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We investigate the branching ratios and CP asymmetries of the B! �� processes measured in B
factory experiments. Fits to the experimental data of this process indicate a large ratio of color-suppressed
(C) to color-allowed (T) tree contributions. We investigate whether the large C=T can be explained within
the QCD-based model computation with i) a large effect from the end point singularity or with ii) large
final-state-interaction phase between two different isospin amplitudes. We show that the current experi-
mental data do not exclude either possibility, but we may be able to distinguish these two effects in future
measurements of direct CP asymmetry of B0 ! �0�0.
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I. INTRODUCTION

Recent measurements of the branching ratio and CP
asymmetry of the B! �� process provide us with a
deep insight into the nature of both weak and strong
interactions. The measurement of the direct CP asymmetry
in B0 ! ���� clearly indicate that there is a substantial
contribution from the b! d penguin-loop diagram in
addition to the dominant b! u tree-level diagram, which
considerably complicates the extraction of the weak phase
���2� from this process. Furthermore, new physics con-
tributions to this penguin diagram are not yet excluded.
Although the Bd � �Bd oscillation measurement constrains
very strictly the new physics contribution to the b! d
transition coming from the box diagram, the one-loop
penguin diagrams could still get additional contributions
in various new physics models (see [1] for an example). On
the other hand, the biggest challenge in the analysis of the
B! �� processes lies in the difficulty of estimating the
relative sizes of different topologies, which are governed
not only by weak interactions but also by strong interac-
tions. Therefore, an understanding of the strong interaction
effects in these processes is crucial for extracting the weak
phase and ultimately, possible new physics contributions.

Recently, the combined analysis of the CP asymmetries
of B0 ! ���� and the branching ratios of B0 ! ����,
B0 ! �0�0 and B0 ! ���0 showed interesting results
for the relative sizes of different types of the tree diagrams.
At the leading order in QCD, the ratio of the color-
suppressed to the color-allowed tree diagram, which we
call C=T, is 1=Nc, where Nc is the number of color, i.e.
Nc � 3 in QCD. On the contrary, various model-
independent analysis of experimental data indicates how-
ever C=T is close to unity [2–16]. We here would like to
investigate whether this large value of C=T can be ex-

plained by higher order QCD corrections or other hadron
dynamics.

In this article, we investigate two possible enhancement
factors of C=T, i) the higher order correction of the QCD
based model (QCD factorization) [17,18] and ii) the effect
of final state interaction (FSI) phase. For i), we present an
anatomy of the higher order QCD corrections and discuss
in detail, the effect of the free parameters using the
c-convention [2]. We also show that C=T in QCD factori-
zation, in the c-convention which we use in this analysis,
contains contributions from top- and up-penguin as well as
annihilation diagrams in addition to the pure color-
suppressed tree diagrams. According to QCD factorization,
these annihilation terms which suffer from the end point
singularity and contain free parameters could play an
important role in the enhancement of the C=T ratio.
Estimate of annihilation contributions in QCD sum-rule
can be found in [19]. For ii), it was found in [20] that C=T
can be effectively enhanced by including nonzero FSI
phase. We examine this possibility in detail. In this analy-
sis, we use a ‘‘bare’’ C=T ratio estimated from QCD
factorization but by suppressing the strong phase from
the perturbative computation. The other approach includ-
ing both perturbative and FSI phases can be found in [21].

The remaining of the article is organized as follows. In
Sec. II, we fit the experimental data to a model-
independent parametrization. In Sec. III, we show the
prediction of QCD factorization for the parameters defined
in Sec. II. In Sec. IV, we introduce the FSI phase based on
the isospin decomposition of the amplitude and show how
large �C=T�eff can get to. Finally, we conclude in Sec. V.

