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We further investigate center vortex percolation and Coulomb gauge remnant symmetry breaking in the
SU(2) gauge-Higgs model. We show that string breaking is visible in Polyakov line correlators on the
center-projected lattice, that our usual numerical tests successfully relate P-vortices to center vortices, and
that vortex removal removes the linear potential, as in the pure-gauge theory. This data suggests that
global center symmetry is not essential to the vortex confinement mechanism. But we also find that the
line of vortex percolation-depercolation transitions, and the line of remnant symmetry-breaking tran-
sitions, do not coincide in the SU(2)-Higgs phase diagram. This nonuniqueness of transition lines
associated with nonlocal order parameters favors a straightforward interpretation of the Fradkin-
Shenker theorem, namely: there is no unambiguous distinction, in the SU(2) gauge-Higgs models,
between a ‘‘confining’’ phase and a Higgs phase.
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I. INTRODUCTION

Investigations of the confining force generally concen-
trate on gauge theories in which confinement is permanent;
i.e. the linear potential increases without limit. Theories of
this kind (with finite rank gauge groups) are all invariant
under a global center symmetry, which can be expressed as

 U0�x; t� ! zU0�x; t� all x; fixed t (1.1)

in lattice formulation, where z � 1 is an element of the
(nontrivial) center of the gauge group. The unbroken real-
ization of this symmetry is responsible for the vanishing of
Polyakov line expectation values, and hence permanent
confinement. For SU(N) gauge theories with this global
symmetry, the potential between static color sources, in
color group representation r, depends only on the N-ality
of representation r. While this fact is easily understood in
terms of energetics/string-breaking arguments (e.g. a flux
tube between adjoint sources can ‘‘snap’’ due to pair
production of gluons), it also means that the string tension
of a Wilson loop, evaluated in an ensemble of configura-
tions generated from the pure Yang-Mills action (and
therefore blind to the location of the Wilson loop), depends
only on the N-ality of the loop representation. This leads to
a rather profound conclusion: large-scale vacuum fluctua-
tions—occurring in the absence of any external source—
must somehow contrive to disorder only the center degrees
of freedom of Wilson loop holonomies. The center vortex
confinement mechanism (c.f. Ref. [1] for a review) is the
simplest proposal for how this type of disorder can occur.

However, not all gauge theories of interest are invariant
under a nontrivial global center symmetry (1.1). Examples
include real QCD, and any other SU(N) gauge theory with
matter fields in the fundamental representation of the
gauge group. Another relevant example is G(2) pure-gauge
theory, whose center symmetry and first homotopy group

are both trivial.1 In these theories, the asymptotic string
tension is zero, and at large scales the vacuum state is
similar to the Higgs phase of gauge-Higgs theory. Such
theories are examples of, rather than exceptions to, the
general statement that confinement is dependent on the
existence of a nontrivial global center symmetry. On the
other hand, real QCD and G(2) pure-gauge theory, as well
as gauge-Higgs theory in some regions of the phase dia-
gram, have a static quark potential which rises linearly for
some interval of color source separation, and then becomes
flat. We will refer to this situation as ‘‘temporary confine-
ment,’’ reserving the term ‘‘permanent confinement’’ for
theories which have a nonzero asymptotic string tension
for color sources in the fundamental representation.2

In a theory with temporary confinement, the simple (and
essentially kinematical) motivation for the center vortex
mechanism is lost. Then it is not obvious that the center
vortex picture, which is motivated by theN-ality properties
of the asymptotic string tension, is relevant. The relevance
(or irrelevance) of vortices to temporary confinement is a
dynamical issue, which we would like to investigate via
numerical simulation.

The simplest case to consider is SU(2) gauge-Higgs
theory, with the scalar field in the fundamental (j � 1=2)

1In SU�N�=ZN pure-gauge theory, which has a trivial center
and zero asymptotic string tension, vortices, and vortex fluctua-
tions are no different from those of SU�N� gauge theory, but the
relevant ZN symmetry is that of the first homotopy group [2].

