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Green’s functions are a central element in the attempt to understand nonperturbative phenomena in
Yang-Mills theory. Besides the propagators, 3-point Green’s functions play a significant role, since they
permit access to the running coupling constant and are an important input in functional methods. Here we
present numerical results for the two nonvanishing 3-point Green’s functions in 3d pure SU(2) Yang-Mills
theory in (minimal) Landau gauge, i.e. the three-gluon vertex and the ghost-gluon vertex, considering
various kinematical regimes. In this exploratory investigation the lattice volumes are limited to 203 and
303 at � � 4:2 and � � 6:0. We also present results for the gluon and the ghost propagators, as well as for
the eigenvalue spectrum of the Faddeev-Popov operator. Finally, we compare two different numerical
methods for the evaluation of the inverse of the Faddeev-Popov matrix, the point-source and the plane-
wave-source methods.
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I. INTRODUCTION

The nonperturbative properties of Yang-Mills theory are
still an open and challenging problem, especially the issue
of confinement. Nonetheless, much progress has been
made in their understanding over the decades. One central
element in these investigations are Green’s functions,
which can describe a quantum field theory completely. In
particular, their infrared behavior has been related to con-
finement: in two of the most popular scenarios of confine-
ment, the Gribov-Zwanziger scenario [1– 4] and the Kugo-
Ojima scenario [5], a specific behavior is predicted for the
2-point Green’s functions—the propagators—in Landau
gauge.

According to these scenarios, the Faddeev-Popov ghost
propagator should be enhanced in the infrared limit when
compared to a massless-particle pole, while the gluon
propagator should vanish. Calculations using functional
methods agree with these predictions and have found that
the propagators show a powerlike behavior in the far
infrared region, with characteristic exponents. These re-
sults have been obtained using Dyson-Schwinger equa-
tions in various dimensions [3,6–8] and have been
confirmed by renormalization group methods [9]. On the
other hand, these methods rely on approximations concern-
ing the higher n-point Green’s functions, especially the
three-point vertices. Thus, it is important to check explic-
itly whether the assumptions made for the vertices in these
methods are justified. This has been done, again using
functional methods, but as of yet only for specific momen-
tum configurations of the n-point Green’s functions and in
the far infrared limit [10,11], or using further approxima-
tions [11,12]. In both cases the results are consistent with
the assumptions made so far.

Numerical studies of lattice gauge theories also support
the two confinement scenarios described above, confirm-
ing the infrared enhancement of the ghost propagator [13–
16] and the suppression of the gluon propagator (in the 3d
case) at low momenta [17,18]. Let us recall that, in order to
probe the infrared limit, one needs to use very large lattice
volumes. Recently, in four dimensions, investigations have
been performed also considering (strongly) asymmetric
lattices [19], in order to have access to small momenta
while keeping the lattice volume relatively small. The
results obtained show an infrared suppression of the gluon
propagator. However, these simulations are affected by
systematic effects [20,26], making it difficult to extract
quantitative information from this type of lattices.

Let us stress that the agreement between the functional
methods and the lattice data is still at the qualitative level.
In particular, it is still not clear if the numerical data
support a gluon propagator vanishing in the infrared
[18,21]. Recent studies by functional methods [22] suggest
nontrivial effects related to the use of discretized space-
time on compact manifolds, which could be responsible for
this discrepancy. Let us also recall that, in the continuum, a
finite (nonzero) gluon propagator at zero momentum seems
to be compatible with the Gribov-Zwanziger scenario only
in the case of an infrared enhanced ghost-gluon vertex
[23,24]. On the other hand, such an enhancement would
be at variance with results from functional methods [10–
12] and from recent lattice studies [25,26].

In this work we present an exploratory study of the
Landau gauge three-gluon vertex and of the ghost-gluon
vertex for various momentum configurations, in the three-
dimensional pure SU(2) case. After this exploratory study
we will be able to consider (for the interesting cases) very
large lattice volumes and to probe the limit of small
momenta. This is the first numerical study of these vertices
in the three-dimensional case. Clearly, the 3d simulations
are computationally less demanding than those in 4d and
they may help to get a better understanding of the four-
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dimensional case. Furthermore, results in three dimensions
are of interest in their own right, as three-dimensional
Yang-Mills theory is the (most relevant part of the)
infinite-temperature limit of its four-dimensional counter-
part [27]. In addition, a connection exists between 4d
Yang-Mills theory in Coulomb gauge and 3d Yang-Mills
theory in Landau gauge [11,28].

Let us note that previous lattice studies of these vertices
in the 4d case [25,29–31] usually focused on specific
momentum configurations, mostly with the aim of extract-
ing the running coupling constant and for comparison to
perturbative studies. In this preliminary work we use sev-
eral kinematical configurations in order to test the numeri-
cal methods employed and to study the influence due to
discretization and to finite-volume effects. In addition, we
present results for the propagators and for the spectrum of
the Faddeev-Popov operator, which plays an important role
in the Gribov-Zwanziger scenario [1–4,32].

In Sec. II the technical details for the generation of the
configurations, the gauge-fixing procedure and the error
analysis are given. We report definitions and results for the
propagators in Sec. III and for the vertices in Sec. IV. A
summary and outlook conclude this work in Sec. V.

II. GENERATION OF CONFIGURATIONS

The action considered is the usual, unimproved Wilson
action [33] for the SU(2) gauge group. Configurations are
generated using a hybrid-over-relaxation (HOR) update,
consisting of five over-relaxation [34] and one heat-bath
sweeps. For the heat-bath update, a mixed Creutz [35] and
Kennedy-Pendleton [36] algorithm is employed. The latti-
ces have volumes V � N3 � 203 and 303, and calculations
have been performed at � � 4:2 and � � 6:0. We use 200

HOR updates for thermalization and 40 or 45 HOR updates
between evaluation of the Green’s functions. The results
have been obtained in multiple independent runs using hot
initial configurations.

For the extraction of the vertices, large statistics have
been necessary. Table I lists the precise values. Also, the
expectation value of the plaquette is given for each lattice
volume and � value. The results are in agreement with
[18,37]. The error on the plaquette is the statistical error
including a correlation-time analysis. We always find that
the integrated autocorrelation time [38] is less than 1 HOR
sweep. Following Ref. [18] we also evaluate the inverse
lattice spacing (in GeV).

The gauge fixing to Landau gauge has been performed
using a stochastic-over-relaxation method [39] with a self-
adapting acceptance probability. The condition for gauge
fixing has been a test on the quantity [39]
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which was required to be less than 10�12. Here we use the
definitions
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1
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Also, fU��x�g is a thermalized lattice configuration, fg�x�g

TABLE I. For each lattice volume V and coupling � we report here the average value of the
plaquette hPi, the inverse lattice spacing 1=a (in GeV), the number of independent runs and the
number of configurations considered for the evaluation of propagators and vertices. The values
of the plaquette, the data for the propagators and the eigenvalue spectrum (reported in Sec. III)
have been obtained using the data set labeled Propagators. On the other hand, the propagators
involved in the determination of the vertices have been determined considering the same data set
as the corresponding vertex. Finally, note that the set labeled Three-gluon vertex includes all the
configurations considered in the other two data sets.

Propagators
Volume � hPi 1=a [GeV] Runs Config.

