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Motivated by questions about the QCD deconfining phase transition, we studied in two previous papers
model A (Glauber) dynamics of 2D and 3D Potts models, focusing on structure factor evolution under
heating (heating in the gauge theory notation, i.e., cooling of the spin systems). In the present paper we set
for 3D Potts models (Ising and 3-state) the scale of the dynamical effects by comparing to equilibrium
results at first and second order phase transition temperatures, obtained by reweighting from a multi-
canonical ensemble. Our finding is that the dynamics entirely overwhelms the critical and noncritical
equilibrium effects. In the second half of the paper we extend our results by investigating the Glauber
dynamics of pure SU(3) lattice gauge on N�N3

� lattices directly under heating quenches from the confined
into the deconfined regime. The exponential growth factors of the initial response are calculated, which
give Debye screening mass estimates. The quench leads to competing vacuum domains of distinct Z3

triality, which delay equilibration of pure gauge theory forever, while their role in full QCD remains a
subtle question. As in spin systems we find for pure SU(3) gauge theory a dynamical growth of structure
factors, reaching maxima which scale approximately with the volume of the system, before settling down
to equilibrium. Their influence on various observables is studied and different lattice sizes are simulated to
illustrate an approach to a finite volume continuum limit. Strong correlations are found during the
dynamical process, but not in the deconfined phase at equilibrium.
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I. INTRODUCTION

In investigations of the QCD deconfining phase transi-
tion (or crossover) by means of heavy-ion experiments,
one ought to be concerned about nonequilibrium effects
due to the rapid heating of the system. With this in mind
we have investigated in previous papers [1,2] the model A
[3] (Glauber) dynamics of 2D and 3D Potts models.
Model A dynamics includes all diffusive stochastic local
updating schemes (Metropolis, heatbath, etc.) and not just
the process introduced in [4]. In 3D Potts models spins
provide degrees of freedom, which mimic Polyakov loops
effectively [5], while in 2D, analytical results [6] allow one
to check on the accuracy of the employed numerical meth-
ods. For other approaches to simulate nonequilibrium
quantum fields see Ref. [7].

The QCD high temperature vacuum is characterized by
ordered Polyakov loops, which are similar to spins in the
low temperature phase of the 3D 3-state Potts model. We
model heating by a quench from the disordered into the
ordered phase, which thus corresponds to a cooling quench
in the analogue spin model. Time evolution after the
quench leads to vacuum domains of distinct triality under
the Z3 center of the SU(3) gauge group. It appears that
these competing domains are the underlying cause for the
explosive growth of structure factors Fi�t�, which we en-
counter in the time evolution after a heating quench. We use
the term spinodal decomposition loosely to denote generi-
cally such a time period of globally unstable behavior.

Relaxation of the system at its new temperature only
becomes feasible after each structure factor has overcome

its maximum value. While the maximum value of the
structure factor diverges with lattice size, its initial and
final equilibrium values are finite in the normalization
chosen in the paper. The time (measured in updates per
degree of freedom) for reaching the maximum diverges
with lattice size unless the underlying order-order symme-
try is broken. Once the system has equilibrated at high
temperature, the subsequent temperature falloff is driven
by spatial lattice expansion and the system stays in qua-
siequilibrium during this period. So one has different time
scales under heating and cooling [8].

The early time evolution of SU(3) gauge theory after the
quench is well described by stochastic equations, which
follow from dynamical generalizations of equilibrium
Landau-Ginzburg effective action models. We calculate
the exponential growth factor of this linear approximation
and use a phenomenological model [9] to estimate the
Debye screening mass for two temperatures above the
deconfining Tc.

Finally, we compare measurements of Polyakov loop
correlations, gluonic energy densities, and pressures
around structure function maxima with their equilibrated
values in the deconfined region at high temperatures. These
measurements are of interest for a scenario in which the
heating process turns back to cooling before actually
reaching the equilibrium side of the structure factor max-
ima. In the conclusions we continue this discussion.

In the next section we introduce our notations and some
preliminaries. Section III deals with Potts models. First
equilibrium properties of structure functions are estab-
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lished by means of multicanonical simulations of the 3D
Ising and 3-state Potts model. Subsequently, their dynami-
cal evolution after a quench is investigated, extending
previous results. In Sec. IV we present our simulations of
pure SU(3) lattice gauge theory. Some SU(3) data were
already reported at the 2004 APS DPF conference [10]. As
these simulations are very CPU time consuming it took
over one more year to collect the present statistics. A
summary and conclusions are given in Sec. V.

II. NOTATION AND PRELIMINARIES

We summarize our basic notations and concepts in this
section.

A. Models

We simulate q-state Potts models with the energy func-
tion

 E � 2
X
hiji

�
1

q
� �qiqj

�
(1)

where the sum is over nearest neighbors of a hypercubic
lattice in D dimensions. The spins qi of the system take on
the values qi � 0; . . . ; q� 1. The factor of 2 and the term
1=q are introduced to match for q � 2 with Ising model
conventions [11]. Simulations are carried out with the
Boltzmann factor exp���E�.

