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We present results for masses of excited baryons from a quenched calculation with chirally improved
quarks at pion masses down to 350 MeV. Our analysis of the correlators is based on the variational
method. In order to provide a large basis set for spanning the physical states, we use interpolators with
different Dirac structures and Jacobi smeared quark sources of different width. Our spectroscopy results
for a wide range of ground state and excited baryons are discussed.

DOI: 10.1103/PhysRevD.74.014504 PACS numbers: 11.15.Ha

I. INTRODUCTION

The reproduction of the hadron mass spectrum from first
principles is an important challenge for lattice QCD.
Ground state spectroscopy on the lattice is by now a well
understood problem and impressive agreement with ex-
periments has been achieved. However, the lattice study
of excited states [1–10] is not as advanced. The reason for
this is twofold: First, the masses of excited states have to be
extracted from subleading exponentials in the spectral
decomposition of two-point functions. Second, the con-
struction of hadron interpolators which have a good over-
lap with the wave functions of excited states is much more
challenging than for the ground state.

Concerning the first issue, the extraction of the signal
from the subleading exponential, several approaches such
as constrained fitting or the maximum entropy method can
be found in the literature [11,12]. Here we apply the varia-
tional method [13,14], where not only a single correlator is
analyzed, but a matrix of correlators is used. This matrix is
built from several different interpolators, all with the quan-
tum numbers of the desired state. The variational method
also incorporates in a natural way a solution to the second
issue, the wave function of the excited states: One uses a
set of basis interpolators which is large enough to span
ground and excited states and the variational method finds
the optimal combinations of them. In principle, no prior
knowledge of or assumption about the composition of the
physical hadron state has to be used.

However, the variational method can succeed only if the
basis set of hadron interpolators is rich enough to span
ground and excited states. On the other hand, the basis
should also be constructed such that it can be implemented
numerically in an efficient way without the need for many
different quark sources. In this article we use a twofold
strategy for building our basis interpolators: We use inter-
polators with different Dirac structures and furthermore
compose them using different types of smearing for the

individual quarks. In particular, we apply different
amounts of Jacobi smearing [15] and in this way create
‘‘narrow’’ and ‘‘wide’’ sources. A combination of these
allows for spatial wave functions with nodes, which are
essential for a good overlap with excited states.

Following a first test of the outlined strategy [5] and an
analysis of mesons with our method [10], in this paper we
present in detail the results obtained for baryons. In the
next section we collect the basic equations for the imple-
mentation of the variational method, detail the construction
of our sources and give an overview of the parameters of
our numerical simulation. Subsequently we discuss effec-
tive mass plots and the eigenmodes of the correlation
matrix, as well as the baryon masses and their chiral
extrapolations. The paper closes with a summary and an
outlook.

II. OUTLINE OF THE CALCULATION

A. The variational method

As already stated, we use the variational method [13,14]
to extract the masses of ground and excited states. Starting
from a set of basis operators Oi, i � 1; 2; . . . ; N, we com-
pute the correlation matrix

 Cij�t� � hOi�t� �Oj�0�i: (1)

In Hilbert space these correlators have the decomposition

 Cij�t� �
X
n

h0jOijnihnjO
y
j j0ie

�tMn : (2)

Using the factorization of the amplitudes one can show
[14] that the eigenvalues ��k��t� of the generalized eigen-
value problem,

 C�t� ~v�k� � ��k��t�C�t0� ~v
�k�; (3)

behave as

PHYSICAL REVIEW D 74, 014504 (2006)

1550-7998=2006=74(1)=014504(11) 014504-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.74.014504


 ��k��t� � e��t�t0�Mk�1�O�e��t�t0��Mk��; (4)

where Mk is the mass of the kth state and �Mk is the
difference to the masses of neighboring states. In Eq. (3)
the eigenvalue problem is normalized with respect to a
time slice t0 < t.

