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The article contains new results for spin-3=2 and -1=2 resonances. It specializes to the second resonance
region, which includes the P11�1440�, D13�1520� and S11�1535� resonances. New data on electroproduc-
tion enable us to determine the vector form factors accurately. Estimates for the axial couplings are
obtained from decay rates of the resonances with the help of the partially conserved axial current (PCAC)
hypothesis. We present cross sections to be compared with the running and future experiments. The article
is self-contained and allows the reader to write simple programs for reproducing the cross sections and for
obtaining additional differential cross sections.
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I. INTRODUCTION

In previous articles [1,2] we described the formalism for
the excitation of the P33�1232� resonance. In the mean-
while, we extended the analysis to the second resonance
region, which includes three isospin 1=2 states: P11�1440�,
D13�1520�, S11�1535�. The dominant P33�1232� has been
observed in neutrino reactions and there are several theo-
retical articles which describe it with dynamical calcula-
tions based on unitarized amplitudes through dispersion
relations [3], phenomenological [4–7] and quark models
[8–10], as well as models incorporating mesonic states
[11] including a cloud of pions. Articles in the past five
years have taken a closer look at the data by analyzing the
dependence on neutrino energy and Q2 [1,2,5]. So far a
consistent picture emerged to be tested in the new accurate
experiments.

For the higher resonances there are several articles, that
describe their excitation by electrons [12–15], and only
one [8] by neutrinos. Experimental data for neutrino exci-
tation of these resonances are very scarce and come from
old bubble-chamber experiments [16–20]. In the new ex-
periments, studying neutrino oscillations, there is a strong
interest to go beyond the quasielastic scattering [21,22] and
understand the excitation of these resonances. One reason
comes from the long-baseline experiments where the two
detectors (nearby and faraway) observe different regions of
neutrino fluxes and kinematic regions of the produced
particles.

A basic problem with resonances deals with the deter-
mination of their form factors (coupling constants and Q2

dependences). The problem was apparent in the � reso-
nance where after many years several of the form factors
and their Q2 dependence became accurately known and
were found to deviate from the dipoles. The situation is
more serious for the higher resonances where the results of
specific models are used. In this article we adopt the
approach of determining the vector couplings from helicity
amplitudes of electroproduction data, which became re-
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cently available from the Jefferson Laboratory [23–25]
and Mainz accelerator [26]. This requires that we write
amplitudes for electroproduction in terms of the electro-
magnetic form factors and then relate them to the vector
form factors that we use in neutrino reactions. The above
approach together with the conserved vector current
(CVC) hypothesis uniquely specifies the couplings and
the Q2-dependences in the region of Q2 where data is
available, that is for Q2 < 3:5 GeV2.

The axial form factors are more difficult to determine.
For the axial form factors we adopt an effective Lagrangian
for the R! N� couplings and calculate the decay widths.
For each resonance we assume PCAC which gives us one
relation and a second coupling is determined using the
decay width of each resonance.

Having determined the couplings for the four reso-
nances, we are able to calculate differential and integrated
cross sections. This way we investigate several properties
in the excitation of the resonances. We find that a second
resonance peak with an invariant mass between 1.4 GeV
and 1.6 GeV should be observable provided that neutrino
energy is larger than 2–3 GeV. Calculating cross sections
in terms of the resonances provides a benchmark for their
contribution and allows investigators to decide, when more
precise data becomes available, whether a smooth back-
ground contribution is required. Integrated cross section
already suggest the presence of a background.

In Secs. II, III, and IV we present the formalism and give
expressions for the vector form factors. Estimates for the
axial form factors are presented in the Appendix A.
Section V points out that the structure functions W 4 and
W 5 are important for reactions with tau neutrinos. We
analyze differential and integrated cross sections in
Sec. VI. We discuss there the existing data and point out
a discrepancy in the normalization to be resolved in the
next generation of experiments.
II. ELECTROPRODUCTION VIA HELICITY
AMPLITUDES

One of the main contributions of this article is the
determination of the vector form factors for weak pro-
-1 © 2006 The American Physical Society
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FIG. 2 (color online). Helicity amplitudes for the D13�1520�
resonance, calculated with the form factors from Eq. (4.8).
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FIG. 1. Electroproduction of the resonance.
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cesses. Our work relates form factors to electromagnetic
helicity amplitudes, whose numerical values are available
from the Jefferson Laboratory and the University of Mainz.
Values for the form factors at Q2 � 0 are presented in
Table I. Later on we express the weak structure functions
in terms of form factors.

