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We report the first derivation of radiative nuclear stopping (the Landau-Pomeranchuk-Migdal effect) for
leading jets at fixed values of the transverse momentum p in the beam fragmentation region of hadron-
nucleus collisions from Relativistic Heavy Ion Collider (RHIC) to Large Hadron Collider (LHC). The
major novelty of this work is a derivation of the missing virtual radiative pQCD correction to these
processes—the real-emission radiative corrections are already available in the literature. We manifestly
implement the unitarity relation, which in the simplest form requires that upon summing over the virtual
and real-emission corrections the total number of scattered quarks must exactly equal unity. For the free-
nucleon target, the leading jet spectrum is shown to satisfy the familiar linear Balitsky-Fadin-Kuraev-
Lipatov leading log— % (LL %) evolution. For nuclear targets, the nonlinear k | -factorization for the LL — %
evolution of the leading jet spectrum is shown to exactly match the equally nonlinear LL% evolution of the
collective nuclear glue—there emerges a unique linear k, -factorization relation between the two non-
linear evolving nuclear observables. We argue that within the standard dilute uncorrelated nucleonic gas
treatment of heavy nuclei, in the finite energy range from RHIC to LHC, the leading jet spectrum can be
evolved in the LL% Balitsky-Kovchegov approximation. We comment on the extension of these results to,

and their possible Reggeon field theory interpretation for, midrapidity jets.

DOI: 10.1103/PhysRevD.74.014023

I. INTRODUCTION

In this communication we address two related issues in
the perturbative quantum chromodynamics (pQCD) de-
scription of the single-jet inclusive spectra in hadron-
nucleon and hadron-nucleus collisions. Our principal in-
terest is in the nonlinear k| factorization for the pQCD
radiative quenching (stopping) of leading jets with fixed
transverse momentum p produced at large values of the
Feynman variable xf, i.e., in the beam fragmentation re-
gion of hadron-nucleon and hadron-nucleus collisions. As
it has become customary for the nuclear dependence of
radiative effects, we refer to nuclear stopping of leading
jets at fixed p as the p dependent Landau-Pomeranchuk-
Migdal (LPM) effect. There is extensive literature on the
LPM effect for midrapidity jets, where the prime concern is
in the radiation induced loss of the transverse, with respect
to the hadron-nucleus collision axis, momentum of the jet
when one integrates over the transverse momentum of the
radiation with respect to the jet axis ([1], for reviews and
further references see [2,3]). In the midrapidity kinematics,
the transverse momentum of radiation with respect to the
parent high-p ; parton only amounts to a small shift of the
(pseudo)rapidity of the high-p; parton which is hardly
observable due to the boost invariance in the midrapidity
region. In contrast to that, leading jets with xp ~ 1 are
generated by hard scattering of valence quarks. The density
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of valence quarks drops rapidly at large values of the
Bjorken variable in the beam nucleon, xy — 1, which
entails that the xr dependence of the leading jet cross
section is extremely sensitive to the radiative energy loss.
We develop a nonlinear k; factorization description of
leading jet production with full allowance for the real
and virtual QCD radiative corrections. In the second part
we focus on the leading log! (LL1) properties of the
leading jet spectrum. We argue that this spectrum offers a
long sought linear mapping of the unintegrated collective
nuclear glue and comment on the extension of this finding
to midrapidity jets.

Within pQCD, there are several subtleties in the appli-
cation of factorization theorems to the leading quark pro-
duction in gN, gA collisions. In the more familiar collinear
approximation described in all textbooks [4], the relevant
pQCD subprocess is hard scattering of valence quarks off
soft gluons with x < 1 in the target, which can also be
viewed as a hard breakup (excitation) ¢ — ¢’g. All partons
enter the hard pQCD scattering with vanishing transverse
momentum and the large p,; of the observed jet is gen-
erated in the real-emission hard breakup. The inadequacy
of such a collinear approximation is well known, a recent
concise discussion of the necessity of fully unintegrated
parton densities with explicit allowance for transverse
momenta is found in [5]. In the high-energy limit, the latter
is furnished by the so-called & -factorization which goes
back to the classic 1975-1978 works on the Balitsky-
Fadin-Kuraev-Lipatov (BFKL) equation for the small-x
evolution of the unintegrated glue ([6,7], see also the recent
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review on k| -factorization and more references in [8,9]).
In contrast to the collinear factorization, within the
k| -factorization, the hard breakup g — ¢’g is but the
real-emission pQCD radiative correction (REC) to the
lower order (Born) subprocess, which is the quasielastic
scattering gN — gN™, gA — gA*, where the target debris
N*, A* is left in a color-excited state. Evidently, the real
emission must be complemented by the matching virtual
pQCD radiative corrections (VRC) to the lower order
quasielastic scattering—the real emission and virtual ra-
diative corrections are two integral parts of the small-x
evolution of quasielastic scattering, see Fig. 1.

Hard scattering off free nucleons is described by single-
gluon exchange in the ¢-channel. In collisions with nuclei,
the enhancement of multigluon exchanges leads to a novel
concept of nonlinear k | -factorization [10—15]. The Born
and VRC amplitudes describe final states in which the
large transverse momentum of the leading jet is compen-
sated by hadrons at rapidities n < 7,, while in REC such a
compensation is provided also by gluon jets with rapidities
Ma = M, = My A theoretical treatment of the p depen-
dent LPM effect for leading jets is necessary for the
interpretation of the forthcoming experimental data on
leading particles from the RHIC to LHC ([16] and refer-
ences therein).

The interplay of the virtual and real radiative corrections
to single-jet spectra is controlled by the unitarity condition.
In its simplest form unitarity demands that the multiplicity
of final state leading quarks from the real radiation, and
from the VRC-corrected lower order (Born) quasielastic
scattering add up exactly to unity. In other words, the
small-x evolutions of the total inclusive cross section for
the leading quark production and of the total cross section
of the quark-target interaction must preserve their exact
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FIG. 1 (color online). The real-emission (REC) and virtual
radiation (VRC) contributions to the Born spectrum of leading
quark jets in inclusive production off nuclei. The (pseudo)rapid-
ity of radiation correction gluons runs between the quark jet
rapidity and the nuclear boundary condition rapidity 7, =

logé, where x, is defined by Eq. (19).
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equality. Evidently, the accurate evaluation of the energy
loss requires the REC for a finite fraction, z,, of the
incident quark’s momentum carried by the radiated gluon.
Correspondingly, the VRC must be calculated to a match-
ing accuracy. While the required real-emission spectra do
exist in the literature for both the free-nucleon and nuclear
targets (we follow the approach of Ref. [17], for related
works and further references see [18—20]), the matching
derivation of virtual radiative corrections was not yet
available—it is a major novelty of this paper. Our deriva-
tion of the combined VRC and REC fully respects the
s-channel unitarity constraints and paves the way to a first
consistent description of the LPM effect for leading jets for
fixed p of the jet.

Much insight into the interplay of the virtual and real-
emission radiative corrections for nuclear targets comes
from the study of LL}I—C evolution of the LPM effect-
deconvoluted inclusive spectra of leading particles, i.e.,
neglecting the radiative energy loss. At moderately high
energies, the unitarity constraints in hard gN collisions are
still unimportant and they can be described by single-gluon
exchange in the #-channel between the projectile and tar-
get. In this case a comparison of the LL}—( evolution of the
LPM effect-deconvoluted leading parton spectrum and of
the BFKL evolution of the unintegrated glue of the nucleon
leads to a simple k| -factorization relationship

dO-Qel
d*p

1
= Ef(x, p) ey

(for the definition of the unintegrated glue f(x, p) in the
free nucleon see below); i.e., the leading quark spectrum
satisfies the same BFKL small-x evolution equation as the
unintegrated glue [6,7], and this spectrum emerges as a
direct probe of the unintegrated glue in the target nucleon.
It is remarkable that our derivation of this property makes a
direct use of the s-channel unitarity for color-dipole scat-
tering. In the realm of the BFKL approach, this property
can be regarded as a straightforward consequence of the
correspondence between LL% approximation and the
dominance of multi-Regge production processes [6,7,21].

In contrast to the single z-channel gluon exchange with
the free-nucleon target, multiple gluon exchanges with the
target nucleus are enhanced by a large thickness of the
nucleus. Here the very possibility of describing a nucleus
by a unique collective unintegrated glue, and the existence
of factorization theorems, become problematic. Various
aspects of this issue have been addressed to within the
so-called Color Glass Condensate approach, in which the
starting idea was to describe the nucleus by the collective
Weizsidcker-Williams gluon density ([22] and references
therein). More recently, much progress has been made
within the nonlinear k| -factorization reformulation of
the multiple scattering theory for color dipoles. Within
the color-dipole approach, the extensive previous studies
of the dijet spectra ([10—15], see also the recent Ref. [23])
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and single-jet spectra [17] revealed a striking breaking of
the conventional linear k| -factorization for hard processes
in a nuclear environment. Specifically, all the dijet observ-
ables can be represented as nonlinear quadratures of the
collective nuclear glue defined in terms of a reference
nuclear process—production of coherent diffractive dijets
[24,25]. On the other hand, in Refs. [10,17] we noticed the
phenomenon of Abelianization of the single particle spec-
tra—to LL% the nonlinear k| -factorization simplifies
down to the linear k | -factorization subject to the judicious
choice of the component of the color space density matrix
for the collective nuclear glue. Here we demonstrate that,
at least to the first order of LL%, a similar Abelianization
takes place for the leading jet spectrum from inelastic
processes.

When speaking of k| -factorization for nuclear colli-
sions, one needs to define the collective nuclear glue in
terms of the properly chosen physics observable. Here we
start with the BFKL definition of the unintegrated glue for
free nucleons [6,7]. As noticed in [26], this unintegrated
glue can be directly measured in diffractive production of
dijets (for other applications of the unintegrated glue see
the reviews in [5,8,9,27]). Generalizing this observation to
nuclear targets [10,24], we define the collective nuclear
glue in terms of the color-dipole nuclear S-matrix which is
accessible experimentally via diffractive dijets. The LL}C
evolution of the so-defined glue is a nonlinear one. The
REC to the inclusive single leading parton spectrum de-
rived in [17] is a nonlinear functional of the collective
nuclear glue. Equally highly nonlinear is the VRC correc-
tion to quasielastic parton-nucleus scattering derived in
this paper. Our nontrivial finding is that the leading parton
spectrum and the collective glue share identical first itera-
tion of the nonlinear LL% evolution, which is the second
novelty of our paper. One is tempted to conjecture that the
spectrum of leading jets is linear & -factorizable in terms
of the collective nuclear glue to all order of the nonlinear
LLi evolution, i.e., it is a long sought unique linear probe
of the collective nuclear glue. It is by now understood that
the closedform of all-order LL% evolution for nuclei does
not exist (a detailed review is found in [28]). Still we argue
that in view of a high accuracy of the dilute uncorrelated
nucleonic gas picture of heavy nuclei, the small-x evolu-
tion of the leading jet spectrum from RHIC to LHC can to a
controlled accuracy be described by several iterations of
the Balitsky-Kovchegov (BK) approximation [29,30].

We find it very instructive to compare nonlinear
k | -factorization properties of the LL)l—C evolution of the
inclusive spectrum of leading quarks belonging to the
color-triplet (fundamental) and color-octet (adjoint) repre-
sentations of SU(N,.). The latter case is of interest from the
viewpoint of supersymmetric QCD, one can also think of
leading gluons in interactions of glueballs. A pattern of the
nonlinear k -factorization for the spectrum changes strik-
ingly from the triplet to octet quarks, equally different is
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the nonlinear BFKL evolution of the components of the
color-density matrix for the collective glue for the triplet-
antitriplet and octet-octet color dipoles. For instance, for
strongly absorbing nucleus and triplet-antitriplet dipoles,
the nonlinear BFKL evolution looks as a fusion of two
nuclear pomerons, i.e., it is dominated by triple-pomeron
interactions. In striking contrast to that, for the octet-octet
dipoles the dominant term looks as a fusion of three
pomerons from one component of the color-density matrix
for the collective nuclear glue to the fourth pomeron de-
scribed by a different collective glue. In both cases, how-
ever, the evolution of the two quantities—the leading
parton spectrum and the collective glue—turns out to be
identical, which lends more support to our conjecture on
leading jets as a linear probe of the collective nuclear glue.
When reinterpreted in the Reggeon field theory language,
our results correspond to a full resummation of multiple
pomeron exchanges enhanced by a large thickness of the
target nucleus. Such a resummation is interesting on its
own, an extension of these results beyond the dilute pro-
jectile and the Balitsky-Kovchegov approximations, and
the challenging inclusion of the pomeron loop effects (for
the review see [28]) go beyond the scope of the present
communication.

The presentation of the main material is organized as
follows. In Sec. II we introduce the basic color-dipole
formalism, a definition of the collective nuclear uninte-
grated glue and derive the differential cross section of
quasielastic scattering of quarks off free nucleons and
nuclei to the Born approximation. The color-dipole master
formulas for the real and virtual radiative corrections to the
inclusive spectrum of leading quarks are presented in
Sec. HI. Our derivation of the virtual correction in
Sec. III B makes a manifest use of the unitarity relation.
We then proceed to the (nonlinear) & | -factorization for the
spectrum of leading quarks off the free nucleon (Sec. IVA)
and color-triplet quark-nucleus (Sec. IV B) collisions as
well as for the spectrum of leading color-octet quarks (and
gluons) in collisions with nuclei (Sec. IV C). These results
are sufficient for the quantitative treatment of the LPM
effect at fixed transverse momentum of leading jets at
RHIC energies. In Sec. IV D we revisit the issue of unitar-
ity and demonstrate the consistency of our radiative cor-
rections with the leading quark number sum rule. Inspired
by the observations in Secs. II and IV, in Sec. V we focus
on the LL% evolution properties of inclusive single particle
spectra, which are necessary for the extension of our
technique to LHC energies. We demonstrate, that to the
LLi approximation, the nonlinear-evolving leading parton
spectrum in parton-nucleus collisions proves to be linear
k | -factorizable in terms of the nonlinear-evolved collec-
tive nuclear glue. In Sec. VD we comment on the unified
description of the LL}C evolution of the triplet-antitriplet
and octet-octet S-matrices. The subject of Sec. VE is a
partial vindication of the BK approximation—while it is
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not a closedform equation and is not really applicable to
the free-nucleon target, for heavy nuclei several iterations
of the BK approximation will be a useful working approxi-
mation in the range of energies from RHIC to LHC. This
gives a practical procedure for the quantitative evaluations
of the LPM effect for leading jets at LHC. In Sec. VF we
comment on how our treatment of the interplay between
VRC and REC extends to the production of midrapidity
jets, and on the possible interpretation of our results from
the effective Reggeon field theory perspective. In the con-
clusions we summarize our principal findings. In the ap-
pendix we comment on an interesting observation that the
nonlinear k | -factorization component of the LL% nonlin-
ear evolution gives a pure higher twist contribution to the
collective nuclear glue [31].