2In both cases, of course, the asymptotic particle states are
color singlets. But this is also true in a Higgs phase, where the
condensate screens any external charge. A similar effect occurs
in electrodynamics, for electrically charged particles placed in a
plasma or a superconductor [1]. One does not normally refer to
electric plasmas and superconductors as confining systems; what
is going on is charge screening. We believe it is useful to
distinguish between this kind of screening of particle charge,
and whatever physics lies behind flux tube formation and the
linear static quark potential.
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representation. Two of our previous articles dealt with this
model. The first, written in collaboration with R. Bertle and
M. Faber [3], showed that P-vortices percolate when the
couplings lie in the temporary confinement region of the
phase diagram, and cease to percolate in the Higgs region,
where there is no linear potential at all. We also found that
center-projected Polyakov lines, in the temporary confine-
ment region, show evidence of color screening by the
scalar field. This work did not, however, attempt to show
that P-vortices in center-projected configurations actually
correspond to center vortices in unprojected configura-
tions, as none of our usual tests for that correspondence
were employed. A second article, in collaboration with D.
Zwanziger [4], considered the spontaneous breaking of a
remnant global symmetry, which exists after Coulomb
gauge fixing, in the SU(2) gauge-Higgs theory. A confining
color Coulomb potential is associated with the unbroken
realization of this remnant symmetry, and it was found that
remnant symmetry was unbroken in the temporary con-
finement region, and spontaneously broken in the Higgs
region. We did not check, however, whether remnant sym-
metry breaking and vortex depercolation occur at the same
place in the phase diagram (although we assumed this to be
true). The reason was that the position of the depercolation
transition, found in Ref. [3], was determined for a gauge-
Higgs theory with variable Higgs modulus, while the po-
sition of the remnant symmetry-breaking transition, found
in Ref. [4], was computed in the frozen modulus version of
the theory. The present article is intended to fill in these
gaps in our two previous articles.

II. CENTER DOMINANCE

We consider a gauge-Higgs theory with a frozen modu-
lus Higgs field. For the SU(2) gauge group, the action can
be written as

 

S��
X
plaq

1
2Tr�UUUyUy���

X
x;�

1
2 Tr��y�x�U��x���x� �̂��;

(2.1)

where � is SU(2) group valued. This theory was first
studied numerically by Lang et al. [5]; the phase diagram
is sketched in Fig. 1. There is a line of first-order transi-
tions, but only one thermodynamic phase; any two points
in the diagram can be connected by a path which avoids all
nonanalyticity in the free energy. The absence of a tran-
sition completely separating the diagram into a confine-
ment phase and a Higgs phase was demonstrated
analytically by Fradkin and Shenker, and Osterwalder
and Seiler, in Refs. [6]. Nevertheless, below the transition
line lies a temporary confinement region, where the static
quark potential rises linearly up to some screening dis-
tance, while above the line the theory is Higgs-like at all
distances, and the static potential is nowhere linear.

We would like to study center dominance inside the
temporary confinement region, but close enough to the
transition line so that the screening effect of the scalar
field is detectable numerically. For this purpose, we com-
pute the expectation value of Polyakov lines at � � 2:2, on
an L3 � 4 lattice. At � � 2:2, the first-order transition
occurs at about � � 0:84. The quantity we measure is

 hPi �
�

1

L3

��������
X

x
P�x�

��������
�
; (2.2)

where P�x� denotes the Polyakov line passing through the
point fx; t � 0g. In the case of unbroken center symmetry,
at � � 0 and on an L3 � LT lattice, we must find

 hPi /

������
1

L3

s
; (2.3)

while for explicitly broken center symmetry (� � 0) it
must be that hPi has a nonzero limit at large volume.

Our data for Polyakov lines on the unprojected lattice, at
� � 2:2 and � � 0, 0.71, is shown if Fig. 2, for lattice sizes
up to 203 � 4. The straight line is a best fit through the � �
0 data, and error bars for some data points are smaller than
the symbol size. It is clear that the � � 0 data is consistent
with Eq. (2.3), and hPi extrapolates to zero in the infinite
volume limit. At � � 0:71 the system is still below the
first-order transition line, and in the temporary confine-
ment region. It appears from the data that at this coupling,
hPi has stabilized (at L � 14, 16, 20) to a nonzero value of
hPi 	 0:034�1�. So at � � 2:2, � � 0:71, color screening
of Polyakov lines by the matter field is detectable.