The Wilson action for pure SU(3) non-Abelian
Euclidean lattice gauge theory is

 SA �
2 � 3

g2

X
n;��

�
1�

1

2 � 3
Tr�Un;�� � H:c:�

�
; (2)

where Un;�� � Un;�Un��̂;�U
y
n��̂;�U

y
n;� denotes the prod-

uct of the SU(3) link matrices in the fundamental repre-
sentation around a plaquette and the sum runs over all
plaquettes. Simulations are done with the Boltzmann factor
exp�SA�.

The Markov chain Monte Carlo (MC) process provides
model A (Glauber) dynamics in the classification of
Ref. [3]. For Potts models we use the heatbath algorithm
of [11] and for SU(3) gauge theory the Cabibbo-Marinari
[12] heatbath algorithm and its improvements of Ref. [13]
(no over-relaxation, to stay in the universality class of
Glauber dynamics). In each case a time step is a sweep
of systematic updating through the lattice, which touches
each degree of freedom once. With small statistics we have
checked that updating in random order gives similar results
up to a slowing down of the evolution speed by a constant
factor. This is expected as in equilibrium simulations ran-
dom updating has larger autocorrelations than systematic
updating [11]. For our equilibrium simulations of Potts
models we used a multicanonical [14] Metropolis
algorithm.

B. Structure factors

Consider two-point correlation functions defined by

 hu0�0�u
y
0 �
~j�iL �

1

N3
�

X
~i

u0�~i�u
y
0 �
~i� ~j�; (3)

where ~i denotes spatial coordinates. Periodic boundary
conditions are used and the subscript L on the left-hand
side reminds us that the average is taken over the spatial
lattice. For gauge systems we deal with fluctuations of the
Polyakov loop, for analogue spin systems with fluctuations
of the magnetization.

The finite volume continuum limit of (3) is achieved by
lattice spacing a! 0 and N� !1 with the physical
length of the box L � aN� � const. This means that

 hu0�0�u
y
0 �
~j�iL �

1

a3N3
�

X
~i

a3u0�~i�u
y
0 �
~i� ~j� (4)

transforms into

 hu�0�uy� ~R�iL �
1

L3

Z
d3ru� ~r�uy� ~r� ~R�; (5)

with ~r � a~i, ~R � a ~j, u�~r� � u0�~i�, and so on. We define
the structure function F� ~p� as a Fourier transformation of
the two-point correlation function (5):

 F� ~p� �
Z
hu�0�uy� ~R�iLei

~p ~Rd3R: (6)

Periodic boundary conditions imply

 ~p �
~k
a
�

2�
L
~n; (7)

where ~n is an integer vector (0,0,0), (0,0,1), and so on. The
discretized version of (6) is

 F� ~p� �
X
~j

a3hu0�0�u
y
0 �
~j�iLei

~k ~j: (8)

Using the definition (3) and shifting the ~j summation, one
arrives (after straightforward algebra) at the expression

 F� ~p� �
a3

N3
�

��������
X
~i

e�i ~k ~iu0�~i�
��������

2
; (9)

where we may rewrite the product in the exponent as

 a ~p ~i � ~k ~i �
2�
N�

~n ~i : (10)

As we let the system evolve after a quench u0�~i� becomes
time dependent: u0�~i; t�. The time t corresponds to the
dynamical process, i.e., in our case the Markov chain
model A dynamics. We consider an ensemble of systems
(replica) and dynamical observables are calculated as en-
semble averages denoted by h. . .i. The time-dependent
structure functions averaged over replicas are
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 F~p�t� � hF� ~p; t�i: (11)

During our simulations they are averaged over rotationally
equivalent momenta and the notation

 Fi�t� (12)

is used for the structure function at momentum

 ~p �
~k
a
�

2�
L
~n (13)

where j ~nj � ni defines i. The Fi are called structure func-
tion modes or structure factors (SFs). We recorded the
following modes (including the permutations) n1: (1,0,0),
n2: (1,1,0), n3: (1,1,1), n4: (2,0,0), n5: (2,1,0), n6: (2,1,1),
n7: (2,2,0), n8: (2,2,1) and (3,0,0), n9: (3,1,0). Note that
there is an accidental degeneracy in length for n8. We also
measured higher modes, in some cases up to n64. They
exhibit the same behavior as the lower modes, but the data
are far more noisy, so that we abstain from reporting these
results. A difference from the normalization of [1,2] is that
in the present paper we average over the permuted mo-
menta instead of just summing them up. For instance, for
the F1 SF the difference is a multiplicative factor of 3.