In applying this method we must still define the normal-
ization of electromagnetic amplitudes, which is done in
this section. Before we address this topic we discuss the
kinematics, the polarizations and spinors entering the
problem.

We shall calculate Feynman amplitudes shown in Fig. 1.
We estimate the amplitudes in the laboratory frame with
the initial nucleon at rest and with the intermediate photon
moving along the z-axis.

We define the four-momenta

 p� � �mN; 0; 0; 0�; q� � �q0; 0; 0; qz�

 and p0� � p� � q� � �q0 �mN; 0; 0; qz�:

The intermediate photon or W-boson can have three polar-
izations "�

�i� defined as

 "�
�R;L� � �

1���
2
p �0; 1;�i; 0�; "�

�S� �
1������
Q2

p �qz; 0; 0; q0�;

(2.1)

and Q2 � �q2. The spinors for the target nucleon, nor-
malized as �u�p; sz�u�p; sz� � 2mN , are given by
TABLE I. Vector and axial couplings for the excitation of
resonances (Q2 � 0).

R MR, GeV �tot, GeV elast g�NR CA5 CV3 CV4 CV5

P33�1232� 1.232 0.120 0.995 15.3 1.2 2.13�1:51 0.48
D13�1520� 1.520 0.125 0.5 19.0 �2:1 �4:08 1.51 0.31

R MR, GeV �tot, GeV elast g�NR gA1 gV1 gV2

P11�1440� 1.440 0.350 0.6 10.9 �0:51 �4:6 1.52
S11�1535� 1.535 0.150 0.4 1.12 �0:21 �4:0 �1:68
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 u�p; sz� �
����������
2mN

p usz
0

� �
; (2.2)

where usz can be either

 u�1=2 �
1
0

� �
or u�1=2 �

0
1

� �
:

The final resonances will have spin 1=2 or 3=2. For
spin-3=2 resonances we shall use Rarita-Schwinger spinors
constructed as the product of a polarization vector e�

�i� with
a spinorU. The states with various helicities are defined by
 

 �3=2�
� � e�R�� U�p0;�1=2�

 �1=2�
� �

���
2

3

s
e�S�� U�p0;�1=2� �

���
1

3

s
e�R�� U�p0;�1=2�

 ��1=2�
� �

���
2

3

s
e�S�� U�p0;�1=2� �

���
1

3

s
e�L�� U�p0;�1=2�

 ��3=2�
� � e�L�� U�p0;�1=2�;

(2.3)

with the spinor given as

 U�p0; sz� �
��������������������
p00 �MR

q usz
~p0� ~�

p00�MR
usz

 !
;

and the polarization vectors by

 e�
�R;L� � �

1���
2
p �0; 1;�i; 0�; e�

�S� �
1

MR
�p0z; 0; 0; p00�:

We emphasize that "�
�i� refer to the intermediate photon and

e�
�i� belong to the J � 3=2 spin state. For spin-1=2 reso-

nances the spinors are

 u�p0; sz� �
��������������������
p00 �MR

q usz
~p0� ~�

p00�MR
usz

 !
: (2.4)
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With this notation we can calculate three helicity am-
plitudes for the electromagnetic process. For instance, for
the D13 resonance the amplitude hR;�1=2jJem �

"�R�jN;�1=2i in terms of form factors is presented in
Eqs. (4.4) and (4.6).

We now define the overall normalization. Analyses of
electroproduction data give numerical values for cross
sections at the peak of each resonance [23,25–27]

 �T�W � MR� �
2mN

MR�R
�A2

1=2 � A
2
3=2�; (2.5)

 �L�W � MR� �
2mN

MR�R

Q2

q2
z
S2

1=2: (2.6)

These are helicity cross sections for the absorption of the
‘‘virtual’’ photon by the nucleon to produce the final
resonance [28,29]. They are defined as

 ��i��W� �
1

2
K
X
�;s

jhR;�j"�
�i�J

el
� jN; sij2R�W;MR�;

with

 K �
4�2�

W2 �m2
N

:

The last factor in the cross section is the Breit-Wigner term
of a resonance:

 R�W;MR� �
MR�R
�

1

�W2 �M2
R�

2 �M2
R�2

R

: (2.7)

For a very narrow resonance or a stable particle it reduces
to a �-function.