II. LEADING PARTICLE SPECTRA TO THE BORN
APPROXIMATION

A. Leading particles from the breakup of heavy
quarkonium

To set up the framework, we start with a toy problem: the
breakup of the color-singlet heavy quarkonium (let it be Y
in a high-energy collision with the free-nucleon target
YN — bbX. Heavy quarkonium can well be approximated
by its quark-antiquark Fock state with the size Ry >
1/my,. The lowest order pQCD subprocess is a breakup
by Upsilon-gluon fusion,Yg, — bb, where g, is the gluon
exchanged in the r-channel (Fig. 2). The corresponding
inclusive differential cross section, obtained after summing
over all excitations of the target nucleon, is well known; it
is found, for instance, in [11] (Egs. (4) and (5)):

do(Y — bb) _ as(p®) Flx, A%)
dzd’pd’A 27N, A*
X |Wy(z, p) — ¥y(z p — A% (2)

Here ag(p?) is the pQCD coupling, N, is the number of
colors, Wy(z, p) is the light cone wave function of the
quarkonium, p is the transverse momentum of the quark
in the quarkonium, z is the fraction of the light cone
momentum of the quarkonium carried by the quark, A is
the total transverse momentum of the bb pair,

FIG. 2 (color online).

(a,b) The Feynman diagrams for Upsilon
breakup by single-gluon exchange with the target nucleon and
(c) an archetype diagram of breakup of Upsilon by a multiple-
gluon exchange with the target nucleus.
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_ 9G(x, K2)

2
F s dlogk?
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is the so-called unintegrated gluon density in the target
nucleon as introduced in the BFKL approach [6,7]. The
Bjorken variable x of the exchanged gluon equals

2 2
_ ML -M

X 5
Wy »

, 4

where Wy, is the cms energy in the Y p system and M, is
the transverse mass of the excited quark-antiquark pair,

m§+p2+m127+(p—A)2

M2, =
bb z 1—z

&)
The transverse momentum A of the bb pair comes entirely
from the exchanged gluon and the differential cross section
(2) emerges as a natural probe of the unintegrated glue
F(x,A?). We recall that for the free-nucleon target
F(x, k?) is a solution of the LL% BFKL evolution equation
[6,7], a detailed discussion of the connection between the
integrated glue G(x, x?) of Eq. (3) and the gluon densities
of the leading order Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi evolution equations [32] is found in Refs. [8,27,33—
35] and need not be repeated here.

Now consider transverse momenta p much larger than
the typical momentum of the Fermi motion in the quark-
onium, p, ~ 1/Ry. The wave function ¥(z, p) vanishes
steeply beyond p,, and the single-quark spectrum takes the
convolution form

do(Y — bb) P as(p?) Fx k%)
et —vv P .
dzd’p f 27N, Kt
X |Wy(z, p) — ¥y(z p — 6

_ [ poasP?) Fx )
fd * 27N, Kt

¥y (z p — 0

d ]
= f Pred’p,5(p — py — 1) Lo P Y(@ o)

dsz
do(b—b')
—_— 6
T (6)
Here
Qo Py) _ 1y p, )2 (7)

d’p,,
is the momentum distribution of quarks in the quarkonium
and

do(b—b) _ as(p?) Flx &)
K 27TNC K*

®)

must be interpreted as a differential cross section of the
valence quark quasielastic scattering HN — b'X. Fur-
thermore, the longitudinal momentum distribution of lead-
ing quarks is given by precisely the transverse momentum-
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dependent z-distribution in the quarkonium—z is the
Feynman variable of the observed quark. As such, the
convolution (6) can be regarded as the archetype
k -factorization for the production of hard leading quark
jets in high-energy hadron-nucleon collisions. The adjec-
tive “hard” refers to the jet momenta harder than the
intrinsic momentum of quarks in the quarkonium: p? >
(p3). Now we proceed to the k| -factorization properties of
the quasielastic scattering of partons—quarks and glu-
ons—off free nucleons and heavy nuclei.

B. The free-nucleon target: The dipole cross section,
unintegrated glue, and quasielastic a NV scattering

We start with the dipole cross section for the aa color
dipole. It is described by two-gluon exchange in the
t-channel (Fig. 3). The S-matrices of the aN and aN
interaction at impact parameter b,(b;) equal, respectively
(101,

S.(b,) =1+ iTeV,x(b,) — iTaTax2(b,),
Si(bs) = 1 — iTeVx(bs) — ATaTEX2(b,),

where T2V, x(b) is the eikonal operator for the aN single-
gluon exchange interaction. In the realm of the standard
model QCD, quarks belong to the color-triplet (fundamen-
tal) representation of SU(N,), but much light on the
small-x evolution properties of the nuclear spectra is
shed by considering quarks also in the octet (adjoint)
representation of SU(N,). One can also think of leading
gluons in interactions of glueballs. The expansion (9) to the
considered pQCD approximation satisfies the unitarity
condition

S.(b,)Skb,) = 1. (10)

The spin of partons is unimportant in view of the s-channel
helicity conservation in high-energy QCD. The important
observation is that S} equals the S-matrix for interaction
of the antiparticle a [36,37]. The vertex operator vV, for
excitation of the nucleon g*N — N, into a color-octet
state N, is so normalized that after the application of
closure over the final state excitations N* the vertex
g%gPNN equals (NIV:QVBlN) = O4p. The second order
terms in (9) already use this normalization.

—d ? 3¢ 0
% )
9
N N
FIG. 3 (color online). The four Feynman diagrams for the

quark-antiquark dipole-nucleon interaction by the two-gluon
pomeron exchange in the #-channel.
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The S-matrix of the (aa)-nucleon interaction equals

(NITHS,(5,)S!(B)]IN)
(NITr1|N)

— 1= JCIb,) ~ xB)F (D)

Sad(ba’ b&) =

where C, is the quadratic Casimir operator. The corre-
sponding  profile function is I[',;(b, b;) =1—
S.a(bs b;), and the dipole cross section for interaction
of the color-singlet aa dipole r = b, — b; with the free
nucleon is obtained upon the integration over the overall
impact parameter

Taali ) =2 f BT, (b, b — r)
— 2 2 __ Ca
= Cy | &blx(B) = x(b — 1) = F~olxr),
F
(12)
where Cp = (N2 —1)/2N, is the quark Casimir and
o(x, r) is the dipole cross section for the gg-dipole. It is

related to the gluon density in the target by the
k | -factorization formula [34,38]

olx,r) = /dzkf(x, K)[1 — exp(irr)], (13)

where

4rrag

flow) ==

1
= Fx, &2). (14)

The leading log! evolution of the dipole cross section is
governed by the color-dipole BFKL evolution [38,39], the
same evolution for the unintegrated gluon density is gov-
erned by the familiar momentum-space BFKL equation
[6,7]. For very large dipoles

%m@=qffmﬂm+fw—m

G fdQKf(x, K)

Cr
- (NITe{1 — S, (B)}IN)
_2Qfﬁ% (NTTFLIN
:ﬂ%m=%%m, (15)

where o(x) is the cross section for large gg dipoles.

Now we turn to the master formula for the inclusive
differential cross section of quasielastic scattering aN —
a’'N*. Only the final states N* # N are excited by the
t-channel gluon exchange and
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doo, 1
TQel _ f d*bd?b’ exp[—ip(b — b)] >

N*#N

Ip  (2m)?

After the application of closure

D INUNT| + INKNI = 1, (17)

N*#N

and upon simple algebra one finds

doge 1 )
a;iQ211,(X) = 2(277_)2 fdzcexp[_lpc][a-adﬁ(x) - O-a[z(xr C)]
C,
_2ch(x”’)’ (18)

where p is the transverse momentum of the scattered
quark, cf. with Eq. (8). To this Born approximation, qua-
sielastic scattering off the nucleon exhausts the total cross
section, the pure elastic cross section is of higher order in
pQCD perturbation theory —it starts with four gluons in
the t-channel. Quasielastic g/N scattering emerges as a
direct probe of the unintegrated gluon structure function
of the target nucleon—we shall show this to hold beyond
the Born approximation. The above explicit calculation of
the emerging single-nucleon matrix elements is straight-
forward and hereafter, unless that might cause confusion, it
will be suppressed.

C. Quasielastic gA scattering and collective nuclear
glue
Here we need to specify the boundary condition of the
small-x evolution. In the interaction with heavy nuclei the
coherent nuclear effects evolve, and the concept of the
collective unintegrated nuclear glue becomes applicable,
for partons with

1
2RAmN ’

19)

XS Xy =

In the Breit frame, this coherence condition corresponds to
the spatial overlap and fusion of partons belonging to
different nucleons at the same impact parameter in the
Lorentz-contracted ultrarelativistic nucleus [40]. At x =
x4 coherent nuclear effects are absent and the impulse
approximation holds. The small-x evolution down to xy4,
the span of which could be substantial for the parametri-
cally small x, for very heavy nuclei, must be performed at
the free-nucleon level. The evaluation of coherent nuclear
effects at x < x, must start with the boundary conditions
set by the free-nucleon quantities evaluated at x, = x,. We
refer to this boundary condition as the nuclear Born
approximation.

Interaction of the generic n-parton system with the target
nucleon is described by the coupled-channel cross section

PHYSICAL REVIEW D 74, 014023 (2006)

(NITe{[1 — S,(B)NIN*XN*|[1 — SB)TIN)
(NITr1|N) '

(16)

[ ~
operator 3™ nthe regime of coherent interaction with the

heavy nucleus, x < x,, the corresponding S-matrix opera-
tor is given by the Glauber-Gribov formula [41,42]

S[b, 3" = exp[ 13" T(8)], (20)

where
T(b) = ] " dr.n,(b, 1) Q1)

is the optical thickness of the nucleus. The nuclear density
ny(b, r;) is normalized according to [ d*rny(b, r,) =
[ d*bT(b) = A, where A is the nuclear mass number.
The principal assumption behind (20) is that the nucleus
is a dilute uncorrelated gas of color-singlet nucleons. Also,
color dipoles are much smaller than the size of the nucleus.
All the nuclear cross sections are defined per unit area in
the impact parameter space.

For the transformation from the color dipole to the
momentum representation, we define the collective nuclear
unintegrated gluon density per unit area in the impact
parameter plane, ¢@(b, xg, k), in terms of the Born-
approximation nuclear profile function for the triplet-
antitriplet ¢g dipole [10,24,25,43]:

F[br O-(XOr r)] = 1 - S[b’ O-(XO’ r)]
= 1 —exp[—30(x, T(D)]

= fd2K¢(b, xo, &)[1 — exp(irr)]. (22)

The expansion for ¢ (b, xy, k) in terms of the collective
glue for overlapping nucleons in the Lorentz-contracted
ultrarelativistic nucleus, and its nuclear shadowing and
antishadowing properties, are found in [10,17]. The utility
of ¢ (b, xy, k) stems from the observation that the driving
term of small-x nuclear structure functions, the amplitude
of coherent diffractive production of dijets off nuclei, and
the single-quark spectrum from the y* — ¢g excitation off
a nucleus all take the familiar linear &, -factorization form
in terms of ¢ (b, x, k). Still more convenient, and more
universal, would be a definition in terms of the color-dipole
S-matrix,
2
(;’Tr)z S[b, o(xy, r)]exp(—ir - r)

= S[b, 0(x0)16@ (k) + p(b, xp, k), (23)

D (b, xp, k) =

which by its definition satisfies the sum rule

fd2K(I>(b, Xo, k) = 1. 24)
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Now we proceed to the differential cross section of
quasielastic scattering aA — aA*. Heavy nuclei are
strongly absorbing targets and the optical nuclear thickness
T(b) is a new large parameter in the problem. Because of

enhanced multiple z-channel gluon exchanges the pure
|

PHYSICAL REVIEW D 74, 014023 (2006)

elastic scattering is no longer suppressed and final states
A* include the ground state of the nucleus. The calculation
of the total p spectrum of quarks in gA scattering proceeds
as follows. The master formula is

do? 1 AITr{[1 — S,(B)]IA"XA*|[1 — Si(b — o)T}A
Thios _ L [ pcopiip- o ATHLL= SAOMANALL = 5106~ ) 05)
d>pd®b  (2m) & (A|Tr1]A)
The nuclear S-matrix is a product of the free-nucleon . 2ps1 )
S-matrices. The technique of the calculation of nuclear Te1 = [ d*b{1 = 8[b, o, (x) ]}, G1)

matrix elements in the standard picture of a nucleus as a
dilute uncorrelated gas of color-singlet nucleons is found in
[10,41] and need not be repeated here. We simply cite the
results,

(AITr{S,(B)}A)
<A|TI']1|A> - S[br O'a(.XO)],
(AITHS,(B)SE(b — o}lA) (26)
<A|Tr.ﬂ |A> - S[b’ a-tl[l(-XO’ L')]
Now we apply (23) and notice that
S [b) Ua&,()(-x())] = Sz[b! o-a(xO)]! (27)
which leads to
d"'fHQel(xo) — 1 _ 25(2)
W {1 S[b: U'a(xo)]} ) (P)
+ baa(b, xo, p). (28)

The first term describes the elastic scattering, here the
delta-function 8@(p) is a simple working approximation
to the nuclear diffraction peak. The second term in the p
spectrum (28) describes the Born (B) approximation for the
inclusive quasielastic scattering aA — aX,

dog(xo)

m = ¢a¢'z(b: X0, P)’ (29)

where ¢ ,;(b, xy, p) is defined in terms of

S[b, o, (xo, )] = S[b, %O'(xo, r)} (30)

F

Note that the color representation dependence of the dipole
cross section (12) entails a variety of the so-defined col-
lective nuclear glue ® (b, xy, k)—the nuclear glue is a
density matrix in color space. The major point is that to the
considered Born approximation quasielastic scattering is
linear k) -factorizable in terms of the collective glue
d)a[z(b’ X0, 17)

Upon the integration of nuclear Born cross sections over
all transverse momenta

T = o = / Lb{1 — b, o, (x))]}

Tt = Tay + Tp = 2 f 2b{1 — S[b, 7,(x0)] (32)

which are the standard Glauber formulas for the projectile
with @ = o ,(x,) [41].

