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Dynamic properties of charmonium
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Nonrelativistic quark models of charmonia are tested by comparison of theoretical charmonium decay
constants, form factors, and �� widths with experiment and lattice gauge computations. The importance
of relativistic effects, a running coupling, and the correct implementation of bound state effects are
demonstrated. We describe how an improved model and computational techniques resolve several
outstanding issues in previous nonrelativistic quark models such as the use of ‘‘correction’’ factors in
quark model form factors, artificial energy prescriptions in decay constant calculations, and ad hoc phase
space modifications. We comment on the small experimental value of f �3S� and the D-wave component of
the J= . Decay constants and �� widths for bottomonium are also presented.
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I. INTRODUCTION

New spectroscopy from the B factories and the advent of
CLEO-c and the BES upgrade have led to a resurgence of
interest in charmonia. Among the new developments are
the discovery of the �0c and hc mesons and the observation
of the enigmatic X�3872� and Y�4260� states at Belle [1].
Furthermore, lattice gauge theory is now able to produce
reasonably accurate measurements of charmonia masses
and form factors [2]. It is thus opportune to reexamine
constituent quark model predictions of charmonia proper-
ties in an attempt to refine current models, test quark
models in new regimes, and look for the expected failure
of these models.

It is evident that the quality of spectra is only a rough
indication of model efficacy. Thorough tests of models
require probing quark dynamics in different regimes. We
shall pursue this by computing charmonia observables such
as decay constants, elastic and transition form factors, and
�� decay rates. This investigation is therefore complemen-
tary to that of Ref. [3], which examined spectra, electro-
magnetic transitions, and strong decay rates. We remark
that the latter is a nonperturbative process which requires
further modelling in contrast to the observables computed
here, which are driven by well-defined electroweak
currents.

In the following we will demonstrate that agreement
with experimental charmonium decay constants requires
a weakening of the short range quark interaction with
respect to the standard Coulomb interaction. This weaken-
ing is in accord with the running coupling of perturbative
QCD and eliminates the need for an artificial energy de-
pendence that was introduced by Godfrey and Isgur [4] to
fit experimental decay constants.

Single-quark elastic and transition form factors are con-
sidered in Secs. IVand V. The agreement with recent lattice
computations is very good, but requires that the standard
nonrelativistic reduction of the current not be made and
that the running coupling described above be employed. As
will be shown, this obviates the need for the phenomeno-
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logical � factor introduced for electroweak decays in the
ISGW model [5]. Analogous results for bottomonium are
presented in Appendix B.

Section VI analyzes the two-photon decays of charmo-
nia. We argue that this decay should be described in terms
of bound state perturbation theory and that it is therefore a
convolution of form factors and decay constants. In con-
trast with traditional approaches, the resulting computa-
tions are in good agreement with experiment and improve
the agreement with low energy theorems. This permits the
elimination of an artificial mass dependence employed in
Ref. [4] in an attempt to improve agreement with
experiment.

II. NONRELATIVISTIC CHARMONIUM
STRUCTURE

We adopt the standard practice of describing charmonia
with nonrelativistic kinematics, a central confining poten-
tial, and order v2=c2 spin-dependent interactions. Thus
H � 2m� P2

rel=2�� VC � VSD where

 VC�r� � �
4

3

�C
r
� br; (1)

and
 

VSD�r� �
32�H�e

�k2=4�2

9m2
q

~Sq � ~S �q �

�
2�s
r3 �

b
2r

�
1

m2
q

~L � ~S

�
4�s
m2
qr3 T; (2)

where 3T � 3r̂ � Sqr̂ � ~S �q � ~Sq � ~S �q. The strengths of the
Coulomb and hyperfine interactions have been taken as
separate parameters. Perturbative gluon exchange implies
that �C � �H and we find that the fits prefer the near
equality of these parameters.

As will be described below, the observables considered
here require a weaker ultraviolet interaction than that of
Eq. (1). We therefore introduce a running coupling that
recovers the perturbative coupling of QCD but saturates at
-1 © 2006 The American Physical Society
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a phenomenological value at low momenta:

 �C ! �C�k� �
4�

�0 log�e4�=�0�0 � k2

�2�
; (3)

with �0 taken to be 9. One can identify the parameter �
with �QCD because �C�k� approaches the one loop running
constant of QCD. However, this parameter also will be fit
to experimental data in the following (nevertheless, the
resulting preferred value is reassuringly close to expecta-
tions). Parameters and details of the fit are presented in
Appendix A.

The resulting low-lying spectra are presented in Table I.
The first column presents the results of the ‘‘BGS’’ model
[3], which was tuned to the available charmonium spec-
trum. The second and third columns, labeled BGS� log,
makes the replacement of Eq. (3); the parameters have not
been retuned. One sees that the J= and �c masses have
been raised somewhat and that the splitting has been
reduced to 80 MeV. Heavier states have only been slightly
shifted. It is possible to fit the J= and �c masses by
adjusting parameters, however this tends to ruin the agree-
ment of the model with the excited states. We therefore
TABLE I. Spectrum of c �c mesons (GeV).

State BGS BGS log BGS log Experiment
� � 0:25 GeV � � 0:4 GeV

�c�1
1S0� 2.981 3.088 3.052 2.979

�c�2
1S0� 3.625 3.669 3.655 3.638

�c�3
1S0� 4.032 4.067 4.057 � � �

�c�41S0� 4.364 4.398 4.391 � � �

�c2�1
1D2� 3.799 3.803 3.800 � � �

�c2�2
1D2� 4.155 4.158 4.156 � � �

J= �13S1� 3.089 3.168 3.139 3.097
 �23S1� 3.666 3.707 3.694 3.686
 �33S1� 4.060 4.094 4.085 4.040
 �43S1� 4.386 4.420 4.412 4.415
 �13D1� 3.785 3.789 3.786 3.770
 �23D1� 4.139 4.143 4.141 4.159
 2�1

3D2� 3.800 3.804 3.801 � � �

 2�2
3D2� 4.156 4.159 4.157 � � �

 3�1
3D3� 3.806 3.809 3.807 � � �

 3�2
3D3� 4.164 4.167 4.165 � � �


c0�1
3P0� 3.425 3.448 3.435 3.415


c0�2
3P0� 3.851 3.870 3.861 � � �


c0�3
3P0� 4.197 4.214 4.207 � � �


c1�1
3P1� 3.505 3.520 3.511 3.511


c1�2
3P1� 3.923 3.934 3.928 � � �


c1�3
3P1� 4.265 4.275 4.270 � � �


c2�1
3P2� 3.556 3.564 3.558 3.556


c2�2
3P2� 3.970 3.976 3.972 � � �


c2�3
3P2� 4.311 4.316 4.313 � � �

hc�11P1� 3.524 3.536 3.529 � � �

hc�21P1� 3.941 3.950 3.945 � � �

hc�3
1P1� 4.283 4.291 4.287 � � �
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choose to compare the BGS and BGS� log models with-
out any further adjustment to the parameters. A compari-
son with other models and lattice gauge theory can be
found in Ref. [1].