203 4.2 0.741865(5) 1.136(8) 19 6161
303 4.2 0.741860(2) 1.136(8) 53 10229
203 6.0 0.824781(3) 1.733(8) 18 5777
303 6.0 0.824781(1) 1.733(8) 48 10099

Ghost-gluon vertex Three-gluon vertex
Volume � Runs Config. Runs Config.
203 4.2 19 6903 38 13064
303 4.2 36 11052 89 21281
203 6.0 17 7004 35 12781
303 6.0 16 11172 64 21271
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represents the gauge transformation applied on the link
variables U��x�, the symbol y indicates Hermitian con-
jugate, N� is the lattice side in the � direction, d is the
space-time dimension (3 in our case), e� is a positive unit
vector in the � direction and �c are the three Pauli matri-
ces, normalized as �2

c � 1. Both the link variables U��x�
and the gauge-transformation matrices g�x� are elements of
the SU�Nc� group (in the fundamental Nc � Nc represen-
tation). In order to speed up the calculation, the quantity e6

was not evaluated for each stochastic-over-relaxation
sweep, but an adaptive-predictor method has been used
for each configuration. Thus, in some cases we obtain for
e6 a value considerably smaller (by some orders of magni-
tude) than 10�12. Nevertheless, we usually found for the
quantity e6 a final value between 10�12 and 10�13. No
results on Gribov-copy effects will be given in this explor-
atory study, but tests using relatively small statistics, i.e.
generating 20 Gribov copies for each configuration and
considering only a small subset of thermalized configura-
tions, suggest that the effects are at the quantitative rather
than at the qualitative level.

All errors given for the propagators and the vertices have
been calculated using a standard bootstrap method with
1000 bootstrap samples. The quoted errors represent a 67%
confidence interval.

Most of the results shown here have been obtained using
a code developed independently from the one used in
Ref. [18] (see also [40]). Nonetheless, when possible, we
checked that results obtained with the two codes agree for
propagators and vertices.

III. PROPAGATORS

A. Gluon propagator

The gluon propagator is given by the correlation func-
tion (see for example [15])

 Dab
���p� �

1

V
hAa��p�A

b
���p�i; (4)

with the momentum-space lattice gluon field defined as
[30]

 Aa��p� � e�i�p�=N
X
x

e2�ipx=N

4i
tr��U��x� �U��x����a�:

(5)

Here the components p� of p get the integer values
�N=2� 1; . . . ; N=2 (for even lattice sides and for sym-
metric lattices with N� � N). Note that we do not divide
the Fourier transform of the gluon field by the lattice
volume V � N3.

As for the exponential prefactor exp�i�p�=N� �
exp�i�p�a=L�, it allows one to obtain an improved lattice
Landau gauge condition [30], i.e. the continuum condition
@ 	 A � 0 is recovered with corrections O�a2�, instead of

the corrections O�a� obtained when this prefactor is ne-
glected. This exponent also appears naturally in a weak-
coupling expansion of lattice gauge theory [41]. Note that
this factor is a discretization correction. Indeed, it goes to 1
in the limit a! 0 while keeping the physical lattice size
L � aN fixed. Furthermore, it is equal to 1 in the infrared
limit p! 0. This factor cancels when evaluating the scalar
part of the gluon propagator [see Eq. (6) below], but in
general not for vertices. An exception is e.g. the orthogonal
configuration of the ghost-gluon vertex considered below
(see Sec. IV). Numerical studies [30,42] have verified that
this factor is also necessary in order to obtain the correct
tensor structure of Green’s functions involving gluon
fields.

After contracting Eq. (4) with a transverse projector and
a unit matrix in color space, the scalar part of the gluon
propagator is given by

 D�p� �
1

VN

X
�;a

h�<Aa��p��2 � �=Aa��p��2i; (6)

where <Aa��p� and =Aa��p� indicate, respectively, the real
and the imaginary part of Aa��p� and the normalization N
is given by dNc for p > 0 and by �d� 1�Nc for p � 0. The
propagator is by definition inherently positive semidefinite.
Let us recall that in minimal Landau gauge one has

 

X
�

P�A��p� � 0; (7)

where the components of the physical momenta (denoted
by capital letters when they are in lattice units) are given by

 P� � 2 sin
�p�
N�

: (8)

Results will be presented as a function of the magnitude of
the physical momentum p � jPj=a (in GeV). Note that,
with our notation, the continuum gluon propagator is ob-
tained considering the product �a2D�k�. Indeed in d di-
mensions one has � � 2Nc=�g2a4�d�. Also, with Nc � 2,

the lattice quantity 2Aa��x�=�ga� �
����������������
�=ad�2

p
Aa��x� goes to

the continuum quantity Aa��x� in the formal continuum

limit a! 0. In the same limit,
��������������
�ad�2

p
Aa��p� converges

to the continuum momentum-space gluon field Aa��p�.
Thus, for any dimension d, the lattice quantity �a2D�k�
converges to the continuum gluon propagator in momen-
tum space.

It is necessary to evaluate the gluon propagator for
various momentum configurations in order to determine
the vertices. In addition, some extra momentum configu-
rations have been considered to check effects related to the
breaking of rotational invariance. The various kinematical
configurations are given in Table II. Let us note that, in
general, for a given momentum p one has Aa��p� � Aa��p�,
when � � �. For example, if the momentum is aligned
along the �-direction, then Aa��p� vanishes for each color
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component due to the relation (7) or, equivalently, due to
the constancy of the quantity q��x�� defined in Eq. (2).

The results for D�p�p2 and D�p� are shown in Fig. 1 for
the 303 lattice volume and the two � values considered.
The statistical errors are below 1%, thus systematic errors
are clearly visible. In particular, violation of rotational
symmetry is the dominant effect and is of the order of
several percent. In addition, finite-physical-volume effects
are visible, especially in the far infrared, when going from
� � 4:2 to � � 6:0. The latter effect is much more pro-
nounced for the 203 lattices. Altogether, the systematic
errors are the dominating effect at this level of statistics.

At the largest momentum (for � � 6:0) the propagator
is about 6% or 5.5% larger than its resummed one-loop
perturbative value [8] (which itself deviates from the tree-
level value by about 3.5%) on the 203 and the 303 lattices,
respectively. This discrepancy cannot be explained by re-
moving tadpole contributions from the definition of the
gluon field (see for example [15]). Indeed, if we consider
[43] the gauge invariant definition of the tadpole factor
given by u0 � hPi1=4, where hPi is the average value for
the plaquette, we find (see Table I) that the gluon propa-
gator is multiplied by 1=u2

0 
 1:1610 at � � 4:2 and by
1=u2

0 
 1:1011 at � � 6:0. This clearly enhances the dis-
crepancy between the data and the resummed leading-
order perturbation theory. On the other hand, one should
recall that, by changing the lattice discretization for the
gluon field (see for example [44] and references therein),
one finds a gluon propagator that differs by a global multi-
plicative constant. In particular, one can easily find defini-
tions of the gluon field for which the gluon propagator is
sensibly smaller than that obtained with the standard defi-
nition (see for example Table 1 in Ref. [45]). Of course,
different lattice discretizations converge to a common
result as the continuum limit is approached [45].

Finally, we note that the combinations of lattice size and
� values considered here are not sufficient to reach the
infrared regime, where the bending over of the propagator
has been observed [18]. Nevertheless, one clearly sees
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FIG. 1. The gluon dressing function D�p�p2 (top) and the
gluon propagator D�p� (in GeV�2, bottom) as a function of p
(in GeV). Open and full symbols correspond, respectively, to
� � 4:2 and to � � 6:0. In both cases we consider the lattice
volume V � 303. Squares and triangles correspond to plane and
diagonal momentum configurations, respectively.