III. MASTER FORMULAS FOR THE REAL AND
VIRTUAL RADIATIVE CORRECTIONS TO
INCLUSIVE SINGLE LEADING JET PRODUCTION

A. Real production a — ag

The leading order pQCD radiative correction to the
spectrum of leading particles in aN(A) scattering, a = ¢,
g, comes from the radiation of gluons, aN(A)—
agN*(A*). To the lowest order in pQCD, the generic par-
tonic subprocess is ag, — bc. From the laboratory frame
standpoint, it can be viewed as an excitation of the pertur-
bative |bc) Fock state of the physical projectile |a) by one-
gluon exchange with the target nucleon. In the case of a
nuclear target one has to deal with multiple gluon ex-
changes which are enhanced by a large thickness of the
target nucleus. Here the frozen impact parameter approxi-
mation holds, if the coherence length /. is larger than the
diameter of the nucleus 2R,

L 2B, _ 1
O+ M

>2R, 33)
XNy

where

=pi+m%+p%+mc

)‘12
1
Zp Ze

(34
is the transverse mass squared of the bc state, p,, . and z,
are the transverse momenta and fractions of the incident
parton’s momentum carried by the outgoing partons (z;, +
z. = 1). Notice an equivalence between the coherency
condition (33) and the parton fusion condition (19). The
virtuality of the incident parton a equals (Q*)? = k2,
where k, is the transverse momentum of the parton a in
the incident proton.
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Ce @a bhe

Ct\q&wb B P

FIG. 4 (color online). The color-dipole structure (1.h.s.) of the
generic 3-parton state and (r.h.s.) of the 3-parton state entering
the color-dipole description of fragmentation @ — bc with for-
mation of the bc dipole of size p.

The target frame rapidity structure of the considered
a — bc excitation is shown in Fig. 1. The beam parton
has a rapidity 1, = n4 = logl/x,, the final state partons
too have rapidities 7, . = n,. In this paper we focus on the
lowest order radiative corrections without production of
more secondary partons in the rapidity span between 7,
(nq/) and Ne (ng)

To the lowest order in the perturbative transition a — bc
the Fock state expansion for the physical state Iaphys> reads

|aphys> = \/Z—a|a>0 + \P(Zb’ P)|bc>o’ (35)

where W(z,, p) is the probability amplitude to find the bc
system with the separation p in the two-dimensional im-
pact parameter space, the subscript “0” refers to bare
partons. The explicit dependence of the wave functions
on the virtuality (Q*)?> and their relation to the parton
splitting functions is found in [17]. Here Z, is the wave
function renormalization, the perturbative coupling of the
a — bc transition is reabsorbed into the light cone wave
function W(z;, p). The normalization (completeness) con-
dition reads

1=2,+ f |¥(z,, p)2d2pdz,,. (36)

If b, = b is the impact parameter of the projectile a,
then

bb:b+ch’ bc:b_sz) (37)
see Fig. 4. Below we cite all the spectra in the a-target
collision frame. We shall speak of the produced parton b—
or jet originating from this parton—as the leading one if it

|

do(a* — b(py)c(p.)) _ 1
dzd’p,d*p. @2m)*

X W (2, bj, — BI{SY)

PHYSICAL REVIEW D 74, 014023 (2006)

__> [

A XA A

FIG. 5 (color online). Typical contribution to the excitation
amplitude for aA — bcX, with multiple color excitations of the
nucleus. The amplitude receives contributions from processes
that involve interactions with the nucleus after and before the
virtual decay a — bc which interfere destructively.

carries a large fraction of the beam light cone momentum,
Zp ~ 1. The Feynman variable x spectra in pN, pA colli-
sions are obtained from the z;, spectra in gN, gA collisions
by an obvious k| -factorization convolution with the beam
quark densities, see below Eq. (63).

By the conservation of impact parameters, the action of
the S-matrix on |a,y,) takes a simple form

Slapnys) = Su(b)Z,layy + S, (b,)S (b)) ¥ (2, p)lbc),
= Sa(b)lapnys) + [S5(b,)S:(b.) — S,(b)]
X W(z,, p)lbe). (38)

In the last line we explicitly decomposed the final state into
the elastically scattered |a,ys) and the excited state |bc),.
The two terms in the latter describe a scattering on the
target of the bc system formed way in front of the target
and the transition a — bc after the interaction of the state
|a)o with the target, as illustrated in Fig. 5. The contribution
from transitions a — bc inside the target nucleus vanishes
in the high-energy limit of x = x,.

The probability amplitude for the two-parton spectrum
is given by the Fourier transform

w/fhﬂ%dﬂﬂ—ﬂpwb+PﬁJ]

X [Sy(by)Sc(b.) — S (D)W (zp, p).  (39)

The differential cross section is proportional to the modu-
lus squared of (39)

| @b b exalip v, — by) + ip (b~ B)IVoc(ay, by~ b)

(b}, bl by, b,) + SE)B', b) — SE) (b, b}, bL) — SL) (¥, by, b,)},

(40)
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a
iAo
~5 ~C
] (® )
bccb aa acb abc

FIG. 6 (color online). The S-matrix structure of the two-body
density matrix for excitation a — bc.

where, see Fig. 6 for an illustration,

SC)(b', b) = SIS, (),
Sape(B', by, be) = SI(B)S, (by)S.(b.), @
S® (b, b}, bl) = S} (b,)SI(5])S,(b).
S (B bl by, b)) = SL(B,)SE(BL)S.(B,)S)(By).

Here the proper averaging over polarizations and color
states of the initial parton and the summation over polar-
izations and color states of final state partons are under-
stood. Next we approximate the heavy nucleus by a dilute
gas of colorless nucleons and follow Glauber’s technique
of summing over the final states of the target nucleus
applying the closure relation [41]. Then the nuclear matrix
element of products of single-parton S-matrices would boil
down to the Glauber-Gribov formula (20): (A|S™|A) =

S[b; i(")], where i(") is the relevant n-parton cross section
operator, for the details see Refs. [10,12,14]. All the multi-

color-singlet state and the excitation cross sections are
infrared-finite despite the nonvanishing net color charge
of the projectile parton a [17,37].

Integration over the transverse momentum p,. of the jet ¢
gives

b.=0b., b—b =z,(p—p'),
p\p— P 2)
by —b,=p—p, b —b.=2zp
Then the unitarity relation
SHb)S.(b,) = 1 43)

leads to a fundamental simplification:

S (b}, bl by, b.) = S}(b,)SE(b.)S.(b,)S, (b))

bccb
= 5§ (8})S,(b,) = 2B}, by),
(44)

i.e., the effect of interactions of the spectator parton c

PHYSICAL REVIEW D 74, 014023 (2006)

vanishes upon the summation over all its color states and
integration over all its transverse momenta ([37], see also a
discussion in [17]) the only trace of the observed parton b
having been produced in the fragmentation a — bc is in
the density matrix W(z,, b, — b.)¥*(z,, b, — b..) which
defines the transverse momentum distribution of the parton
b in the beam parton a and the partition z,,, z, = (1 — z;),
of the longitudinal momentum between the final state
partons. The applications of the master formula (40) to
the calculation of the real-emission spectra for the free-
nucleon and nuclear targets are found in [17].

B. Derivation of the virtual radiative correction from
the unitarity relation

The relevance of the unitarity has already been ex-
plained in the introduction. It is especially obvious in
gN(A) scattering. The opening of the new channel g —
qg renormalizes, via unitarity, the Born cross section of the
lower order quasielastic scattering gN(A) — g'N*(A*).
The VRC is precisely that unitarity driven renormalization.
The real emission and the virtual correction must so con-
spire, that the total multiplicity of leading quarks in the
final state is exactly unity. We show here two derivations
which have already been used in the related works [37-
39].

The first approach is a direct perturbative solution of the
unitarity relation ([37], for an extensive use in the theory of
the LPM effect see [1]). We define the radiatively corrected
S-matrix of elastic scattering,

S.(b, x) = S,(b, xy) + 6S,(b, x), (45)

and the excitation (real-emission) operator

S (b, x) = Sy(by, x0)S.(b., x0) — S,(b, xp).  (46)

Then the unitarity relation would read

S(b, x)St (b, x) = Sy (b, x)S](b, x)

[ D) W W, S (b, x)Sh (B, x) = 1,
47

where we explicitly separated the contributions from the
elastic and real-emission channels, D, is the short hand
notation for the integral over the bc dipole parameters,
D,,. = d*pdz,. If the boundary condition for the small-x
evolution is defined at x,, then the integration over dz,
extends over the interval [x/x,, 1]. We recall that
W, V¥, = ag and the real-emission contribution to (47)
must be regarded as the pQCD perturbation. Making use of
the explicit form of S.(b,x), to the linear order in
8S,(b, x) we find
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6S,(b, x)S:,f(b, x) + S, (b, xo)532(b, x) = bec‘I’ZC‘I’bc[Sh(bb, %0)S,(be, xo)SZ(b, xo) — 1]
+ [ D W08, b ) b xSy x) 1) 48)
Evidently, this equation can be split into
08,6, 081 (b 1) = [ Dy W W1[8y(by,30)S. b, 1)S] (b.30) ~ 1] (49)

and its complex conjugate. Multiplication of (49) by S, (b, x,) from the right and the application of the unitarity relation
(10) gives the solution

5S, (b, x) = f Dy W5 W, [Sy (B 30)S. (b x0) — Salb, x0)) (50)

The second approach is a direct calculation

Sel(b’ X) = <aphys|8|aphys> = ZaSa(b’ Xo) + bec\ch\Pchb(bb’ xO)Sc(bc’ xO)

— S, (b x) + [ Dy W5, W) [Sy (B 50)S. (B x0) — Salby x0)) 51)

where in the last line we applied the completeness condition (36). It gives precisely the same result for 6S,(b, x) as the
unitarity condition. The technique (51) was applied earlier to the derivation of the color-dipole BFKL equation [38,39].

IV. THE CALCULATION OF THE VIRTUAL RADIATIVE CORRECTIONS TO THE LEADING PARTON
SPECTRUM

A. Leading partons off the free-nucleon target

With the allowance for the radiative correction, the quasielastic scattering matrix 1 — S,(b, xy) in the master formula
(16) must be replaced by 1 — S,;(b, x) and

[1 = Su(b, 01 — SE®, )] =[1 = Su(b, x)I[1 — SI®', x0)] — 8S,(b, x)[1 — SI®, x0)] — [1 — S, (b, x)16S (B, x).
(52)

Here first term leads to the Born spectrum. Upon using the result (50), the virtual correction, do ¥R, to the Born spectrum
takes the form (hereafter we suppress the calculation of the free-nucleon and nuclear matrix elements)

VRC 21 2
W e 2 [ enpl-ip-0) [ Dyt ValSilby 1S 0) + 8,06, 5)SLb — € 30) ~ (8,

— Sp(by, xO)Sc(bcr xo)SZ (b, xo)]

d*c . )
_ fw eXP(_lp . C) f Dbcq’j)cq’bc[(f&bc(}m) + O'a()C()) - U'bC(X()) - a-a&(x())l (53)

The general technique of the derivation of the multiparton cross sections is found in [10,12,14,38], here we only cite the
results:

C,+C,—C, C,
Tpe(x) = bT o(x, p) + EUO(X)
G, +C—C, CotC.—Cy Cat Gy Ce
O-dbc(x) = TO’(X, bb - bc) + Ta'(x; b/ - bc) + WO'(X, b/ - bb) (54)
c,+C.—C, C,+C.—C C,+C,—C,
- "Ta(x, p) + Tbﬂ(x, c+tzp)+ #‘T(X’ ¢ = 2p).
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The integrand of (53) takes the form

O-ﬁbc(x) + (Ta(x) - a-bc(x) aa(x) - —[(C + C
2Cr
—2C,0(x, ¢)]
2CF
- (Ca + Cb -
Now we specify the phase space limits. Let x = p?/W.

integration goes over [Zmins Zmaxl, Where z,.. =1 —

- Cpo(x,c+ z,p) + (C, + C, —

fdzxf(x k) exp(ik - ¢)[2C, — (C, + C,

Zmin> and ZmaxzmmeVV

PHYSICAL REVIEW D 74, 014023 (2006)

CC)O'(X, c— Zcp)

Cp) explizyk - p)

Cc) eXP(_lZcK ' p)] (55)

2 and the boundary condition be specified at x,. Then the z..

= p?. The resulting VRC to quasielastic

scattering can be cast in two forms. In the color-dipole representation

4o p) 1
&p 2C; (2 )2
- (Ca + Ch - Cc) eXP(_lZcP : p)]

da—ge] (XO) Cﬂ

- f()C(), p) f i ch /dzpq,zc(zc’ p)\Pbc(Zc’ p)[zca - (Ca + Cc - Cb) exp(isz : p)

- - : . f LV <zc,p>%c<zc,p>{[1—exp(isz-m]

d*p Cr(2m)?

+ [1 — exp(—iz.p - p)]+<g _1>[€XP( iz.p - p) — explizyp - p)]} (56)

has the expected form of the Born cross section times the combination of form factors of the bc Fock state. This

combination of form factors vanishes at p = 0. In the final result we made an explicit use of C,, =

is the case in reactions of the practical interest: a — ag.