II. MODEL-INDEPENDENT FIT OF
EXPERIMENTAL DATA

In this section, we first introduce a model-independent
parametrization for the amplitudes of the B! �� pro-
cesses and summarize the fitted values of these parameters
to the experimental data. Let us start by giving the ampli-
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tudes of the B! �� processes in terms of T (color-
allowed tree), C (color-suppressed tree), P (penguin),
which correspond to different topologies, which we discuss
later on

 Amp �B0 ! ����� � Tei�Tei� � Pei�P (1)

 

���
2
p

Amp�B0 ! �0�0� � Cei�Cei� � Pei�P (2)

 

���
2
p

Amp�B� ! ���0� � �Tei�T � Cei�C�ei�; (3)

where �i’s is the strong phase and � is the CP violating
phase. In the following, we analyze 5 observables of the
B! �� process, which are experimentally found to be
[22]

 S���� � �0:50� 0:12 (4)

 C���� � �0:37� 0:10 (5)

 Br ������ � �4:5� 0:4� � 10�6 (6)

 Br ��0�0� � �1:45� 0:29� � 10�6 (7)

 Br ����0� � �5:5� 0:6� � 10�6; (8)

where Br�f1f2� represents the CP-averaged branching
ratios, Br�f1f2� � �Br�B! f1f2� � Br� �B! �f1

�f2��=2.
The time-dependent CP asymmetry of B! ���� is de-
fined as

 A�����t� �
� �B�t�!�� � �B�t�!��
� �B�t�!�� � �B�t�!��

� S���� sin��MBt� � C���� cos��MBt�; (9)

where

 S���� �
2 Im�qp �������

1� j ������j
2 ; C���� �

1� j ������j
2

1� j ������j
2 ;

(10)

with �� � Amp� �B0 ! �����=Amp�B0 ! ����� and
jB1;2i � pjB0i � qj �B0i. In the standard model, we have
q=p � �V�tbVtd�=�VtbV

�
td� � e�2i� and ���1� is measured

in a very high precision from the time-dependent CP
asymmetry of B! J= KS. Using Eq. (1), we obtain

 �������� �
Tei�Te�i� � Pei�P

Tei�T ei� � Pei�P
; (11)

and then, using �� �� � � �, we find (find more de-
tailed derivation, e.g. in [2]),

 RS���� � sin2�� 2 sin��� �� cos�PT

�
P
T

�

� sin2�
�
P
T

�
2

(12)

 RC���� � 2 sin��� �� sin�PT

�
P
T

�
; (13)

where

 R � 1� 2 cos��� �� cos�PT

�
P
T

�
�

�
P
T

�
2
: (14)

As for the branching ratios, we follow [23] and use the
ratios of the averaged branching ratios, which are derived
from Eqs. (1)–(3) as
 

R00 �
2Br��0�0�

Br������

�
1

R

��
C
T

�
2
�

�
P
T

�
2

� 2 cos��PT � �CT� cos�
�
C
T

��
P
T

��
(15)

 R�� �
2Br����0��B0

Br�������B�
�

1

R

�
1� 2 cos�CT

�
C
T

�
�

�
C
T

�
2
�
;

(16)

where �ab 	 �a � �b.
Before discussing our result, we would like to make a

comment on the direct CP asymmetry of the �0�0 chan-
nel, C00. In the same parametrization, one can write

 C00 �
2 sin� sin��CT � �PT��

C
T��

P
T�

�CT�
2 � �PT�

2 � 2 cos� cos��CT � �PT��
C
T�
: (17)

The experimental bound is given as [22]

 C00 � 0:28�0:40
�0:39: (18)

Since the experimental data is not very precise yet, we will
not include this data in our analysis but will discuss its
relevance to the strong phase �CT in subsequent sections.

Now using these formulae, we shall fit the parameters to
the experimental data. Table I shows determinations of
P=T (upper values) , �PT (middle values) and R (bottom
values) by using experimental values of S���� and C����
for given values of �, by using� � 23:7
. We can find that
the R value becomes larger than unity in the most of the
parameter space for � > 57
. We also find that R is par-
ticularly larger when S���� is larger and negative.

Next inputting the values of P=T and �PT obtained from
the above analysis into the right-hand side of Eq. (15) and
(16) and the experimental values of R00 and R�� into the
left-hand side, we compute C=T and �CT . We first use only
the central value of �S���� ; C����� � ��0:50;�0:37� but
include 1	 experimental error for R00 and R��. Obtained
results for � � 47
 (left-top), 57
 (right-top), 67
 (left-
bottom), 77
 (right-bottom) are shown in Fig. 1. The over-
lap of the solid (R00) and the dashed (R��) bounds shift
towards the larger C=T region as � becomes larger, or
equivalently R becomes larger. Therefore, the large value
of R, which is originated from the large negative S���� ,
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causes the large value of C=T. Furthermore, we find that
R�� allows relatively small value of C=T while R00 leads
to a more strict constraint, C=T * 0:5. We find that the
overlap region is distributed in a large range of �CT . Let us
now discuss the errors coming from �S���� ; C�����, since
Fig. 1 is obtained by using only their central values. First,
both R00 and R�� depend on �S���� ; C����� through R, as
1=R as mentioned above. While R�� does not have further

P=T and �pt dependence, R00 has more complex depen-
dence on them. However, as long as the overlap region is
concerned, we find that the derived error is up to� a few %
in C=T and �20
 in �CT .