At this point we remark that the variational method can
be generalized to also include ghost contributions as they
appear in a quenched or partially quenched calculation.
The fact that ghost contributions also play a role for
baryons was first stressed in [1]. In the spectral decom-
position (2) ghosts appear with a modified time depen-
dence, possibly also including a negative sign. In [16] it
was shown that the ghost contribution couples to an indi-
vidual eigenvalue (up to the correction term) in the same
way as a ‘‘proper’’ physical state. Thus, ghost contributions
are disentangled from the desired states and need not be
modeled in the further analysis of the exponential decay of
the eigenvalues.

Let us finally stress that the eigenvectors of the gener-
alized eigenvalue problem (3) also contain interesting in-
formation. If one plots the entries of the eigenvector as a
function of t, one finds that they are essentially constant in
the same range of t values where plateaus of the effective
mass are seen (compare Fig. 2). These plateaus can be used
to optimize the interval for fitting the eigenvalues.
Furthermore, the eigenvectors encode the information
about which linear combinations of the basis interpolators
couple to which eigenvalue and thus provide one with a
‘‘fingerprint’’ of the corresponding states. Comparing these
fingerprints for different values of the quark mass is an
important cross-check for the correct identification of the
states.

B. Dirac structure of the baryon interpolators

For the baryons we analyze, we use the following op-
erators with different Dirac structures:

(i) Nucleon:

 N�i� � �abc�
�i�
1 ua�u

T
b��i�2 dc � d

T
b��i�2 uc�: (5)

(ii) �:

 ��i� � �abc�
�i�
1 ua�u

T
b��i�2 sc � s

T
b��i�2 uc�: (6)

(iii) �:

 ��i� � �abc�
�i�
1 sa�s

T
b��i�2 uc � u

T
b��i�2 sc�: (7)

(iv) � octet:

 ��i�8 � �abcf�
�i�
1 sa�u

T
b��i�2 dc � d

T
b��i�2 uc�

� ��i�1 ua�s
T
b��i�2 dc� � ��i�1 da�s

T
b��i�2 uc�: (8)

(v) � singlet:

 �1 � �abc�
�1�
1 ua�d

T
b��1�2 sc � s

T
b��1�2 dc�

� cyclic permutations of u; d; s: (9)

(vi) �:

 �� � �abcua�uTbC��uc�: (10)

(vii) �:

 �� � �abcsa�sTbC��sc�: (11)

Here we used vector/matrix notation for the Dirac indices.
The different possible choices for ��i�1 and ��i�2 are listed in
Table I.

Our interpolator for the � (�) still has overlap with both
spin- 1

2 and spin- 3
2 . Thus, we need a projection to definite

angular momentum. We use the continuum formulation of
a spin- 3

2 projection for a Rarita-Schwinger field:
 

P3=2
�� � ~p� � ����

1

3
�����

1

3p2 �� �p��p��p���� �p�;

where p� is the four-momentum, in our case given by

�~0; m�. For each component of the projected � (�) we
compute the correlator and average these two-point func-
tions over �; � � 1; 2; 3.

Finally, our baryon correlators are projected to definite
parity using the projection operator P	 � 1

2 �1	 �4�. We
obtain two matrices of correlators:

 C�ij �t� � Z�ije
�tE� � Z�ije

��T�t�E� ; (12)

where we have projected with P�, and

 C�ij �t� � �Z
�
ije
�tE� � Z�ije

��T�t�E� ; (13)

when using P�. These two matrices are combined to

 C�t� � 1
2�C

��t� � C��T � t��; (14)

to improve statistics. This gives rise to the final correlator
C�t� which we then use in the variational method. The
positive parity states are obtained from the correlator at
small t running forward in time, while the negative parity
states are found at large time arguments, propagating
backward in time with T � t. As expected, the correlation
matrices C�t� are real and symmetric within error bars and

TABLE I. Dirac structures used for the nucleon, �, � and �
octet, according to Eqs. (5)–(9).

��i�1 ��i�2

i � 1 1 C�5

i � 2 �5 C
i � 3 i1 C�4�5
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we therefore symmetrize the matrices by replacing Cij�t�
with Cij�t� � �Cij�t� � Cji�t��=2 before diagonalization.