C,and C, = C, which

In the subsequent analysis of the small-x evolution properties of the leading particle spectrum it would be more

convenient to work in the k| -factorization representation

d VRC(x p) 1
&lp = o P e 2(277
- \I,(ch K+ ZcP)|2]
1
= f(xo, P)E : m

f [ Pr[CA| V(2o k) — Wz, b6
me

—up)I* + (2C, — CYIV(z,, K)

1
f/ dzczaSPCa(Zc) [de[CAK(K! K — pr) + (2Ca - CA)K(K: K+ Zcp)]- (57)
x/xq

The averaging over the initial, and summing over the final, colors and polarizations of partons is encoded in |W(z,, k) —

W(z., & — p)|?, for which we use the explicit form [17]

K Kk— A
|[W(z,, k) — V(z., & — A)|?> = 2a5P,,(z,.) puanpe i (k— AV + &2 =2a4P.,(z.)K(k, c — A), (58)
[
where ng(zg), which also will be relevant to the color-octet
incident quarks. We emphasize in passing that in transi-
g2 = Zp2e Q?I + zbmg + Zcmlz,, (59) tions a — bc the helicity of partons mixes with the orbital

Q? is the virtuality of the projectile parton defined by its
transverse momentum in the incident proton, Q2 = k2, and
P.,(z.) is the real-emission part of the familiar splitting
function. For incident quarks, a = g,

1+ (1—g,)
Pga(zg) = CaM’ (60)

g

for incident gluons one would use the splitting function

angular momentum, but that has no bearing on the descrip-
tion of the polarization summed final states because the
s-channel helicity of partons is conserved in the scattering
process.

In the calculation of the total radiative correction, the
above VRC must be combined with the (nonlinear)
k | -factorization results for the real emission [17].
Making use of the representation (58), the spectrum of
color-triplet leading quarks, » = a = g, from the real
emission a — bg can be cast in the form (p = p,)
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do®"(x, p)
dedzp

1 1
abg  2Cr 2Q2m)
+ (2Cr — CHK(p — K, p — 2K} (61)

DagP . (z,) [ Lrcf(xo kHCAIK (p, p — K) + K(p, p — 2,)]

The corresponding result for the color-octet incident partons is

d(TREC(X, p)
dedzp

11
a—bg 2CF 2(2 )2

2aSPga(Zg)CA fdzkf(xo» K){K(p, p— ng) + K(P — K p— ZgK) + K(P’ p— K)}
(62)

Once the finite-z, VRC and REC for quarks are known, we can proceed to inclusive jets in collisions of protons. Here a
crucial point is a cancellation of effects of interactions of spectator partons of the beam proton in the inclusive single-
particle cross section summed over all excitations of the beam and target [17,37]. Let ¢,(xy, k,) be an unintegrated density
of quarks of flavor a, carrying a fraction x, of the proton’s light cone momentum and having the transverse momentum k,,.
Then the inclusive spectrum of leading jets with the Feynman variable x5 and the transverse momentum p, produced by the
interacting quark a will be given by the standard convolution, cf. Eq. (6),

do—u(xF’ I’)

1 1
2 = f dx, fdzka/ dzbdzp’é‘(xF - bea)a(p - p/ - Zbka)Qa(xar ka)
dde p XF 0

do8.,(x,p") doVR<(x, p' doREC(x, p')
X{{ Q; 7 2(/p):|5(1_zb)+ 2 {, }
d*p d*p dzpd°p

(63)

2 2 :
where x, xW,y = p /zp2z. and W,y is the proton-nucleon cms energy.

B. Color-triplet leading quarks off the nuclear target

In the case of heavy nuclei one considers cross sections per unit area in the impact parameter plane. Starting with
Eq. (53), we calculate first the nuclear matrix element of the multiparton S-matrices. The resulting master formula for the
VRC takes the form

doVRC(x, Lbd’c , .
il =2 [ explin o) [W WDy {S1b: )] + Sl 0,ate)] = Slbi )

= S[b; oape(xo)]1- (64)

For color-triplet incident quarks C, = C,, = Cr. Making use of (54), and treating the nucleus as the dilute uncorrelated gas
of colorless nucleons, we readily find the product representation for multiparton S-matrices:

S[b; oy (x0)] + S[b; 074a(x0)] = S[b; 7, (x0)] = S[b; Tap(x0)]

- {s[b 2CCF o(xo ,,)} [b;%o-ooco)} - s[b;%o-ooco)}} " {S[b;(f(xo, o)
—S[b chF o(xo p)} [ 2CCF a(xo,c+sz)} [ ,ch%a(xo,c—zgm}}. (65)

The Fourier transform of the first group of terms, which is c-independent, will be = §?)(p). We evaluate the second group
to the leading order of the large-N, perturbation theory, when C4, = 2C and S[b; M o(xp, ¢ — z,p)] = 1. In this
approximation it admits a simple Fourier representation

Slbiortsy )]~ 8 big et otin p) 8] bigtotan e+ 20p) |
= fd2k¢(b, xo, k) explirc - ¢) X {1 — S[b; o(p)]explizp - p)}. (66)

The VRC splits naturally into two terms:
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do¥R°(x, p)
d’pd*b

Zoos
<min

PHYSICAL REVIEW D 74, 014023 (2006)

—259(p) ] ™ 22 pW) (20 )Wz P1 — SIB (5, p)]} - S[b;%aouo)} : {1 - S[b;%crom)}}

—2¢(b, x0, p) [ " dzdpWi (2o, PYWye(ze, I — S[b; o(xo, p)]explizyp - p)}. (67)

Zmin

Evidently, the term o 6@ (p) in the right-hand side
(rh.s.) of (67) is the VRC to the elastic scattering.
Indeed, the VRC 8S,,(b) to the elastic S-matrix equals

8Sa(b) = (A|8S,(b)IA)
= [ deud W, oVl ISIB 0]
- S[b; o, (68)
With the large-N,. cross section (54), this gives
8S.(8) = ~Slbikos(x0)] [ dzed Vi (ac V¥sclec )

X {1 — S[b; o(xo, p)}- (69)
J

Qm)*doy§C(x, p) _

dzpdzb Zmin

[

Now the VRC to the profile function of pure elastic scat-
tering can be evaluated from the expansion

{1 — S[», %UO(XO)] - 5se1(b)}2
= {1 — S[», %Uo(xo)]}z —28S(b){1 — S[b, %0'0(350)]}-
(70)

In conjunction with (69) one obtains precisely the inte-
grand of the term = 8@ (p) in the rh.s. of (67) which
accomplishes the proof.

Now we isolate the nonlinear k| -factorization for the
virtual correction to quasielastic scattering of color-triplet
quarks:

~2¢(b, x0, p) | " dzed?pVi (2, P)Wpe(z,, pH1 — S[b; 7(xo, p)lexplizyp - p)}

Zmax
= _()b(b’ X0, p) dzczaSqu(Zc) dzkl{s[b; O-O(XO)]K(KI: K — th)

Zmin

+ fd2K2¢(b, X, K2)K (), ) + Ky — pr)}- (71)

Here we made use of the Fourier representation (23) for S[b; o(p)] and the sum rule (24). In view of Eq. (29), and in close
similarity to the free-nucleon case, the VRC has the expected form of the Born cross section times a p dependent form
factor. The difference from the free-nucleon case is that this form factor does not vanish at p = 0.

The above VRC must be combined with REC derived in Ref. [17] to the same leading order of the large-N, perturbation

theory (a = b = q):

Q2m)*do®*(x, p)
de dzp({zb

998

= 2agP,,(z,) fdzlﬁfls(br X, Kl){s[b; ao(xp)I[K(p, p — 1) + K(p, p — 2,k1)]

+ fd2K2¢(b, xp, K2)K(p — K1, p — ZbK2)}- (72)

For a practical calculation of the LPM effect and nuclear
quenching of leading quark jets off nuclei one would use an
obvious generalization of the convolution (63) to nuclear
targets.

C. Color-octet leading quarks and leading gluons off
nuclei

The case of color-octet incident partons gives still more
insight into the leading parton production. To the Born
approximation, the spectrum of color-octet leading partons
(29) is described by the glue ¢4, (b, x, k) defined through
the S-matrix for the octet-octet color dipoles [17]:

{
d? C

D, (b, x0, p) = fﬁS[b;C—;\a'(xo, r)}exp(—ip - r).
(73)

The issue is how this result changes if one includes the
VRC and REC for gluons radiated in the regime of nuclear
coherency in the rapidity span between the jet and the
target nucleus.

A tricky point is that in our derivation we shall encounter
not the collective glue (73) but still another component of
the color-space density matrix for their collective glue.
Specifically, in the case of incident color-octet partons
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C,=C, = C, = Cy4 and all the multiparton dipole cross
sections (54) are superpositions of
og(x, 1) = —cr(x r) = 2 Tgo(x, 1),
(74)
CA
O'g,o(x) = E oo(x) = B O'gg,o(x)-

Correspondingly, the multiparton nuclear S-matrices will
be products of S[b; o,(x, ¢)], and there emerges a collec-
tive nuclear glue ®,(b, x, k) such that

S[b; o4 (x0)] + S[b; 04a(x0)] — S[b; 074 (x0)] =
= S[b; a4(xo, p)IS[b; 0 0(x0)] —
X 8[b; o y(xp, € = z,p)]

PHYSICAL REVIEW D 74, 014023 (2006)

S[b; o (x, c)] = fa’zktbg(b, x, k) exp(ixc - ¢).  (75)

In contrast to ®(b, x,, p) and (I)gg(b, Xo, P), the so-defined
auxiliary ®,(b, x, x) is a component of the color-density
matrix for the collective nuclear glue which is not directly
measurable in the quasielastic scattering of partons.

What would enter the master formula for color-octet
leading partons is

S[b; 7ap(x0)]
S[b; 74 0(x0)] + S[b;20,(xp, €)] —

S[b; o, (xo, p)1S[b; 7, (x0, ¢ + z,p)]

= —S[b; U'g,o(xo)]{l — S[b; O'g,o]}‘{l — S[b; a4 (xo, )1} + S[b; O'g,o(xo)]fdz" explik - ¢) 4 (b, xk)

X {2 - S[b9 a-g(xﬂ’ P)] : [eXp(iZbK : P) + eXP(_iZgK : P)]} + fd2K1d2K2¢g(bl X0 K1)¢g(br X0, KZ)

X exp(i(re; + k) - 1

= S[b; 74 (xo, p)lexplip(z,re; —

izg16)]) (76)

Again we made an extensive use of the dilute gas treatment of the nucleus. Precisely as was the case with the color-triplet
quarks, the ¢ independent term in (76) gives rise to the VRC to the pure elastic scattering:

da)R¢
d’pd*b

= 8@(p) - 28[b; 0 o(x0)] - {1 = S[b; 7 o(x0) 1} f dz.d*pV; (2, ) ¥y (2o, P — S[b; 0y (x0, p)I. (77)

The nonlinear k| -factorization for the quasielastic scattering of the color-octet quarks is much more subtle:

VRC(x p)

22
@) d’pd*b

— S[b g 0(x0)] f Lrs{b, (b, x0, p

ZIHJX
f dz,205P oy (z,) f d2n1{¢g<b 30, P)S: g0 xo) LK (1, 161 + 2p) + Kloey, 61 + 2,)]
me

- Kz)d’g(b, X0, K2)K(key, 1) — Ky + ng)

+ ¢y (b, x0, P) P (b, xo, 1) [K(Ky, 16y + Ky + 2,p) + K(key, 16y + Ky + 2,p)]}

- [d2K2d2K3¢g(b, X0, P

— 1) b (b, X, 1) b o (b, xo, k3)K (), 16 — 16y + 13 + ng)}- (78)

In striking contrast to the case of color-triplet quarks, the VRC to quasielastic scattering of color-octet quarks is no longer
proportional to the Born approximation. In the calculation of the total spectrum of color-octet leading quarks, the VRC (78)

must be combined with the REC derived in Ref. [17]:

Q2m)*doR*C (xp)
dz,d’ pd®b

a—bg

= 2agP,4(zg) ]dzkl ¢ (b, xo, Kl){sz[b; T0(x0)[K(p, p + 7o) + K(p + 1, p + 2,K)

+ K(p, p + 1)] + S[b: 0, olx0)] [ L (b, x0, 1)K(p + K1, p + 2862)

+ K(p+ K+ Ky, ptzp6)+ Kp+ K, ptz,(6 + k)]

+ fd2K2d2K3¢g(b’ X0, K2) P o (b, X0, k3)K(p + 1¢; + 163, p + 2,(K, + K3))}- (79)
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D. The s-channel unitarity and the quark-number sum
rule

Although our derivation of the virtual radiative correc-
tions makes manifest use of the s-channel unitarity, it is
useful to revisit this issue from the viewpoint of the leading
quark-number sum rule. The latter dictates that the leading
quark inclusive cross section must integrate to exactly the
total quark-target interaction cross section, i.e., the sum of
the integrated virtual and real radiative corrections to the
single-quark inclusive cross section must equal the incre-
ment of the total quark-target cross section caused by the
gluon production in the s-channel.

We start with the integrated real-emission cross section.
The integration over the transverse momenta p. and p,, in
the master formula (40) gives b, = b.. and b, = b}, which
entails b = b’, p = p'. Then, the unitarity condition (43)

leads to S(b_42“cb(bl’ b.,b,b.)=1 and Séza)(b’, b) = 1.
The three-parton cross section which enters
St(1")S,(b,)S,(b,) would equal

c,+C.—C, c,+C.—C
Oabe = bTU'(P) + bef(sz)

Cc,+C,—C.
+ = ) 80
2, o(z.p) (80)

The result for the integrated real-emission cross section is
(we suppress the matrix elements over the target nucleon
and/or nucleus)

8oREC(a* — b(p,)c(p.))
= Z[DIJC\PZC\PbchbC[I - Sdbc]x (81)
cf. the derivation of open charm production in Ref. [37].