From the above analysis, we can not obtain a strong
constraint on the weak phase �. While measurements for
e.g. the direct CP asymmetry of the �0�0 channel would
allow a determination of � in the future, currently, we need
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FIG. 1. Allowed region for �CT (x axis) versus C=T (y axis), obtained from experimental bounds for R00 and R��. The numerical
results for P=T and �PT obtained from the central value of the asymmetry measurements, �S���� ; C����� � ��0:50;�0:37� (see
Table I) are used. The three solid lines represent R00 � 0:64� 0:14; 0:64; 0:64� 0:14; and the three dashed lines represent R�� �
2:27� 0:32; 2:27; 2:27� 0:32. The overlap of solid and dashed bounds are the allowed region for C=T and �CT . The weak phase � is
fixed as left-top (� � 47
), right-top (� � 57
), left-bottom (� � 67
), right-bottom (� � 77
).

TABLE I. Determination of P=T (upper value), �PT (middle value) and R (bottom value) using
experimental results for S���� � ��0:50� 0:12� and C���� � ��0:37� 0:10� for given
values of �, � � �27
 � 87
�.

�
�S���� ; C����� 27
 37
 47
 57
 67
 77
 87


��0:62;�0:47� 0.53 0.38 0.36 0.46 0.63 0.81 0.98
�155
 �131
 �92:6
 �61:7
 �45:0
 �35:5
 �29:5


0.43 0.75 1.10 1.45 1.75 1.96 2.06
��0:62;�0:27� 0.49 0.29 0.19 0.32 0.52 0.72 0.91

�166
 �147
 �92:1
 �43:4
 �27:5
 �20:5
 �16:6


0.40 0.69 1.03 1.35 1.63 1.82 1.91
��0:50;�0:37� 0.55 0.38 0.26 0.29 0.44 0.62 0.80

�164
 �149
 �115
 �66:6
 �41:3
 �29:8
 �23:4


0.35 0.62 0.92 1.21 1.46 1.63 1.72
��0:38;�0:47� 0.61 0.45 0.33 0.31 0.41 0.56 0.72

�164
 �150
 �125
 �86:9
 �56:7
 �40:4
 �31:2


0.33 0.58 0.85 1.12 1.35 1.51 1.58
��0:38;�0:27� 0.59 0.40 0.23 0.17 0.31 0.49 0.67

�170
 �162
 �140
 �79:1
 �37:8
 �24:1
 �17:8


0.31 0.55 0.81 1.07 1.28 1.44 1.51
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some inputs from theoretical models. Especially, the value
ofC=T found from the fits in this section seems to be rather
large comparing to the leading order prediction. Therefore,
we will try to extract bounds for C=T and �CT using the
theoretical models in the following section, which in turn
may give us a constraint on �.

III. QCD MODEL CALCULATION OF
PARAMETERS C, T AND P

In this section, we investigate whether those fitted values
on C=T and �CT can be reproduced by the QCD factoriza-
tion. Let us first give the relation between the parametri-
zation of the amplitudes in Eqs. (1)–(3) in the previous
section and the one in QCD factorization

 Tei�Te� / 
�u�a1 � b1 � âu4�; (19)

 Cei�Ce� / 
�u�a2 � b1 � âu4�; (20)

 Pei�P / 
�câ
c
4; (21)

where

 â p4 � ap4 � r�a
p
6 � 2b4 � b3; (22)

and r� � 2m2
�=�2mbmq� ’ 1:24 with mq 	 �mu �md�=2.