III. POTTS MODELS

For the analogue spin models the lattice spacing a
cannot be varied. We set a � 1, so that the distinction
between L and N�, ~p and ~k becomes superfluous. We use
L and ~k in the following. The normalization of the SFs
differs from our previous work [1,2]. It is chosen so that
they approach constant values in the infinite volume limit
of equilibrium simulations of spin systems at noncritical
temperatures. This follows from the fact that the random
fluctuations in (12) are of order

����
V
p
�

������
L3
p

. At a critical
temperature of a second order phase transition a divergence
of the SFs is then encountered as we illustrate for the 3D
Ising model. A sustained increase of a SF with lattice size
cannot be stronger than being proportional to V � L3,
because an upper bound on each SF is obtained by setting
all values in the sum of Eq. (9) equal to 1.

A. Equilibrium results

In this section we compile SF estimates from equilib-
rium simulations of the 3D Ising and 3-state Potts model on
L3 lattices. Our simulations are carried out in a multi-
canonical ensemble [14], covering a temperature range
from �min � 0 (infinite temperature) to �max > 0 below
the phase transition temperature of the respective system.
Instead of relying on a recursion (see, e.g., [11]), the
multicanonical parameters were extracted by finite size
(FS) extrapolation from smaller to larger systems, which
is an efficient way when the FS behavior is controllable.

The advantage of using multicanonical simulations is
that accurate values of the SF peaks can be determined

from one data set. Reweighting of a canonical simulation
[15] allows accurate determination of the maxima of one
quantity, but on finite lattices the maxima of different
observables are too far apart to be within the reweighting
range of one canonical simulation. We find it convenient to
have the entire range of interest covered in one simulation.
In particular, equilibration of the configurations around the
transition and in the ordered phase is then secured due to
frequent excursions into the discorded region all the way to
� � 0.

1. 3D Ising model

At the critical point the two-point function on an infinite
lattice falls off with a power law, which defines the critical
exponent �:

 f� ~x� � hs�~0�s� ~x�i � j ~xj�d�2��; j ~xj ! 1: (14)

This determines the low-momentum behavior of the
Fourier transformation F� ~k�. Namely,
 

F̂�	 ~k� �
Z
ddxei	 ~k� ~xj ~xj�d�2��

�
Z ddx0

	d
ei ~k�

~x0	d�2��j ~x0j�d�2��

� 	��2F̂� ~k�

holds and, therefore,

 F̂� ~k� � j ~kj�b; b � 2� �; for j ~kj ! 0: (15)

For fixed ~n we have ~k � 2�~n=L and we find for any fixed
value of ~n the finite size scaling (FSS) divergence

 F̂ ~n � L
b; b � 2� �; for L! 1 (16)

with lattice size.
The infinite volume phase transition temperature of the

3D Ising model is estimated to be �c � 0:221 57�3�; e.g.,
see [16]. In our multicanonical simulations we cover the
range from �min � 0 to �max � 0:25, well including the
transition region. Table I gives an overview of the lattice
sizes and the accumulated statistics (a sweep updates each
spin once) together with our estimate of the maximum
values Fmax

1 of the first SF, evaluated at the value �m.

TABLE I. Statistics and SF maxima Fmax
1 at �m from our

equilibrium simulations of the 3D Ising model on L3 lattices.

L Sweeps Fmax
1 �m Cycles

20 32� 5 � 104 17.00 (26) 0.219 874 83
30 32� 2 � 105 37.97 (70) 0.220 825 89
44 32� 6 � 105 78.4 (1.6) 0.221 146 70
56 32� 1 � 106 129.6 (2.7) 0.221 345 45
66 32� 1:6 � 106 175.6 (4.9) 0.221 387 43
80 64� 2 � 106 � 3 257.4 (2.4) 0.221 462 65� 72� 67
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Error bars are given in parentheses and apply to the last
digits of the number in front. They are calculated with
respect to a number of jackknife bins given by the first
number in column 2 of the table, and the multicanonical
reweighting procedure uses the logarithmic coding de-
scribed in [17]. Three independent runs were carried out
for the L � 80 lattice. Before starting with measurements
we normally performed the number of sweeps of one
measurement bin for reaching equilibrium. This is suffi-
cient because equilibration problems are mild in multi-
canonical simulations. Running time for each of our
L � 80 simulations was about three months on a 2 GHz
Athlon PC. The last column of Table I gives the number of
cycles,

 ��e 	 �min� ! ��e 
 �max� ! ��e 	 �min�;

which the Markov process performed during the produc-
tion run, where �e is the effective energy-dependent � of
the multicanonical procedure.