As has been stressed above, the spectrum is not a par-
ticularly robust test of model reliability because it only
probes gross features of the wave function. Alternatively,
observables such as strong and electroweak decays probe
different wave function momentum scales. For example,
decay constants are short-distance observables while
strong and radiative transitions test intermediate scales.
Thus, the latter do not add much new information unless
the transition occurs far from the zero recoil point. In this
case the properties of boosted wave functions and higher
momentum components become important. We choose to
compute charmonium decay constants, elastic and transi-
tion form factors, and �� decays in the following.
III. CHARMONIUM DECAY CONSTANTS

Leptonic decay constants are a simple probe of the short
distance structure of hadrons and therefore are a useful
observable for testing quark dynamics in this regime.
Decay constants are computed by equating their field
theoretic definition with the analogous quark model defi-
nition. This identification is rigorously valid in the non-
relativistic and weak binding limits where quark model
state vectors form good representations of the Lorentz
group [5,6]. The task at hand is to determine the reliability
of the computation away from these limits.

The method is illustrated with the vector charmonium
decay constant fV , which is defined by

 mVfV	� � h0j �����jVi; (4)

where mV is the vector meson mass and 	� is its polariza-
tion vector. The decay constant is computed in the con-
ceptual weak binding and nonrelativistic limit of the quark
model and is assumed to be accurate away from these
limits. One thus employs the quark model state:
 

jV�P�i �

���������
2EP
Nc

s

SMS
s�s

Z d3kd3 �k

�2��3
�
�m �q

~k�mq
~�k

m �q �mq

�

� ��3�� ~k� ~�k� ~P�byksd
y
�k �s
j0i: (5)

The decay constant is obtained by computing the spatial
matrix element of the current in the vector center of mass
frame (the temporal component is trivial) and yields
 

fV �

�������
Nc
mV

s Z d3k

�2��3
�� ~k�

����������������
1�

mq

Ek

s ����������������
1�

m �q

E �k

s

�

�
1�

k2

3�Ek �mq��E �k �m �q�

�
: (6)

The nonrelativistic limit is proportional to the meson wave
function at the origin
-2
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 fV � 2

�������
Nc
mV

s
~��r � 0�; (7)

which recovers the well-known result of van Royen and
Weisskopf [7].

Similar results hold for other charmonia that couple to
electroweak currents. A summary of the results for a
variety of models are presented in Table II. The expres-
sions used to compute the table entries and the data used to
extract the experimental decay constants are collected in
Appendix C.

The second column shows results of the nonrelativistic
computation [Eq. (7)] with wave functions determined in
the coulomb� linear BGS model. A clear trend is evident
as all predictions are approximately a factor of 2 larger
than experiment (column seven). Using the full spinor
structure (column three) improves agreement with experi-
ment substantially, but still yields predictions which are
roughly 30% too large. At this stage the lack of agreement
must be ascribed to strong dynamics, and this motivated
the running coupling model specified above. The fourth
and fifth columns give the results obtained from this model.
It is apparent that the softening of the short range Coulomb
potential induced by the running coupling brings the pre-
dictions into very good agreement with experiment.

Column six lists the quenched lattice gauge computa-
tions of Ref. [2]. The agreement with experiment is note-
worthy; however, the predictions for the �0c and  �2S�
decay constants are much smaller than those of the quark
model [and experiment in the case of the  �2S�]. It is
possible that this is due to excited state contamination in
the computation of the mesonic correlators.

The good agreement between model and experiment has
been obtained with a straightforward application of the
quark model. This stands in contrast to the methods
adopted in Ref. [4] where the authors insert arbitrary
factors of m=E�k� in the integrand in order to obtain
agreement with experiment (the extra factors ofm=E serve
to weaken the integrand, approximating the effect of the
running coupling used here).

It is very difficult to obtain a value for f �3S� that is as
small as experiment. Assuming that the experimental value
TABLE II. Charmonium

Meson BGS NonRel BGS Rel BGS log
� � 0:4 GeV

�c 795 493 424
�0c 477 260 243
�00c 400 205 194
J= 615 545 423
 �2S� 431 371 306
 �3S� 375 318 267

c1 239 165 155

0c1 262 167 157

00c1 273 164 155
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is reliable, it is possible that this difficulty points to serious
problems in the quark model. A simple mechanism for
diminishing the decay constant is via S-D-wave mixing,
because the D-wave decouples from the vector current in
the nonrelativistic limit. This mixing can be generated by
the tensor interaction of Eq. (2); however, computations
yield amplitude reductions of order 2%—too small to
explain the effect. Note that S-D mixing also can be created
by transitions to virtual meson-meson pairs. Unfortunately,
evaluating this requires a reliable model of strong Fock
sector mixing and we do not pursue this here.

A similar discussion holds for the e�e� width of the
 �3770�. Namely, the large decay constant f �3770� � 99�
20 MeV can perhaps be explained by mixing with nearby
S-wave states. Again, the computed effect due to the tensor
interaction is an order of magnitude too small and one is
forced to look elsewhere (such as loop effects) for an
explanation.

Attempts to compute Lorentz scalars such as decay
constants or form factors in a noncovariant framework
are necessarily ambiguous. As stated above, the results of
a computation in the nonrelativistic quark model are only
guaranteed to be consistent in the weak binding limit.
However, the accuracy of the quark model can be estimated
by examining the decay constant dependence on model
assumptions. For example, an elementary aspect of covari-
ance is that a single decay constant describes the vector (for
example) decay amplitude in all frames and for all four-
momenta. Thus the decay constant computed from the
temporal and spatial components of the matrix element
h0jJ�jVi should be equal. As pointed out above, setting
� � 0 yields the trivial result 0 � 0 in the vector rest
frame. However, away from the rest frame one obtains
the result
 

fV�
����������������
NcE�P�

q Z d3k

�2��3
��k;P�

1�����������������������
E�k�P=2�

p �����������������������
E�k�P=2�

p
�

1

2

� ���������������������������������
E�k�P=2��m

p
���������������������������������
E�k�P=2��m

p �

���������������������������������
E�k�P=2��m

p
���������������������������������
E�k�P=2��m

p �
(8)

or, in the nonrelativistic limit
decay constants (MeV).