Here we employ the so-called c-convention, which elimi-
nates 
t by using an unitarity relation. Therefore, the
amplitudes are proportional only to two CKM factors 
u
and 
c

 
u � VubV
�
ud ’ A


3��� i�� (23)

 
c � VcbV
�
cd �’ �A


3: (24)

Note that arg��� i�� � ei� and j�� i�j � j
�u=
�cj. It is
important to notice that apart from the ‘‘pure’’ color-
allowed tree contribution a1 and the pure color-suppressed
tree contribution a2, Tei�T and Cei�C contain the same two
terms with opposite sign, which are penguin- and tree-
annihilations contributions (bi terms) and top- and up-
penguin contributions (au4). As has already been investi-
gated in [18], it is quite possible that these contributions
could effectively enhance the ratio C=T by contributing
constructively and destructively to C and T, respectively.

In this respect, the sign of these extra contributions must be
carefully investigated.

In order to understand the size of the higher order
corrections estimated by the QCD factorization, we first
give an expression decomposing api and bi into factorizable
terms and their correction terms:

 api �
�
Ci �

Ci�1

Nc

�
�
Ci�1

Nc

CF�s
i�

�
Vi �

4�2

Nc
Hi

�
� Ppi

(25)

 b1 �
CF
N2
c
C1Ai1 (26)

 b3 �
CF
N2
c
�C3A

i
1 � C5�A

i
3 � A

f
3� � NcC6A

f
3 (27)

 b4 �
CF
N2
c
�C4Ai1 � C6Ai2; (28)

where p � u; c. The sign � in ai must be taken as � for
i � odd and � for i � even. The first terms of api are
called factorizable term. The term proportional to Vi, Hi,
Ppi , Ai;fi are the vertex correction, hard-scattering correc-
tion, penguin correction and annihilation correction, re-
spectively. At the leading order, all the Wilson coefficients
vanish except C1 with C1 � 1, which leads to

 C=T � 1=3; P=T � 0; At LO: (29)

The numerical results including all the above higher order
corrections are shown in Table II. For the input parameters,
we use the central values in the Table 1 of [18], among
which we list some important ones here:

 �4:2 GeV; mq�2 GeV��0:0037 GeV;


B�0:35 GeV; j
u=
cj� j�� i�j�0:09; ��2 �0:1;

(30)

where 
B and ��2 are the parameters for the distribution
amplitude of B meson and �, respectively, (for theoretical
estimates of these parameters, see e.g. [24–27]). The value
of mq must be running to the appropriate scales in the
computation. The numbers in the parenthesis in Table II
are the results with a smaller renormalization scale,  �

TABLE II. Anatomy of the higher order correction in the QCD factorization. For the input parameters, we use the central values
given in [18]. The numbers in the parenthesis are obtained by changing renormalization scale to  � 2:1 GeV from the default value.

Factorizable Vertex corr. Hart-scat. corr. Penguin corr.

a1 1.02 (1.04) 0:032ei27
 �0:044ei42
 � �0:032� 0:014�Hei�H ��0:061� 0:025�Hei�H � 0 (0)
a2 0.17(0.085) �0:18ei27
 ��0:19ei42
 � 0:18� 0:081�He

i�H �0:24� 0:095�He
i�H � 0 (0)

au4 �0:031��0:046� �0:0023ei27
 ��0:0034ei42
 � 0:0023� 0:0010�He
i�H �0:0047� 0:0019�He

i�H � 0:014e�i73
 �0:022e�i50
 �

ac4 �0:031��0:046� �0:0023ei27
 ��0:0034ei42
 � 0:0023� 0:0010�He
i�H �0:0047� 0:0019�He

i�H � �0:0047ei76
 �0:0084e�i27
 �

au6 �0:039��0:060� �0:000 47��0:000 83� 0(0) �0:014ei79
 �0:017e�i73
 �

ac6 �0:039��0:060� �0:000 47��0:000 83� 0(0) �0:0073ei38
 �0:0038e�i78
 �
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2:1 GeV (the other parameters are the same as before). We
can see that the Wilson coefficients C2–6 are
O��s�-suppressed compared to C1 and a1 is completely
dominated by the factorizable term. On the other hand, the
factorizable term of a2 is rather small since C2 is
O��s�-suppressed and there is a color factor 1=Nc in C1

term and furthermore, these two have opposite signs. As a
result, the higher order corrections, V2 andH2 terms, which
are proportional to the leading order Wilson coefficient C1,
lead to large contributions in a2. It is also important to
notice that these correction terms can induce a large strong
phase in a2 which has a comparable real and imaginary
part in contrast to a1 which is almost real. In fact, in the
soft-collinear effective theory (SCET) [28–30], this cor-
rection to a2 which is proportional to a large coefficient C1