The data at these same couplings, for Polyakov lines on
the center-projected lattice is displayed in Fig. 3. The
center-projected data tells exactly the same story as the
data on the unprojected lattice: at � � 0, Polyakov lines
tend to zero at large volumes, while at � � 0:71 screening

β
2

γ 1 Higgs−like

0
0

2

4

Temporary Confinement

FIG. 1. Schematic phase diagram of the SU(2) gauge-Higgs
system. The solid line is a line of first-order phase transitions.
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is detected, and the Polyakov lines stabilize at hPi 	
0:120�4�. This aspect of center dominance in the SU(2)
gauge-Higgs model was previously found in Ref. [3], for
the variable modulus version of the theory.

We can go on to calculate the correlator of center-
projected Polyakov lines hP�x�P�x� R�i at � � 2:2, � �
0:71, on a 203 � 4 lattice. The data is shown in Fig. 4. The
dashed line is a best fit to the data, for R 
 2, by the
function

 f�R� � c0 � c1 exp��4�R�: (2.4)

From the fit we find c0 � 0:0182, � � 0:211. Not surpris-
ingly, c0 is quite close to the square of the VEV of the
Polyakov line in center projection, which is hPcpi � 0:12
on the 203 � 4 lattice. In this way we see string breaking,
due to the dynamical matter field, from Polyakov line data
on the center-projected lattice.

Although the data displayed in the previous graphs
makes a good case for center dominance in Polyakov lines
in gauge-Higgs theory (which is not a new result), there is
still the question of whether P-vortex excitations on the
center-projected lattice correlate with gauge-invariant ob-
servables on the unprojected lattice. At � > 0 global center
symmetry is broken, and the ’t Hooft loop operator B�C�
[7] which creates a thin center vortex would not only raise
the action at the loop location, but also on some surface
bounded by the vortex loop. The position of this ‘‘Dirac
surface’’ is no longer a gauge artifact. We can still identify
P-vortices via maximal center gauge fixing and projection,
but the correspondence of these P-vortices to center vorti-
ces on the unprojected lattice cannot be taken for granted.
Our standard test for this correspondence is to see if
W1�C�=W0�C� ! �1 in the large-loop limit. Here Wn�C�
represents a Wilson loop, computed from unprojected link
variables, with the restriction that the minimal area of loop
C is pierced by n P-vortices on the projected lattice. The
result of this test, for spacelike loops on a 203 � 4 lattice at
� � 2:2, � � 0:71 is shown in Fig. 5. It is much like the
result found for pure-gauge theories, and seems perfectly
consistent with the assumed correspondence of P-vortices
and center vortices.

Finally, we compare the Creutz ratios of projected and
unprojected spacelike Wilson loops at � � 2:2, � � 0:71,
on the 203 � 4 lattice, and look for the effect of vortex
removal. The relevant data is displayed in Fig. 6. We see
that the projected Creutz ratios are constant for any R> 1,
as in the pure-gauge theory, at roughly ��R;R� 	 0:21, and
the values for the Creutz ratios on the unprojected lattice
also appear to converge towards this value. Note that this
value for the asymptotic string tension is consistent with
the value obtained from Polyakov line correlators on the
projected lattice. The effect of vortex removal is also
shown in Fig. 6. Vortices are removed via the de
Forcrand-D’Elia prescription [8], which consists of fixing
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2:2, � � 0, and � � 0:71, on L3 � 4 lattice volumes with L �
10, 12, 14, 16, 20. The straight line is a best fit to the � � 0 data.