Numerical values have been reported for the amplitudes
in (2.5) and (2.6) which are related to the following matrix
elements

 A1=2 �

�������������������������������
��

mN�W
2 �m2

N�

s �
R;�

1

2
jJem � "

�R�jN;�
1

2

�
;

A3=2 �

�������������������������������
��

mN�W
2 �m2

N�

s �
R;�

3

2
jJem � "

�R�jN;�
1

2

�
;

S1=2 �

�������������������������������
��

mN�W
2 �m2

N�

s
qz������
Q2

p �
R;�

1

2
jJem � "�S�jN;�

1

2

�
;

(2.8)

which we calculate in this article.
Following standard rules for the calculation of the ex-

pectation values the signs in these equations are deter-
mined. There is an ambiguity for the sign of the square
root, which we select for all resonances to be positive.
Later on we must also select the signs for axial form
factors. We shall choose them in such a way that the
structure functions W3 for all resonances are positive, as
indicated or suggested by the data. As a consequence the
014009
neutrino induced cross sections are larger than the corre-
sponding antineutrino cross sections.
III. ISOSPIN RELATIONS BETWEEN
ELECTROMAGNETIC AND WEAK VERTICES

Our aim is to relate the electromagnetic to weak form
factors using isotopic symmetry. The photon has two iso-
spin components jI; I3i � j1; 0i and j0; 0i. The isovector
component belongs to the same isomultiplet with the vec-
tor part of the weak current. Each of the amplitudes A3=2,
A1=2, S1=2 can be further decomposed into three isospin
amplitudes. Let us use a general notation and denote by b
the contribution from the isoscalar photon; similarly a1 and
a3 denote contributions of isovector photon to resonances
with isospin 1=2 and 3=2, respectively. A general helicity
amplitude on a proton (Ap) and neutron (An) target has the
decomposition

 Ap � Ap��p! R�� � b�

���
1

3

s
a1 �

���
2

3

s
a3;

An � An��n! R0� � b�

���
1

3

s
a1 �

���
2

3

s
a3:

(3.1)

For the weak current we have only an isovector compo-
nent of the vector current, therefore the b amplitude never
occurs in weak interactions. A second peculiarity of the
charged current is that V1 � iV2 does not have the normal-
ization for the Clebsch-Gordon coefficients, it must be
normalized as �V1 � iV2�=

���
2
p

, which brings an additional
factor of

���
2
p

to each of the charged current in comparison
with the Clebsch-Gordon coefficients:

 A�W�n! R�1��� �
2���
3
p a1; (3.2)

 A�W�p! R�3���� �
���
2
p
a3;

A�W�n! R�3��� �

���
2

3

s
a3:

(3.3)

Comparing (3.1) with (3.2), one easily sees that for the
isospin-1=2 resonances, the weak amplitude satisfies the
equality A�W�n! R�1��� � A1

n � A1
p. Since the ampli-

tudes are linear functions of the form factors, the weak
vector form factors are related in the same way to electro-
magnetic form factors for neutrons Cni and protons Cpi :

 I � 1=2: CVi � Cni � C
p
i ; (3.4)

with index i distinguishing the Lorenz structure of the form
factors.

For the isospin-3=2 resonances one gets A3
n�W

�n!

R�3��� � A3
p�W�p! R�3�0� �

��������
2=3

p
a3. The weak form

factors, which are conventionally specified for these two
processes, are
-3
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 I � 3=2: CVi � Cpi � Cni : (3.5)

For the process W�p! R�3��� the amplitude is
���
3
p

times
bigger: A�W�p! R�3���� �

���
3
p
A�W�n! R�3���. Some

of the above relations were explicitly used in earlier ar-
ticles [1,2,4].
IV. MATRIX ELEMENTS OF THE RESONANCE
PRODUCTION, FORM FACTORS

Following the notation of our earlier article [2], we write
the cross section for resonance production in a notation
close to that of DIS, that is we express it in terms of the
hadronic structure functions. In the present notation the
sign in front of W 3 in the cross section (4.1) is plus,

 

d��N

dQ2dW
�
G2

4�
cos2	C

W

mNE2

�
W 1�Q

2 �m2
�� �

W 2

m2
N

	