Our pointlike operators will couple to the correct spin
states only in the continuum limit, when rotational sym-
metry is restored. (This problem is particularly relevant for
operators that contain derivatives [8], which our operators
do not.)

C. Quark sources

In addition to the different Dirac structures, we construct
the interpolators listed in the last section from quarks with
sources created by different amounts of smearing. In par-
ticular, we use Jacobi smearing [15] with two different sets
of parameters (number of smearing steps, amplitude of
hopping term) to create narrow and wide sources. The
shapes of these sources are approximately Gaussian with
�
 0:27 fm for the narrow source and �
 0:41 fm for
the wide source. Details of the source preparation and plots
of the source shapes can be found in [5,10].

Each quark in our baryon interpolators can either be
narrow (n) or wide (w), giving rise to the following eight
combinations for the sources:
 

n�nn�; n�nw�; n�wn�; w�nn�;

n�ww�; w�nw�; w�wn�; w�ww�:
(15)

In this notation the order of the quark fields is understood
as in Eqs. (5)–(11) and the parentheses indicate which
quarks are combined in the diquark combination. Since
the smearing used here is a purely scalar operation, the
assignment of quantum numbers, as given in the last sub-
section, remains unchanged. The sources will be rotation-
ally symmetric in the continuum limit.

Taking into account the different Dirac structures dis-
cussed in the last section, we can work with 24 different
interpolators for nucleon, �, �, and � octet. For the �
singlet and the � we have only one Dirac structure and
consequently a total of eight different interpolators. We
remark that in the final analysis not all interpolators are
used. We prune the maximal correlation matrix and remove
some of the correlators that couple only weakly to the
physical states or add no new information, thus enhancing
the numerical noise. The criterion for the selection of the
interpolators is the optimization of the quality of the pla-
teaus in the effective mass

 aM�k�eff

�
t�

1

2

�
� ln

�
��k��t�

��k��t� 1�

�
: (16)

D. Parameters of the simulation

We work with quenched gauge configurations generated
with the Lüscher-Weisz action [17]. We use two sets of
lattices, 203 � 32 and 163 � 32, at couplings� � 8:15 and
� � 7:90 corresponding to lattice spacings of a �
0:119 fm and a � 0:148 fm, determined from the
Sommer parameter in [18]. Thus for both lattices we

have a spatial extent of L
 2:4 fm. The two different
values of the lattice constant a allow us to assess the cutoff
dependence. The parameters of the gauge configurations
are collected in Table II.

Our quark propagators are computed using the chirally
improved (CI) Dirac operator [19]. The CI operator is a
systematic approximation of a solution of the Ginsparg-
Wilson equation [20] with good chiral properties [21]. We
remark that the CI operator has one term which is next-to-
nearest neighbor. This has to be kept in mind when select-
ing fit ranges for masses. Exactly what is to be considered a
safe minimum time separation before fitting is not, how-
ever, a simple matter. In the present case, we limit our-
selves to values larger than �t � 2.

We work with several quark masses in the range am �
0:02; . . . ; 0:2, leading to pion masses down to 350 MeV.
For setting the strange quark mass we use the K meson
with the light quark mass extrapolated to the chiral limit.

Our quark sources are placed at t � 0 and the general-
ized eigenvalue problem (3) is normalized at t0 � 1a. The
final results for the baryon masses were obtained from a
fully correlated fit to the eigenvalues. The errors we show
are statistical errors determined with single elimination
jackknife.

III. RESULTS

A. Effective masses, eigenvectors and fit ranges

Let us begin our presentation with a discussion of effec-
tive masses (16) for the nucleon system. For positive parity
the combination of the six operators n�ww��1�, w�wn��1�,
w�ww��1�, n�ww��3�, w�wn��3�, w�ww��3� (the upper index
denotes the choice of Dirac structures according to Table I)
gives the strongest signal. For negative parity we used the
4� 4 correlation matrix built from n�nn��1�, w�nn��1�,
n�nn��2�, w�nn��2�.