For our largest lattice, the SFs 1–9 are plotted in Fig. 1,
where we restrict � to a neighborhood of the critical
temperature. Each SF develops a clear peak, only that the
peaks for the higher SFs are less pronounced than those for
the lower. In particular, the scale of the figure does not
resolve the peaks for the SFs 
 7 anymore. These peaks
are found on a reduced scale and for each SF the FSS
behavior (16) holds. However, the numerical accuracy
decreases with increasing j ~kj. So we are content with
simply analyzing the FSS behavior of SF 1. Figure 2 shows
SF 1 for all our lattice sizes and the maxima values are
collected in Table I. A two parameter fit to the form (16) is
shown in Fig. 3. It gives b � 1:959 �12� with a goodness of
fit Q � 0:82 (for the definition of Q see, e.g., Ref. [11]), a
result well compatible with the high precision estimates
� � 0:0364 �5� given in the review article [18] on critical
phenomena and renormalization group theory.

2. 3D 3-state Potts model

For the 3D 3-state Potts model one deals with a rela-
tively weak first order phase transition at �c �
0:275 272 0 �49�, a value which averages two somewhat
inconsistent (Q � 0:003 for the Gaussian difference test)
estimates of the literature [19] (because of the inconsis-
tency the error bars are averaged here and not reduced). In
our multicanonical simulations we cover the range from
�min � 0 to �max � 0:33. An overview of the statistics and
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FIG. 1. SFs Fi; i � 1; . . . ; 9 from simulations of the Ising
model on an 803 lattice.
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FIG. 2. Finite size behavior of SF F1 from Ising model simu-
lations on L3 lattices.
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FIG. 3. Fit of the Fmax
1 maxima of Table I to the FSS form (16).

TABLE II. Statistics and SF maxima Fmax
1 at �m for our

equilibrium simulations of the 3D 3-state Potts model on L3

lattices.

L Sweeps Fmax
1 �m Cycles

20 32� 1:2 � 105 19.00 (22) 0.274 273 59
30 32� 5:2 � 105 38.11 (41) 0.274 924 71
40 32� 1:5 � 106 60.30 (50) 0.275 116 73
50 126� 1:5 � 106 80.46 (55) 0.275 181 131
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some results are given in Table II, similarly as before for
the 3D Ising model in Table I.

For our 503 lattice the SFs 1–9 are plotted in Fig. 4,
where we restrict � to a neighborhood of the transition
temperature. As for the 3D Ising model each SF develops a
clear peak, but the shapes are significantly different. A
relatively smooth increase is followed by a rather abrupt
decrease. The lattice size dependence of SF 1 is depicted in
Fig. 5, which indicates (as expected) that the abrupt de-
crease develops into a discontinuity for L! 1. The in-
crease of the structure function maxima is irregular and
smaller from L � 40 to L � 50 than from L � 30 to L �
40. Asymptotically, for L! 1 a finite maximum value is
expected in the case of a first order phase transition. Within
our limited lattice sizes this is not yet seen, but a power law
fit (16) of the type used in Fig. 3, which is the large L
behavior in the case of a second order transition, becomes
entirely inconsistent: Q � 2:7� 10�11 is the goodness of
fit obtained.

B. Quenches

After outlining the equilibrium scenario, let us discuss
the time evolution after a quench from the disordered into
the ordered phase of the 3D 3-state Potts model. An over-
view of our statistics is given in Table III. We quench from
� � 0:2 to the �f value given in the table, which collects
the numbers of repetitions of each quench. Error bars are
then calculated with respect to 32 bins. Larger lattices
exhibit self-averaging, so that one needs less repetitions
than for smaller lattices.

In previous work [2] we have investigated the quench
� � 0:2! 0:3 and its subsequent stochastic time evolu-
tion on lattices up to size 803. Meanwhile we have ex-
tended the SF part of this investigation to lattices of size up
to 1203 and Fig. 6 shows the time evolution of SF 1 after
this quench. Note that we divide the SF by an extra volume
factor in this figure. So its initial increase with lattice size is
faster than �V, the maximum sustained increase we dis-
cussed in the first paragraph of Sec. III. For our largest
lattices, L 
 80, the increase appears to level off to pre-
cisely

 Fmax
1 �L� � V � L3 for L! 1: (17)

Heuristically this behavior during spinodal decomposition
may be expected: The quench changes the temperature in
the entire lattice instantaneously. It is then plausible that
the local contribution to the SF is, on the average, every-
where the same. So one expects an increase �V of the
maxima. The initial overshooting may be explained by an
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FIG. 4. SFs Fi; i � 1; . . . ; 9 from simulations of the 3-state
Potts model on a 503 lattice.
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FIG. 5. Finite size behavior of SF F1 from 3-state Potts model
simulations on L3 lattices.

TABLE III. Repetitions of quenches from � � 0:2 to �f for
the 3D 3-state Potts model on L3 lattices.

�fnL 20 40 60 80 100 120

0.3 640 640 640 320 320 320
0.27 640 320 320 32
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FIG. 6. Time evolution of SF F1 for the 3-state Potts model on
L3 lattices after a quench from � � 0:2! 0:3.
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increase of correlations with lattice size, which levels off
once the lattice size exceeds the correlation length.