�
2�k � p��k0 � p� �

1

2
m2
N�Q

2 �m2
��

�

�
W 3

m2
N

�
Q2k � p�

1

2
q � p�Q2 �m2

��

�

�
W 4

m2
N

m2
�
�Q2 �m2

��

2
� 2

W 5

m2
N

m2
��k � p�

	
;

(4.1)

which implies that cross section for a reaction with neu-
trino exceeds that with antineutrino if the structure func-
tion W 3 is positive. The corresponding formula for
electroproduction is obtained by replacing the overall fac-
tor G2cos2	C=4� by 2��2=Q4 and using the electromag-
netic structure functions W em

1 and W em
2 instead of weak

ones. In this case the contribution from W em
4 and W em

5 is
negligible and W em

3 � 0.
In the following subsections we specify the structure

functions W i for each resonance by relating them to form
factors. To give the reader a quick overview of the results,
we summarize the couplings (the values of the form factor
at Q2 � 0) in Table I. One should keep in mind, however,
that all form factors have different Q2-dependences, which
are given explicitly in the following subsections.

A. Resonance D13�1520�

We begin with a D13 resonance, which has spin-3=2 and
negative parity. The matrix element of the charged current
for the resonance production is expressed as

 hD13jJ
�jNi � � �D�� �p

0�d��D13
u�p�; (4.2)

with u�p� the spinor of the target and  �D�� the Rarita-
Schwinger field for a D13 resonance. The structure of d��D
is given in terms of the weak form factors
014009
 

d��D13
� g��

�
CV3
mN

q6 �
CV4
m2
N

�p0q� �
CV5
m2
N

�pq� � CV6

�

� q�
�
CV3
mN

�� �
CV4
m2
N

p0� �
CV5
m2
N

p�
�

� g��
�
CA3
mN

q6 �
CA4
m2
N

�p0q�
�
�5

� q�
�
CA3
mN

�� �
CA4
m2
N

p0�
�
�5

�

�
g��CA5 � q

�q�
CA6
m2
N

�
�5: (4.3)

The general form of the current for D13 differs from that
of P33 in the location of the �5 matrix, which is due to the
parity of the resonance. The form factors CVi �Q

2� and
CAi �Q

2� refer now to any D13 resonance. Later we will
specify them for the D13�1520�. The vector form factors
are extracted from the electroproduction data, in particular,
from the helicity amplitudes. We use recent data from
[25,30], which were kindly provided to us by I. Aznauryan.

Helicity amplitudes are expressed via the Jem � ", which
can be obtained from (4.2) and (4.3) by setting the axial
couplings equal to zero and replacing the vector form
factors by the electromagnetic form factors. This results
in the following expression

 

hD13jJem � "jNi � � ���em�
� F��u�N�;

with ��em�
� �

C�em�
3

mN
�� �

C�em�
4

m2
N

p0� �
C�em�

5

m2
N

p�;

F�� � q�"� � q�"�:

(4.4)

As it was discussed in the previous section, the electro-
magnetic form factors of D13 resonance are different for
proton and neutron. Substituting the matrix element (4.4)
into Eqs. (2.8) and carrying out the products with the
spinors and Rarita-Schwinger field we obtain the following
helicity amplitudes for electroproduction

 AD13

3=2�
����
N
p �

C�em�
3

mN
�MR�mN��

C�em�
4

m2
N

q �p0 �
C�em�

5

m2
N

q �p
�

(4.5)
 

AD13

1=2 �

����
N
3

s �
C�em�

3

mN

�
MR �mN �

2mN

MR
	

q2
z

p00 �MR

�

�
C�em�

4

m2
N

q � p0 �
C�em�

5

m2
N

q � p
�

(4.6)
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FIG. 3 (color online). Contribution of various form factors to
the differential cross section.

PHYSICAL REVIEW D 74, 014009 (2006)

 

SD13

1=2�

�������
2N
3

s
qz

MR

�
C�em�

3

mN
��MR��

C�em�
4

m2
N

�Q2�2mNq
0�m2

N�

�
C�em�

5

mN
�q0�mN�

�
; (4.7)

where N � 
��em � 2mN�p
00 �MR��=
mN�W

2 �m2
N��.