TABLE II. Kinematical momentum configurations considered for the propagators. The col-
umns Gluon and Ghost identify whether these configurations have been used for the evaluation
of the propagators. The columns nx, ny and nz give the components of the momentum. The Type
is used for later identification of classes of momenta. The quantities pmin and pmax (in MeV) are
the smallest and the largest momenta. The smallest momentum is evaluated at � � 4:2, while
the largest is evaluated at � � 6:0 (in both cases we used the 303 lattice volume). The variables n
and m run independently over all possible positive integer values 0; . . . ; N=2 (but for the ghost
propagator one cannot consider the zero momentum case).

Type nx ny nz pmin pmax Gluon Ghost

Plane n m 0 238 4902 �p �p
Plane n �n 0 336 4902 �p
Plane �n 0 n 336 4902 �p �p
Plane 0 n �n 336 4902 �p �p
Diagonal n n n 411 6004 �p �p
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from Fig. 1 that the propagator is less singular than 1=p2

for momenta smaller than about 1 GeV.

B. Ghost propagator

The numerical evaluation of the ghost propagator is
considerably more complicated than that of the gluon
propagator. Indeed, one has to evaluate

 Dab
G �p� �

1

V
h�M�1�ab�p�i; (9)

where Mab�x; y� is the Faddeev-Popov operator, defined in
the continuum as

 � @�Dab
� � ��x� y���@2�ab � gfabc@�Ac��: (10)

Here fabc are the structure constants of the SU�Nc� gauge
group. In Landau gauge, on the lattice, this operator is a
matrix (with color and space-time indices), defined by its
action on a scalar function!b�x� (with color index b) as [2]
 

Mab�x; y�!b�y� � �xy
X
�

�
Gab
� �y��!b�y� �!b�y� e���

�Gab
� �y� e���!

b�y� e�� �!
b�y��

�
X
c

fabc�Ab��y�!
c�y� e��

� Ab��y� e��!c�y� e���
�
: (11)

Here, the sum over repeated indices (y and b) is understood
and Gab

� �x� is given by

 Gab
� �x� �

1

8
tr�f�a; �bg�U��x� �U��x����; (12)

i.e. it is proportional to �ab. Let us recall that in minimal
Landau gauge [2] the gauge-fixed configurations are inside
the first Gribov horizon, implying that the Faddeev-Popov
operator Mab�x; y� is symmetric and positive (in the sub-
space orthogonal to the trivial and constant zero modes).

In order to evaluate the Fourier transform of the inverse
operator1

 �M�1�ab�p; q� �
X
x;y

e2�i�px�qy�=N�M�1�ab�x; y� (13)

the matrix inversion has been performed using the point
source �ac��x0 � 1=V� (see Ref. [46]). Compared to the
inversion using a plane-wave source [47], this method has
the advantage of only N2

c � 1 inversions per configuration,
independently of the number of momenta, instead of N2

c �
1 inversions per configuration and for each momentum

considered. However, as we will see below, statistical
fluctuations are significantly enhanced at large momenta
[46]. Also, note that this procedure is ambiguous with
respect to the sign of the resulting propagator2 (or of the
eigenvalues). Thus, the sign has to be assigned by hand.

Since the Faddeev-Popov operator Mab�x; y� is symmet-
ric and positive, the matrix inversion can be performed
using a conjugate-gradient (CG) method (see for example
[48]). From the numerical point of view, there are two
issues to be careful about. First of all, as finite-precision
arithmetic is used, it is possible for the solution to develop
a component along the (constant) zero modes of the
Faddeev-Popov operator. Thus, it is necessary to reortho-
gonalize the solution at each CG iteration with respect to
this subspace.

The second aspect is related to the convergence of the
CG method. Indeed, in finite precision arithmetic, the CG
method normally loses orthogonality to the Krylov sub-
space already spanned. Thus, the magnitude of the residual
can be incorrect. To compensate for this, an additional,
albeit technical, quality criterion can be considered (see
[48] Sec. 5.3 for details). As a convergence test, we check if
the average of the components of the residual is less than
10�12 and if the additional quality parameter3 is less than
10�13 between two CG iterations. This is usually achieved
after several tens to a few hundreds of iterations. We have
also checked that much weaker convergence tests do not
change the propagators by more than a few percent. Let us
note that one CG inversion of the Faddeev-Popov matrix is
much faster than the gauge-fixing procedure when consid-
ering large lattice volumes.

The results for the color-averaged diagonal ghost propa-
gator are shown in Fig. 2 for the lattice volume V � 303.
Again, the statistical error is essentially negligible com-
pared to the systematic effects. Note that the consequences
of violation of rotational symmetry are much less severe
than in the gluon case, although they are still the dominant
source of systematic errors. As the ghost is a scalar, this
was somehow expected. Also, the finite-physical-volume
errors are somewhat smaller than in the gluon case.
Comparing the lattice data to the perturbative predictions
[8] at the largest momentum (for � � 6:0) we find that the
former are larger by about 6% and 5.5% for the lattice
volumes V � 203 and V � 303, respectively. In this case,
perturbation theory only deviates about 1% from the
asymptotic tree-level value at this momentum. If one con-

1In the general case one considers p � q. However, in the case
of the ghost propagator, one has p � �q due to momentum
conservation. Note that, again, we do not divide by the lattice
volume V when considering the Fourier transform.

2When considering the plane-wave source the ghost propaga-
tor is the expectation value of a positive operator on the plane-
wave state, i.e. the result is always positive-definite. This is not
true with the point-source method. Indeed, one can obtain (on a
given lattice configuration) a negative value for the quantity
�M�1�ab�p�. Nevertheless, on average, the ghost propagator
DG�p� is positive for all values of the momentum p also when
using the point-source method.

3In the present case, due to memory restrictions, we only
consider subsequences of the CG iteration of length 1.

EXPLORATORY STUDY OF THREE-POINT GREEN’s . . . PHYSICAL REVIEW D 74, 014503 (2006)

014503-5



siders tadpole improvement [15], then the ghost propagator
gets multiplied by u0, i.e. by 0.92807 at � � 4:2 and by
0.95298 at � � 6:0, leading to a better agreement with
perturbation theory.

Here we did not try to fit the data for the ghost propa-
gator and obtain an estimate for its infrared exponent.
Nevertheless, from Fig. 2 one clearly sees that DG�p� is
more singular than 1=p2.