To test how this growth of the signal proportional to the
volume depends on the depth of the quench into the
ordered region, we performed a quench to a temperature
closer to the transition temperature, � � 0:2! 0:28. As
shown in Fig. 7 we find the same phenomenon as before:
The maximum sustained increase �V is initially overshot.
The growth of the signal is weaker than before, as is
expected since the system does not change so drastically.

In both figures we see that the time positions tmax of the
SF 1 maxima move towards larger values with increasing
lattice size. For our two quenches tmax�L� is plotted in
Fig. 8 on a log-log scale. With parameters a0 and a1 both
curves can consistently be fitted to the expected form

 tmax�L� � a0 � a1L
2: (18)

As t is measured in units of sweeps, the number of spin
updates per time unit does not depend on L. In spin
systems, t is thus proportional to the physical time. After

the quench into the ordered phase the infinite spin system
cannot be equilibrated in any finite time, a fact known in
condensed matter physics [20]. The explanation for this
phenomenon is that the system grows initially competing
domains of three distinct orientations. To dissolve these
domains by local random fluctuations until one of them
dominates the entire lattice is a slow process, which re-
quires of order L2 time.

Visualization of these domains faces difficulties, be-
cause naive geometrical definitions do not work. Com-
pare Fig. 8 of Ref. [2]. For analogue Potts models this is
overcome by the Fortuin-Kasteleyn [21] cluster definition,
but there is no immediate generalization to gauge theories,
although promising ideas have been published [22]. Here
we do not investigate this question any further. We think
that it is safe to assume that competing domains are, in both
spin and gauge systems, the underlying cause for the ex-
plosive growth of structure factors Fi�t�, which we encoun-
ter in their time evolution after a heating quench.

Finally, in this section, based on 640 repetitions, Fig. 9
demonstrates that for a quench below the critical � nothing
more than a smooth transition from one equilibrium value
to the next happens. Therefore the explosive growth of SFs
is an unambiguous signal that �f is indeed in the ordered
phase.

IV. SU(3)

We report results from quenches of pure SU(3) lattice
gauge theory on N�N3

� lattices. Our statistics is summa-
rized in Tables IV and V. All quenches are from the initial
value 6=g2 � 5:5. The 4� N3

� simulations of Table IV
were already reported in [10]. The simulations for the other
lattices are new. The difference between the tables is that
for the lattices of Table IV we follow the quench all the
way to its equilibrium value at Tf, while for the lattices of
Table V we calculated only the initial increase of the SFs as

 10

 100

 1000

 10000

 100

tm
ax

(L
)

L

0.2->0.28
0.2->0.30

FIG. 8. Time positions of the SF F1 maxima versus lattice size.
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L3 lattices after a quench from � � 0:2! 0:28.
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needed for the determinations of critical modes in
Sec. IV B.

The new data serve to study the quantum continuum
limit a! 0 (in physical units like fermi). The final values
g2
f of the bare coupling constants are chosen, so that the

values of Tf=Tc stay at the fixed ratios given in the table.
For this we take (substantial) corrections to the two-loop
equation of Lambda lattice into account, which follow
from renormalization group results tabulated in Ref. [23].
As the use of tables is tedious, we like to mention that, with
an accuracy of 0.5% and better, our Tf=Tc values are
reproduced by using the formula

 �L�g2� � �as
L �g

2�	�g2� (19)

where �as
L �g

2� is given by (e.g., [24])

 a�as
L � �b0g2

0�
�b1=�2b2

0�e�1=�2b0g2�

with b0 �
11
3

Nc
16�2 , b1 �

34
3 �

Nc
16�2�

2 and

 	�g2� � 1� a1e�a2=g2
� a3g2 � a4g4

with a1 � 715 537 50, a2 � 19:480 99, a3 �
�0:037 724 73, and a4 � 0:508 905 2.

For N� � 4, fixed, Fig. 10 shows the divergence of the
SF 1 maxima with increasing lattice size N3

� as well as a
tmax�N�� � N2

� behavior in complete analogy to our results
for Potts models. All the lattices of Fig. 10 are quenched to
the bare coupling constant g2

f � 6=5:92. Therefore the
time scale of the Markov process (determined by the
Boltzmann factors) is the same on all these lattices and
up to an unknown multiplicative factor identified with that
of a dissipative, nonrelativistic dynamics. Nonrelativistic
does not necessarily mean that the propagation of the

signal through the lattice is slow. On the contrary, Galilee
transformations set no upper limit on speeds. Our quench
changes the temperature instantaneously through the entire
lattice, while the subsequent propagation of the response
proceeds through local interactions.