Comparing Eqs. (4.5), (4.6), and (4.7) for each value of
Q2 with the recent data on helicity amplitudes [23,25,30],
we extract the following form factors:
 

D13�1520�: C�p�3 �
2:95=DV

1�Q2=8:9M2
V

;

C�p�4 �
�1:05=DV

1�Q2=8:9M2
V

; C�p�5 �
�0:48

DV
;

C�n�3 �
�1:13=DV

1�Q2=8:9M2
V

; C�n�4 �
0:46=DV

1�Q2=8:9M2
V

;

C�n�5 �
�0:17

DV
;

(4.8)

This is a simple algebraic solution with the numerical
values for the form factors being unique. The function
DV � �1�Q2=M2

V�
2 denotes the dipole function with

the vector mass parameter MV � 0:84 GeV. To give an
impression, how good this parametrization is, we plot in
Fig. 2 the helicity amplitudes, obtained with these form
factors. Vector form factors for the neutrino-nucleon inter-
actions are calculated according to Eq. (3.4)

For the axial form factors we derive in Appendix A

 CA�D�6 � m2
N

CA�D�5

m2
� �Q2 ; CA�D�5 �0� � �2:1: (4.9)

Two other form factors and the Q2 behavior of the CA5 can
be determined either experimentally or in a specific theo-
retical model. To check how big the contribution of the CA3
and CA4 could be, we set them CA3 � CA4 � 1 and computed
in Fig. 3 the various contributions to the differential cross
section for E� � 2 GeV. Motivated by the results on
P33�1232� resonance [1], the Q2 dependence in our calcu-
lations is taken as

 CA�D�i �
CA�D�i �0�=DA

1�Q2=3M2
A

; (4.10)
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where DA � �1�Q
2=M2

A�
2 denotes the dipole function

with the axial mass parameter MA � 1:05 GeV.
We conclude from Fig. 3, that the contribution of �CA4 �

2

and CA4C
A
5 are small, but the other terms could be sizable.

Their importance depends on the relative signs. It is pos-
sible, that CA3C

A
4 and CA3C

A
5 are positive and together with

�CA3 �
2 give an additional 100% to the D13 cross section. In

case that CA3C
A
4 and/or CA3C

A
5 are negative, there are can-

cellations. In the following calculations of this article we
set for simplicity CA3 � CA4 � 0.

The hadronic structure functions for D13 resonance are
similar to those for P33, presented in our earlier paper [2]
and can be obtained from them by replacing mNMR by
�mNMR. We repeat the corresponding formulas here in-
cluding the terms withCV5 andCA3 , which could be nonzero.
The structure functions have a form

 W i�Q
2; �� �

2

3mN
Vi�Q

2; ��R�W;MR�; (4.11)
where R�W;MR� was defined in (2.7) and Vi are given
below. In the following equations the upper sign corre-
sponds to P33 resonance and the lower sign to the D13.
 

V1 �
�CV3 �

2

m2
NM

2
R


�Q2 � q � p�2�q � p�m2
N� �M

2
R��q � p�

2 �Q2m2
N �Q

2mNMR�� �
�CA3 �

2

m2
NM

2
R


�Q2 � q � p�2�q � p�m2
N�

�M2
R��q � p�

2 �Q2m2
N �Q

2mNMR�� �
CV3C

V
4 �Q

2 � q � p� � CV3C
V
5 q � p

m3
NMR


�Q2 � q � p��q � p�m2
N � 2mNMR�

�M2
Rq � p� �

CA3C
A
4 �Q

2 � q � p� � CA3C
A
5m

2
N

m3
NMR


�Q2 � q � p��q � p� �MR �mN�
2� �M2

RQ
2�

�

CV4 �Q

2 � q � p� � CV5 q � p�
2

m4
N

�q � p�m2
N �mNMR� �

�
CA5 �

CA4 �Q
2 � q � p�

m2
N

�
2

q � p�m2

N �mNMR� (4.12)
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V2 �
�CV3 �

2 � �CA3 �
2

M2
R

Q2
q � p�m2
N �M

2
R� �

CV3C
V
4

mNMR
Q2
q � p� �MR �mN�

2� �
CA3C

A
4

mNMR
Q2
q � p� �MR �mN�

2�

�
CV3C

V
5

mNMR
Q2
q � p� �MR �mN�

2 �Q2� �

�
�CV4 �

2

m2
N

�
�CV5 �

2�Q2 �M2
R�

m2
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These are the important structure functions for most of the kinematic region. There are two additional structure
functions, whose contribution to the cross section is proportional to the square of the muon mass.
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B. Resonance P33�1232�

The method of extracting the form factors from the
helicity amplitudes, described in the previous section is
applicable to any resonance. The helicity amplitudes for
the P33�1232� resonance were calculated in a similar man-
ner and we obtain the following results:
014009
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Comparing helicity amplitudes from Eqs. (4.17), (4.18),
and (4.19) with the available data [26] allows us to extract
the form factors

 C�p�3 �
2:13=DV

1�Q2=4M2
V

; C�p�4 �
�1:51=DV

1�Q2=4M2
V

;

C�p�5 �
0:48=DV

1�Q2=0:776M2
V

:

(4.20)

Form factors C�p�3 and C�p�4 are in agreement with those
obtained in the magnetic dominance approximation (which
was used in all the previous papers on neutrino produc-
tion). The agreement has 5% accuracy and at the same time
the nonzero scalar helicity amplitude is described cor-
rectly. The fit of the proton helicity amplitudes for the
form factors from Eq. (4.20) is shown in Fig. 4.
Electromagnetic neutron form factors and vector form
factors for the neutrino-nucleon interactions can be calcu-
lated according to Eq. (3.5).

Axial form factors have already been discussed several
times, the way to obtain them is illustrated in Appendix A,
Eq. (A4). The result is
-300

-250

-200

-150

-100

-50

 0

 50

 0  0.5  1  1.5  2  2.5  3

A
3/

2,
 A

1/
2,

 S
1/

2,
 1

0-3
 G

eV
-1

/2

Q2

A3/2
(p)

A1/2
(p)

S1/2
(p)

FIG. 4 (color online). Helicity amplitudes for the P33�1232�
resonance, calculated with the form factors from Eq. (4.20). Data
are from [26].

014009
 CA�
6 � m2

N
CA�
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1�Q2=3M2
A

A practical aspect with this resonance concerns the cross
section of the tau neutrino interactions, which is discussed
in Sec. V.

C. Resonance P11�1440�

For spin-1=2 resonances the parametrization of the weak
vertex for the resonance production is simpler than for the
spin-3=2 resonances and is similar to the parametrization
for quasielastic scattering.

The matrix elements of the P11 resonance production
can be written as follows:
 

hP11jJ
�jNi � �u�p0�

�
gV1
�2 �Q

2�� � q6 q�� �
gV2
�
i��
q


� gA1�
��5 �

gA3
mN

q��5

�
u�p�; (4.21)

where we use the standard notation ��
 � i
2 
�

�; �
� and
the kinematic factors are scaled by� � mN �MR in order
to make them dimensionless.

To extract the vector form factors we use the same
procedure as before and calculate the helicity amplitudes
for the virtual photoproduction process. Since the reso-
nance has spin 1=2, only the A1=2 and S1=2 amplitudes
occur:

 AP11

1=2 �
����
N
p

���
2
p
qz

p00 �MR

�
g�em�

1

�2 Q2 �
g�em�

2

�
�MR �mN�

�
(4.22)

 SP11

1=2 �
����
N
p q2

z

p00 �MR

�
g�em�

1

�2 �MR �mN� �
g�em�

2

�

�
(4.23)

At nonzero Q2 data on helicity amplitudes for the
P11�1440� are available only for proton. Unlike the other
resonances, the accuracy of data in this case is low and
numerical values, provided by different groups differ sig-
nificantly, as illustrated in Fig. 5. In this situation we use for
our fit only the recent data [25,30].

Matching the data against Eqs. (4.22) and (4.23) allows
us to parametrize the proton electromagnetic form factors
as follows:

 P11�1440�: g�p�1 �
2:3=DV

1�Q2=4:3M2
V

;

g�p�2 �
�0:76

DV

�
1� 2:8 ln

�
1�

Q2

1 GeV2

��
:

(4.24)

The difference among the reported helicity amplitudes
are larger than the estimated contribution of the isoscalar
part of the electromagnetic current. For this reason we shall
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assume that the isoscalar contribution is negligibly small
and use the relation A�n�1=2 � �A

�p�
1=2. The isovector contri-

bution in the neutrino production is now given as gVi �
�2g�p�i .