The integration over the transverse momentum p in the
master formula (53) amounts to ¢ = 0 and

doVRC = _2]q}z£q,bcDbcd2bc[l +Spe = Sa ~ Sapel
(82)

Then, the total radiative correction to the inclusive
single-quark cross section would equal

SRECTVRE — zf‘l’*bcmbc@bcdzbc[sa — Syl

— f V2 W, D, b85S, = S
(83)

In the last step we used our result (66). We emphasize that
Eq. (83) gives the exact result for the increment of the total
quark-gluon cross section for radiation of one gluon, with-
out resorting to the soft gluon, i.e., LL)—IC approximation.
The proof of the quark-number sum rule is accomplished.

PHYSICAL REVIEW D 74, 014023 (2006)

E. A mini-summary on the LPM effect for leading jets
and particle

The nuclear modification of the radiation quenching
(stopping) of leading jets produced at large Feynman vari-
able and fixed transverse momentum—the p dependent
LPM effect for leading jets—is our principal new result.
The nonlinear k| -factorization of Secs. IVB and IVC
gives the leading particle spectra in the form of explicit
nonlinear quadratures in terms of the collective nuclear
glue. Such quadratures for both real and virtual pQCD
radiative corrections are not found in the previous works
by other groups on forward jet production [18,19,23]. Still
another novelty of our approach is a derivation of the
virtual pQCD radiative corrections from the s-channel
unitarity. Our approach to the solution of the s-channel
unitarity holds for both free nucleon and nuclear targets.
The emerging interplay of the real and virtual radiative
corrections to the leading jet spectra is precisely the same
as in the evolution equation for the total cross section
which property guarantees a manifest fulfillment of the
leading parton number sum rule. For color-octet (adjoint
representation) leading quarks and gluons our nonlinear
k | -factorization holds for arbitrary N,., only for color-
triplet (fundamental representation) leading quarks one
would invoke large-N,. perturbation theory for the formu-
lation of closedform quadratures.

V. LINEAR k, -FACTORIZATION FOR THE
LEADING PARTON SPECTRATO LL % ?

A. The master formula for LL % evolution of the color-
dipole S-matrix and the collective nuclear glue beyond
the Born approximation

For further insight into the properties of leading parton
spectra, in this section we consider the LPM effect-
deconvoluted cross sections, i.e., the spectra evaluated in
the LL)—‘(, i.e., soft gluon, approximation neglecting the
radiative energy loss. The relatively simple case of the
free-nucleon target will be considered in the next subsec-
tion, only with the nuclear targets one encounters non-
trivial conceptual issues. Here, motivated by the linear
k | -factorization (29) observed to the Born approximation,
we would like to compare the LL)I—C evolution properties of
the leading particle spectra and of the collective nuclear
glue. We recall that in Refs. [10,24,25] we defined the
collective nuclear glue in terms of the amplitude for co-
herent diffractive dijets. At arbitrarily small x this observ-
able is calculable through the color-dipole S-matrix
S.a(x, b,, bs). At a boundary x, = x4, i.e., at the onset of
coherent nuclear effects, S,;(xo, b, b;) is given by
Eq. (20) which defines the Born approximation for the
collective glue (23). We would like to maintain the defini-
tion (23) for arbitrary values of x and need the LL%
evolution properties of the color-dipole S-matrix. For
soft gluons, 7, K 1, there are several important simplifi-
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cations. First, the impact parameters of partons which
radiate soft gluons, do not change, see Eq. (37). The
resulting master formula for the small-x renormalization
of the color-dipole S-matrix for the perturbative aag Fock
state in the aa-dipole is an obvious generalization of
Eq. (50) [38,39]:

6811[1()6’ ba’ b[z) = ] ng /dzquaag adg[sa(xor ba)
x/xo

X Sa (-XO’ bé)sg(x()’ bg)
Saﬁ(XO’ bar bd)] (84)

Second, in view of Eq. (59), the parameter & in the ag
wave function would not depend on the virtuality of par-
tons a, a in the aa color dipole. Consequently, the distri-
bution of gluons in the aa dipole will be given by [38,39]

wherer = b, — b;, p = b, — b,. In the momentum space

k

k2+,u,§,’

W (zg, k) (86)
where we indicated the (optional) infrared-regularization
parameter u, which models the finite propagation radius
of perturbative gluons [39,44]. The corresponding small-z,
splitting function equals

2C,

Pou(zy) = (87)

8

To the LL we have [Zyin, Zmax] = [x/X0, 1] and the z,
integration would give the familiar LL 1 factor
1 dz,
] 8 — Jog™?. (88)
x/xy Zg X

B. Free-nucleon target: BFKL evolution for the leading
parton spectrum

We start with the free-nucleon target. We first recall the

connection between the LL% evolution equation for color-
|

PHYSICAL REVIEW D 74, 014023 (2006)

dipole cross section [38,39] and the BFKL equation [6,7]
for the unintegrated glue of the nucleon.

In terms of the dipole cross sections, Eq. (84) amounts to
the evolution correction [38,39]

1
80 ,a(x, 1) = j/ dzg]dzpl‘lfag(zg, p)
x/xq
- \Ijag(zg; p+ ")|2(0'aag(xo) -
Cy
=ac, dzg] 2p|V (24, p)

- \Ifag(zg’ P + r)lz[U'(XOr p)
+ olxg, p+r)— alxyr)] (89)

Oag ()C()))

and to the evolution of the unintegrated glue 8 f(x, p)
d2
(@m)?

= 60430087 (p)

80 4a(x, r)exp(—ip - r)

Ca
"G 8f(x, p). (90)

In the transition from the color dipole to the momentum
representation we follow the familiar route. First, we make
use of

alx,p)+ox,p+r)—olxr)

= fd%cf(x, k)1 —exp(ix - p)|[1 + exp(ix - r)].
(29)

Second, the symmetry with respect to p < p + r allows a
simplifying substitution of | W, (z,, p) — W,4(z,, p + 1)
by 2V, (2, P W e (24, p) — W,e(zg p + r)] which has a
Fourier representation

\p(jg(zg’ p)[\lfag(zg) p) - \Pag(zg’ P + r)]
= fdeIdZKZW*(Zg’ KZ)\I’(ZAU Kl)

—exp(ire; - 1)) (92)

Then the Fourier transform (90) gives

X expli(i; — 1) - p][1

Cofp) = AL [ 'z, [ Pred iy oy f(xo, €)W (2, 162V (2 16 )[8P 1) — 1) — 8O (ke + 16, — 163)]
CF c (2 ) x/xo
X [6@(ke; = p) + 8P (s + 1) — p) — 6D — p)]
C 1
=& f Lz 2a5P 0 (z,) f P2 (p, p — 1)f (x0, K) — F(x0, p)K (b, k& — p)} 93)

Upon the use of the soft-gluon approximation (87), the differential form of Eq. (93) boils down to precisely the BFKL
equation for the unintegrated gluon density of the target nucleon [6,7]:

af(x, p)
ad logi

where

= Ko f k(2K (p, p — #)f(x, &) = f(x, p)K(r, k — p)] = (Kppkr ® f)(x, p), (94)
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Cy
— ag.

= 95
0 277_2 ( )

The manifest dependence on the Casimir C, of projectile
partons in the left-hand side (l.h.s.) of Eq. (93) dipole
cancels against C, in the a — ag splitting function.
Similarly, we obtain

Sor -
900 ua0x) _ %.’KO ]dzqdsz(q, g+ K)f(x K)
F

— & ]dzkaf(x”]()
Cr dlog,

3 log!

(96)

Note the consistency between Egs. (94) and (96).

dUch(X: P) _ C,

PHYSICAL REVIEW D 74, 014023 (2006)

Now we proceed to the LL)I—C approximation for quasi-
elastic scattering. In the REC the energy loss by the qua-
sielastically scattered parton is neglected, i.e., one must put
7, = 1 where legitimate and integrate over z, with the soft-
gluon approximation (87). The contribution to the inte-
grand of (61) from the term o« 2Cr — C4)K(p — K, p —
7, K) vanishes. Similarly, the contribution to the VRC from
the term o« (2C, — C4)K(x, k + z.p) vanishes at z, =
7o < 1. Combining together the virtual and real correc-
tions and the Born cross section, we find the z-integrated
inclusive p spectrum of leading partons

{50, p) + Kotog”) [ {2K (. p = )0, 1) = o, Ko 6 = ]

d’p 2Cr
C, X C,
= 2C;, {f(xo, p)+ log;() (Kgrxr ® f)(xo, P)} = 2C, f(x, p)
doge(xg, p) X do
= % + IOg;O (-7<BFKL ® %)(xo, p). o7

We conclude that to the LL& approximation, the inclu-
sive spectrum of leading partons maps the BFKL-evolved
unintegrated glue in the target nucleon, as it was an-
nounced in the introduction, Eq. (1). This spectrum by
itself satisfies the linear BFKL evolution. It is proportional
to the Casimir of the projectile parton C,, i.e., satisfies the
expected Regge factorization. Of course, these Regge fac-
torization properties are precisely what one would have
expected from the dominance of multi-Regge production
processes to LL% [6,7]. In our approach, the VRC compo-
nent of the BFKL kernel—the origin of the Reggeization
of gluons—derives from the manifest imposition of the
s-channel unitarity; such a derivation is of obvious rele-
vance to the case of nuclear targets with severe unitarity
constraints.

C. The first LL }c iteration for nuclear glue: Triplet-
antitriplet ¢q dipoles and color-triplet leading quarks

The principal reasoning behind our definition [24,25] of
the collective nuclear glue—the linear & | -factorization for
|

[
the amplitude of excitation of coherent diffractive dijets—
remains valid beyond the nuclear Born approximation at
x = x4, see below Sec. V E. Consequently, we stick to (23)
as the all-x definition of the x-dependent collective nuclear
unintegrated glue ®(b, x, p). We need to specify the LL1
evolution properties of this S-matrix. As we saw already at
the Born approximation, the collective nuclear glue is a
density matrix in the color space. We need to investigate
how the LL% evolution depends on the color multiplet the
partons of the color dipole belong to.

We start with the first iteration of the LLi evolution for
the triplet-antitriplet color dipole S-matrix to the leading
order of the large-N, perturbation theory in which C4, =
2Cr. The effect of the perturbative ggg Fock state in the ¢g
color dipole is given by a nuclear generalization of
Eq. (84):

5S,5(b:x, 1) = [ dz, [ PPIV 1y (24 ) = Wag(zgr p + 1)PASID: 754 (x0)] — S[B: 7o(x0) T

- [ dzq [ PPV 1y (20 P) — Wog (2 p + PIPISIB; 0 (x, p)ISIB; 0, p + 1)1 — STb; (o, T, (98)

where we made use of the large-N,. approximation for o4, of Eq. (54) (for the early suggestions to consider (98) as the
closedform equation for the color-dipole S-matrix see Refs. [29,30], the recent dispute and further references are found in
Refs. [28,45]). The first LL% iteration for the collective nuclear glue 8¢ (b, x, p) is defined by
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d’r :
Wasqq(b, x,r)exp(—ip - r) = 88,50(b, x)8?(p) + 5(b, x, p). (99)
Following the technique exposed in Sec. IV, one readily finds the nonlinear k| -factorization quadrature (the preliminary
results were reported at conferences [31])

5P(b, x, p) =

50(6,59) = [ de2asp ) [TELE 00,5, )00, 50 K (P + 11+ )
x/xo
- [dzkldzkzq)(b, X0, P)P (b, xo, 12)K (K, K| + Kz)}. (100)
Upon the application of the expansion (23), this equation splits into
85,50(b. ) = ~Slbs (1)1 log’? [ e K(g. q -+ )b, x0 ) (101)

where we notice a nice correspondence to the result (96) for the free-nucleon target, and
X
8¢ (b, x, p) = Ko IOg;O {S[b; oo(xo)] ] k(2K (p, p — K)$(b, xo, k) — (b, xo, p)K (1, k& — p)]

T f Pic1d21, (B, x0 1) [K(p + 161, p + 1) (B, x0, K1) — Kby, p + iy + 1) (B, xo, p)]}. (102)

The evolved collective nuclear glue equals

d)(b’ X, P) = d)(b’ X0, P) + 5¢(b) X, P)

Notice that the result (102) contains the linear component which evolves with the conventional BFKL kernel, but this
component is suppressed by the nuclear attenuation factor S[b; o(x,)] (see however the appendix). If we identify the
collective glue ¢ (b, xo, p) with the exchange by a nuclear pomeron, then the absorption-nonsuppressed component of
(102) can be viewed as a fusion of two nuclear pomerons.

Now we proceed to the first LL)I—C correction to the quasielastic scattering of color-triplet quarks. As in the case of the
free-nucleon target, it must be evaluated for z, = z, < 1 and z;, = 1 with soft-gluon approximation (87) for the quark
splitting function. Combining together the virtual and real corrections we find (the negative valued terms originate from

(103)

VRC)

daU'Qel(x, P)
d*bd’p

= Kylog"{Slb: 70(x0)] [ F*H2K(p. p = 106 (b, 30, ) = b(b. 0, KU 1 = p)]

+ [dzkldzkzﬁf)(b’ X0, k)[K(p + K1, p + K5) (b, xo, 161) — K(ky, p + 1) + 162) (b, xo, P)]}

= 5¢(b, x, p).

In conjunction with the Born contribution (29), we obtain
the LL% evolved quasielastic scattering spectrum

dUQel (x, P)

Pyiy ~ Sb.xD) (105)

which is linear factorizable in terms of the collective
nuclear unintegrated glue as defined through the excitation
of coherent diffractive dijets. By hindsight, we attribute
this finding to the Abelianization of the single-jet problem
to the LL}—( approximation, for the related discussion see
Ref. [17].