BGS log Lattice Experiment
� � 0:25 GeV

402 429� 4� 25 335� 75
240 56� 21� 3
193
393 399� 4 411� 7
293 143� 81 279� 8
258 174� 18
149
152
151
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FIG. 1. Temporal (top line) and spatial (bottom line) vector
decay constants in various frames.
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 fV �

�������������
NcMV
p

m
~��0�: (9)
One sees that covariance is recovered in the weak binding
limit where the constituent quark model is formally valid.

Computations of the vector decay constant away from
the weak binding limit and the rest frame are displayed in
Fig. 1. One sees a reassuringly weak dependence on the
vector momentum P. There is, however, a 13% difference
in the numerical value of the temporal and spatial decay
constants, which may be taken as a measure of the relia-
bility of the method.
IV. SINGLE-QUARK ELASTIC FORM FACTORS

Form factors are a powerful determinant of internal
hadronic structure because the external current momentum
serves as a probe scale. And of course, different currents
are sensitive to different properties of the hadron. The
simplest form factors are elastic (such as the pion electro-
magnetic form factor) and it is therefore useful to examine
these when tuning and testing models. Unfortunately elas-
tic electromagnetic form factors are not observables for
charmonia; however this is an area where lattice gauge
theory can aid greatly in the development of models and
intuition. In particular, a theorist can choose to couple the
external current to a single quark, thereby yielding a non-
trivial ‘‘pseudo-observable.’’ This has been done in Ref. [2]
and we follow their lead here by considering the single-
quark elastic electromagnetic form factors for pseudosca-
lar, scalar, vector, and axial vector charmonia.

The technique used to compute the form factors is
illustrated by considering the inelastic pseudoscalar elec-
tromagnetic matrix element hP2jJ�jP1i, where P refers to
a pseudoscalar meson. The most general Lorentz covariant
decomposition of this matrix element is
014012
 hP2�p2�j ���
��jP1�p1�i � f�Q2�

�
�p2 � p1�

�

�
M2

2 �M
2
1

q2 �p2 � p1�
�
�
;

(10)

where conservation of the vector current has been used to
eliminate a possible second invariant. The argument of the
form factor is chosen to beQ2 � ��p2 � p1���p2 � p1�

�.
Using the temporal component of the vector current and

computing in the rest frame of the initial meson yields
 

fsq�Q2� �

������������
M1E2

p

�E2 �M1� �
M2

2�M
2
1

q2 �E2 �M1�

�
Z d3k

�2��3
�� ~k��	

�
~k� ~q

�m2

m2 � �m2

�

�

���������������
1�

m1

Ek

s ��������������������
1�

m2

Ek�q

s

�

�
1�

� ~k� ~q� � ~k
�Ek �m1��Ek�q �m2�

�
(11)

The pseudoscalars are assumed to have valence quark
masses m1, �m1 and m2, �m2 for P1 and P2, respectively.
The masses of the mesons are labeled M1 and M2. The
single-quark elastic form factor can be obtained by setting
m1 � �m1 � m2 � �m2 and M1 � M2. In the nonrelativistic
limit Eq. (11) reduces to the simple expression:

 fsq�Q2� �
Z d3k

�2��3
�� ~k��	

�
~k�

~q
2

�
: (12)

In this case it is easy to see the normalization condition
fsq� ~q � 0� � 1. This is also true for the relativistic elastic
single-quark form factor of Eq. (11).

A variety of quark model computations of the �c single-
quark elastic form factor are compared to lattice results in
Fig. 2. It is common to use SHO wave functions when
computing complicated matrix elements. The dotted curve
displays the nonrelativistic form factor Eq. (12) with SHO
wave functions (the SHO scale is taken from Ref. [8]).
Clearly the result is too hard with respect to the lattice. This
problem was noted by ISGW and is the reason they in-
troduce a suppression factor ~q! ~q=�. ISGW set � � 0:7
to obtain agreement with the pion electromagnetic form
factor. The same procedure yields the dotted-dashed curve
in Fig. 2. The results agree well with lattice for small Q2;
thus, somewhat surprisingly, the ad hoc ISGW procedure
appears to be successful for heavy quarks as well as light
quarks.

The upper dashed curve indicates that replacing SHO
wave functions with full coulomb� linear wave functions
gives a somewhat softer nonrelativistic form factor. The
same computation with the relativistic expression
[Eq. (11)], the lower dashed curve, yields a slight addi-
-4
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tional improvement. Finally, the relativistic BGS� log
single-quark elastic �c form factor is shown as the solid
line and is in remarkably good agreement with the lattice
(it is worth stressing that form factor data have not been
fit). It thus appears that the ISGW procedure is an ad hoc
procedure to account for relativistic dynamics and devia-
tions of simple SHO wave functions from coulomb�
linear� log wave functions.

A similar procedure can be followed for the vector,
scalar, and axial elastic single-quark form factors. The
necessary Lorentz decompositions and expressions for
the form factors are given in Appendix D. The single-quark

c0 elastic form factor for the relativistic BGS� log case
is shown in Fig. 3. The BGS model yields a very similar
result and is not shown. This appears to be generally true
and hence most subsequent figures will only display
BGS� log results. As can be seen, the agreement with
the lattice data, although somewhat noisy, is very good.

The left panel of Fig. 4 shows the single-quark J= 
charge form factor. The agreement of the relativistic
BGS� log model with the lattice data is remarkable.
The right panel of Fig. 4 contains the magnetic dipole
form factor (see Appendix D for definitions). In this case
the form factor at zero recoil is model dependent. In the
nonrelativistic limit, Eq. (D10) implies that GM� ~q � 0� �
MV=m 
 2. The model prediction is approximately 10%
too small compared to the lattice data. The lattice results
have not been tuned to the physical charmonium masses
(charmonium masses are approximately 180 MeV too
low); however, it is unlikely that this is the source of the
discrepancy since the ratio M=m is roughly constant when
M is near the physical mass. Thus it appears that the
problem lies in the quark model. Reducing the quark
mass provides a simple way to improve the agreement;
however, the modifications to the spectrum due to a 10%
reduction in the quark mass are difficult to overcome with
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other parameters while maintaining the excellent agree-
ment with experiment.