The differential cross section is expressed again with the
general formula (4.1). The hadronic structure functions are
calculated explicitly to be:

 W i�Q2; �� �
1

mN
Vi�Q2; ��R�W;MR�
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�gV1 �

2

�4 Q4
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gV1 g

V
2

�3 2Q2
�pq��MR �mN� �mNQ2�
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N �mNMR � q � p� (4.25)
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�
(4.26)
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N
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A
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A
1

�
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�
(4.27)
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2
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A
3

mN
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�
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where the upper sign corresponds to P11 and the lower sign
to S11 resonance.

As it is shown in Appendix A, PCAC allows us to relate
the two axial form factors and fix their values at Q2 � 0:

 gA�P�3 �
�MR �mN�mN

Q2 �m2
�

gA�P�1 ; gA�P�1 �0� � �0:51:

The Q2 dependence of the form factors cannot be deter-
mined by general theoretical consideration and will have to
be extracted from the experimental data. We again sup-
pose, that the form factor are modified dipoles

 gA�P�1 �
gA�P�1 �0�=DA

1�Q2=3M2
A

: (4.30)
D. Resonance S11�1535�

For the S11 the amplitude of resonance production is
similar to that for P11 with the �5 matrix exchanged
between the vector and the axial parts

 hS11jJ
�jNi � �u�p0�

�
gV1
�2 �Q

2�� � q6 q���5 �
gV2
�
i��
q
�5

� gA1�
� �

gA3
mN

q�
�
u�p�:

(4.31)

The helicity amplitudes

 AS11

1=2 �
�������
2N
p �

g�em�
1

�2 Q2 �
g�em�

2

�
�MR �mN�

�

SS11

1=2 �
����
N
p

qz

�
�
g�em�

1

�2 �MR �mN� �
g�em�

2

�

� (4.32)

are used to extract the electromagnetic form factors.
As in the case of P11�1440� resonance, we choose here to

fit only proton data on helicity amplitudes and neglect the
isoscalar contribution to the electromagnetic current
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We obtain the form factors
 

S11�1535�: g�p�1 �
2:0=DV

1�Q2=1:2M2
V

�
1�7:2ln

�
1�

Q2

1 GeV2

��
;

g�p�2 �
0:84

DV

�
1�0:11ln

�
1�

Q2

1 GeV2

��
: (4.33)

Notice here, that gp2 falls down slower than dipole (at
least for Q2 < 3:5 GeV2), supplying the most prominent
contribution among the three isospin-1=2 resonances dis-
cussed in this paper. This means experimentally, that the
relative role of the second resonance region increases with
increasing ofQ2. Values ofQ2 � 1–2 GeV2 are accessible
(and are not suppressed kinematically) for E� �
1:5–2 GeV. For these energies the S11�1535� and
D13�1520� resonances are observable in the differential
cross section.

The axial form factors are determined from PCAC as
described in the Appendix A:

 gA�S�3 �
�MR �mN�mN

Q2 �m2
�

gA�S�1 ; gA�S�1 �0� � �0:21:

The Q2 dependence is again taken

 gA�S�1 �
gA�S�1 �0�=DA

1�Q2=3M2
A

: (4.34)

We adopt this functional form, but one must keep open the
possibility that it may change when experimental results
become available.

V. CROSS SECTION FOR THE TAU NEUTRINOS

Before we describe numerical results for the cross sec-
tions in the second resonance region, we shortly discuss the
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cross section for �-neutrinos and the accuracy achieved in
different calculations.

Recently we calculated the cross section of the reso-
nance production [2] by taking into account the effects
from the nonzero mass of the outgoing leptons. They
generally decrease the cross section at small Q2. For the
muon the effect is noticeable in the Q2-dependence of the
differential cross section, but is very small in the integrated
cross section.

It was shown, that the cross section is decreased at small
Q2 via 1) reduction of the available phase space; 2) nonzero
contributions of the W 4 and W 5 structure functions.
Following [10], we will refer to the latter effect as ‘‘dy-
namic correction’’. To date, several Monte Carlo Neutrino
Simulators use the Rein-Sehgal model [8] of the resonance
production as an input. In this model the lepton mass is not
included. Thus, in Monte Carlo simulations the phase
space is restricted simply by kinematics, but they do not
take into account effects from W 4 and W 5 structure
functions. Some calculations are also available, where
the partonic values for the structure functions
 

W 4 � 0 (5.1a)

W 5 �W 2 � �q � p�=Q2 (5.1b)

are included. We compare these two approximations with
our full calculations for the integrated and differential cross
sections. Figure 7 shows the integrated cross section for the
reaction ��p! �����.

