating on the
gravity background. Note that even the confining examples
in that class do not exhibit meson spectrum characteristic
of the linear confinement. The squared meson masses in
these theories grow as n2 and not as n. Of course, at very
high n, when the masses are much larger than the string
tension one has to find linear growth in n. These modes
however are stringy even in the known examples and will
see a different background than the supergravity modes.

Our results indicate that they will have to see the same
exponential wall.
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