Predictions for the single-quark elastic electromagnetic
form factors of the hc and 
c1 states are shown in Figs. 5
and 6. As for the J= , the charge form factors are normal-
ized at zero recoil, while the magnetic form factors take on
model-dependent values at zero recoil. In the nonrelativ-
istic limit these are GM

sq� ~q � 0� � M=�2m� for the hc and
GM
sq� ~q � 0� � 3M=�4m� for the 
c1.
The presence of a kinematical variable in form factors

makes them more sensitive to covariance ambiguities than
static properties such as decay constants. In addition to
frame and current component dependence, one also must
deal with wave function boost effects that become more
pronounced as the recoil momentum increases.
Presumably it is preferable to employ a frame which
minimizes wave function boost effects since these are not
implemented in the nonrelativistic constituent quark
model. Possible choices are (i) the initial meson rest frame
-0.2
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G
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FIG. 6. Single-quark 
c1 form fa
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(ii) the final meson rest frame (iii) the Breit frame. These
frames correspond to different mappings of the three-
momentum to the four-momentum: j ~qj2 � Q2�1� ��
where � � 0 in the Breit frame and � � Q2=4M2 in the
initial or final rest frame (these expressions are for elastic
form factors with a meson of mass M). Furthermore, as
with decay constants, it is possible to compute the form
factors by using different components of the current.

We consider the �c elastic single-quark form factor in
greater detail as an example. The form factor obtained
from the temporal component of the current in the initial
meson rest frame is given in Eqs. (11) and (12). Computing
with the spatial components yields Eq. (D6) with the non-
relativistic limit

 fsq�Q
2� �

2M
m

Z d3k

�2��3
�� ~k��	

�
~k�

~q
2

��
~k�

~q
2

�
�
~q

q2 :

(13)
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This can be shown to be equivalent to

 

2M
m

1

4

Z
d3xj��x�j2e�i ~q� ~x=2; (14)

which is Eq. (12) in the weak coupling limit. At zero recoil
this evaluates to M

2m , which is approximately 10% too small
with respect to unity. Once again, reducing the quark mass
presumably helps improve agreement.

Figure 7 compares the various methods of computing the
�c single-quark form factor. The solid line is the result of
Fig. 2, computed in the initial rest frame with the temporal
component of the current. The dashed line is the compu-
tation of the form factor in the Breit frame. The good
agreement is due to a cancellation between the different
four-vector mapping discussed above and the modifica-
tions induced by computing the quark model form factor
in the Breit frame. The lower dashed line is the form factor
computed from the spatial components of the current
Eq. (D6). It is evidently too small compared to the cor-
rectly normalized results by approximately a factor of
2m=M, indicating that the method is accurate at the 10%
level.

Finally, the large Q2 behavior of pseudoscalar form
factors is a controversial topic. We do not presume to
resolve the issues here; rather we note that the preferred
method for obtaining the form factor yields an asymptotic
behavior proportional to �s�Q2�fPsMPs=Q

2, which is simi-
lar, but not identical, to that expected in perturbative QCD
[9]. Nevertheless, the model is not applicable in this regime
and the asymptotic scaling should not be taken seriously.
 0.2

 0.4

 0.6

 0  1  2  3  4  5  6

Q2 (GeV2)

FIG. 8. Form factor F�Q2� for J= ! �c�. Experimental
points are indicated with squares.
V. CHARMONIUM TRANSITION FORM FACTORS

Transition form factors convolve differing wave func-
tions and therefore complement the information contained
in single-quark elastic form factors. They also have the
important benefit of being experimental observables at
Q2 � 0.
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The computation of transition form factors proceeds as
for elastic form factors, with the exception that the current
is coupled to all quarks. Lorentz decompositions and quark
model expressions for a variety of transitions are presented
in Appendix D. The mapping between three momentum
and Q2 is slightly different in the case of transition form
factors. In the Breit frame this is

 j ~qj2 � Q2 �
�m2

2 �m
2
1�

2

Q2 � 2m2
1 � 2m2

2

; (15)

while in the initial rest frame it is

 j ~qj2 �
Q4 � 2Q2�m2

1 �m
2
2� � �m

2
1 �m

2
2�

2

4m2
1

: (16)

An analogous result holds for the final rest frame mapping.
Computed form factors are compared to the lattice cal-

culations of Ref. [2] and experiment (where available) in
Figs. 8–12. Experimental measurements (denoted by
squares in the figures) have been determined as follows:
For J= ! �c� Crystal Barrel [10] measure � � 1:14�
0:33 keV. Another estimate of this rate may be obtained by
combining the Belle measurement [11] of ���c ! ���
with the rate for J= ! �c�! ��� reported in the PDG
[12]. One obtains ��J= ! �c�� � 2:9� 1:5 keV [2].
Both these data are displayed in Fig. 8.

Two experimental points for 
c0 ! J= � are displayed
in Fig. 9 (left panel). These correspond to the PDG value
��
c0 ! J= �� � 115� 14 keV and a recent result from
CLEO [13]: ��
c0 ! J= �� � 204� 31 keV.

Finally, the experimental points for the E1 and M2


c1 ! J= � multipoles (Fig. 12) are determined from
-7
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the decay rate reported in the PDG and the ratio M2=E1 �
0:002� 0:032 determined by E835 [14].

Overall the agreement between the model, lattice, and
experiment is impressive. The exception is the E1 multi-
pole for 
c1 ! J= �. We have no explanation for this
discrepancy. Note that the quenched lattice and quark
model both neglect coupling to higher Fock states, which
could affect the observables. The agreement with experi-
ment indicates that such effects are small (or can be
effectively subsumed into quark model parameters and
the lattice scale), thereby justifying the use of the quenched
approximation and the simple valence quark model when
applied to these observables.

Predictions for excited state form factors are simple to
obtain in the quark model (in contrast to lattice gauge
theory, where isolating excited states is computationally
difficult). Two examples are presented in Fig. 13. The
agreement with experiment (squares) is acceptable.
-8
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VI. CHARMONIUM �� WIDTHS

Two-photon decays of mesons are of considerable inter-
est as a search mode, a probe of internal structure, and as a
test of nonperturbative QCD modelling. An illustration of
the importance of the latter point is the recent realization
that the usual factorization approach to orthopositronium
(and its extensions to QCD) decay violates low energy
theorems [15].

A. Formalism and motivation

It has been traditional to compute decays such as Ps!
�� by assuming factorization between soft bound state
dynamics and hard rescattering into photons [16]. This
approximation is valid when the photon energy is much
greater than the binding energy EB �m�2. This is a diffi-
cult condition to satisfy in the case of QCD where �!
�s � 1. Nevertheless, this approach has been adopted to
014012
inclusive strong decays of mesons [17–19] and has been
extensively applied to two-photon decays of quarkonia
[20].