VORTICES, SYMMETRY BREAKING, AND TEMPORARY . . . PHYSICAL REVIEW D 74, 014502 (2006)

014502-3



to maximal center gauge, and multiplying each link vari-
able by its center-projected value. This is the vortex-
removed ensemble. We see that the Creutz ratios in this
ensemble go to zero asymptotically, just as in the pure-
gauge theory.

III. SYMMETRY BREAKING AND VORTEX
PERCOLATION

The calculations of the previous section were carried out
at a point in the ‘‘temporary confinement’’ region of the
�� � phase diagram, where the static quark potential is
linear for some finite range of distances. It would be
interesting to know if this region constitutes a distinct
phase that can be unambiguously distinguished from the
rest of the phase diagram (which we refer to as the
‘‘Higgs’’ phase).

The Fradkin-Shenker theorem [6] assures us that there is
no phase transition which completely isolates the tempo-
rary confinement region from a Higgs phase; at least, no
such transition could be detected by any local order pa-
rameter. But what about nonlocal order parameters?
Perhaps thermodynamics is not the ultimate arbiter, and
there really exists some qualitative difference between the
temporary confinement and Higgs phases, characterized by
symmetry breaking, or by condensation of solitonic ob-
jects, which is only detectable via nonlocal observables. A
relevant example is the Ising model in the presence of a
small external magnetic field h. In that case the global Z2

symmetry of the zero-field model is explicitly broken, and
there is no thermodynamic transition from an ordered to a
disordered state. On the other hand, there is a sharp deper-
colation transition for the Ising model in the h > 0 as well
as the h � 0 case; the line of such transitions in the
temperature-h phase diagram is known as a Kertész line
[9], and it does seem to distinguish between physically
different phases. In the gauge-Higgs model it is the cou-
pling � > 0 that breaks the global Z2 symmetry, and it is
likewise possible that a sharp vortex depercolation transi-
tion could serve to distinguish the temporary confinement
and Higgs phases of this theory.

An alternative proposal for distinguishing these phases
is associated with symmetry breaking. We know from the
Elitzur theorem that a local gauge symmetry can never be
spontaneously broken. Suppose, however, that the local
symmetry is fixed by a choice of gauge. Certain gauges,
such as Coulomb and Landau gauge, still leave unfixed a
global remnant of the local symmetry, and these global
symmetries can be spontaneously broken (as noted, in fact,
by Elitzur in his original article [10]). On the other hand,
there are an infinite number of gauge choices which leave a
global remnant symmetry intact, and there is no apparent
reason that the spontaneous breaking of every such sym-
metry should necessarily coincide in the �� � plane. The
question, then, is which of these global symmetries are
especially relevant to the issue we are addressing.

Since the issue is whether there exists a well-defined
‘‘confinement’’ phase in a gauge-Higgs theory, which is
isolated from the rest of the phase diagram, it makes sense
to focus on a remnant gauge symmetry which is known to
be directly related to confinement. The remnant symmetry
which exists in Coulomb gauge is a very natural choice. As
we explain below, the unbroken realization of this symme-
try is a necessary condition for confinement, and implies
the existence of a confining Coulomb potential (which is an
upper bound on the static quark potential) at arbitrarily
large distances, even in a gauge-Higgs theory. If there is
indeed a physically distinct confinement phase in gauge-
Higgs theory, one would expect this symmetry to break
precisely at the transition out of that phase. In contrast,
there seems to be no direct connection between remnant
global symmetry in Landau gauge and the confinement
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property. Remnant symmetry in Coulomb and Landau
gauges differ fundamentally in this respect, and in
Landau gauge there is no obvious reason why spontaneous
breaking of remnant symmetry ought to coincide with a
transition to the nonconfinement regime.3

Since the identification of vortices and the definition of
remnant symmetry both entail a choice of gauge, the
associated order parameters are nonlocal when expressed
as gauge-invariant operators, and the Fradkin-Shenker
theorem does not rule out nonanalytic behavior in such
observables. Another candidate for identifying the confine-
ment phase in a gauge theory with matter fields is a certain
dual (Abelian) magnetic symmetry, that has been advo-
cated by the Pisa group [12]. This approach, in a non-
Abelian theory, also requires fixing to some gauge, and the
corresponding order parameter is also nonlocal if ex-
pressed as a gauge-invariant operator.