In Fig. 1 we compare the effective mass plots for posi-
tive and negative parity nucleons from our two lattices at
different values of the bare quark mass: am � 0:05, 0.1, 0.2
for 163 � 32 and am � 0:04, 0.08, 0.16 for 203 � 32.
These numbers were chosen such that they give rise to
approximately equal pion masses for the two lattice spac-
ings used. The plots also contain the nucleon masses in
lattice units as obtained from a correlated fit of the propa-
gator (horizontal bars giving the central value plus and
minus the statistical error). The figure shows clear, long
plateaus for the ground state masses, while the signals for

TABLE II. Parameters of our simulation. We list the lattice
size, the inverse coupling �, the number of configurations, the
lattice spacing a and the cutoff a�1.

Size � Confs. a (fm) a�1 (MeV)

203 � 32 8.15 100 0.119 1680
163 � 32 7.90 100 0.148 1350
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excited states have larger error bars and shorter plateaus.
Furthermore the quality of the data decreases as the quarks
become lighter—a feature well known in lattice
spectroscopy.

Another important piece of information comes from the
eigenvectors. In Fig. 2 we show the six entries of the lowest
three eigenvectors corresponding to ground, first and sec-
ond excited states (top to bottom) in the positive parity
nucleon channel. Again we compare the results for our two
lattice sizes using quark mass values which give rise to
essentially the same pion mass. For each value of t the
respective eigenvectors are normalized to unit length.

It is interesting to note that the eigenvectors are only
weakly dependent on t (actually this can be shown from the
generalized eigenvalue problem). The entries form pla-
teaus which are very long for the ground states. Also, for
the excited states, they often contain four to eight values of
t. Typically these plateaus extend at least over the same
number of t values as the effective mass plateaus—often
they are even longer by one or two points.

As in the case of effective masses, the formation of the
eigenvector plateaus indicates that the channel is domi-
nated by a single state. Thus, the eigenvector plateaus
provide an important tool for the reliable identification of
the t intervals where the eigenvalues can be used for a fit.
Indeed, sometimes it is the eigenvectors which prevent one
from fitting ‘‘quasiplateaus’’ in the effective mass. Because
of relatively large statistical errors in the effective masses,
the data sometimes resemble a plateau and it is only the
absence of a plateau in the corresponding eigenvectors
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FIG. 1 (color online). Effective mass plots for nucleon ground and excited states. We compare the results from our coarse (163 � 32,
a � 0:148 fm, amq � 0:05, 0.1, 0.2, top to bottom) and fine (203 � 32, a � 0:119 fm, amq � 0:04, 0.08, 0.16) lattices. The solid lines
are the results from correlated fits of the eigenvalues. They represent the fit result plus and minus the corresponding error.
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FIG. 2 (color online). Eigenvectors for nucleon ground and
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eigenvector components of ground, first and second excited
states.
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which allows us to conclude that a quasiplateau is not
conclusive. We implemented this strategy and now fit the
eigenvalues only where we also see eigenvector plateaus.

We finally remark that the values for the eigenvectors are
almost exactly the same for the two values of the cutoff we
consider (the left-hand side plots are for a � 0:148 fm, the
right-hand side plots are for a � 0:119). Although the
entries of the eigenvectors cannot be expected to scale
(they are linear combinations of matrix elements of our
interpolators with the physical states), it is reassuring for
the application of the method that no large discrepancies
are observed.

B. Nucleon

As already discussed in the last section, the positive
parity nucleon masses were extracted from the 6� 6 cor-
relation matrix of n�ww��1�, w�wn��1�, w�ww��1�, n�ww��3�,
w�wn��3�, w�ww��3�, while for negative parity the 4� 4
correlation matrix built from n�nn��1�, w�nn��1�, n�nn��2�,
w�nn��2� was used. Of course these combinations were
used for all quark masses. For the positive parity ground
state we could determine the mass for all our quark masses.
For the excited nucleon states of positive parity the com-
bined assessment of effective masses and eigenvector pla-
teaus did not allow for a trustworthy extraction of the
corresponding nucleon masses for the two smallest quark
masses.