(104)

{
D. The first LL ch iteration for nuclear glue: Octet-octet
color dipoles and color-octet leading quarks (gluons)

Still more insight into the properties of inclusive pro-
duction of leading partons comes from the inclusive spec-
tra of leading color-octet partons off nuclear targets. In this
case there is no need to invoke the large-N, approximation.
One defines the octet-octet (gluon-gluon) collective nu-
clear glue <I>gg(b, x, p) as the Fourier transform of the
nuclear S-matrix for octet-octet color dipoles. The Born
approximation, @, (b, x,, p), is given by Eq. (73). We also
recall the convolution property [17]

(I)gg(b’ X0, p) = ((Dg ® (I)g)(XOr P)

to hold to the Born approximation.

(106)
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The first LL% iteration for the octet-octet nuclear S-matrix reads

8S,,(bix,r) = f dz, f PPV 1y (zp P) — Vg2 p + PIHSID; 0 (50)] — SIB 04 (x0) T}

= fdzg fdzpquag(zg: P) - \Pag(zgr p + r)lz{s[ba O-g(x(]’ P)]S[IL a-g(XOr p + r)]S[b, O'g(X(), r)]

— S[b; 74, (xo, M}

Proceeding the now familiar route, one would find

(107)

X
8D, (b, x, p) = 2K, logf{/dzlqdzkldzkz(bg(b, x0, P — 163)D (B, x¢, k1) D (b, X0, K1) K (k3 + Ky, 163 + K3)

- fd2K3d2K1d2K2(Dg(b, x0, P — 13) Dy (b, x0, k3) P (b, x0, 12)K (k1 K3 + Ky + KZ)}

= Ky log%{—sz[b; Ug,o(xo)]5(2)(l7) fd2K1d2K2¢g(b’ xo, k1)K (Ko, K1 + Ky) + S[b; U'g,o(xo)]

X f PR2K(p, p + 1) (b, %0, 1) — b (b, x0, Kk, p + K)]

+ S[b; 04,0(x))] fd2K1d2K2[¢g(by X0, K1) (b, x0, 12)K(p + Ky, p + 163) + 26, (b, X, K1) b4 (b, Xy, K3)
X K(p + Ky, p+ K+ 1K) = ¢y(b, xp, P, (b, X0, 1)K (i), ) + K5)

- d’g(b, X0, P — K2)¢g(b: xo, K2)K(Ky, 1) + 165)] + fd2K3d2Kld2K2[¢g(b) X0, P — K3)¢g(b, Xo, K1)

X ¢ o(b, xo, 12)K(re3 + Ky, K3 + K63) — jd2qd2K1d2K2¢g(bx X0, P — K3) P (b, x¢, 13) Do (D, X0, Kc2)

X K(Kl, K3 + K + Kz)]}

= 5S400(b, X)5%(p) + 5 4,(b. x, p).

The LL% evolution of the triplet-antitriplet collective
nuclear glue ®(b, x, p), d(b, x, p) is a (quadratic) non-
linear k | -factorization quadrature (100) and (102) in terms
of the same quantity. In striking contrast to that, for octet-
octet color dipoles §®,,(b, x, p) is a (cubic) nonlinear
k| -factorization quadrature of another quantity—
®,(b, x, p). The nuclear absorption-nonsuppressed com-
ponent of (108) can be viewed as a fusion of three nuclear
pomerons described by ®,(b, x, p) to a different nuclear
pomeron described by CIJgg(b, X, p)

The above distinction between the pomeron fusion prop-
erties of the nonlinear BFKL evolution for the triplet-
antitriplet and octet-octet dipoles was not discussed before.
Now we notice an important unifying aspect of the LL%
evolution properties of ®(b, x, p) and (I)gg(b, X, p).
Namely, the same answer for 6®,,(b, x, p) could have
been derived from the already available results for the
triplet-antitriplet color dipole. Indeed, notice the factoriza-
tion property

(108)

{
S[b; o (xo, p)IS[b; 04 (x0, p + 1)IS[b; 0 (x0, 7)]

— S[b; 744(x0, 1]
= S[b; 4 (xo, 1) {S[b; o (x0, p)IS[D; 7, (x0, p + 1)]

— 8[b; o, (x, 1)1} (109)

The quantity in curly braces in the last line of (109) is
identical to the integrand of (98) subject to a simple sub-
stitution

S[b; o(c)] = S[b; o,(c) ] (110)

Let 6@, (b, x, p) be the result of the iteration (98) subject to

the substitution (110). Then the factorization property

(109) amounts to the convolution representation
Sq)gg(bs X, P) = 2((138(1), X()) ® Eq)g(br x))(l’) (111)

The factor 2 in the r.h.s. of Eqs. (108) and (111) comes
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from the ratio of Casimirs in the ¢ — gg and g — gg
splitting functions. Then (111) suggests that the evolved
®,.(b, x, p) is a self-convolution (106) of the evolved
D, (b, x, p):

Do (b, x, p) = Dy, (b, x, p) + 5D, (b, x, p)
= ([D,(b, xp) + 6D (b, x)] ® [P, (D, xo)
+ 0@, (b, ¥)])(p)

= (®, ® D,)(b, x, p). (112)

Recall that to the leading order of large-N, perturbation
theory ®,(b, x, p) = ®(b, x, p). Then Egs. (100) and (102)
in conjunction with the convolution (112) provide a unified
description of the LL% evolution for both the triplet-triplet
and octet-octet collective nuclear glue.

A short comment on 8S,,((b) is in order. Because
82[b; 04 0(x0)] = S[b; 044 0(x0)], it can be cast in the form

88 140(b) = ~28[b: 0(x0)1 Ky log™

X fd2K1d2K2¢g(b, X0 K])K(Kz,Kl + Kz).
(113)

Apart from the factor 2, the origin of which has been
explained following Eq. (111), it is an exact counterpart
of Egs. (96) and (101).

We leave it as an exercise to check that when put
together, the LL% approximations for VRC, Eq. (78), and
REC, Eq. (79), give precisely

do—Qel
d’bd’p

= Gy(b.x, p). (114)

We again recover the linear k| -factorization for the qua-
sielastic scattering spectrum in terms of a judiciously
chosen collective nuclear glue. Basically, this property is
made obvious by Eqgs. (105) and (112).

E. Going beyond the first iteration of the LL )1‘
evolution?

Will the exciting finding of linear k | -factorization for
quasielastic scattering of partons off nuclei hold to all
orders of the LL)l—C evolution? Will the leading jets offer a
long sought linear mapping of the collective nuclear glue?

As far as further iterations of Eqgs. (98) and (107) are
concerned the answer is a negative one—such a BK ap-
proximation cannot be treated as a closedform equation.
Still here we present heuristic arguments which partially
vindicate the BK approximation—our scrutiny of all steps
behind the derivation of Egs. (98) and (107) suggests that a
limited number of iterations of these equations will be a
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good working approximation capable of describing evolu-
tion effects in the limited range of energies attainable at
RHIC and LHC. Our line of reasoning is as follows.

We consider the scattering of a thin projectile (hadron)
off a thick nucleus. The thickness of the target nucleus is
measured by a large parameter

va(b, xo) = 5070(x0)T(b), (115)

which is a number of nucleons in the tube of nuclear matter
of cross section %a’o(xo) at an impact parameter b. For
instance, realistic models for the color-dipole cross section
suggest o(xy) ~ 60 mb [46] and for central collisions
with a gold nucleus one finds v4,(b = 0, x;) ~ 6. We treat
nuclear effects to all orders in this large parameter
v4(b, xo). The coherent nuclear effects start at x, = x,.
At this boundary the nucleus can be treated as a dilute gas
of color-singlet nucleons and the resummation of nuclear
effects boils down to the Glauber-Gribov exponentials for
multiparton S-matrices.

Recall that inelastic interactions with the free-nucleon
target are described to the single-gluon exchange in the
t-channel. The LL% evolution is treated as an effect of ag
Fock states in the projectile parton a or adag Fock states in
the color dipole aa. Here emerges sort of a renormalization
group (RG): upon the integration over gluon variables, one
would cast the interaction of the three-parton Fock state
aag in the form of an interaction of the aa dipole. The sole
effect of integrating out the gluon is a renormalization of
the color-dipole cross section, which is equivalent to a
renormalization of the gluon-density of the target; i.e., at
each step of the LL% evolution, the gluon from the adag
Fock state of the beam is RG reshuffled to become a part of
the target, while the beam is always described by the
lowest Fock state aa. The result is the closedform linear
BFKL evolution in either the color dipole [38,39] or the
unintegrated glue [6,7] representations reviewed in
Sec. V B Of course, to the single-gluon #-channel exchange
for inelastic processes, this renormalization procedure is a
manifestly beam-target symmetric one [47,48].

In our discussion of the LL)I—( evolution for nuclear
targets we followed exactly the same RG arguments: we
reabsorbed the effect of the aag Fock state of the beam into
the renormalization of the nuclear color-dipole S-matrix
and the corresponding evolution of the collective glue
®,;(b, x, p) of the target nucleus. The color-dipole
S-matrix and its Fourier transform—the collective
glue—are well defined to all orders in LL% and are per-
fectly experimentally accessible: the frequently mentioned
amplitude of excitation of coherent hard diffractive dijets
7A — q(p)g(— p)A equals [24-26] (we cite it for forward
excitation)
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d’b
Gy | ¥
X exp(—ipr)[1 — S,;(b, x,r)]

- f &b f LKV, (2, p)
W, (2 1)D (B, 3, p — 1]
~ { f PV (2, x)} : [ b 5(b, %, p),
(116)

M(x, z4 p) =

where the last approximation holds for jets with the trans-
verse momentum much larger than the intrinsic momentum
of quarks in the pion. Such a direct measurement of
¢,45(b, x, p) is possible at arbitrarily small values of x =
M:./ W;%N; a useful review of the current experimental
situation is found in [49]. In principle, the octet-octet
collective glue ¢, (b, x, p) is equally measurable in the
diffractive breakup of glueballs.

Then, what makes Eqgs. (98) and (107) suspect from the
RG point of view? What we do is the adding of one more
radiated gluon to the final state and an evaluation of the
matching radiative correction to the lower order cross
section. In the operator form, the master formula (40),
the identification (41) of the multiparton S-matrices, the
whole discussion of the unitarity driven renormalization
(50), (98), and (107) of elastic S-matrices hold at an
arbitrary x < x,. The only caveat is the Glauber-Gribov
factorization for nuclear matrix elements of the multipar-
ton S-matrices. Specifically, in all our derivations we made
an indiscriminate use of the property known to all practi-
tioners in the Glauber-Gribov multiple scattering theory
[41,42],

n

<A| ﬁS(b, a,-)|A> = [ [(AIS(®, 0)1A). (117)
i=1

i=1

It derives from (i) the nuclear S-matrix being a product of
the free-nucleon ones,

A
Salb) = l_[SN(b - bj)’ (118)
J=1

where b; is the impact parameter of bound nucleon j, and
(i) the dilute uncorrelated gas approximation for the
nucleus.

Each RG reshuffling of the s-channel gluon of the aag
Fock state from the beam to a parton of the target nucleus
introduces in the tube of v4(b) nucleons a gluon which
interacts with all nucleons of the tube and breaks the
assumption of the uncorrelated gas. Specifically, the
Glauber-Gribov factorization
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S[b, 7 454(x0, p, )] = S[b; o(xo, p)IS[b; o (x0, p + 1)),
S[b, 7444(x0, p, 7)] = S[b; 74 (x0, 1)S[b; 0, (x0, p)]

X S[bioyxo, p+ 1)) (119)

holds only at the boundary xy = x,, i.e., for one s-channel
gluon, n, = 1. It will break down at smaller x, beyond the
first iteration, i.e., for ng = 2. While it prevents one from
treating the BK approximation as a closedform equation
for the free-nucleon target (for the related recent discussion
see Refs. [28,45] and references therein), arguably, the
breaking effects are small if the multiplicity of RG gluons
is small compared to the number v, (b) nucleons of in the
tube of cross section %0’0 (x). To be more precise, the
number n, of iterations of the BK approximation must be
bounded from above:

n, — 1 K wy(b). (120)

One can quantify n, from the experimentally observed
small-x growth of the unintegrated glue in the nucleons
and/or the deep inelastic scattering (DIS) structure func-
tion. In the fully developed BFKL asymptotics

1\Ap
Fyp(x, Q) = (;) —exp(ApY),  (121)

where Y = log% and Ap is the intercept of the QCD pom-
eron. The expansion

exp(dp?) = 3L (Apy)s

ng '8

(122)

is an expansion over the multiplicity n, of s-channel
gluons. The average multiplicity equals (n,) = ApY and
the average rapidity gap between gluons equals AY =
1/Ap. Increasing the total rapidity ¥ by AY amounts to
increasing (n,) by unity and, simultaneously, to the in-
crease of the structure function by the factor e'. The
experimental data on Ap from HERA exhibit a steady
rise of Ap from ~0.1 at small Q? to ~0.2 at Q% ~
10 GeV? to ~0.3 at Q*> ~ 100 GeV? [50]. For heavy nu-
clei x, ~ 1072, which corresponds to the nucleus fragmen-
tation rapidity span m4 ~10g$~4.5. If Y is the total

rapidity span, then

ng— 1= Ap(Y —my) — 1. (123)

At LHC, for jets with p; ~ 10 GeV the total kinematical
rapidity span Y ~ 15, which entails an estimate n, — 1 =<
2. For mini-jets with p; ~3 GeV Eq. (123) gives still
smaller n, — 1 = 1.5. Comparing that to the above esti-
mate for v,,, we conclude that several first iterations of the
BK approximation would reproduce the gross features of
nuclear effects in pA collisions in the energy range from
RHIC to LHC.

The practical application to radiative stopping of (or the
transverse momentum-dependent LPM effect for) leading
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jetsin pA collisions at LHC would be as follows. Order the
s-channel gluons g;...g, in energy in the nucleus rest
frame: z; < z;... < z,. The stopping will be dominated by
the hard gluon g,, the remaining » — 1 gluons carrying
small energy would have a negligible impact on the energy
loss and their principal effect would be the LL% evolution
of the collective nuclear glue. Then the so-evolved collec-
tive nuclear glue must be used in the formalism of Sec. IV
as an input for the quantitative evaluation of the stopping of
leading quark jets caused by radiation of the hard gluon g,,.