If a well-defined (temporary) confinement phase exists
in gauge-Higgs theories, then one would expect that the
transition out of that phase could be seen in the behavior of
more than one observable; various order parameters which
are associated with the physics of confinement ought to
exhibit a transition to the nonconfinement phase in the
same place in the �� � plane. If instead the transition
lines associated with each order parameter are different,
then the claim that any one of these observables can be
used to ‘‘define’’ confinement, in the absence of a non-
vanishing asymptotic string tension, becomes much less
compelling. In this section we will report on our numerical
results for the Kertész lines corresponding to vortex deper-
colation, and to remnant symmetry breaking in Coulomb
gauge.

A. Symmetry breaking

We begin by reviewing some points made in Ref. [4].
First of all, there is a remnant symmetry in ‘‘minimal’’
Coulomb gauge, defined as the gauge which minimizes, on
the lattice,

 R � �
X
x

X3

k�1

Re Tr�Uk�x��: (3.1)

Fixing to this gauge still allows the following ‘‘remnant’’
gauge transformations which are global in space, but local
in time:

 Uk�x; t� � g�t�Uk�x; t�gy�t�;

U0�x; t� � g�t�U0�x; t�gy�t� 1�:
(3.2)

On any given time slice, this global symmetry can be

spontaneously broken, and such breaking implies the ab-
sence of a confining color Coulomb potential. The color
Coulomb potential can be extracted, at weak couplings,
from the correlator of timelike links at a given time, i.e. [4]

 Vc�R� � � log�h12 Tr�U0�0; t��U
y
0 �R; t��i�: (3.3)

Vc�R� converges to the instantaneous color Coulomb po-
tential in the continuum limit. Asymptotically, this poten-
tial is also an upper bound on the static quark potential [13]

 V�R� � Vc�R� (3.4)

so that a confining Coulomb potential is a necessary, but
not a sufficient, condition for permanent confinement.

The remnant symmetry-breaking order parameter Q is
expressed in terms of the timelike link variables averaged,
at a given time, over spatial volume (L3)

 

~U�t� �
1

L3

X
x
U0�x; t�: (3.5)

If the remnant symmetry (3.2) is unbroken, then the modu-
lus of ~U should vanish in the infinite volume limit, at any t.
We therefore define the order parameter as

 Q �
1

Lt

XLt
t�1

� �������������������������������
1

2
Tr� ~U�t� ~Uy�t�

s �
; (3.6)

where Lt is the lattice extension in the time direction. Q
vanishes in the large volume limit in the unbroken phase,
and has a nonzero limit if the remnant symmetry is sponta-
neously broken.

An exponential falloff in the timelike link correlator
implies that the color Coulomb potential rises linearly
with separation. In contrast, if remnant symmetry is broken
spontaneously, then Vc�R� ! constant as R! 1. So the
existence of an asymptotic Coulomb string tension �coul >
0 depends on the unbroken realization of remnant gauge
symmetry, and this fact makes the Q order parameter a
good candidate for isolating the temporary confinement
phase from the Higgs phase.
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FIG. 7. Plaquette energy P vs Higgs coupling � at � � 2:2; a
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3It is true that remnant symmetry breaking in Landau gauge
has been advocated in the past [11] as a criterion for the Higgs
phase of a gauge-Higgs theory. However, as we have already
noted, there are infinitely many gauge choices leaving a remnant
global symmetry, and we know of no argument why the corre-
sponding symmetry-breaking transitions must all coincide.
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Further support for this view of Q as an order parameter
comes from the fact that the Q-transition line in the gauge-
Higgs theory coincides with the thermodynamic first-order
phase transition line, up to the terminating point of that line
of transitions. Like the plaquette energy, the data suggests
that Q is discontinuous along the transition line in the
infinite volume limit. In Fig. 7 we show the plaquette
energy curve, as a function of �, at � � 2:2; a weak
first-order transition is visible near � � 0:84.4 Figure 8
shows our data for Q vs �, again at � � 2:2, along with
another observable sw to be discussed shortly. A sudden
jump in Q is visible at the same value of � (within our
resolution) that the jump in plaquette energy is observed.
The nonzero value of Q below the transition is a finite-size
effect; this quantity should vanish on an infinite lattice [4].