A. Finite volume continuum limit

In the following we illustrate the approach of the limit
a! 0, L � const, Tf=Tc � const, by increasing N� from
4 to 6 to 8 and the volume N3

� from N� � 16 to 24 to 32, so
that the ratio N�=N� stays constant. The ratio of tempera-
tures Tf=Tc is kept constant by using Eq. (19) to determine
the appropriate bare coupling constant values for each N�.
Because of the divergence of (bare) Polyakov loop corre-
lations we face a renormalization problem, which we over-
come by dividing all SFs Fi by their equilibrium values at
Tf, Fi;f. The time-scale situation changes too, because we
have to use different bare coupling constant values for
different N�. As one knows that a finite physical volume
equilibrates in a finite time, we fix this normalization
problem by rescaling the time axis to

 t0 �
t

	t�N�; Tf=Tc�
(20)

so that all maxima fall on top of one another. We do not
lose information as we anyhow do not know the overall
normalization factor for our time scale.

Figures 11 and 12 show the time evolution of the
F1=F1;f SFs for our two Tf=Tc values. The time axis of
our original measurements in units of sweeps are related to
those used in Fig. 11 by the 	t�N�; 1:25� factors
1:2:655:5:457 for the N� values 4:6:8, respectively. For
Fig. 12 the corresponding 	t�N�; 1:568� ratios are
1:2:768:6:362. The maxima of the curves decrease when
increasing N� from 4 to 6 to 8. As the decrease slows down
with increasing lattice size, there is some evidence for an
approach to a shape, which represents the continuum limit.

TABLE IV. Quenches from 6=g2 � 5:5 to 6=g2
f for pure SU(3)

lattice gauge theory (n denotes the number of repetitions).

Lattice Tf=Tc 6=g2
f n Tf=Tc 6=g2

f n

4� 163 1.250 5.802 740 10 000 1.568 5.920 000 10 000
4� 323 � � � � � � � � � 1.568 5.920 000 4000
4� 643 � � � � � � � � � 1.568 5.920 000 170
6� 243 1.250 6.022 334 6000 1.568 6.165 427 6000
8� 323 1.250 6.206 036 3000 1.568 6.364 572 3000

TABLE V. Initial quenches from 6=g2 � 5:5 to 6=g2
f for pure

SU(3) lattice gauge theory (n as in Table IV).

Lattice Tf=Tc 6=g2
f n Tf=Tc 6=g2

f n

4� 323 1.250 5.802 740 3000 � � � � � � � � �

4� 643 1.250 5.802 740 140 � � � � � � � � �

6� 483 1.250 6.022 334 600 1.568 6.165 427 750
6� 603 1.250 6.022 334 200 1.568 6.165 427 200
8� 563 1.250 6.206 036 1000 1.568 6.364 572 1000
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FIG. 10. Time evolution of SF F1=V for SU(3) lattice gauge
theory on 4� N3

� lattices after a quench 6=g2 � 5:5! 5:92.
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B. Debye screening mass

The current understanding of the early time evolution
of systems out of equilibrium is largely based on inves-
tigating stochastic equations which are dynamical (time-
dependent) generalizations of the Landau-Ginzburg effec-
tive action models of the static (equilibrium) theory [3,25].
For model A the linear approximation results in the follow-
ing equation for a SF:

 

@F̂� ~p; t�
@t

� 2!� ~p�F̂� ~p; t�; (21)

with the solution

 F̂� ~p; t� � F̂� ~p; t � 0� exp�2!� ~p�t�;

!� ~p�> 0 for j ~pj> pc;
(22)

where pc > 0 is a critical momentum. Originally the linear

theory was developed for model B [26,27]. Details for
model A can be found in Refs. [2,28].

From our measurements of F� ~p; t� on the N� � 4, 6 and
8 lattices, we find straight line fits to the form !�p� �
a0 � a1p2, p � j ~pj with a negative slope a1. They deter-
mine the critical momentum pc as the value where !�p�
changes its sign. The fits for Tf=Tc � 1:25 are shown in
Fig. 13 and for Tf=Tc � 1:568 in Fig. 14, where we
introduced

 !0�p� � 	t�N�; Tf=Tc�!�p�: (23)

This definition absorbs the shift (20) of the time scale, so
that !0�p�t0 � !�p�t holds. It is only in the primed varia-
bles that one realizes an eventual approach to the contin-
uum limit from Figs. 13 and 14. In particular, note that for
Tf=Tc � 1:568 the N� � 6 and 8 fits are identical within
statistical errors. The obtained values for pc�N��=Tc are
listed in Table VI. The (finite volume) continuum limit is
extrapolated by fitting these values to the form
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FIG. 11. Time evolution of SF F1=F1;f for SU(3) lattice gauge
theory on N�N3

� lattices of constant physical volume of a quench
to Tf=Tc � 1:25.
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FIG. 13. SU(3) determination of pc for Tf=Tc � 1:25.
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FIG. 14. SU(3) determination of pc for Tf=Tc � 1:568.
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FIG. 12. Time evolution of SF F1=F1;f for SU(3) lattice gauge
theory on N�N3