Our discussion was limited to a scattering of a dilute and
small projectile on a dense and large target. Still it has a
broad range of applicability at energies of RHIC and mid-
rapidity production at LHC. Indeed, in this energy range
proton-proton interactions which are still far away from the
strong absorption regime of oy/0 = 1/2 and a single-
pomeron exchange for scattering of a dilute projectile on a
dilute target is a reasonable starting point [51,52]. An
extension to multipomeron exchanges in proton-proton
interactions and inclusion of pomeron loops remain a
major challenge in the field (for a review see [28]).

F. Extension to the LL }c treatment of midrapidity
production

While our principal motivation has been the interplay of
real and virtual radiative corrections in the LPM effect and
quenching of leading high-p jets, the extension of the
above LL% considerations to midrapidity high-p, jets in
DIS or in proton-nucleus collisions at LHC is straightfor-
ward. Here to LL% the familiar linear k, -factorization
would hold on the beam side—the discussion of cancella-
tions of spectator interaction effects in the inclusive jet
cross section integrated over the phase space of spectator
partons of the beam is found in Refs. [17,37]. We also
recall that to the Born approximation, the nonlinear
k | -factorization simplifies, for LL% real soft-gluon emis-
sion processes, to the linear one [17,53]. To the next order
in pQCD, one must consider the effect of real radiation in
the rapidity span [71,4, 1] between the nucleus fragmenta-
tion region and the midrapidity jet, and include the corre-
sponding virtual correction to the Born cross section.

We recall first the Born spectrum at the boundary x, =
x4 for midrapidity gluons with transverse momentum p,
(pseudo)rapidity n, = log(z/x) and z = p*/xW,y <1
from pQCD subprocesses ¢ — gg and g — gg [17]

Qm)*do,
dn,d’pd’b

= Z[d2k¢gg(b’ xAr K)
a—ag
X |W(z p) = V(zp— K. (124)
For the transverse momenta above the infrared parameter

Mg, In (58) we can use

KZ

TP —w (12

K(p,p — k)

PHYSICAL REVIEW D 74, 014023 (2006)

identify the unintegrated glue in the incident parton a,

dG,(z,p — K)

d2p = 2asnga(Z) :

1

make use of (29) and cast (124) in the form

m)*do,
7 4 — d2 d2 S _ _
dngdzpdzb i [ Ka p, (P Pa K)
% dGa(Z’ pa) . K_2 . dUQel(xA’ K)
d’p, P’ d’k g—g'
4o
TN *rd’p,5(p — p, — K)
X dGa(Z’ Pa) . dGA,gg(br XA K)
d’p, d’bd’k
(127)
The reabsorption of ? into the definition
4 dGy (b, x4,
2 by b, g, 1) = 270 WOnae B X b0) g

N. Lbd’k

brings (127) to a lucid beam-target symmetric form. The
remaining factor 1/p? is familiar from the square of the
BFKL gluon radiation vertex [6,7]—an absence of nuclear
renormalization of this vertex is noteworthy.

Modulo to the above explained factor x?/p?, Eq. (127)
is an exact counterpart of the convolution (63). Upon this
identification the differential cross section of quasielastic
gluon-nucleon scattering, the further analysis of radiative
corrections would not be any different from that presented
above for leading jets. An important simplification is that
the major effect of real radiation is a slight shift of the
rapidity of the high-p, jet towards the nucleus region. In
view of the approximate boost invariance, this rapidity
shift can safely be neglected. Then one is allowed to
evaluate the real and virtual radiative corrections in the
LL 1 approximation. Next we reiterate the above point that
although the real radiative corrections are highly nonlinear
quadratures of the collective nuclear glue [17], upon
lumping together the real and virtual corrections all non-
linear effects combine to the nonlinear LL% evolution of
the collective nuclear glue: ¢, (b, x4, k) of the Born ap-
proximation changes to the nonlinear LL%—evolved
&g (b, x, k).

The beam-target symmetric linear k | -factorization form
of Eq. (127) shows that sort of a LL% BFKL multi-Regge
factorization [6,7] holds for the midrapidity single-jet
spectrum off nuclei. From the viewpoint of the Kancheli-
Mueller 3 — 3 optical theorem [17,54] of Fig. 7, this form
of the single-jet spectrum suggests an interesting effective
Reggeon field theory interpretation (whether this interpre-
tation and the following conjectures will lead to a viable
diagram technique [55] or not needs further scrutiny). In
the single midrapidity jet production on nucleons the free-
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FIG. 7 (color online). (a) The Kancheli-Mueller diagram for
the single-gluon spectrum, (b) its pomeron exchange represen-
tation for midrapidity gluon spectrum in proton-nucleon colli-
sions, (c) its explicit form in terms of the emission of real gluons
off Reggeized gluons gy and free-nucleon gluon-density repre-
sentation for the cut pomeron, (d) the pomeron exchange repre-
sentation for midrapidity gluon spectrum in proton-nucleus
collisions, (e) the explicit form of the diagram (d) in terms of
the emission of real gluons with transition between Reggeized
gluon gp and effective nuclear Reggeized gluon {gg}z 4 and
free-nucleon and collective nuclear glue, (f) the representation of
the diagram (d) in terms of two cut nuclear pomerons P,
composed of effective nuclear Reggeized gluons gg 4.

nucleon BFKL cut pomerons [P are exchanged between the
beam (target) and produced gluon [Fig. 7(b)], the more
detailed structure of this diagram in terms of the radiation
of the gluon from Reggeized gluons gp is shown in
Fig. 7(c). For the nuclear target, Fig. 7(d), on the nucleus
side one exchanges the cut nuclear pomeron P, ,, de-
scribed by dG 4, (b, x, ,)/d*bd* ke which resums all multi-
pomeron exchanges enhanced by a large thickness of the
nucleus. If we associate with this collective glue the effec-
tive nuclear Reggeized gluon {gg}z 4, then this Kancheli-
Mueller diagram can be cast in the same form, Fig. 7(e), as
in the free-nucleon case, Fig. 7(c). Our notation {gg} 4 for
this effective gluon is a reminder that it can be viewed as a
composite state of two gluons gp 4 associated with still
another member of the family of nuclear pomerons, Py ,
described by the collective glue dG, (b, x, k)/d*bd*k
related by Eq. (128) to ®,(b, x, &). In due turn, the latter
can be viewed as sort of a coherent composite state of the
free-nucleon Reggeized gluons. Considering the distinct,
nonlinear vs linear, LL)I—C evolution properties of the free-
nucleon and collective nuclear glue, the possibility of such
a resummation and representation in terms of a single
nuclear Reggeized gluon {gg}r 4 is far from being an
obvious one. (From the color-dipole perspective it has its
origin in the cancellation of spectator interactions and
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Abelianization of intranuclear evolution of dipoles in the
single-jet problem.)

The no-nuclear-renormalization of the BFKL gluon
emission vertex is a still another nontrivial property: the
gr8rg and gp{gglr 4g vertices are identical. Furthermore,
since {gg}r 4 is a composite state |gg 4gr 1), the nuclear
Kancheli-Mueller diagram of Fig. 7(d) is a triple-pomeron
diagram P —P,,P,, with three cut pomerons
[Fig. 7(f)], and the corresponding fully cut triple-pomeron
vertex is not renormalized by nuclear effects and is related
to the square of the BFKL vertex. If we recall that g 4 is by
itself a coherent composite state of Reggeized gluons gp,
and invoke our experience with unitarity rules for dijet and
single-jet production [56], then the above nonrenormaliza-
tion property would apparently extend to a whole family of
fully cut multipomeron vertices P — (n[P)(m[P) in the
single-gluon production problem. A very different deriva-
tion of nonrenormalization of the gluon emission vertex in
proton-nucleus interaction, based on the QCD shock wave
scattering approach, is found in [57], although Balitsky
considered only the Born approximation and did not dis-
cuss the relevant interplay of the real and virtual pQCD
radiative corrections.

As we cited above, this multi-Regge, and linear
k| -factorizable, form of the midrapidity gluon spectrum
has already made an appearance in the literature
([17,53,57] and references therein). A useful aspect of
our analysis is an elucidation of the role of the s-channel
unitarity in the evaluation of the virtual pQCD radiative
corrections for nuclear targets. Our technique gives closed-
form nonlinear k | -factorization quadratures for the spectra
without invoking Reggeon field theory and Abramovsky-
Gribov-Kancheli (AGK) unitarity cutting rules [58]. From
the jet phenomenology viewpoint the exchange by a nu-
clear pomeron on the nucleus side of the Kancheli-Mueller
diagram entails a full-fledged familiar Cronin effect: nu-
clear attenuation for the transverse momenta below the
nuclear saturation scale, p> < Q3, antishadowing for p? ~
(2-3)Q3, and slow approach to the impulse approximation
at large p?, controlled by a nuclear higher twist correction
o Q3/p?. A full discussion of the hot disputed issue of
AGK unitarity connections between diffractive and inelas-
tic processes goes beyond the scope of the present commu-
nication (the subtleties of multiple cut pomeron exchanges
in pQCD were commented on in [56] and will be reported
elsewhere [59]). Here we only mention that one version of
the AGK rules discussed in [60] suggests the substitution
¢ oo(b, x, 1) = ST(b)f(x, &). This amounts to the impulse
approximation and misses the Cronin effect: numerically
the departure from the impulse approximation is quite
substantial (see Ref. [17] and references therein). While
our interest is in heavy targets, in his AGK discussion of
single-gluon spectra Braun focused on the transition from 2
to 4 t-channel gluons relevant to the triple-pomeron dia-
gram for the double scattering in the deuteron ([61,62] and
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references therein). As far as the nuclear departure from
the impulse approximation is concerned his results for
double scattering are similar to ours for multiple scattering
for heavy nuclei. In the Reggeon field theory formalism
used by Braun the LL! virtual pQCD corrections are
reabsorbed into the Regge trajectory of the gluon. We still
find our manifestly unitary approach to virtual corrections
an instructive one, especially in application to the evolu-
tion of the color density matrix for collective nuclear glue.
For instance, when discussing the unitarity properties of
diffraction, one needs to split the ggg contribution to
diffractive cross section into the pQCD radiative correction
to the low- to moderate-mass ¢g¢g diffraction and excitation
of the high-mass ggg states. Here the correct result for the
high-mass ¢gg unitarity cut was found to be different from
what one would expect from the reinterpretation of diffrac-
tion as deep inelastic scattering off pomerons treated as a
particle [63]. Similar conclusions were reached by Braun
who correctly noticed how applications of AGK rules
depend on the form of the so-called triple-pomeron vertex
[61,62].

Now, following our early discussion in [17], we com-
ment that the above multi-Regge form for midrapidity,
Fig. 7(e), is quite likely to be an exclusive property of
single-gluon production, and the multipomeron version,
Fig. 7(f), is not an artefact.! Indeed, a jet can well be
formed by a fixed-mass two-parton or higher multiplicity
multiparton state. As an illustration we look at the univer-
sality class of midrapidity open charm pair ¢¢ when the
transverse momentum is much larger than the mass of the
diparton. The factorization properties of midrapidity cc
J

2027)*dos(g" — 00)
d’bdzd’ pd*k

X[Kizp+k—k,k)+ KO —-2)p—k— K, k)]

and corresponds to the Kancheli-Mueller diagram of
Fig. 8(c) with two cut nuclear pomerons P,,. Then
Eq. (131) gives an explicit form of the quark loop contri-
bution to the fully cut triple-pomeron vertex, and a com-
parison with Eq. (130) suggests a simple correspondence
between this triple-pomeron vertex and the square of the
(c)grgr vertex. Equation (131) is the Born approxima-
tion, the discussion of LL% iterations in Sec. V D suggests
that upon the pQCD radiative corrections @, (b, x,,
K)®, (b, x,, i;) is substituted by the LL% evolved

' Although a direct connection between the nuclear pomerons
and next-to-leading order BFKL pomeron is not an obvious one,
here we cite Fadin et al. who in their recent study of the next-to-
leading order BFKL stated that a rigorous proof of the multi-
Regge factorization in elementary scattering can be carried
through only for one-gluon production [21].
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production were studied in [12,13,15,17]. The principal
finding is a full-fledged nonlinear k -factorization for
midrapidity cc¢ production. Consequently, in the corre-
sponding 3 — 3 Kancheli-Mueller diagram the exchange
between the c¢¢ jet and the target nucleus cannot be de-
scribed by the single nuclear pomeron.

It is sufficient to consider the g — cC excitation and
Born cross sections to the large N, approximation.
Regarding the color properties, at large N, the c¢ pair is
a composite gluon. Let z and 7 = 1 — z be a partition of the
cC jet momentum between the quark and antiquark, p the
total transverse momentum of the open charm jet, and k the
transverse momentum of the quark with respect to the jet,
so that

) _k2+m%

L=——X+ p2 129
J_,LC Z(l _ Z) p ( )

The differential form of Eq. (23) of Ref. [17] gives the free-
nucleon spectrum

2Q27)doy(g* — c?)
dzd*pd’k

= ZaSqu(Z)f(P)[K(Zp + k’ k)

+ K(1—2)p—k —k)]
(130)

Here a square of the vertex of emission of the c¢ pair from
a Reggeized gluon, (cc)grgr in Fig. 8(b), is = P, (z) X
[K(zp + k, k) + K((1 — z)p — k, —k)]. The nuclear c¢ jet
spectrum equals

= 2CVSqu(Z) [d2K1d2K25(P - K~ KZ)q)g(b’ XA» Kl)q)g(b’ X, K2)

(131)
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FIG. 8 (color online). (a) The Kancheli-Mueller diagram for
the c¢ jet spectrum, (b) its explicit form in terms of the emission
of a c¢c pair off Reggeized gluons gy in proton-nucleon colli-
sions, (d) the same as (b) for proton-nucleus collisions in terms
of two cut nuclear pomerons [P, , composed of effective nuclear
Reggeized gluons gg 4 and the vertex of emission of a ¢C in a
transition from Reggeized gluon g to two effective nuclear
gluons gg 4.
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(I)g(b, X, K)(I)g(b, X, K,), although this conjecture must be
checked.