As � is reduced, the first-order transition disappears, as
seen in the plot of plaquette energy vs � at � � 1:2, shown
in Fig. 9. There is still, however, a transition inQ, as seen in
Fig. 10. The Q order parameter is not discontinuous in this
case, instead, Q increases continuously away from zero (in
the infinite volume limit) upon crossing the transition line,
at about � � 1:5. This behavior is reminiscent of magne-
tization in a spin system, in the neighborhood of a second-
order phase transition. In Fig. 10 we show data for both 84

and 164 lattices, to show the trend to Q � 0, at infinite
volume, below the transition. We have determined the
position of the remnant symmetry-breaking transition
line at a range of couplings below � � 2:2; this is the
lower line shown in Fig. 11.5

B. Vortex percolation

We also have a second candidate for the role of order
parameter, distinguishing between the temporary confine-
ment and Higgs phases. This is an operator which is
sensitive to the vortex percolation-depercolation transition
[3], denoted sw. We note that it is possible to define other
types of topological objects in gauge-Higgs theories, such
as the ‘‘Nambu monopoles’’ and ‘‘Z-vortices,’’ and these
objects, like center vortices, can also exhibit percolation-
depercolation transitions (c.f. Ref. [14]). However, unlike
center vortices identified in maximal center gauge, these
other objects cannot even be defined in pure-gauge theo-
ries, where confinement certainly exists. Since our interest
is in the possible existence of a confinementlike phase, our
principal criterion for an order parameter (as in the case of
remnant symmetries) is its relevance to confinement phys-
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4We cannot rule out the possibility that this is a very sharp
crossover, rather than an actual first-order transition.

5The Q-transition line shown in Fig. 11 differs somewhat in
location from the line we reported previously in Fig. 12 of
Ref. [4]. The calculation of that figure suffered from an unfortu-
nate program error; our current Fig. 11 corrects and replaces it.
We note that this program error did not affect the other results
reported in Ref. [4].
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ics. From this point of view it is reasonable to focus on
center vortices.

The order parameter sw is defined as follows: Let f�p�
be the fraction of the total number NP of P-plaquettes on
the lattice, carried by the P-vortex containing the P-
plaquette p. Then sw is the value of f�p� when averaged
over all P-plaquettes. It can be thought of as the fraction of
the total number of P-plaquettes on the lattice, contained in
the ‘‘average’’ P-vortex. More precisely: let the index i �
1; 2; . . . ; Nv denote vortex number, and i�p� specifies the
vortex containing the P-plaquette p. Also let ni denote the
total number of P-vortices contained in vortex i. Then

 sw �
1

NP

XNp
p�1

ni�p�
NP
�
XNv
i�1

n2
i

N2
P

: (3.7)

If all P-plaquettes belong to a single vortex, then sw � 1. In
the absence of percolation, the fraction of the total number
of P-plaquettes carried by any one vortex vanishes in the
infinite volume limit. If a finite fraction of P-plaquettes is
carried by a finite number of percolating vortices in the
same limit, then sw > 0. The transition from sw > 0 to
sw � 0 in the large volume limit identifies the
percolation-to-depercolation transition. In Ref. [3] we de-
termined the line of depercolation transition in the gauge-
Higgs model with variable Higgs modulus; here we report
the location (upper line in Fig. 11) in the gauge-Higgs
model (2.1), for comparison with the remnant symmetry-
breaking line (lower line in Fig. 11). The calculation of sw
requires identifying, on each center-projected lattice con-
figuration, the number of separate P-vortices and the area
of each. Our algorithm for doing this is described in detail
in the appendix.