The application of naı̈ve factorization to orthopositro-
nium decay (or M ! ggg, �gg in QCD) leads to a differ-
ential decay rate that scales as E� for small photon energies
[21]—at odds with the E3

� behavior required by gauge
invariance and analyticity (this is Low’s theorem [22]).
The contradiction can be traced to the scale dependence
of the choice of relevant states and can be resolved with a
careful NRQED analysis [23]. For example, a
parapositronium-photon intermediate state can be impor-
tant in orthopositronium decay at low energy. Other at-
tempts to address the problem by treating binding energy
nonperturbatively can be found in Refs. [24,25].

Naı̈ve factorization is equivalent to making a vertical cut
through the loop diagram representing Ps! n� [24] (see
Fig. 14). Of course this ignores cuts across photon vertices
-9



FIG. 14. Naı̈ve factorization in positronium decay.
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that correspond to the neglected intermediate states men-
tioned above. In view of this, a possible improvement is to
assume that pseudoscalar meson decay to two photons
occurs via an intermediate vector meson followed by a
vector meson dominance transition to a photon. This ap-
proach was indeed suggested long ago by Van Royen and
Weisskopf [7] who made simple estimates of the rates for
�0 ! �� and �! ��. This proposal is also in accord
with tim-ordered perturbation theory applied to QCD in
Coulomb gauge, where intermediate bound states created
by instantaneous gluon exchange must be summed over.

Finally, one expects that an effective description should
work for sufficiently low momentum photons. The effec-
tive Lagrangian for pseudoscalar decay can be written as

 L � g
Z
�F� ~F� (17)

leading to the prediction ���! ��� / g2m3
�. Since this

scaling with respect to the pseudoscalar mass appears to be
experimentally satisfied for �, �, �0 mesons, Isgur et al.
inserted an ad hoc dependence of m3

� in their quark model
computations [4,6]. While perhaps of practical use, this
approach is not theoretically justified and calls into doubt
the utility of the quark model in this context. Indeed,
simple quark model computations of the amplitude of
Fig. 14 are not dependent on binding energies and can
only depend on kinematic quantities such as quark masses.

In view of the discussion above, we chose to abandon the
factorization approach and compute two-photon charmo-
nium decays in the quark model in bound state time-
ordered perturbation theory. This has the effect of saturat-
ing the intermediate state with all possible vectors, thereby
bringing in binding energies, a nontrivial dependence on
the pseudoscalar mass, and incorporating oblique cuts in
the loop diagram.

B. Results

The general amplitude for two-photon decay of pseudo-
scalar quarkonium can be written as

 A ��1p1;�2p2� � 		���1; p1�	
	
��2; p2�M

� (18)

with

 M �
Ps � iMPs�p

2
1; p

2
2; p1 � p2�	

���p1�p2�: (19)
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The total decay rate is then ��Ps! ��� �
m3
Ps

64� jMPs�0; 0�j2.
Before moving on to the quark model computation, it is

instructive to evaluate the amplitude in an effective field
theory that incorporates pseudoscalars, vectors, and vector
meson dominance. The relevant Lagrangian density is

 L � �iQmVfVV�A� �
1
2QF

�V�� ~F�V�; (20)

where ~F� � 1
2 	

���F�� and V� � @�V � @V�1.
Evaluating the transition Ps! �� yields

 MPs�p
2
1; p

2
2� �

X
V

mVfVQ
2

�
F�V��p2

1�

p2
2 �m

2
V

�
F�V��p2

2�

p2
1 �m

2
V

�
: (21)

Hence the pseudoscalar decay rate is

 ��Ps! ��� �
m3
PsQ

4

16�

�X
V

fVF�V��0�
mV

�
2
: (22)

Notice that the desired cubic pseudoscalar mass depen-
dence is achieved in a simple manner in this approach.

The application of this formula is complicated by well-
known ambiguities in the vector meson dominance model
(namely, is p2

V � m2
V or zero?). The time-ordered pertur-

bation theory of the quark model suffers no such ambiguity
(although, of course, it is not covariant) and it is expedient
to use the quark model to resolve the ambiguity. We thus
choose to evaluate the form factor at the kinematical point
j ~qj � mPs=2, appropriate to Ps! �� in the pseudoscalar
rest frame. Applying Eq. (16) to the virtual process �c !
J= � then implies that the argument of the form factor
should be Q2 � 2:01 GeV2.
-10



TABLE III. Amplitude for �c ! ���10�3 GeV�1�.

n BGS BGS log

1 �211 �141
2 �34 �30
3 �10 �10

TABLE IV. Charmonium two-photon decay rates (keV).

Process BGS BGS log�� � 0:25 GeV� G&I [4] HQ [30] A&B [31] EFG [32] Munz [33] Chao [34] CWV [35] PDG a

�c ! �� 14.2 7.18 6.76 7.46 4.8 5.5 3.5(4) 6–7 6.18 7:44� 2:8
�0c ! �� 2.59 1.71 4.84 4.1 3.7 1.8 1.4(3) 2 1.95 1:3� 0:6
�00c ! �� 1.78 1.21 � � � � � � � � � � � � 0.94(23) � � � � � � � � �


c0 ! �� 5.77 3.28 � � � � � � � � � 2.9 1.39(16) � � � 3.34 2:63� 0:5

aThe �0c rate is obtained from Ref. [36] and assumes that Br��c ! KSK�� � Br��0c ! KSK��. This assumption is supported by the
measured rates for B! K�c and K�0c as explained in Ref. [37].
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A simple estimate of the rate for �c ! �� can now be
obtained from Eq. (22), fJ= 
 0:4 GeV, and F�V��Q2 �

2 GeV2� 
 0:7 GeV�1 (Fig. 8). The result is ���c !
��� 
 7:1 keV, in reasonable agreement with experiment.

Finally, the predicted form of the two-photon �c form
factor is shown in Fig. 15 in the case that one photon is on
shell. The result is a slightly distorted monopole (due to
vector resonances and the background term in Eq. (21))
that disagrees strongly with naı̈ve factorization results.
Lattice computations should be able to test this prediction
[27]—if it is confirmed, the factorization model will be
strongly refuted.