We identify two excited states of positive parity which
do not have very different masses for the whole quark mass
region where we see a signal. This is consistent with our
previous observation on a smaller lattice [5]. These are two
physically distinct states since they are observed in differ-
ent eigenvalues of the correlation matrix and the corre-
sponding eigenvectors are orthogonal. Some additional
efforts are required to properly identify the nature of our

quenched excited states. We follow the strategy of Ref. [5],
i.e., we trace the states from the heavy quark region
towards the physical limit.

In the heavy quark region, where we obtain the best
signals, the quenching and chiral symmetry effects are less
important and the naive quark picture is adequate. Then we
know a priori, that there must be two approximately de-
generate excited states of positive parity. The first one is a
member of the 56-plet of SU(6) and the second one belongs
to the 70-plet. In the excited 56-plet state, as well as in the
ground state 56-plet (the nucleon), all possible quark pairs
have positive parity. Then it follows that the signal from the
nucleon, as well as from the excited 56-plet state, can be
seen with those interpolators that contain two-quark sub-
systems of positive parity (these are the ones with i � 1, 3
from Table I). On the other hand, the positive parity 70-plet
state contains both positive and negative parity two-quark
subsystems, and can be seen with the i � 2 interpolator,
where the ‘‘diquark’’ has negative parity. This picture is
confirmed in the heavy quark limit of our results. If we
construct our correlation matrix with the i � 1 and/or i �
3 interpolators, we find both the ground state (the nucleon)
and two excited states of positive parity, while only one
state is observed with the i � 2 interpolator. This state
corresponds to the positive parity excited state.

Using the fingerprint from the eigenvectors, we are able
to trace these states from the heavy quark region, where
their physical nature can be safely identified, to the light
quark region (down to m	 � 450 MeV), where they still
remain approximately degenerate. Clearly these signals,
extrapolated to the physical region, remain essentially
higher than the experimental states N(1440) and N(1710)
(cf. Fig. 3). Phenomenologically the latter states are as-
cribed to the 56-plet and 70-plet, respectively.

The discrepancy between our results and the experimen-
tal numbers is probably partly due to quenching, where a
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FIG. 3 (color online). Ground and excited state nucleon masses versusM2
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a � 0:148 fm, open symbols for 203 � 32, a � 0:119 fm. The left-hand-side plot shows the positive parity states; the right-hand side
is for negative parity. The experimental data are included as filled circles.

EXCITED HADRONS ON THE LATTICE: BARYONS PHYSICAL REVIEW D 74, 014504 (2006)

014504-5



significant part of chiral physics is absent. Also, finite
volume effects cannot be excluded (our physical volume
is 2.4 fm and large finite volume effects can be anticipated
for excited states [6]).

Note that the perturbative gluon exchange between va-
lence quarks, characteristic of the naive constituent quark
model, is adequately represented in the quenched calcula-
tion. The discrepancy of our results with the experimental
ones hints that it is the chiral physics, partly missing in
quenched QCD, that could shift both positive parity excited
states (and especially the Roper state) down [22].

Our results for the nucleons are presented in Fig. 3. The
left plot is for positive parity, the right for negative parity.
Filled symbols are used for the 163 � 32, a � 0:148 fm
lattice, open symbols for 203 � 32, a � 0:119 fm. The
filled circles represent the experimental masses.

The results for the positive parity ground state (left plot,
downward pointing triangles) agree well with the experi-
mental value (for the chiral extrapolation of our data see
Sec. III F). Furthermore, the data show almost no cutoff
effects. For the first excited state (circles) the results for the
two values of the cutoff differ by about one sigma, while
for the second excited state (upward pointing triangles) the
two data sets agree. However, both excited states extrapo-
late to values about 20%–30% larger than the experimental
numbers.