The vortex depercolation transition sw ! 0, like the Q
transition, coincides with the line of thermodynamic, first-
order transitions up to the end point of that line. The data
for sw vs � at � � 2:2 is displayed, together with the Q
data, in Fig. 8. However, beyond the first-order transition
line, the vortex depercolation and remnant symmetry-
breaking transitions no longer coincide, as is evident
from our data for Q and sw at � � 1:2, displayed in
Fig. 10. At this coupling, the Q transition occurs at about
� � 1:5, while sw goes to zero at � � 2:1.

The transition lines for both remnant-symmetry break-
ing and depercolation can be compared in Fig. 11 over a
range of couplings �, and it is evident that these transition
lines do not coincide, contrary to what was assumed im-
plicitly in Ref. [4]. There is a region between the two
transition lines where vortices percolate, but �coul � 0.
This is consistent with the notion that vortex percolation
is a necessary, but not sufficient, condition for having a
confining Coulomb potential, which is itself a necessary,
but not sufficient, condition for permanent confinement.

The fact that the vortex and remnant-symmetry transi-
tion lines do not coincide tends to support the most
straightforward interpretation of the Fradkin-Shenker theo-
rem, namely, that there is no unambiguous distinction
between the temporary confinement and Higgs phases. In
either region, the large-scale gauge-field fluctuations re-
sponsible for disordering Wilson loops are suppressed, and
the gauge field due to an external static source falls off
exponentially with distance from the source. In this sense
the regions are very much alike in the far infrared, and are
characterized by charge screening, rather than confining
forces.

IV. CONCLUSIONS

There are two conclusions. First, the vortex mechanism
for producing a linear potential can work even when the
gauge action does not possess a global center symmetry,
and the static potential is flat at large distance scales. Thus
global center symmetry is not necessarily essential to the
vortex mechanism. The same distribution of vortices which
produces a linear potential over a finite interval, in tempo-
rary confinement theories, can also avoid producing a
linear potential at asymptotic distances, as seen in the
Polyakov line correlator on the center-projected lattice.
Of course, the distribution of percolating P-vortices re-
sponsible for permanent confinement at � � 0, and that
responsible for temporary confinement at � > 0, must
differ qualitatively in some way at large scales. In the latter
case, we would expect that vortex piercings of the minimal
area of a very large Wilson loop would tend to come in
pairs, whose effect on the large loop would cancel.
Whether this effect is due to vortices having a branched
polymer structure at large scales, or is due to some other
distribution, is left for future investigation.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2  2.2

γ

β

Phase Diagram

critical line: from Q 
from sw

FIG. 11. Transition lines for the remnant symmetry-breaking
transition (lower line, order parameter Q) and the percolation-
depercolation transition (upper line, order parameter sw). The
shaded region is a region of couplings where remnant symmetry
is broken, but vortices still percolate. The two transition lines
appear to converge at the end point of the line of first-order
thermodynamic transitions.
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The second conclusion concerns the question of whether
it is possible, in a theory without a local order parameter
for confinement, to nonetheless distinguish between a
‘‘confined’’ phase and a Higgs phase via some nonlocal
order parameter. We have investigated two reasonable
candidates: (i) the Q observable which tests for spontane-
ous breaking of remnant gauge symmetry in Coulomb
gauge, corresponding to the loss of a confining color
Coulomb potential, and (ii) the sw observable, which tests
for P-vortex percolation. Both of these observables are
closely related to confinement in pure-gauge theories; un-
broken remnant symmetry is a necessary condition for
permanent confinement, and vortex removal removes the
confining force. Moreover, both observables have a tran-
sition in the gauge-Higgs phase diagram which agrees with
the first-order transition line, up to the end point of that
line. Beyond the first-order transition line, however, we
find that the remnant-symmetry breaking and vortex de-
percolation lines do not coincide, which means that the
separation of the gauge-Higgs phase diagram into a con-
finement phase and a Higgs phase is ambiguous. The
choice of a particular nonlocal observable to be an order
parameter for confinement is not very compelling, if the
only nonanalytic behavior seen at the transition is in that
particular observable. The fact is that throughout the phase
diagram, the gauge-Higgs model at large scales is best
described as a color-screening phase. In this model there
are no large-scale gauge-field fluctuations, characteristic of
confinement, which disorder Wilson loops, and the color
field due to a static source is screened (as in an electrically
charged plasma, or in an electric superconductor), rather
than collimated into a flux tube. This observation, together
with our numerical result, tends to support the most
straightforward reading of the Fradkin-Shenker theorem:
There is no essential distinction, in a gauge-Higgs model,
between the temporary confinement phase and the Higgs
phase.
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APPENDIX