� lattices of constant physical volume of a quench
to Tf=Tc � 1:568.
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pc�N��
Tc

�
pc
Tc
�

const

N�
(24)

with the results given in the last column of Table VI.
Relying on a phenomenological analysis by Miller and

Ogilvie [9], pc is related by

 mD �
���
3
p
pc (25)

to the Debye screening mass at the final temperature Tf
after the quench. We get

 mD � 1:83�14�Tc for Tf=Tc � 1:25; (26)

 mD � 3:47�13�Tc for Tf=Tc � 1:568: (27)

The value at Tf=Tc � 1:568 is in excellent agreement with
a determination of mD�T� from a best-fit analysis of the
large distance part of the color singlet free energies [29].
This supports that the simulated dynamics bears physical
content. Our estimate at Tf=Tc � 1:25 is by a factor of 2
smaller than the one of Ref. [29]. This is not really a
surprise, because Tf=Tc � 1:25 is close to the spinodal
end point, so that the derivation [9] of the relationship (25)
is no longer valid.

For pure SU(3) lattice gauge theory Tc � 265�1� MeV
holds, assuming � � 420 MeV for the string tension,
while for QCD the crossover temperature appears to be
around Tc � 165 MeV; see Ref. [30] for reviews. Using
for simplicity Tc � 200 MeV to illustrate the magnitudes,
the temporal lattice size is then about 1 F at Tc. The spatial
sizes of our lattices used in this section reach up to
�8 fermi�3. At the Tf values the edge lengths are shortened
by the corresponding Tc=Tf factors; i.e., the volume is
�6:4 fermi�3 for Tf=Tc � 1:25 and �5:10 fermi�3 for
Tf=Tc � 1:568. The screening length associated with the
Debye mass, 
D � 1=mD, is then approximately 0.6 F at
Tf=Tc � 1:25 and 0.3 F at Tf=Tc � 1:568. The illustration
of the finite volume continuum limit in Sec. IVA was for
lattices of size �4 fermi�3 at Tc, i.e., �3:2 fermi�3 at
Tf=Tc � 1:25 and �2:55 fermi�3 at Tf=Tc � 1:568. Our
volumes are smaller than the envisioned deconfined region
of about �10 fermi�3 in relativistic heavy-ion experiments.
Because of periodic boundary conditions one may expect
that MC simulations on smaller lattices are representative
for the central region of the larger volume. Our result is that
the Debye screening length is short on the scale of the
deconfined region.

C. Measurements near structure factor maxima versus
deconfined equilibrium

For SU(3) gauge theory the triality of Polyakov loops
with respect to the Z3 center of the gauge group takes the
place of the spin orientations in the 3D 3-state Potts model.
Although a satisfactory cluster definition does not exist for
gauge theories, the underlying mechanism of competing
vacuum domains is expected to be similar to the one in the
spin models. To study their influence on Polyakov loop
correlations and on the gluonic energy � and pressure p
densities, we calculate these quantities at times t 	 tmax as
well as at t > tmax.

Our structure function measurements gave ‘‘on the fly’’
two-point correlations between Polyakov loops defined by

 Co�d; t� � hP�0; t�P�d; t�iL � �hjP�0; t�jiL�
2 (28)

where the averaging procedures are those we discussed
after Eq. (3) and d � 1; 2;

���
2
p
; . . . . The value of these

results is somewhat limited, because our focus was not
on good equilibrium results and the stored data do not
allow us to project onto particular channels of the free
energy of static quarks (which lead to larger correlation
lengths than those obtained). For several values of d we
plot in Fig. 15 the time development ofCo�d� on our largest
lattice using the t0 time scale (20). The correlations assume
maxima at about the same time values tmax for which the
SFs peak, although less pronounced. In Fig. 16 we plot the
d dependence for the time values 0:5tmax, tmax, and 5tmax.
At 5tmax fits of the form Co�d� � exp��mPad�=�ad�,
where a is the lattice spacing, give the mP estimates which
are collected in Table VII. The last column of this table
gives infinite volume estimates obtained from fits of the
form (24). In contrast to that, large correlations are found at
0:5tmax and tmax, which are fully consistent with a power
law.

TABLE VI. Fit results for pc=Tc.