For negative parity we mainly fit ground and first excited
states. Only for the two largest quark masses on the finer
lattice can we extract the second excited mass. We find that
the lowest two states are nearly degenerate, but extrapolate
to the physical masses within error bars (compare
Sec. III F). Cutoff effects are clearly seen only for small
quark masses. Since the negative parity ground and first
excited states are nearly degenerate, we checked that they
are indeed different by inspecting the eigenvectors and
following their behavior down from the heavy quark re-
gion. Entries of the eigenvectors at quark mass am � 0:06
are shown for our 203 � 32 lattice in Fig. 4. In contrast to

the positive parity excited states, the negative parity states
fit the experimental data well. This is expected since the
negative parity states have the mixed flavor-spin symmetry
�21�FS and experience only small chiral effects [22].

C. � and �

Those � and � resonances which belong to the octet are
structurally identical to the nucleon: only one and two,
respectively, of the light quarks are replaced by a strange
quark. Consequently, their analysis and also the results are
only a variation of what has been found for the nucleon
system. We use the same combination of interpolators in
the 6� 6 (for positive parity) and 4� 4 (negative parity)
correlation matrices as we did for the nucleons.

We present our results for the octet � and � masses in
Fig. 5. As for the nucleon system, the positive parity � and
� ground states are compatible with the experimental
numbers and essentially no cutoff effects are visible.
Concerning the excited positive parity states, only the first
excited states show notable cutoff effects, while the masses
of the second excited states from the two lattices are
compatible within error bars. For the �, where at least
the first excited state is classified, our data extrapolate to a
number which is about 20% larger than the experimental
result, similar to the nucleon case.

For negative parity, we find two nearly degenerate states
which show clear cutoff effects for the smaller quark
masses. For the � the data are compatible with the known
states. For the negative parity � our data extrapolate to
two states near 1800 MeV (see also the discussion in
Sec. III F).

D. �

For � we have considered two different kinds of inter-
polators; one which is a pure flavor singlet and one which
has mainly overlap with a flavor octet.
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FIG. 4 (color online). Eigenvectors for nucleon ground and first excited negative parity states. The data are for our 203 � 32 lattice at
am � 0:06.
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For the flavor octet � (see Fig. 6) we obtain results
which are similar to the results of the other flavor-octet
baryons. Even the same combination of sources used forN,
� and � turns out to be the optimal one also for the � octet
channel.

For the flavor singlet � we are mainly interested in the
ground state in both parity channels. We have therefore
used only a single interpolator, the one where all quarks are
smeared narrowly (choosing a different smearing combi-
nation does not change the results).

The interesting observation is that while the negative
parity flavor-singlet state extrapolates to the mass which
is essentially higher than ��1405�, which is consistent
with previous quenched lattice results, the flavor-octet
negative parity ground state signal is consistent with the
��1405�. Within the simple quark model picture the nega-
tive parity pair 1=2�, ��1405� � 3=2�, ��1520� is a flavor
singlet. However, starting from the early Dalitz work it is
also understood that at least a significant part of ��1405�
could be due to �KN physics [23]. The �KN bound state
system can couple to the flavor-octet interpolator and our
results hint at the �KN nature of ��1405�. It would be very

interesting to study the 3=2�, ��1520� resonance and to
see whether it is a flavor-singlet or flavor-octet state.

E. �3=2 and �3=2

As already discussed in the previous section, our inter-
polators for �3=2 have to be spin projected to obtain
correlators of states with definite quantum numbers.
After the projection we are left with a set of eight inter-
polators which differ only in the smearing combination of
the quarks. From these we have chosen different subsets
and found that the dependence on the chosen subset is only
marginal. In the end, we decided to use the combinations
n�nn�, w�nn�, n�nw�, w�nw�, n�ww�, w�ww� for both
parity channels.

In Fig. 7, we present the results for the �3=2 and �3=2

masses. The positive parity states are shown in the left
plot; the right plot is for negative parity. The vertical
lines in both plots mark the values of m2

	 correspond-
ing to the physical strange quark mass, which has
been determined from a fit to the K-meson mass in a
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separate calculation on the two lattices. At these values of
the pion mass we extract the masses for the �3=2 resonance
from our results for the �3=2. It is remarkable that the
ground state �3=2 lies right on top of the experimental
value.