As motivated above, the microscopic description of the
�c two-photon decay is best evaluated in bound-state time
ordered perturbation theory. Thus one has
 

ANR �
X
�;V

h���1; p1����2; p2�jHj�;Vih�;VjHjPsi
�mPs�E�V�

: (23)

The second possible time ordering requires an extra vertex
to permit the transition hPs; Vj�i and hence is higher order
in the Fock space expansion. Thus the second time order-
ing has been neglected in Eq. (23).

The amplitudes can be written in terms of the relativistic
decompositions of the previous sections. One obtains the
on-shell amplitude

 MPs �
X
V

Q2

�������
mV

EV

s
fV

F�V��q�
mPs � E�V�q�

: (24)

We choose to label the momentum dependence with the
nonrelativistic q � j ~qj in these expressions2.
2The naı̈ve application of the method advocated here to light
quarks will fail. In this case the axial anomaly requires that
MPs �

i�
�f�

, which is clearly at odds with Eq. (24). The resolu-
tion of this problem requires a formalism capable of incorporat-
ing the effects of dynamical chiral symmetry breaking, such as
described in Refs. [28,29].
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The total width is evaluated by summing over intermedi-
ate states, integrating, and symmetrizing appropriately.
Form factors and decay constants are computed as de-
scribed in the preceding sections. As argued above, form
factors are evaluated at the point j ~qj � mPs=2. Table III
shows the rapid convergence of the amplitude in the vector
principle quantum number n for the quantity 4

��
2
p

Q �������m�c
p A��.

Surprisingly, convergence is not so fast for the � system
and care must be taken in this case.

Table IV presents the computed widths for the �c,
�0c, and 
c0 mesons in a variety of models. The second
and third columns compare the predictions of the BGS
model with and without a running coupling. Use of the
running coupling reduces the predictions by approximately
a factor of 2, bringing the model into good agreement
with experiment. This is due, in large part, to the more
accurate vector decay constants provided by the BGS�
log model. In comparison, the results of Godfrey and
Isgur ( labeled GI), which rely on naı̈ve factorization
supplemented with the ad hoc pseudoscalar mass depen-
dence discussed above, does not fare so well for the excited
�c transition rate. Similarly a computation using heavy
quark effective field theory (labeled HQ) finds a large
�0c rate. Columns 6 and 7 present results computed in
the factorization approach with nonrelativistic and relativ-
istic wave functions, respectively. Columns 8 and 9
(Munz and Chao) also use factorization but compute
with the Bethe-Salpeter formalism. The model of col-
umn 10 (CWV) employs factorizsation with wave func-
tions determined by a two-body Dirac equation. With
the exception of the last model, it appears that model
variation in factorization approaches can accommodate
some, but never all, of the experimental data, in contrast
to the bound state perturbation theory result. However,
more and better data are required before this conclusion
can be firm.
-11



TABLE V. Bottomonium spectrum (GeV).

Meson C� L C� L log C� L log PDG
� � 0:4 GeV� � 0:25 GeV

�b 9.448 9.490 9.516
�0b 10.006 10.023 10.033
�00b 10.352 10.365 10.372
� 9.459 9.500 9.525 9:4603� 0:000 26
�0 10.009 10.026 10.036 10:023 26� 0:000 31
�00 10.354 10.367 10.374 10:3552� 0:0005

b0 9.871 9.873 9.879 9:8599� 0:001

0b0 10.232 10.235 10.239 10:2321� 0:0006

00b0 10.522 10.525 10.529

b1 9.897 9.900 9.904 9:8927� 0:0006

0 10.255 10.257 10.260 10:2552� 0:0005
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VII. SUMMARY AND CONCLUSIONS

We have presented computations of nine charmonium
decay constants, eight single-quark form factors, ten radia-
tive transition form factors, and four two-photon decay
rates (with an additional 12 bottomonium decay constants
and four two-photon decay rates). Overall, the agreement
with experiment and lattice is impressive. This level of
agreement has been achieved with a combination of model
building (namely the use of a running coupling in the
traditional Cornell potential model), the incorporation of
simple relativistic effects, and, in the case of two-photon
transitions, appropriate computational technique.

In our view, the combination of the improved methods
described above leads to a more satisfactory quark model
phenomenology of dynamical properties of mesons.
Specifically, form factor momentum rescaling constants,
artificial energy dependence in decay constant integrals,
and ad hoc phase space redefinitions in two-photon decays
are no longer required. Furthermore, we have demon-
strated that ambiguities due to the noncovariance of the
nonrelativistic constituent quark model can be expected to
give rise to theoretical uncertainties on the order of 10%
and thus need not invalidate the method for processes with
sufficiently low recoil momenta.

Nevertheless, there are strong hints that flaws remain in
the constituent quark model. First, it appears to be difficult
to maintain the excellent agreement of the nonrelativistic
phenomenological spectrum with experiment when a run-
ning coupling is employed. Second, predicted decay con-
stants of highly excited vectors appear to be too large with
respect to experiment. Thus, the short distance strength in
the wave functions is not dropping sufficiently rapidly with
principle quantum number. Similarly, the large  �3770�
decay constant is difficult to reconcile with the model
presented here. These difficulties imply that there is addi-
tional room for improved hadronic model building.
Obvious possibilities include relativistic models and the
incorporation of Fock sector mixing.

Overall, the success of the computations presented here
fosters confidence in the model and techniques and we look
forward to applying them to other processes of interest
(such as electroweak processes relevant to heavy meson
decays).
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00b1 10.544 10.546 10.548

b2 9.916 9.917 9.921 9:9126� 0:0005

0b2 10.271 10.272 10.275 10:2685� 0:0004

00b2 10.559 10.560 10.563
APPENDIX A: MODEL PARAMETERS

Charmonia are described with the Hamiltonian of
Eqs. (1) and (2) and the parameters determined in
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Ref. [3] by fitting the known charmonium specrtum: mc �
1:4794 GeV, �c � �H � 0:5461, � � 1:0946 GeV, and
b � 0:1425 GeV2. No constant is included. The
‘‘BGS� log’’ model retains the same parameters as above
with the exception that the Coulomb strong coupling con-
stant is replaced with the running coupling of Eq. (3). In
this case we set �0 � �H � 0:5461.

The bottomonium parameters were obtained by fitting
the model of Eqs. (1) and (2) to the known bottomonium
spectrum. The results were mb � 4:75 GeV, �C � �H �
0:35, b � 0:19 GeV2, and � � 0:897 GeV.
APPENDIX B: BOTTOMONIUM PROPERTIES

Predicted bottomonium spectra, decay constants, and
two-photon decay rates are presented here (Tables V, VI,
and VII). All computations we performed as for
charmonia.
APPENDIX C: DECAY CONSTANTS

Decay constant definitions and quark model expressions
for vector, scalar, pseudoscalar, axial, and hc meson decay
constants are presented here.