contains some free parameters. So it could be much more
enhanced in SCET; as much as solving the problem of
large C=T. A more recent analysis in SCET can also be
found in [31]. The smaller value reduces the factorizable
term of a2 and thus, the C=T value. We should also
mention that the penguin terms au4�6� and ac4�6� are quite
similar apart from penguin correction terms. The differ-
ence in the penguin corrections is due to charm- and up-
penguin difference. Using the results with the default
renormalization scale,  � 4:2 GeV, we find

 a1 � 1:02ei0:8


� 0:014�Hei�H (31)

 a2 � 0:21e�i23
 � 0:081�He
i�H (32)

 au4 � r�a
u
6 � �0:097ei21
 � 0:0010�Hei�H (33)

 ac4 � r�a
c
6 � �0:10ei7



� 0:0010�Hei�H (34)

and

 b1 � 0:027� 0:063�Ae
i�A � 0:0085��Ae

i�A�2 (35)

 b3 � �0:0067� 0:021�Aei�A � 0:015��Aei�A�2 (36)

 b4 � �0:0019� 0:0046�Ae
i�A � 0:00061��Ae

i�A�2:

(37)

The parameters �A;H and �A;H which originate from the
end point singularity would vary, say, in the ranges of
j�A;Hj< 1� 2 and ��<�A;H < �. We find that �H
and �H have significant contributions to a2, i.e. C and
�A and �A to bi, i.e. all of T, C, P. According to Eqs. (19)
and (20), in the c� convention, C=T is not simply a2=a1

but includes extra contributions from âu4 and b1, which, we
find, are as large as a2 and strongly depend on �A and �A.
We perform complete analysis of C=T covering all the
parameter space of �’s and �’s next. Here, however, it is
very important to notice that at the limit of �H;A � 0,
numerical values of a1;2 and au4;6 have the opposite sign,
which enhances C and suppresses T (see Eqs. (19) and

(20)), i.e. the inclusion of au4;6 terms increases C=T. As a
result, we obtain

 

C0

T0
ei�CT0 � 0:29e�i8:5
 (38)

where the index 0 indicates �H;A � 0. We emphasize once
more that the signs of au4;6 and ac4;6 must be the same unless
there is large enhancement factors for c� and/or u�
penguins. And most importantly, the sign of ac4;6 can be
fixed from determinations of P and �PT up to well-known

c factor (see, Eq. (21)).

Next we consider the effect of the end point singularity,
�H;A and �H;A, which often cause large theoretical uncer-
tainties in the prediction of QCD factorization. The behav-
ior of C=T when varying freely these four parameters is
rather complicated. In Fig. 2, we show scattered plots of
�CT (x axis) versus C=T (y axis) varying the parameters in
the range of ��<�A;H < � (interval of 0.2 rad) and
fixing �H � 1 (left; �A � 1, middle; �A � 2). We can
see that quite a large range of C=T and �CT are allowed
from QCD factorization, C=T up to 0.45 (0.55) for �A �
1�2�. In particular, the value of C=T becomes large at small
negative values of �CT . For the case of �A � 1 and �A � 2,
we obtain a constraint, respectively, � � 44
�52
� and
� � 46
�56
� allowing 1	�2	� error in the experimental
values, S���� , C���� , R00, R��.

In the original paper of QCD factorization [18], the
problem of the small a2 value has already been recognized
and a possible solution was proposed, choosing the largest
value of the Gegenbauer moment of � distribution ampli-
tude, ��2 ’ 0:4 and the smallest value of the first negative
moment of the B meson distribution function, 
B �
0:2 GeV (scenario 2). More recently, this approximation
has been reanalyzed by using QCD factorization with the
1-loop (NNLO) corrections to hard spectator-scattering
diagram [32]. In this way, the hard-scattering correction
is enhanced by a factor of 2, which leads to

 a2 ’ 0:48e�i10
 � 0:18�Hei�H : (39)