The results for the positive parity ground states of �3=2

show significant discrepancies with the experimental re-
sults. However, this is not unexpected and has already been
observed by other groups [7]. The Roper-like state,
��1600�, is not reproduced either. In both cases the most
probable explanation would be a lack of the proper chiral
dynamics in quenched QCD. Given the fact that the �
ground state is perfectly reproduced, one concludes that
this missing chiral dynamics becomes especially important
at the quark masses below the strange quark mass.

On the negative parity side we could only reliably fit the
ground state and only on the fine lattice do our data reach
the strange quark mass such that the mass of the negative
parity �3=2 can be determined. Extrapolation to the physi-
cal limit is consistent with ��1700�.

F. Chiral extrapolations for the fine lattice

Where the data are sufficient, we perform a chiral ex-
trapolation of our results. For excited states the form of the
chiral extrapolation is not known from chiral perturbation
theory and we extrapolate linearly in m2

	. Since in this
paper the focus is on the excited states, the extrapolation
for the ground states is also kept simple—we use second
order polynomials inm	 there, which is the structure of the
leading terms in quenched chiral perturbation theory [24].
Since for some of the states we still observe cutoff effects,
we extrapolated only the data from the finer lattice.

For positive parity the results of the chiral extrapolation
are presented in the left plot of Fig. 8. We remark that the
numbers for the � are obtained by an interpolation to the
strange quark mass. While the ground states come out
reasonably well for a quenched calculation, the results
for the excited states are systematically 20%–25% above
the experimental numbers (where known). The most likely
explanation is that quenching removes some important
piece of chiral physics, which is actually responsible for
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the proper mass of excited positive parity states. Significant
finite volume effects cannot be ruled out either.

For negative parity states (right plot of Fig. 8) the results
are compatible with the experimental numbers (where
known), although the statistical errors are larger. Also,
here we cannot exclude that cutoff effects push our num-
bers up a little bit, but from the comparison of the results on
our two lattices we estimate that this effect is not larger
than the statistical error. Again the result for � is obtained
from an interpolation to the strange quark mass. One may
expect that quenching effects are essentially smaller for the
negative parity channel states than for the positive parity
excited states. This is expected a priori, since all low-lying
negative parity states have the mixed flavor-spin symmetry
�21�FS and hence are affected by the chiral dynamics only
slightly [except for the ��1405�] [22].

IV. SUMMARY

In this article we presented a quenched spectroscopy
calculation of excited baryons using the variational
method. We use interpolators with different Dirac struc-
tures. Furthermore each quark can either have a narrow or a
wide source such that the states can have nodes in their
spatial wave function.

For the positive parity baryons we find that the ground
state masses are compatible with the experimental num-
bers, while for the excited states the masses are systemati-
cally 20%–25% above the experimental numbers. We
believe that the failure to reproduce the masses of the
positive parity excited baryons is indeed mainly due to
quenching where a significant part of chiral physics is
missing. Large finite volume effects cannot be excluded
either.
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For negative parity, we find that our masses are in
reasonable agreement with the experimental numbers,
although here our statistical errors are larger and a further
lowering of our results for a lattice with a higher cutoff
cannot be excluded.

In some of the channels we analyze, the corresponding
baryons are not yet classified [25]. For four of these
channels we believe that our data are strong enough to
quote the final results as a prediction: The first excited
positive parity � state, the negative parity � ground state,
and the ground and first excited negative parity � states.

The two � states are included in this list since at the
strange quark mass the chiral dynamics is less important

and also our results do not need to be extrapolated to the
chiral limit. Concerning the two negative parity � states
we believe that the good results of the structurally very
similar negative parity nucleons and � baryons justify the
prediction of the mass of the negative parity ground and
first excited states in the � channel. Our final numbers for
the masses of the four states are listed in Table III.
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