1. Vector decay constant

The decay constant fV of the vector meson is defined as

 mVfV	� � h0j �����jVi; (C1)

where mV is the vector meson mass, 	� is its polarization
vector, jVi is the vector meson state. The decay constant
has been extracted from leptonic decay rates with the aid of
the following:
-12



TABLE VI. Bottomonium decay constants (MeV).

Meson C� L NonRel C� L Rel C� L log C� L log Experiment
� � 0:4 GeV � � 0:25 GeV

�b 979 740 638 599
�0b 644 466 423 411
�00b 559 394 362 354
� 963 885 716 665 708� 8
�0 640 581 495 475 482� 10
�00 555 501 432 418 346� 50
�000 512 460 400 388 325� 60
��4� 483 431 377 367 369� 93
��5� 463 412 362 351 240� 61

b1 186 150 142 136

0b1 205 160 152 147

00b1 215 164 157 152
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 �V!e�e� �
e4Q2f2

V

12�mV
�

4��2

3

Q2f2
V

mV
: (C2)

Following the method described in the text yields the
quark model vector meson decay constant:
 

fV �

�������
3

mV

s Z d3k

�2��3
�� ~k�

����������������
1�

mq

Ek

s ����������������
1�

m �q

E �k

s

�

�
1�

k2

3�Ek �mq��E �k �m �q�

�
: (C3)

The nonrelativistic limit of this yields the well-known
proportionality of the decay constant to the wave function
at the origin:

 fV � 2

�������
3

mV

s Z d3k

�2��3
�� ~k� � 2

�������
3

mV

s
~��r � 0�: (C4)
2. Pseudoscalar decay constant

The decay constant fP of a pseudoscalar meson is
defined by

 p�fP � ih0j �����5�jPi; (C5)

where p� is the meson momentum and jPi is the pseudo-
scalar meson state. The pseudoscalar decay rate is then
TABLE VII. Bottomonium two-photon decay rates (keV).

Process C� L C� L log GI Experiment
� � 0:25 GeV

�b ! �� 0.45 0.23 0.38 � � �

�0b ! �� 0.11 0.07 � � � � � �

�00b ! �� 0.063 0.040 � � � � � �


b0 ! ��s 0.126 0.075 � � � � � �
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 �P!l�l �
G2
F

8�
jVq �qj

2f2
Pm

2
l mP

�
1�

m2
l

m2
P

�
2
: (C6)

The quark model expression for the decay constant is
 

fP �

�������
3

mP

s Z d3k

�2��3

����������������
1�

mq

Ek

s ����������������
1�

m �q

E �k

s

�

�
1�

k2

�Ek �mq��E �k �m �q�

�
�� ~k�: (C7)

In the nonrelativistic limit this reduces to the same
expression as the vector decay constant.

3. Scalar decay constant

The decay constant fS of the scalar meson is defined by

 p�fS � h0j �����jSi; (C8)

which yields the quark model result:
 

fS �

�������
3

mS

s �������
4�
p

�2��3
Z
k3dk

����������������
1�

mq

Ek

s ����������������
1�

m �q

E �k

s

�

�
1

E �k �m �q
�

1

Ek �mq

�
R�k�: (C9)

Here and in the following, R is the radial wave function
defined by ��k� � YlmR�k� with

R
d3k
�2��3 j�j

2 � 1.

4. Axial vector decay constant

The decay constant fA of the axial vector meson is
defined as

 	�fAmA � h0j �����5�jAi; (C10)

where 	� is the meson polarization vector, mA is its mass
and jAi is the axial vector meson state. The quark model
decay constant is thus
-13
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fA � �

�������
2

mA

s �������
4�
p

�2��3
Z
k3dk

����������������
1�

mq

Ek

s ����������������
1�

m �q

E �k

s

�

�
1

E �k �m �q
�

1

Ek �mq

�
R�k�: (C11)
5. hc decay constant

The decay constant fA0 of the 1P1 state meson is defined
by

 	�fA0mA0 � h0j �����5�j1P1i; (C12)

where 	� is the meson polarization vector, mA0 is its mass,
and j1P1i is its state. The resulting quark model decay
constant is given by

 

fA0 �
1��������
mA0
p

�������
4�
p

�2��3
Z
k3dk

����������������
1�

mq

Ek

s ����������������
1�

m �q

E �k

s

�

�
1

E �k �m �q
�

1

Ek �mq

�
R�k�: (C13)
APPENDIX D: FORM FACTORS

A variety of Lorentz invariant multipole decompositions
(see Ref. [2]) and quark model expressions for these multi-
poles are presented in the following.

Each transition form factor is normally a sum of two
terms corresponding to the coupling of the external current
to the quark and antiquark. For c �c mesons these two terms
are equal to each other, so in the following we only present
formulas corresponding to the single-quark coupling. In
general, both terms have to be calculated.

1. Pseudoscalar form factor

The most general Lorentz covariant decomposition for
the electromagnetic transition matrix element between two
pseudoscalars is

 

hP2�p2�j �����jP1�p1�i � f�Q2��p2 � p1�
�

� g�Q2��p2 � p1�
�: (D1)

To satisfy time-reversal invariance, the form factors
f�Q2� and g�Q2� have to be real. The requirement that
the vector current is locally conserved gives a relation
between two form factors:

 g�Q2� � f�Q2�
M2

2 �M
2
1

Q2 : (D2)

Thus the matrix element can be written as
014012
 hP2�p2�j ���
��jP1�p1�i � f�Q2�

�
�p2 � p1�

�

�
M2

2 �M
2
1

q2 �p2 � p1�
�
�
:

(D3)

In case of two identical pseudoscalars the second term
vanishes.