We found that the effect to a1 is small since a1 is domi-
nated by the leading order contribution which does not
depend on those parameters. As a result, we obtain
C0=T0e

i�CT0 ’ 0:61e�i3



for �H;A � 0. Note that these
lower value of 
B and higher value of ��2 must be carefully
tested using other charmless B decays which often involve
these two parameters. Figure 2 (right most) shows the
scattered plot produced as the other Fig. 2 but with �A �
1 and with parameter set of the scenario 2. We find C=T ’
1:1 can be achieved in this scenario if �CT is very small.
Thus, QCD factorization can solve the large C=T puzzle.
Nevertheless, whether QCD factorization can reproduce all
the data in Eqs. (4)–(8) simultaneously depends not only
on a large C=T but also its prediction on P=T and �PT ,
which must be carefully analyzed by comparing e.g. to
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penguin dominant modes so as to make sure that our
parameter sets are sensible.

IV. DOES FSI PHASE MAKE C=T LARGE?

In this section, we introduce the FSI phase into our QCD
factorization analysis. In QCD factorization, this effect is
ignored by arguing that the sum of the phases from all
possible intermediate states cancel each other statistically.
This argument has been challenged in, e.g. [33] where it is
argued that this mechanism may work only in the inclusive
processes and it is found that the strong phase in B! ��
decays can be relatively large. Furthermore, it has been
shown in [20] that the FSI phase can effectively enhance
C=T, which is favored by our analysis in Sec. II. This is
because of isospin invariance; the B! �0�0 decay can be
induced by the charge exchange scattering process
���� ! �0�0 which effectively generates the C ampli-
tude from T. Thus, we consider the case in which the QCD
factorization amplitudes contain an additional large FSI
phase between two isospin I � 0; 2 B! �� amplitudes,
�0;2, which can generate extra contributions to C of the
QCD factorization computation. We examine whether the
FSI effect can enhance sufficiently the value of C=T of the
QCD factorization without adjusting the incalculable pa-
rameters �H;A and �H;A coming from the end point singu-
larities of the annihilation and hard-scattering diagrams as
shown in Sec. III. For this purpose, we start from the QCD
factorization amplitudes with �A;H � 0 but with the FSI
phase �2;0 and evaluate C=T and furthermore constrain the
values of �20 and �CT . Note that we neglect inelastic FSI
here. While comprehensive computations of the FSI phase
can be found in [20,34] followed by [35] (and also in
earlier ones [36,37]) where a large strong phase difference
is found, we here examine these effects in a more phe-
nomenological manner. In [38], a similar analysis with
strong phases in the isospin amplitudes is performed and
a large �20 is found by a fit to the central values of the
experimental data. However, as we have seen in Sec. II, the
experimental errors are still large to constrain the phase

�CT and consequently, the FSI phase, without a theoretical
input.

Now, the effective parameters Teff , Ceff , etc. are related
to the parameters in the previous section as

 Teffe
i�Teff � ��2T0 � C0�ei�0 � �T0 � C0�ei�2=3 (40)

 Ceffe
i�Ceff � ���2T0 � C0�e

i�0 � 2�T0 � C0�e
i�2=3

(41)

 Peffe
i�Peff � P0ei��D��0P�: (42)

For the parameters C0, T0, P0 on the right-hand side, we
use the QCD factorization prediction with �H;A � 0 fol-
lowing our strategy mentioned above. Note that Peff has
not only the I � 0 phase, �0P, but also an extra phase, �D
which may come from inelastic rescattering, such as
DD! ��. As a result, the effective color-suppressed to
color-allowed ratio is obtained as:

 

�
Ceff

Teff

�
ei�CTeff �

��2� 2ei�20� � �1� 2ei�20�C0=T0

�2� ei�20� � ��1� ei�20�C0=T0

:

(43)

The behavior of this function with the value for C0=T0 in
Eq. (38) is shown in Fig. 3 (left). We use the same �CTeff

(x
axis) versus �C=T�eff (y axis) space shown in Fig. 1. The
numbers on the line indicates the value of �20 at each point.
We can see that C=T indeed becomes larger as the FSI
phase �20 increases. We find e.g. that the bare ratio
C0=T0 � 0:29 can be enhanced to �Ceff=Teff� ’ 0:4 for
�20 ’ �21
, where �CTeff