In this appendix we describe our procedure for identify-
ing individual P-vortex surfaces. The basic idea is that two
P-vortex plaquettes on the dual lattice which share a com-
mon link must belong to the same P-vortex. An ambiguity

arises when four or six plaquettes share a link. This could
be a self-intersection of a single P-vortex, or an intersection
of two or more separate P-vortices. We simply ignore these
ambiguous links; they are not used to identify different
plaquettes as belonging to the same vortex surface. The
algorithm goes as follows:

(I) Gauge fix the SU(2) lattice configuration to
maximal center gauge, and center project. The
center-projected plaquettes have values z���x� �
1, where x is the lattice site, and �, � specifies
the plane of the plaquette.

(II) Map the above plaquette variables onto variables
onto plaquette variables of the dual lattice

 zD���x� �̂� �̂� � z���x�: (A1)

Although by convention the coordinates of points
on the dual lattice are half-integer, we have added
a constant vector ( 1

2 , 1
2 , 1

2 , 1
2 ) to all dual lattice

sites in order to have integer coordinates on the
dual lattice also.

(III) Count the number of negative plaquettes on the
dual lattice, and assign to each of these a number
n���x� from 1 to A, where A is the total number
of negative plaquettes.

(IV) Initialize nl � 0. Loop through all of the links of
the dual lattice. For each link shared by two and
only two negative plaquettes, increment nl, and
store the plaquette numbers of the two negative
plaquettes in p�nl; 1�, p�nl; 2�. We will refer to
such links as ‘‘surface-pair’’ links. Upon com-
pletion of the loop over links, set Nl equal to the
final value of nl; this is the total number of
surface-pair links.

(V) Initialize the Vortex Number of each negative
plaquette, V�n� � 0; n � 1; . . . ; A, and set nv �
0. Now loop through surface-pair links, nl �
1; . . . ; Nl. At each such link denote p1 �
p�nl; 1�, p2 � p�nl; 2�, and then perform the fol-
lowing operation on the vortex numbers:

(1) if V�p1� � V�p2� � 0, increment nv !
nv � 1, and set V�p1� � V�p2� � nv.

(2) if V�p1� � 0, V�p2� � 0, set V�p2� �
V�p1�.

(3) if V�p2� � 0, V�p1� � 0, set V�p1� �
V�p2�.

(4) if both V�p1�, V�p2� are nonzero, and
V�p1�< V�p2�, set V�p2� � V�p1�.

(5) if both V�p1�, V�p2� are nonzero, and
V�p2�< V�p1�, set V�p1� � V�p2�.

(6) if both V�p1�, V�p2� are nonzero, and
V�p1� � V�p2�, do nothing.
At the end of looping through the surface-
pair links, set Nv � nv.

(VI) Repeat step V, except for the initializations and
the setting of Nv. Continue iterating through the
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surface-pair links until convergence is reached;
i.e. there is no further modification of the fV�n�g.

(VII) Initialize vortex areas an � 0, n � 1; . . . ; Nv.
Loop through the negative plaquette number n �
1; . . . ; A. At each plaquette, increment

 aV�n� � aV�n� � 1: (A2)

(VIII) Eliminate any zero entries in the set of an. This
can be done by setting m � 0 and looping

through index n � 1; . . . ; Nv. If an � 0, incre-
ment m � m� 1 and set bm � an. At the end of
the loop, reset Nv � m. This is the total number
of vortices.

(IX) Calculate sw,

 sw �
XNv
m�1

�
bm
A

�
2
: (A3)
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