We also compared the results obtained using the two
different inversion methods mentioned above (i.e. point-
source and plane-wave-source methods). In the second
case the inversion has been done using a CG method
with even-odd preconditioning and a convergence test
given by jrj2=jr0j

2 � 10�8, where r and r0 are the final

and the initial residuals, respectively. The use of the even-
odd preconditioning usually reduces the number of CG
iterations by about a factor 2. We find that the results
from these two methods agree on the average for the ghost
propagator as well as for the ghost-gluon vertex, discussed
below. As can be seen in Fig. 3, the ghost propagator
obtained using the point source oscillates around the
(smoother) result obtained using the plane-wave source.
This oscillatory behavior is stronger for the ghost-gluon
vertex, but vanishes in both cases when the statistics is
increased, albeit much more slowly for the latter case.

p [GeV]
0 1 2 3 4 5 6

]
-2

(p
) 

[G
eV

G
D

-110

1

10

Ghost propagator

p [GeV]
0 1 2 3 4 5 6

2
(p

)p
G

D

1

1.5

2

2.5

3

Ghost dressing function

FIG. 2. The color-averaged diagonal part of the ghost dressing
function DG�p�p

2 (top) and of the ghost propagator DG�p� (in
GeV�2, bottom) as a function of the momentum p (in GeV).
Open and full symbols are used for � � 4:2 and � � 6:0,
respectively. In both cases we consider the lattice volume V �
303. Squares and triangles correspond to plane and diagonal
momentum configurations, respectively.

p [GeV]
0 0.5 1 1.5 2 2.5 3 3.5 4

(p
)

P
W

G
(p

)/
D

P
S

G
D

0.96

0.98

1

1.02

1.04

Ratio of the ghost propagators from point and plane-wave source

p [GeV]
0 0.5 1 1.5 2 2.5 3 3.5 4

2
(p

)p
G

D

1

2

Ghost dressing function from point and plane-wave source

FIG. 3. In the top panel we show the ghost dressing function
DG�p�p

2 obtained using the plane-wave source (full symbols)
and the point source (empty symbols) for V � 303 and � � 4:2.
Note the logarithmic scale on the y axis. In the bottom panel we
report the ratio of the point-source data (PS) with the plane-
wave-source results (PW) for the ghost propagator. In both
panels, circles denote momenta of type �0; 0; p�, triangles in-
dicate diagonal momenta and the quantities are considered as a
function of the momentum p (in GeV). Here, for both methods,
we considered 380 configurations.
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An important assumption in functional calculations is
that the ghost propagator is color diagonal.4 In Fig. 4 we
show results for the real part of the off-diagonal compo-
nents of the ghost propagator.5 The majority of the points
are compatible with a null result, within the 67%-
confidence interval, and the mean value of the (real part
of the) off-diagonal propagator decreases for all momenta
with increasing statistics. On the other hand, these fluctua-
tions exhibit significantly enhanced tails (see Fig. 5). We
checked that these large fluctuations are in most cases
related to large values of the color-diagonal part of the
ghost propagator and to configurations for which gauge
fixing to Landau gauge required many more iterations than
in the average case. Thus, these tails could be related to the
exceptional configurations observed in [16]. Let us note
that, by using the point-source method [46] for the inver-
sion, one needs very large statistics in order to see a null
average for the off-diagonal points in the infrared. Also,
using this method, the real (respectively, imaginary) part of
the inverse Faddeev-Popov matrix �M�1�ab�p;�p� is sym-
metric (respectively antisymmetric) only on average and

not for each lattice configuration, as is the case when using
the plane-wave source [49].

C. Eigenvalue spectrum of the Faddeev-Popov operator

The CG method has a close relationship with the so-
called Lanczos algorithm, which can be used to extract the
eigenvalues of a matrix [48]. As a consequence, it is
possible to determine the ghost propagator and simulta-
neously obtain information on the eigenvalue spectrum.
Note that only the exact CG algorithm is guaranteed to
obtain the correct spectrum (up to degeneracy) of the
Faddeev-Popov matrix after at most �N2

c � 1�V inversion
steps. On the other hand, working in finite-precision arith-
metic (see Sec. 4 in [48]), the algorithm typically does not
deliver a sufficiently accurate numerical approximation to
all eigenvalues of this matrix. Indeed, as the number of
iterations increases, the method has the property that the
extremal eigenvalues evaluated are progressively improved
approximations of the extremal eigenvalues of the matrix
considered [51]. At the same time, since the procedure is
stopped before all eigenvalues are found, the middle of the
spectrum is usually not reliable and underpopulated.
Moreover, each eigenvalue will be found only once, inde-
pendently of its degeneracy. Still, when averaging over
many configurations—i.e. when considering a histogram
of the eigenvalues found for all the configurations, normal-
ized by the total number of eigenvalues6 —one should be
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Off-diagonal ghost dressing function

FIG. 4. The real part of the color upper-triangular matrix
elements of the ghost dressing function Dab

G �p�p
2 as a function

of the momentum p (in GeV). Open and full symbols indicate
� � 4:2 and � � 6:0, respectively. In both cases we consider the
lattice volume V � 303. Squares and triangles correspond to
plane and diagonal momentum configurations, respectively.

Gaussian plot
Entries  122748
Mean   0.1553
RMS     38.22
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GD
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1
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510
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Off-diagonal ghost propagator at p=238 MeV

FIG. 5. A histogram of the real part of the off-diagonal ele-
ments of the ghost propagator (in lattice units) evaluated at the
smallest momentum for the lattice volume V � 303 at � � 4:2.
We also plot a Gaussian with the same mean and standard
deviation as the histogram of the data.

4We also checked that the real part of the color-off-diagonal
components of the gluon propagator is essentially zero within
statistical errors and that its central value decreases with increas-
ing statistics. Of course, the imaginary part vanishes identically.

5Let us recall that the fluctuations of the imaginary part of the
off-diagonal elements of the ghost propagator are connected to
the possible existence of a ghost condensate [49]. In particular,
non-Gaussian fluctuations could indicate the existence of a
spontaneous-symmetry breaking and a nonvanishing value for
this condensate. (For a different interpretation, see Ref. [50].) In
this work we do not present data for the ghost condensate.

6Doing this normalization for each inversion and each con-
figuration separately does not yield a different result within the
statistical errors.
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able to obtain an idea of the density of the eigenvalues at
both ends of the spectrum. In particular, one can verify
whether the shape of the eigenvalue density (at small
eigenvalues) is flat or increases with the magnitude of the
eigenvalues !, thus gaining information on the validity of
the Gribov-Zwanziger scenario. On the other hand, the
upper end of the spectrum, which is also obtained, is

essentially determined by perturbative contributions and
thus not as interesting.

The results are shown in Fig. 6 (top panel). The full
spectrum is shown for completeness. As said above, the
small density of the spectrum for intermediate magnitude
! of the eigenvalues is very likely an artifact of the
algorithm. For very small magnitude ! (see Fig. 6, bottom
panel) the spectrum shows a linear increase with !. The
steepness is much larger on the larger lattices and it also
seems to increase with the physical volume, i.e. as �
decreases. These results are in qualitative agreement with
those reported in Ref. [32] for the four-dimensional case.
Note, however, that a linear increase at small momenta is
different from the result obtained in Coulomb gauge in four
dimensions [52], where a powerlike behavior has been
observed.