Finally, we briefly comment on a possible structure of
the related Kancheli-Mueller diagrams for digluon jets, a
more detailed analysis will be reported elsewhere [59]. We
recall that the midrapidity open charm production belongs
to the universality class of nonlinear k-factorization which
is free of coherent distortions of the dipole wave functions.
Also, at large N.. it is a single-channel problem. In contrast
to that, intranuclear evolution of digluons is a full-fledged
multichannel non-Abelian problem, the pattern of nonlin-
ear k-factorization depends on the color state of digluons
and there are coherent distortions of the color-dipole wave
function which change from one universality class to an-
other and depend on the depth in a nucleus at which
digluons in color representations higher than the adjoint
representation are excited [13—15]. The corresponding
Kancheli-Mueller diagrams for digluons will be similar
to Fig. 8(c) complemented by uncut pomeron exchanges
on both sides of the unitarity cut, which describe the
nuclear distortions of the corresponding partially cut multi-
pomeron vertices. In the universality class of digluons in
higher color representations these partially cut multipo-
meron vertices must be averaged over the depth in a
nucleus.

VI. SUMMARY AND CONCLUSIONS

We reported a derivation of the transverse momentum-
dependent LPM effect for leading jets in the beam frag-
mentation of proton-proton and proton-nucleus collisions.
In conjunction with the LL1 evolution for the collective
nuclear unintegrated glue, our results offer a basis for a
viable pQCD phenomenology of the LPM effect—the
radiation driven quenching—of leading jets in pp and
pA collisions in the finite-energy range from RHIC to
LHC.

The first novelty of our work is the derivation of the
virtual radiative correction to the spectrum of leading jets.
The quenching of forward jets is caused by radiation of
hard gluons and, by virtue of the unitarity relation, the
opening of the radiation channel is followed by the renor-
malization of the radiationless process. Our derivation of
this renormalization, i.e., of the virtual radiative correction,
is based on an explicit solution of the s-channel unitarity
relation. While for the free-nucleon target both the real-
emission and virtual radiative corrections are linear
k | -factorizable, for nuclear targets the quantitative de-
scription of the LPM effect for forward dijets requires
the full-fledged nonlinear k | -factorization.

The second novelty of our work is an establishment of
the LPM effect-deconvoluted, i.e., the LLi approximation,
spectrum of leading partons as a unique linear probe of the
collective unintegrated nuclear glue as defined through
the excitation of coherent diffractive dijets off nuclei.
This must be contrasted to the manifestly nonlinear
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k | -factorization for all dijet observables and the LPM
effect for single-jet spectra. Although both real-emission
and virtual radiative corrections to the leading jet spectrum
are described by nonlinear k| -factorization, our new find-
ing is that this nonlinear &, -factorization for leading jets
exactly matches the equally nonlinear & -factorization for
the LL% evolution of the nuclear glue. The two nonlinear-
evolving observables prove to be proportional to each
other: the leading jet production maps linearly the collec-
tive nuclear glue. Our focus was on the impact of gluons
radiated in the rapidity space between the observed leading
jet and the target nucleus, but all our observations on the
combined effect of the VRC and REC are fully applicable
to production of midrapidity jets too. Here our nonlinear
k| -factorization results suggest interesting Reggeon field
theory properties of the Kancheli-Mueller diagrams for
multiparton jets.

For the free-nucleon targets such a linear
k | -factorization for, and the BFKL evolution property of,
the leading jet spectrum are valid to all orders of the LL%
BFKL evolution. While the above specified definition of
the collective nuclear glue in terms of coherent diffraction
off nuclei is viable to all orders of the LL)I—C evolution, our
proof of the linear k, -factorization for leading jets off
nuclei is rigorous only to the first iteration of the LL%
evolution. Even this result is sufficient for the quantitative
predictions of the quenching of leading jets at RHIC be-
cause of the not so large energy of RHIC. A similar
description of the experimental data at the much higher
energies of LHC requires several —two to three—steps of
the LL% evolution. We argue that for such a small number
of iterations, the treatment of heavy nuclei as a dilute
uncorrelated gas of nucleons is still viable, and in the
finite-energy range from RHIC to LHC, one can perform
this evolution in the Balitsky-Kovchegov approximation.
After such an evolution, our evaluation of the LPM effect
for leading jets will be fully applicable to a comparison of
pp and pA collisions at LHC.

Our analysis of the nonlinear k | -factorization properties
of the BK approximation revealed a remarkable feature:
the evolution equation can be cast in the form of fully
linear BFKL evolution for the collective nuclear glue
complemented by a nonlinear term which for hard gluons
is a pure higher twist correction. To our opinion, this new
form of the evolution is best suited for several iterations
needed to bridge the energy range from RHIC to LHC.

We conclude by noting that one process which invites an
application of the found linear k | -factorization for leading
jets is the coherent diffractive deep inelastic scattering off
nucleons and nuclei. The differential cross section of for-
ward diffractive DIS is a sum of differential cross section
of elastic scattering of multiparton Fock states of the
photon [38,64]. As such, diffractive DIS is an inherently
nonlinear process to be described by nonlinear
k | -factorization. One can insist, though, on the linear
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color-dipole representation of the diffractive cross section
similar to that of inclusive DIS [38,65]. Such a representa-
tion would entail a certain nonlinear k | -factorization form
of the unintegrated glue in the pomeron. On the other hand,
motivated by the above discussion, one may try to define
the glue in the pomeron in terms of the transverse momen-
tum spectrum of leading (anti)quark jets in the high-mass
diffractive system. The recent finding is that the two defi-
nitions of the unintegrated glue in the pomeron would
differ one from another—one must be cautious with the
unitarity cut reinterpretation of the color-dipole represen-
tation for diffraction [63].
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APPENDIX: STILL MORE LINEAR FORM OF THE
NONLINEAR EVOLUTION

After we partly vindicated the utility of the BK approxi-
mation for finite-energy evolution and heavy nuclei, we
report here an interesting alternative form of this equation
(the preliminary discussion was reported elsewhere [31]),
which offers a fresh view at the distinction between the
linear and genuinely nonlinear components of the evolu-
tion equation for the triplet-antitriplet dipoles (102). An
obvious drawback of this form is a reference to the explicit
Glauber-Gribov form of the nuclear attenuation factor.
However, making use of the sum rule [ d*k®(b, x,, k) =
1, ie, [d*k¢(b,x, k) =1—8[b;0,5(x))], one can
bring it into the form,

a¢(b, x, p)

dlog(i/n) — Koria ® 60 x.p) + QL)b,x. p)

(AD)

where the nonlinear k,-factorization (quadratic) func-
tional Q[¢] is given by

Q[1b, x, p) = f Lqdr (b, x, q)

X{[K(p +w,p+q) — K(p,x+p)
— K(p,q + p)lg(b, x, k)

— ¢(b, x, p)[K(rc, k + g + p)
— K(re, & + p)]}. (A2)

The first iteration of (A1) with x = x; = x, in the r.h.s. is
exact. The so-defined Q[¢](b, xy, p) is free of
S[b; oy(xy)] and we view it as a better candidate for
finite-energy iterations as discussed in Sec. VE. If one
would identify ¢(b, x, p) with the exchange by collective
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nuclear pomeron, then Q[¢] describes the fusion of two
nuclear pomerons, each of which is a nonlinear functional
of, and sums a multiple exchange by, the free-nucleon
pomerons.

In the case of the azimuthally symmetric ¢ (b, x, p), i.e.,
the conformal spin zero in the f-channel, the nonlinear
k| -factorization functional Q] ¢] takes a remarkably sim-
ple form. In this case the azimuthal averaging can be
performed explicitly and leads to enormous simplifica-
tions. For instance, when &2 can be neglected compared
to all the momenta, we make use of

<ﬂ> = Zo(p> - 1)

A3
PET A (A3

the related result for a finite 2 in the wave function (58) is
found in [26,64], see also below. Here the subscript indi-
cates the azimuthal angle of the momentum the averaging
is performed over.

First we notice that for negligible small &> = ,uf

K(p+wxp+q —Kpk+p) —Kpg+p =
_[p Kk+tp _p q+tp Kk+p
=2 5 st 5 2 p
p> (k+p) (g+p)>* (k+p)
+ 1
.qipz__z} (A4)
(@+p? p

Upon the averaging over the azimuthal angles of « and ¢
we obtain
(K(p

+ K, p+q) — K(pk+p)

—K(p. g+ Py

- 172200«2 — p))o(@’ — p?). (A5)
In the second piece of (A2) we make first a judicious
shift of the integration variable x in the convergent inte-
gral: K(k,k+q+ p)— K,k + p)= Kk — p, K+
q) — K(k, k + p). Next, we perform the averaging over
the azimuthal angles of g and the external variable p. There
emerges the convergent, and vanishing, integral

e e e ge] 70

Upon this cancellation, for negligible small &2,

(A6)

(K(k —p.x+q)—

P K K+p
<<K2 (k + p)?
2
—0

K(r, 1, + p))pg

" )

(k> — p?)0(q* — K).

(A7)
K

Putting it all together the quadratic functional Q[¢] as-
sumes the very simple form,
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Q16 x, p) = — 2K

PHYSICAL REVIEW D 74, 014023 (2006)

d’qd’kp(b, x, @) (b, x, p)O(g* — p*)0(k* — p?)

2
~2%blboxp) [ [ Pasib s~ pog )

2%,

0 ” 2 °°d2K 0 2
= —7[]112 d qqﬁ(b,x,q)} —ZKOQb(b,x,p)]sz ]KZ d*q¢(b, x, q),

(A8)

valid for the transverse momenta larger than the infrared regularization u,, for the effects of finite u, see Egs. (A15)—

(A19) below.

It is instructive to reformulate it in terms of the collective nuclear glue per bound nucleon, F4(b, x, p):

27ag(p?)
D3 p) = =TTV F b3 p). (A9)
One readily obtains
IFa(b,x, p) _ 3°Gy(b, x, p) 47K = d’q 2
glogl - d logpza logl = KBFKL ® fA(b’ X, P) - 0 aS(pz)T(b){pz[fo FfA(b’ X, q):|
x x ¢ pr
w d’ie o d?
+:FA(b:x’P)f77[761—:1:}:,4(&%‘1)}, (AlO)
P’ S

The fusion term is of manifestly negative, i.e., shadowing,
sign. As such, Eq. (A2) is the better candidate for the
definition of the triple-pomeron vertex for nuclear pomer-
ons than Eq. (102). Such a representation for the fusion
term is a new result, it is exact for all momenta, both above
the saturation scale, p*> = Qi, and under the saturation
scale, p* < QF, provided that p* = u3.

Now we shall argue that at large momenta above the
saturation scale the fusion term is of pure higher twist. We
focus on x = x;,, where one can rely upon the saturation,
|

%[ ] (b, x,, q)} ~ $(bx0, p) ] d1c < [ st =

[

antishadowing, and hard momentum properties of
&(b, xo, p) found in [10,17,24]. Here we need the large-
momentum approximation

Bb, 30, p) = S T)f(x p) (Al

1
(p»”’

where the exponent y = 2, see Eq. (14). Making the ex-
plicit use of this asymptotic behavior, we obtain

2

7)2172(15 (b, xo, P).

Al2
( (A12)

The fusion term takes the form of the boundary condition glue times the higher twist factor,

47T2:]<0

Qb xo, p) = — ()/_71)2

277'“5(1’2)

¢(b, X0 p) : {pzd)(b’ X0 p)}

Q,%\ (b’ xO)

(7’ — 1)2a5(Q3(b, x0))G(xg, Q5(b, x0)) p

where the scale for the higher twist is set by the saturation
scale. In terms of the collective glue per bound nucleon,
this amounts to

dFa(b, x, p)
3170% = Kprkr ® Fa(b, xo, p)
8Ky as(pH)T(D) .,
— b, xy, p).
(7 — l)chpz TA( X0 P)

(Al4)

— (b, xo, p?), (A13)

{
In contrast to the exact integral form (A10) of the fusion
term, the local in the gluon momentum form (A14) is an
approximation valid for the specific parametrization (A11),
for alternative forms of the fusion correction see [66,67].
The further discussion of (A10) and (A14) goes beyond the
scope of this communication. We restrict ourselves to the
comment that the fusion term does not exhaust the nuclear
higher twist corrections—we recall that also the boundary
condition F,(b, xy, p*) contains a substantial and very
similar, but positive valued, i.e., antishadowing, linear
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BFKL-evolving nuclear higher twist correction propor-
tional to F4(b, xo, p*)G4(b, xo, Q*)T(b)/p* [10,24,25].
The shadowing and antishadowing nuclear higher twist
corrections both have their origin in unitarity, the impact
of the antishadowing correction was not given a proper
discussion earlier.

For the sake of completeness, we show the integral form
of the fusion term in Eq. (A10) subject to the infrared
regularization (86), i.e. in all wave functions, K(p, ¢) and

PHYSICAL REVIEW D 74, 014023 (2006)

where
p?+ ul
9([’2’ K ’ Mg) = 7g
2p?
2,2 .2
X <1 + P~ K K )
J0? = 13— 2P+ apiul

Kprkr we put €2 = u2. Following [26,64] we can write (Ale)
K+
(v o). = e i) (A1)
(k+pP +pg/e P+ pg | Equations (A5) and (A7) take the form
2p?
(K(p+w,p+q —Kpx+p) —K(p,q+p))gx= RCEYEE [1—6(p? &% pp)[1 — 0(p% 42 13)] (A17)
2K 2
<<K(K — DK + q) - K(K> K+ p)>>pq ( 2 2)2 H(K P /'Lg)[l - e(K ’ q Iug)] (A18)
The infrared-regularization modifies the evolution Eq. (A10) as follows:
3 Fa(b, x, p) e p°
Ail = KprxL ® Falb, x, p) — % as(p?)T(b) T 22 / 1= 0(p% ¢ u)1F b, x, ¢I)
0 10g; Nc ( )
d’kd*q
+ Fatbnp) [[ 5 6+ g 00 7 i1 00 4% RDIF 0. o} (A19)
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