’ �44
. In Fig. 3 (middle), we
overlap Fig. 3 (left) and the experimental bounds for R��
and R00 (Fig. 1 for � � 57
). We find that the allowed
region from R�� and R00 overlap at �20 ’ �65
, where
�C=T�eff ’ 0:96. Figure 3 (right) is obtained in the same
way as the middle figure but with using C0=T0 value from
the scenario 2 in Sec. III. We can find that the central value
of �R��; R00� are reproduced by �20 ’ 40
 where
Ceff=Teff ’ 0:8 and �CTeff

’ 40
.
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FIG. 2. Scattered plot of the QCD factorization estimate for �CT (x axis) versus C=T (y axis) including the end point singularity
effects. In the plot, we fix the � parameters as ��H; �A� � �1; 1� (left) and � �1; 2� (middle) and vary the phases in the range of
��<�A;H < � (interval of 0.2 rad). The rest of the parameters are fixed (see text for details). The last figure (right) is obtained in the
same manner with ��H; �A� � �1; 1� but with different parameter set, the so-called scenario 2 of QCD factorization (see text for
details).
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In order to obtain a constraint on �, we further need to
know the maximum size of the FSI phase. For example,
assuming �20 & 30
, we find � & 48
�55
� using the
default values for the input parameters of QCD factoriza-
tion, i.e. using Eq. (38) and including 1	�2	� of the
experimental errors in S���� , C���� , R00, R��.
However, as we have seen in Fig. 3, this result depends
strongly on the inputs of QCD factorization. For example,
with the scenario 2 of Sec. III, we find that �20 & 30
 leads
to � � �59� 3�
�>56
�. It is also important to mention
that there may be a FSI contribution not only to the phase
but also to C=T itself, as discussed in [35]. Therefore, the
bound obtained here may receive a considerable correc-
tions from both uncertainties of QCD factorization and of
FSI. Further improvements in estimating those parameters
are necessary for obtaining the bound for � from this
strategy.

V. CONCLUSIONS

We analyzed the latest measurements of branching ratios
and CP asymmetry in the B! �� processes and com-
pared it to the theoretical model predictions. Using a
model-independent parametrization of the B! �� pro-
cess, we first constrained the penguin-tree ratio parameters,
P=T and �PT by using the asymmetry measurements,
S���� and C���� and then, using these values, we ob-
tained the constraints for the color-suppressed and color-
allowed tree ratio parameters, C=T and �CT for different
given values of �. We found that the errors in the branching
ratios are still large and the allowed region for �CT is
distributed in a quite large range. On the other hand, the
value of C=T is found to be rather large for most of the
parameter space and, for example, we foundC=T * 0:5 for
� > 47
.

Next, we examined whether this large value of C=T can
be explained within the uncertainties of the theoretical
model computations. We examined two theoretical mod-
els, i) QCD factorization varying �H;A and �H;A and
ii) QCD factorization with �H;A � 0 (no strong phase

from perturbative part) but adding FSI phase. For i), we
found that large �H;A lead to large values of C=T, espe-
cially when �CT is small. On the other hand, for ii), we
found that C=T and �CT are enhanced when the FSI phase
�20 increases. As a result, we found that the large C=T can
be explained in both cases, within the large theoretical
uncertainties from meson distribution amplitudes, together
with the end point singularity for the former and with the
FSI phase for the latter. We found that in general, the larger
C=T can be realized for the smaller �CT for case i) and for
the larger �CT for case ii). Therefore we will be able to
distinguish these two sources of enhancement factors in
near future by using the measurement of C00. Namely, the
ratio to C�� yields

 

C00

C��
�
C
T

sin��CT � �PT�
sin�PT

1

R00
: (44)

One can see that typically, a small �CT�’ 0� leads to this
ratio of order unity with negative sign, C00=C�� ’
�C=T=R00. For example, the central values of the experi-
mental data for R00 and C�� lead to C00 � 0:57 for �CT �
0, which is close to the higher end of the current experi-
mental value ofC00 in Eq. (18). We can also see that a large
�CT�’ ��=2� result shows a strong dependence on �PT ,
C00=C�� ’ �C=T=R00= tan�PT . Thus, for a more precise
analysis, we will need a better knowledge about �PT from
measurements of �S��; C��� as well as the prediction of
�PT from each model. Note that the values of �CT and �PT
are related in QCD factorization through the parameters of
the end point singularity but are independent in FSI, espe-
cially due to a possible inelastic rescattering phase �D of
Eq. (42).
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