Using a preconditioned CG method we have also eval-
uated the smallest and the largest eigenvalues of the
Faddeev-Popov matrix M. Results are reported in
Table III. For comparison we also give the smallest and
the largest eigenvalues of the lattice Laplacian �� for the
same lattice size. Let us recall that in d dimensions, the
smallest eigenvalue of�� is given by 4sin2��=2N�, while
the largest is equal to 4dsin2���N � 1�=2N�. We see that
the largest eigenvalue of M depends weakly on the lattice
volume V and on the coupling �. On the other hand, for a
given �, the smallest eigenvalue decreases faster than the
corresponding eigenvalue of ��, as the lattice side in-
creases. This is in agreement with the results reported in
[47]. Also, if we consider the smallest eigenvalue of M in
physical units, i.e. if we multiply it by 1=a2, we find the
results reported in Fig. 7. If one tries a fit to data using the
Ansatz a=Lc we obtain that the data are well fitted for c �
2:62�8� (with �=d:o:f: � 1:4). This seems to suggest that
for these lattice volumes and � values we are in the scaling
region for!s and that this eigenvalue goes to zero when the
infinite-volume limit is approached. As a consequence, in
the continuum limit, the average lattice Landau configura-
tion should belong to the first Gribov horizon, supporting
the Gribov-Zwanziger mechanism of confinement.
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Full spectrum of the Faddeev-Popov operator

FIG. 6. The density ��!� of the eigenvalues of the Faddeev-
Popov operator (using the Lanczos method) as a function of their
magnitude ! (in lattice units), normalized by the total number of
eigenvalues. In the top panel we show the complete results while
in the bottom panel only the density for small eigenvalues is
presented. In both cases we considered 100 bins (this explains
the different scale on the y axis). The solid line (in both panels)
refers to the lattice volume V � 303 at � � 4:2. In the bottom
panel, the dashed line correspond to V � 303 at � � 6:0, the
dotted line to V � 203 at � � 4:2 and the dashed-dotted line to
V � 203 at � � 6:0. The total number of eigenvalues deter-
mined are 4 374 822 (V � 203, � � 4:2), 11 312 874 (V � 303,
� � 4:2), 3 549 202 (V � 203, � � 6:0) and 9 862 721 (V �
303, � � 6:0).

TABLE III. Largest and smallest eigenvalues of the Faddeev-
Popov matrix (respectively, !l and !s, both in lattice units) for
each lattice volume V and coupling �. We also report the
corresponding eigenvalues of the lattice Laplacian (for the
same lattice side N). For the lattice volume V � 203 we consider
200 configurations at � � 4:2 and 400 at � � 6:0; for V � 303

we have 380 and 500 configurations at � � 4:2 and 6:0, re-
spectively.

Volume � !l !s !l;Lapl: !s;Lapl:

203 4.2 11.1218(9) 0.0072(2) 11.9261 0.0246
303 4.2 11.1337(5) 0.00275(6) 11.9671 0.0110
203 6.0 11.4050(4) 0.0102(2) 11.9261 0.0246
303 6.0 11.4149(2) 0.00353(7) 11.9671 0.0110
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IV. VERTICES

In Yang-Mills theory (without valence and sea quarks)
there are two nonvanishing 3-point Green’s functions: the
three-gluon vertex and the ghost-gluon vertex. Compared
to the propagators, these are quite complicated since there
are now three kinematical variables. In addition, for the
three-gluon vertex there exist a large number of tensor
structures [53]. Therefore, it is impractical to investigate
all tensor structures for all possible kinematical configura-
tions. Furthermore, due to kinematics, the interesting sig-
nal—i.e. an appropriately defined dimensionless
function—is usually suppressed at large momenta as
1=p6 instead of as 1=p2 (except for some particular mo-
mentum configurations for which it is only suppressed by
1=p4). Thus, it is in general quite difficult to obtain a good
signal/noise ratio at large p.

Let us recall that, due to momentum conservation, the
three momenta of the vertices always lie in one plane and
are completely characterized by the size of two of the
momenta and by the angle	 between them. Two particular
momentum configurations are of special importance. In the
first case two of the momenta are orthogonal with respect
to each other (this configuration will be called here the
orthogonal one). This configuration enters into loop inte-
grals with maximum angular weight7 and, as we will see
below, has the advantage of relatively small statistical
fluctuations. In this case we take the two orthogonal mo-
menta, respectively, along the x and y axis, considering all
possible magnitudes of both momenta independently. If

one of these two momenta vanishes, then one recovers the
kinematical configuration used in several previous lattice
studies of these vertices [25,29–31].

In the second configuration (called here the equal one)
the three momenta have the same magnitude and the angle
	 is equal to �=3. The vertex is then a function of only one
variable. For this configuration the infrared behavior of the
n-point Green’s functions can be taken to be the limit
where all n momenta vanish in the same way, i.e. only
one scale has to be considered. In this case there are
predictions for the behavior of the n-point Green’s func-
tions in the infrared limit, from studies using Dyson-
Schwinger equations (DSEs) [10,11]. Of course, on the
lattice, it is not possible (in general) to select three equal
momenta, for example, in the x� y plane. However, one
can consider the momenta �p;�p; 0�, ��p; 0; p� and
�0; p;�p�, which all have the (lattice) size

���
2
p
P with P �

2 sin��p=N�.
Let us recall that, due to the invariance of the lattice

theory under hyper-cubic transformations, the results
should be invariant by reflection of the momenta. This
implies that—with the exception of p � 0 and of the
midpoint on even lattices—we can average over two dif-
ferent kinematical configurations for each physical mo-
mentum. For the vertices, due to momentum
conservation, we can apply the reflection transformation
only to the independent momenta. In particular, in the
orthogonal case, we can apply the reflection independently
on the two orthogonal momenta, i.e.—for each physical
momentum configuration—we can average over four dif-
ferent kinematical configurations. On the contrary, in the
equal-momenta case, the reflection has to be applied at the
same time on the three momenta, i.e. each time we can
average over two different kinematical configurations. Let
us note that this averaging allows us to cancel exactly, on
each lattice configuration, contributions that would other-
wise be zero only on average, yielding purely imaginary
vertices.

Finally, one has to consider the tensor structure of the
vertices, which is not straightforward for the three-gluon
vertex. In functional-method studies it is particularly inter-
esting to know how different a vertex is from its tree-level
structure. Thus, we consider here the projection of the
vertices on their tree-level values, obtaining a scalar func-
tion normalized to 1 when the tree-level vertex and the full
vertex are equal.

A. Three-gluon vertex

The three-gluon vertex �tl;A3;abc
��� �p; q; k� (with k �

�p� q) at tree-level in the continuum has the form
 

�tl;A3;abc
��� �p; q; k� � �igfabc��q� k����� � �k� p�����

� �p� q������; (14)

while on the lattice one finds [41]
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Smallest eigenvalue of the Faddeev-Popov operator

FIG. 7. Plot of the smallest eigenvalue !s (in GeV2) of the
Faddeev-Popov matrix, as a function of the inverse lattice side
1=L (in GeV), and of the fitting function a=Lc with a � 18:127
and c � 2:6152.

7Let us recall that this angular weight is proportional to sin�	�
in 3d.
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�tl;L;A3;abc
��� �p;q; k� � �igfabcei��p��q��k��=N�� gq� k��

���� cos�p̂�� � � gk�p����� cos�q̂��

� � gp� q����� cos�k̂���: (15)

Note that the cosine factors in the above equation go to 1 in
the formal continuum limit a! 0, for a fixed physical
lattice side L � Na. The same applies to the exponential
prefactor. Here we used the notation

 ~p� � 2 sin�p̂�� � P� (16)

 p̂ � �
�p�
N

(17)

with p� taking values 0; . . . ; N=2. Clearly, the three-gluon
vertex is totally symmetric under the simultaneous ex-
change of color index, Lorentz index and momentum,
and thus completely Bose-symmetric.