Lattice size: N� � 4 N� � 6 N� � 8 1

Tf=Tc � 1:25: 1.613 (18) 1.424 (26) 1.37 (10) 1.058 (79)
Tf=Tc � 1:568: 2.098 (19) 2.058 (22) 2.29 (15) 2.006 (73)
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FIG. 15. Time dependence of Polyakov loop correlations
Co�d� on the 8� 323 lattice for Tf=Tc � 1:25 and various d
values.
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The equilibrium procedure for calculating the gluonic
energy � and pressure p densities is summarized in
Refs. [23,31] (in earlier work [32] the pressure exhibited
a nonphysical behavior after the deconfining transition and
the energy density approached the ideal gas limit too
quickly because the anisotropy coefficients were calcu-
lated perturbatively). We denote expectation values of
spacelike plaquettes by P� and those involving one time
link by P�. The energy density and pressure can then be
cast into the form

 

�� p

T4
�

8NcN4
�

g2

�
1�

g2

2
�c��a� � c��a�

�
�P� � P��

(29)

and

 

�� 3p

T4
� 12NcN4

��c��a� � c��a��2P0 � �P� � P��;

(30)

where P0 is the plaquette expectation value on a symmetric
(T � 0) lattice, and the anisotropy coefficients c�;��a� are
defined by

 c�;��a� �
�
@g�2

�;�

@


�

�1

: (31)

They are related to the QCD � function and can be
calculated using Padé fits of [23]. To normalize to zero
temperature, plaquette values from the symmetric N� �

N� lattice are needed in Eq. (30). As one stays on the
symmetric lattice within the confined phase its equilibra-
tion after the quench is fast. Therefore it is enough to use
equilibrium values of P0 at �f after the quench. This is
illustrated in Fig. 17.

In Fig. 18 we show the time evolution of the gluonic
energy densities (upper curves) and pressure densities
(lower curves) for the Tf=Tc � 1:25 quench on our 4�
163, 6� 243, and 8� 323 lattices using the rescaled time
definition (20). The curves for the last two lattices fall
almost on top of one another, indicating their neighbor-
hood to the continuum limit. The approach to the final
equilibrium values is rather smooth. Gluonic energy den-
sity mean values at tmax are less than 1=4 of their final
values, while the pressure density is at about 1=3. In
contrast to the shift in the mean value, the widths of the
distributions are almost the same at tmax and in the decon-

TABLE VII. Fit results for mP=Tc at 5tmax.

Lattice size: 4� 163 6� 243 8� 323 1

Tf=Tc � 1:25: 3.27 (19) 3.70 (20) 4.43 (27) 5.23 (49)
Tf=Tc � 1:568: 4.82 (61) 5.33 (35) 6346 (38) 7.70 (95)
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FIG. 17. SU(3) gluonic energy density on the 4� 163 lattice:
(a) with P0 calculated from the time series after the quench and
(b) using equilibrium values for P0.
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fined equilibrium. Results for the Tf=Tc � 1:568 quench
are quite similar.

V. SUMMARY AND CONCLUSIONS

In equilibrium at temperatures much higher than the
deconfinement temperature Tc the perturbative prescrip-
tion of QCD is that of a weakly coupled gas of quasipar-
ticles. In contrast, recent experiments at the BNL
relativistic heavy-ion collider (RHIC) show coherence in
particle production and strong collective phenomena,
which are well described by the model of a near-perfect,
strongly coupled fluid [33]. Nonperturbative effects are
expected to play some role in the prescription of equilib-
rium QCD at temperatures reached at RHIC. For the
Tf=Tc � 1:25 and Tf=Tc � 1:568 temperatures investi-
gated in this paper equilibrium lattice calculations indeed
indicate corrections (compare Fig. 7 of [23]). However
correlations are typically over ranges much smaller than
the size of the deconfined plasma; compare our estimates
of the Debye screening mass mD�Tf�. The agreement of
our mD value at Tf=Tc � 1:568 with direct equilibrium
estimates [29] gives us confidence that model A dynamics
reflects physical features.

If the phenomenological description of a strongly
coupled plasma implies correlations over distances exceed-
ing 1 F, the time evolution of our structure factors (SFs)
depicted in Figs. 6–8 and 10 suggests a scenario in which
the deconfined equilibrium phase has actually not been
reached at RHIC, but the heating process gets stuck during
the time period of explosive growth of the SFs. While this

explains correlation over distances much larger than 1 F, it
also provides an unambiguous signal for the existence of
the deconfining phase: Fig. 9 demonstrates that the explo-
sive growth is absent for a quench to a final temperature
below Tc.

In real QCD there are two effects which prevent the
divergence of the equilibration time shown in Fig. 8:
(1) Quarks break the Z3 symmetry of the SU(3) gauge
group, similarly as a magnetic field breaks the degeneracy
of the spins in the 3D 3-state Potts model. The final
magnitude of the equilibration time depends then on the
strength of the breaking as illustrated in Ref. [2] for a weak
magnetic field. (2) At RHIC the physical volume is finite,
so that even in the case of an exact symmetry the equili-
bration time is finite. So the scenario in which the system
gets stuck during the spinodal decomposition of its vacuum
structure could only be based on phenomenological obser-
vations. Questions like how a perfect fluid may look during
the period of spinodal decomposition arise. Minkowski
space simulations of hyperbolic differential equations,
which emerge from effective actions for Polyakov loops
[34,35], may shed light on the question of whether features
observed in the paper are special to Glauber dynamics or
are of some universal nature.
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