Computing with the temporal component of the current
in the quark model formalism yields (for c �c mesons)
 

f�Q2� �

������������
M1E2

p

�E2 �M1� �
M2

2�M
2
1

q2 �E2 �M1�

�
Z d3k

�2��3
�� ~k��	

�
~k�

~q
2

�

�

����������������
1�

mq

Ek

s ��������������������
1�

mq

Ek�q

s

�

�
1�

� ~k� ~q� � ~k
�Ek �mq��Ek�q �mq�

�
: (D4)

In case of identical pseudoscalars in the nonrelativistic
approximation the formula above simplifies to

 f�Q2� �
2
������������
M1E2

p

E2 �M1

Z d3k

�2��3
�� ~k��	

�
~k�

~q
2

�
: (D5)

Similar expressions occur when the computation is
made with the spatial components of the electromagnetic
current:
 

f�Q2� �

������������
M1E2

p

1�
M2

2�M
2
1

q2

~q

j ~qj2
�
Z d3k

�2��3
�� ~k��	

�
~k�

~q
2

�

�

����������������
1�

mq

Ek

s ��������������������
1�

mq

Ek�q

s � ~k
Ek �mq

�
~k� ~q

Ek�q �mq

�
:

(D6)

In this case the nonrelativistic approximation for the
single-quark form factor is

 f�Q2� �

������������
M1E2

p

mj ~qj2
~q �
Z d3k

�2��3
�� ~k��	

�
~k�

~q
2

�
�2 ~k� ~q�:

(D7)

Covariance requires the same expression for the tempo-
ral and spatial form factors. Comparing the formula above
to the expression for the temporal form factor (D5) shows
that covariance is recovered in the nonrelativistic and weak
coupling limits (where M1 �M2 ! 4m).

2. Vector form factors

The most general Lorentz covariant decomposition for
the electromagnetic transition matrix element between two
identical vectors is
-14
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hV�p2�j ���
��jV�p1�i � ��p1 � p2�

�
�
G1�Q

2��		2 � 	1�

�
G3�Q2�

2m2
V

�		2 � p1��	1 � p2�

�
�G2�Q2��	�1 �	

	
2 � p1�

� 	�	2 �	1 � p2�: (D8)

These form factors are related to the standard charge,
magnetic dipole, and quadrupole multipoles by

 GC � �1�
2
3��G1 �

2
3�G2 �

2
3��1� ��G3;

GM � G2; GQ � G1 �G2 � �1� ��G3;
(D9)

where � � Q2

4m2
q
.

Quark model expressions for these are
 

G2�Q2� � �

������������
mVE2

p

j ~qj2
Z d3k

�2��3
�� ~k��	

�
~k�

~q
2

�

�

���������������
1�

mq

Ek

s �������������������
1�

mq

Ek�q

s � ~k � ~q
Ek�mq

�
~k � ~q� j ~qj2

Ek�q�mq

�
;

(D10)

and
 

G1�Q
2� �

������������
mVE2

p

mV � E2

Z d3k

�2��3
�� ~k��	

�
~k�

~q
2

�

�

����������������
1�

mq

Ek

s ��������������������
1�

mq

Ek�q

s

�

�
1�

� ~k� ~q� � ~k
�Ek �mq��Ek�q �mq�

�
; (D11)

or
 

G1�Q2� �

������������
mVE2

p

j ~qj2
Z d3k

�2��3
�� ~k��	

�
~k�

~q
2

�

�

����������������
1�

mq

Ek

s ��������������������
1�

mq

Ek�q

s

�

� ~k � ~q
Ek �mq

�
~k � ~q� j ~qj2

Ek�q �mq

�
: (D12)

G3 can be expressed in terms of G1 and G2 in two
different ways:

 G3 �
2m2

V

j ~qj2

�
1�

E2

mV

�
G1 �

2mV

E2 �mV
G2 (D13)

or

 G3 �
2mV�mV � E2�

j ~qj2
�G1 �G2�: (D14)

One can establish that G3 ! G2 �G1 as j ~qj ! 0 from
either equation.
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3. Scalar form factor

The most general Lorentz covariant decomposition for
the electromagnetic transition matrix element between two
scalars is
 

hS2�p2�j �����jS1�p1�i � f�Q2��p2 � p1�
�

� g�Q2��p2 � p1�
�: (D15)

As with pseudoscalars, this can be written as

 hS2�p2�j ���
��jS1�p1�i � f�Q2�

�
�p2 � p1�

�

�
M2

2 �M
2
1

q2 �p2 � p1�
�
�
:

(D16)

In the case of identical scalars the quark model calcu-
lation gives
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������������
M1E2

p
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Z d3k

�2��3
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Ek�q

s

�

�
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�Ek �mq��Ek�q �mq�

�
: (D17)

In the nonrelativistic limit this reduces to

 f�Q2� �
Z d3k

�2��3
�� ~k��	

�
~k�

~q
2

�
: (D18)
4. Vector-pseudoscalar transition form factor

The most general Lorentz covariant decomposition for
the electromagnetic transition matrix element between
vector and pseudoscalar is

 hP�pP�j ���
��jV�pV�i� iF�Q

2�	����	MV
��pV���pP��:

(D19)

Computing with the spatial components of the current then
gives
 

F�Q2� � �

�������
EP
mV

s
1

j ~qj2
Z d3k
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�V� ~k��
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�
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�
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Ek
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Ek�q

s

�
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Ek �mq

�
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Ek�q �mq

�
: (D20)

In the nonrelativistic approximation in zero recoil limit
~q! 0 this reduces to
-15
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 F�Q2�j ~q!0 �
1

mq

�������
mP

mV

s
: (D21)
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5. Scalar-vector transition form factors

The most general Lorentz covariant decomposition for
the electromagnetic transition matrix element between
scalar (3P0) meson state and vector (3S1) is

 

hV�pV�j �����jS�pS�i���1�Q2�

�
E1�Q2����Q2�		�MV

�		MV
�pS�p

�
VpV �pS�m

2
Vp

�
S �

�
C1�Q2�������
Q2

p mV	
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�pS�pV �pS�pV

�pS���m2
Sp

�
V �m

2
Vp

�
S 

�
;

(D22)

where ��Q2� � �pV � pS�
2 �m2

Vm
2
S �

1
4 ��mV �mS�

2 �

Q2��mV �mS�
2 �Q2, and takes the simple value

m2
s j ~qj2 in the rest frame of a decaying scalar.
E1 contributes to the amplitude only in the case of

transverse photons, while C1 contributes only for longitu-
dinal photons. Quark model expressions for the multipole
form factors are
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(D24)

The first (second) expression for C1�Q2� is calculated from
the temporal (spatial) matrix element of the current:
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6. hc-pseudoscalar transition form factor

The most general Lorentz covariant decomposition for
the electromagnetic transition matrix element between 1P1
meson state and pseudoscalar (1S0) is

 

hP�pP�j �����jA�pA�i���1�Q2�
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(D25)

Quark model expressions for the form factors are
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and
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: (D27)
7. Axial vector-vector transition form factor

The most general Lorentz covariant decomposition for
the electromagnetic transition matrix element between
axial vector (3P1) meson state and vector (3S1) is
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Quark model expressions for the form factors are
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and
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