The full three-gluon vertex �A
3;abc
��� is not directly avail-

able on the lattice, but one can evaluate the corresponding

full Green’s function [29]

 GA3;abc
��� �p; q; k� �

1

V
hAa��p�Ab��q�Ac��k�i: (18)

As said above, momentum conservation requires k �
�p� q. Because of the vanishing of any vector conden-
sates in Yang-Mills theory, this Green’s function equals the
connected Green’s function, but it is still necessary to
amputate it. The relation of the full vertex �A

3;def

�! �p; q; k�

with the Green’s function is then given by

 GA3;abc
��� �p; q; k� � Dad

�
�p�D
be
���q�D

cf
�!�k��

A3;def

�! �p; q; k�:

(19)

In Landau gauge, one can extract only the transverse part
of the full vertex. In order to project the quantity above on
the tree-level vertex, the following function will be eval-
uated

 GA3
�p; q;	� �

�tl;L;A3;abc
��� �p; q; k�GA3;abc

��� �p; q; k�

�tl;L;A3;abc
��� �p; q; k�Dad

�
�p�D
be
���q�D

cf
�!�k��tl;L;A3;def


�! �p; q; k�
(20)

 �
�tl;L;A3;abc
��� �p; q; k�GA3;abc

��� �p; q; k�

�tl;L;A3;abc
��� �p; q; k�P�
�p�P���q�P�!�k��

tl;L;A3;abc

�! �p; q; k�D�p�D�q�D�k�

; (21)

where the D’s are the scalar gluon propagators. Clearly,
this function is equal to 1 if the full vertex is equal to the
bare vertex. Note that, by contracting the Green’s function
with the lattice version of the tree-level vertex instead of
the continuum version corrects for (relevant) discretization
effects. Also note that the exponential prefactor in Eq. (5)
implies a prefactor exp��i��p� � p
�=N� for the gluon
propagator Dad

�
�p�. Thus, considering Eq. (15), all these
prefactors cancel each other both in the numerator and in
the denominator of Eq. (20) above.

The normalization factor in the denominator is in some
kinematical cases quite simple, but in general very lengthy
and will not be given here explicitly. Also, this normaliza-
tion factor vanishes for the largest momentum in each
momentum configuration due to the cosine factors. Thus,
this momentum cannot be considered. The same applies to
the case where all momenta vanish.

Let us stress that, although the quantity in Eq. (21) is 1 if
the full and the tree-level vertex coincide, it will in general
have contributions from tensor structures not appearing at
the tree level. The situation would be even more compli-
cated in the case of a vertex not totally antisymmetric in
color space. In the continuum, the general tensor structure
of the total color-antisymmetric part of the full three-gluon
vertex is given by [53]

 

�A
3;abc
��� �p; q; k� � �ifabc

�
A�p; q; k�����p� � q��

� B�p; q; k�����p� � q�� � C�p; q; k�

� �p�q� � ���p 	 q��p� � q��

�
S�p; q; k�

3
�p�q�k� � p�q�k��

�
� cyc:perm:; (22)

where A, B, C and S are scalar functions. (See again
Ref. [53] for the symmetry properties of these functions.)
Then, one can verify that, in the continuum, the quantity
(21) contains only contributions from the functions A and
C. For example, in the orthogonal configuration, using the
above equation one finds

 GA3c
�
p; q;

�
2

�
� fxyA�p; q; k� � �x� y��2yA�k; p; q�

� 2xA�q; k; p� � �xy� 2y2�C�k; p; q�

� �2x2 � xy�C�k; q; p�

� xyC�q; p; k��g=�2x2 � 5xy� 2y2�;

(23)
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where x � q2 and y � p2. The expression is lengthier for
other kinematical configurations.

It then only remains to determine the 3-point Green’s
function. This can be done in a straightforward way using
the definition (18) and the Fourier-transformed gauge fields
defined in Eq. (5). The only problem is that the functions
Aa��p� vanish on average. This induces very large fluctua-
tions in the calculation of the Green’s function, particularly
at large momenta. This problem makes the extraction of
the equal-momentum configuration quite complicated. In
the orthogonal configuration the situation is slightly better,
since some field components identically vanish even for
nonvanishing momenta, as discussed in Sec. III, reducing
the statistical noise. Also note that, in the evaluation of
Eq. (21), the Green’s function and the propagators are
calculated independently and divided after averaging
over all lattice configurations. The error can then be de-
termined by error propagation, but due to the smallness of
the statistical errors on the propagators, their errors are
neglected here.

Let us note that, from the discussion in Sec. III A, we
found that (with our notation) the continuum momentum-
space gluon field has mass dimension �1� d=2 while the
gluon propagator, again in momentum space, has mass
dimension �2. This implies that the full Green’s function
defined in Eq. (18) has mass dimension �3� d=2. The
same result can be obtained by considering Eq. (19) after
observing that the three-gluon vertex �A

3;def

�! �p; q; k� has

mass dimension 3� d=2 [see also the tree-level result in
Eq. (14)]. Thus, the quantity considered in Eq. (20) is
inherently dimensionless and we do not have to multiply
it by any power of the lattice spacing a. On the other hand,
in order to get the corresponding continuum quantities we
have to multiply the momentum-space lattice gluon field
and the gluon propagator by

����
�
p

and by �, respectively. It
follows that the scalar function GA3

�p; q;	� has to be
divided by �3=2 in order to obtain the corresponding con-
tinuum quantity.

Three different momentum configurations are shown in
Fig. 8. The first is the momentum configuration used in
[25,29–31] to study the behavior of the strong-coupling
constant. Note that this configuration is not well-defined in
the continuum limit in case the Gribov-Zwanziger scenario
is correct, i.e. if the gluon propagator vanishes at zero
momentum. Of course, on a finite lattice this is not a
problem. In the second case, two momenta are equal and
orthogonal. Finally, the third case corresponds to three
momenta with the same magnitude. Furthermore, the be-
havior of GA3

�p; q;	� as a function of p and q is shown in
Fig. 9.

As said above, the statistical errors are quite large at
large momenta, even after averaging over more than 20 000
configurations. Let us recall that, in some cases, the data
shown in Fig. 8 have been obtained by summing more than
700 different terms. In particular we checked that, at large
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FIG. 8. The scalar function GA3c�p; q;	� defined in Eq. (20).
Full symbols correspond to � � 4:2 and open symbols to � �
6:0; circles are used for V � 203 and triangles for V � 303. In
the top panel we show results for the orthogonal configuration
with one momentum (q) vanishing. In the middle panel we
consider an orthogonal configuration with two momenta having
the same magnitude (p � q). In the bottom panel we plot data
for the case with the three momenta equal (p � q � k).
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p, the central values of the data can change substantially if
one considers different subsets of the whole set of configu-
rations used in the analysis. This suggests that the statisti-
cal error obtained at large p is likely underestimated.

Despite the large statistical fluctuations at large mo-
menta, the vertex clearly decreases in the limit of small
momenta. This behavior can be observed in the three plots
in Fig. 8 and also in Fig. 9, for all directions approaching
the limit p � q � k � 0. On the other hand, at the smallest
momentum point on the 303 lattice at � � 4:2 (see top
panel in Fig. 8), i.e. for the orthogonal configuration, the
vertex is clearly negative. Of course, with our data we
cannot say if the vertex would stay finite or would become
larger (in absolute value) as the zero momentum limit is
approached. Indeed, we know that, with our lattice vol-
umes and � values, the true infrared regime is not reached
yet, since the gluon propagator is not suppressed at small
momenta [18]. Clearly, if the 3-point Green’s function
stays constant in the infrared limit, while the propagators
get suppressed, the vertex �A

3;abc
��� �p; q;	� may be en-

hanced, as predicted by studies using functional methods
in four dimensions [10] and in three dimensions [11].

Finally, in order to test whether other tensor structures
are relevant, the vertex has also been contracted with itself
instead of using the tree-level vertex. Results are not
presented here, but we find that the corresponding scalar
function shows a strong increase compared to the tree-level
behavior at large momenta. This suggests that other tensor
structures also contribute to the vertex in a nontrivial way.

B. Ghost-gluon vertex

The ghost-gluon vertex can be treated essentially along
the same lines as the three-gluon vertex. Let us recall that at
the tree level, in the continuum, this vertex is given by

 �tl;c �cA;abc
� �p; q; k� � igfabcq�; (24)

while on the lattice one finds [41]

 �tl;L;c �cA;abc
� �p; q; k� � igfabcei�k�=N ~q� cos�q̂��: (25)

Again, the cosine and the exponential are lattice artifacts,
going to 1 in the formal continuum limit a! 0. Also, on
the lattice it is only possible to determine the full Green’s
function

 Gc �cA;abc
� �p; q; k� �

1

V
hca�p� �cb�q�Ac��k�i; (26)

where ca (respectively �cb) is the ghost (respectively anti-
ghost) field. Then, the scalar quantity we evaluate is de-
fined by

 Gc �cA�q; k;	� �
�tl;L;c �cA;abc
� �p; q; k�Gc �cA;abc

� �p; q; k�

�tl;L;c �cA;abc
� �p; q; k�Dad

G �p�D
be
G �q�D

cf
���k��

tl;L;c �cA;def
� �p; q; k�

(27)

 �
�tl;L;c �cA;abc
� �p; q; k�Gc �cA;abc

� �p; q; k�

�tl;L;c �cA;abc
� �p; q; k�P���k��tl;L;c �cA;abc

� �p; q; k�DG�p�DG�q�D�k�
(28)
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FIG. 9. The scalar function GA3c�p; q;	� defined in Eq. (20) as
a function of the magnitude of the gluon momenta p and q (for
the orthogonal configuration). Here, for each data point, we plot
only the central value. The data for � � 4:2 and � � 6:0 are
plotted together and they are interpolated by Gouraud shading,
as implemented in the ROOT package [56]. In the top figure we
used data for the lattice volume V � 203; in the bottom one we
consider the lattice volume V � 303. Spikes indicate positions
where due to fluctuations the value is outside the drawing range.
The spike at p � q � 0 is an artifact since this quantity cannot
be evaluated when the three momenta are null.
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 �
�igfabc~q� cos�q̂��G

c �cA;abc
� �p; q; k�

g2Nc�N
2
c � 1�~q� cos�q̂��P���k�~q� cos�q̂��DG�p�DG�q�D�k�

; (29)

where DG is the ghost propagator and we used Eq. (25).
Note that we have neglected in the denominator the color
off-diagonal components of the propagators and used the
relation fabcfabc � Nc�N

2
c � 1�. Also, due to the implicit

contraction of the full Green’s function with a gluon
propagator, only one tensor structure survives, which is
proportional to the incoming antighost momentum q.
Finally, as for the three-gluon vertex, the exponential pre-
factors cancel out in the numerator and in the denominator
of the scalar function defined above.

For the ghost-gluon vertex, the normalization factors are
quite simple and will be given explicitly. In the orthogonal
case, we considered a gluon momentum k aligned along
the y-axis, while the incoming antighost momenta q is
chosen along the x-axis. This implies q�P���k� � q�.
Thus, the denominator in Eq. (29) is proportional to

 

X
�

~q2
�cos2�q̂�� � ~q2

xcos2�q̂x�; (30)

where the last equality follows because the momentum q is
aligned along the x-direction. Clearly, in this case one
recovers the kinematical normalization considered in
Ref. [25]. In the case of equal momenta, the situation is
more complicated and an explicit Gram determinant ap-
pears. Indeed, by choosing the gluon momentum k in the
x� y plane and the incoming antighost momentum q in
the x� z plane, the denominator is proportional to

 

~q 2
xcos2�q̂x�

�
1�

~k2
x

~k2
x � ~k2

y

�
� cos2�q̂z�~q2

z : (31)

In the case of equal components jq̂xj � jq̂zj � jk̂xj �
jk̂yj � jq̂j this expression simplifies to 3~q2cos2�q̂�=2.
Note that, in both cases, the normalization would be the
same in the four-dimensional case, since all momenta
considered are in a three-dimensional subspace. Finally,
it should be noted that the only Lorentz indices of
Gc �cA;abc
� �p; q; k� contributing to the numerator are those

corresponding to nonzero components of the incoming
antighost momentum q. Thus, in the orthogonal configu-
ration the argument of the exponential prefactor appearing
in Eq. (5) is always zero for the Lorentz components
contributing to Gc �cA;abc

� �p; q; k�.
Let us also note that, when contracted with the trans-

verse projector P���k� of the gluon momentum k (as done
here), the vertex should be invariant under the exchange of
the ghost and of the antighost fields [24]. This is of course
true at the tree-level [see Eq. (24)], since it corresponds to
an exchange of the color indices a and b and to replacing q
by p � �k� q. Indeed, the term proportional to k� van-
ishes, due to the contraction with P���k�, and the minus

sign of �q� cancels with the minus sign related to the
antisymmetry of the structure constant. In the general case
this invariance is a consequence of a global SL�2; R�
symmetry between ghosts and antighosts (see
Appendix A in Ref. [6] for a proof of this symmetry in
Landau gauge). As the Green’s function (33) is implicitly
contracted with a gluon propagator, it follows that

 Gc �cA;abc
� �p; q; k� � Gc �cA;bac

� �q; p; k�: (32)

This result is also related to the symmetry of the Faddeev-
Popov matrix under simultaneous exchange of space and
color indices.

The only remaining task is then to determine the quan-
tity defined in Eq. (26) above. Since on the lattice one does
not consider ghost (and antighost) fields, the (equivalent)
expression to be used is [25]

 Gc �cA;abc
� �p; q; k� �

1

V
h�M�1�ab�p; q�Ac��k�i: (33)

One can employ the point-source method, used for evalu-
ating the ghost propagator, also in the case of the ghost-
gluon-vertex function. Indeed, by using translational in-
variance we can write8

 hM�1�x; y�A�z�i � hM�1�0; y� x�A�z� x�i: (34)

Then, by using momentum conservation, i.e. p � �k� q,
and the equation above we obtain

 

1

V

X
xyz

e2�i���k�q�x�qy�kz�=NhM�1�x; y�A�z�i

�
1

V

X
xyz

e2�i�q�y�x��k�z�x���=NhM�1�0; y� x�A�z� x�i

�
X
yz

e2�i�qy�kz�=NhM�1�0; y�A�z�i

�
X
xyz

e2�i�qy�kz�=NhM�1�x; y�A�z��x0i

�
X
xyz

e2�i�qy�kz�=NhM�1�x; y�A�z�
�
�x0 �

1

V

�
i:

In the third line we have redefined the indices y and z and
summed over x. In the last line we added a term that
vanishes for nonvanishing ghost momenta [46]. Clearly,
the quantity �x0 � 1=V has a null value when summed over
x, i.e. the inversion of the Faddeev-Popov operator is done
in the subspace orthogonal to the (trivial) kernel of M.
Thus, one can evaluate the Green’s function by considering

8Here, in order to simplify the notation, we omit the color
indices.
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FIG. 10. The scalar quantity Gc �cA�q; k;	� defined in Eq. (27) as a function of the magnitude of the incoming antighost momentum q.
Full symbols correspond to � � 4:2 and open symbols to � � 6:0; circles are used for V � 203 and triangles for V � 303. Results on
the left-hand side have been obtained using a point source (PS) while on the right-hand side we considered a plane-wave source (PWS).
In the top panel we show results for the orthogonal configuration with the gluon momentum k vanishing. In the middle panel we
consider an orthogonal configuration with the two momenta (q and k) having the same magnitude. In the bottom panel we plot data for
the case with the three momenta equal. For the number of configurations considered in the PWS case, see caption of Table III.
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the Fourier-transformed gluon field and by inverting the
Faddeev-Popov operator using the point-source method.
The final step requires one to evaluate the Fourier trans-
form using the incoming antighost momenta q, i.e. the one
appearing in the tree-level vertex. The third momentum
(i.e. p) is implicitly defined by momentum conservation.
As said above, the point-source method has the advantage
of only N2

c � 1 inversions per configuration but, compared
to the plane-wave-source method, requires many more

configurations in order to achieve a given statistical
accuracy.

Note that, since the momentum-space ghost propagator
DG has mass dimension �2, we have that the full Green’s
function Gc �cA;abc

� �p; q; k� [see Eq. (33)] has mass dimen-
sion �3� d=2. At the same time, the ghost-gluon vertex
�tl;L;c �cA;abc
� �p; q; k� [see Eq. (24)] has mass dimension 3�
d=2. Thus, also in this case the scalar function considered
is clearly dimensionless and we do not have to multiply it
by any power of the lattice spacing a. On the other hand, in
order to get the corresponding continuum quantities we
have to divide it by �1=2.

Results are shown in Figs. 10 and 11. In the left column
of Fig. 10 we show the results obtained using the point-
source method, while on the right column we present the
data obtained using the plane-wave source, for the vertex
and for the ghost propagator appearing in Eq. (29). We see
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FIG. 11. The scalar quantity Gc �cA�q; k;	� defined in Eq. (27)
as a function of the magnitude of the incoming antighost
momentum q and of the gluon momentum k (for the orthogonal
configuration) using the point-source method. Here, for each
data point, we plot only the central value. The data for � � 4:2
and � � 6:0 are plotted together and they are interpolated by
Gouraud shading, as implemented in the ROOT package [56]. In
the top figure we used data for the lattice volume V � 203; in the
bottom one we consider the lattice volume V � 303. Spikes
indicate positions where, due to fluctuations, the value is outside
the drawing range. The large spikes below the smallest nonzero
antighost momentum q are an artifact of the interpolation.
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FIG. 12. Same as Fig. 11, but using a mixed point-source/
plane-wave-source method. The number of configurations con-
sidered here are 283 and 269 for the lattice volume V � 203 at
� � 4:2 and � � 6:0, respectively, and 227 and 213 configura-
tions for V � 303 at � � 4:2 and � � 6:0.

EXPLORATORY STUDY OF THREE-POINT GREEN’s . . . PHYSICAL REVIEW D 74, 014503 (2006)

014503-15



agreement between the two sets of data but, as said above,
the fluctuations are much smaller in the latter case, the
relative error being of the order of 5% for all momenta. On
the other hand, when considering the point-source method
(left column) the fluctuations become rather large with
increasing gluon momentum, i.e. the results rapidly lose
accuracy. Let us finally note that the results on the right
column do not change visibly if one evaluates the ghost
propagator using the point-source method and the vertex
using the plane-wave source (see Fig. 12).

Clearly, in all cases the vertex is essentially constant and
of order one, for all momentum configurations, confirming
the results obtained in the 4d case [25,26]. This would
imply a fulfillment of the corresponding Slavnov-Taylor
identity [54]. This result is also in very good agreement
with the functional predictions in the 3d case [11,12] and
the usual assumptions made in functional calculations.

V. SUMMARY AND OUTLOOK

In this work we have evaluated the three-point vertices
of (pure) Yang-Mills theory using a wide range of momen-
tum configurations. In order to reduce the computational
cost we considered the 3d SU(2) case. We note that the data
for the three-gluon vertex suffer from large statistical errors
at large momenta, even when considering more than 20 000
configurations. Let us mention that, from a preliminary
study [55], this problem seems to be less severe in the 4d
case. For the ghost-gluon vertex the data also show a large
ratio noise/signal if one uses the point-source method. In
this case the use of the plane-wave source (for the vertex)
allows to reduce the error below 10% already with a few
tens of configurations.

As for the infrared behavior of the vertices, we found
that the three-gluon vertex becomes very small as the
momentum decreases. This midmomentum suppression is
similar to the behavior considered for this vertex in Ref. [8]
in order to obtain a positive semidefinite gluon propagator.

From our data it is difficult to say what would be the
behavior of this vertex at very small momenta. However,
in one of the kinematical configurations considered here,
the three-gluon vertex becomes negative at the smallest
nonzero momentum (about 240 MeV). Thus, a possible
scenario could be a vertex becoming larger (in absolute
value) as the zero momentum limit is approached. Let us
note that a positive infrared divergent three-gluon vertex
has been recently found in functional studies in three
dimensions [11].

The ghost-gluon vertex stays constant and essentially
equal to the tree-level value in the range of momenta
considered. This is in agreement with various theoretical
predictions [10–12] and with numerical results for the 4d
case [25,26].

Thus, our results, albeit exploratory, seem to support (at
least at the qualitative level) the Gribov-Zwanziger and
Kugo-Ojima scenarios of confinement and the central as-
sumptions usually considered in functional methods. In
particular, we have shown (see Fig. 7) that the smallest
nonzero eigenvalue of the Faddeev-Popov matrix goes to
zero in the continuum limit, i.e. a (continuum) Landau
configuration should belong to the first Gribov horizon.
On the other hand, these results should be taken with
caution, as we know that in 3d with the (physical) volumes
considered here the true asymptotic infrared region has not
been reached yet [18].

We plan to extend this study to larger lattice volumes, in
order to explore the far infrared limit. We also plan to
consider other gauge groups, especially the physical SU(3)
group. Finally, one should consider possible systematic
effects related to the existence of Gribov copies.

ACKNOWLEDGMENTS

A. M. was supported by the DFG under Grant No. MA
3935/1-1. A. C. and T. M. were supported by FAPESP
(under Grant No. 00/ 05047-5) and by CNPq.

[1] V. N. Gribov, Nucl. Phys. B139, 1 (1978).
[2] D. Zwanziger, Nucl. Phys. B412, 657 (1994).
[3] D. Zwanziger, Phys. Rev. D 65, 094039 (2002); 69,

016002 (2004), and references therein.
[4] D. Zwanziger, Phys. Rev. D 67, 105001 (2003).
[5] T. Kugo and I. Ojima, Prog. Theor. Phys. Suppl. 66, 1

(1979); 71, 1121(E) (1984); T. Kugo, hep-th/9511033.
[6] R. Alkofer and L. von Smekal, Phys. Rep. 353, 281

(2001), and references therein.
[7] L. von Smekal, A. Hauck, and R. Alkofer Phys. Rev. Lett.

79, 3591 (1997); Ann. Phys. (N.Y.) 267, 1 (1998); 269,
182(E) (1998); C. S. Fischer and R. Alkofer, Phys. Lett. B
536, 177 (2002); C. S. Fischer, R. Alkofer, and H.
Reinhardt, Phys. Rev. D 65, 094008 (2002).

[8] A. Maas, J. Wambach, B. Grüter, and R. Alkofer, Eur.
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