One can easily see that taking the partonic limit for the
structure functions is a good approximation in this case.
Ignoring the structure functions, however, leads to a 100%
overestimate of the cross section which is inaccurate. In
both cases the difference comes mainly from the ‘‘low’’
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corrections and structure functions from the parton model; the
solid curve includes phase space and structure functions calcu-
lated in our model.
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(close to the threshold) Q2 region, as it is illustrated in
Fig. 8, where the differential cross section for the tau
neutrino energy E� � 5 GeV is shown. One easily sees,
that the discrepancy at lowQ2 reaches 30% for the partonic
structure functions and more than 100% when W 4 and
W 5 are ignored.

VI. CROSS SECTIONS IN THE SECOND
RESONANCE REGION

We finally return to the second resonance region and use
the isovector form factors to calculate the cross section for
neutrino production of the resonances. We specialize to the
final channels �n! R! p�0 and �n! R! n��,
where both I � 3=2 and I � 1=2 resonances contribute.
The data that we use is from the ANL [16,17], SKAT [19]
and BNL [18] experiments. The ANL and BNL experi-
ments were carried on Hydrogen and Deuterium targets,
while the SKAT experiment used freon (CF3Br). The
experiments use different neutrino spectra, there is, how-
ever, an overlap region for E� < 2:0 GeV. The data show
that the BNL points are consistently higher that those of the
other two experiments (see figure 4a,b in Ref. [19]). This is
also evident in earlier compilations of the data. For in-
stance, Sakuda [31] used the BNL data and his cross
sections are larger that those of Paschos et al. [32] where
ANL and SKAT data were used. A recent article [11] uses
data from a single experiment [16], where the differences
between the experimental results is not evident. The error
bars in these early experiments are rather large and it
should be the task of the next experiments to improve
them and settle the issue.

The differential cross section d�=dW was reported in
several experiments (see figures 4 in [16], 1 in [17], 4 in
[18], 7 in [20]). We plot the differential cross section
d�=dW in Fig. 9 for incoming neutrino energies E� � 1,
2 and 3 GeV. We note, that the second resonance peak
014009
grows faster than the first one with neutrino energy and
becomes more pronounced at E� � 3 GeV.

In Fig. 10 we plot our theoretical curves together with
the experimental data from the BEBC experiment [20] for
hE�i � 54 GeV. The theoretical curve clearly shows two
peaks with comparable areas under the peaks. The experi-
mental points are of the same order of magnitude and
follow general trends of our curves, but are not accurate
enough to resolve two resonant peaks.

The spectra of the invariant mass are also plotted in
figure 4 in Ref. [18] up to W � 2:0 GeV, but there is no
evident peak at 1:4<W < 2:0 GeV, in spite of the fact
that the number of events is large. This result together with
the fact that the integrated cross sections for p�0 and n��

are within errors comparable suggest that the I � 1=2 and
I � 3=2 amplitudes are comparable.

We study next the integrated cross sections for the final
states ��p�0 and ��n�� as functions of the neutrino
energy. The solid curves in Fig. 11 show the theoretically
-10
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calculated cross sections with the cut W < 2:0 GeV and
the dashed curve with the cut W < 1:6 GeV. For p�0 the
solid curve goes through most of the experimental points
except for those of the BNL experiment, which are con-
sistently higher than those of the other experiments.

For the n�� channel our curve is a little lower than the
experimental points. This means that there are contribu-
tions from higher resonances or additional axial form
factors. Another possibility is to add a smooth background
which grows with energy. An incoherent isospin-1=2 back-
ground of approximately 5 � 10�40�E�=1 GeV�
0:28�1=4 cm2 would be sufficient to fit the data, as it is
shown by a double-dashed curve. By isospin conservation,
the background for the p�0 channel is determined to be
half as big. Including this background, which may origi-
nate from various sources, produces the double-dashed
curves in Fig. 11. Since experimental points are not con-
sistent with each other, it is premature for us to speculate
on the additional terms.

For the P33�1232� the elasticity is high, but for the other
resonances is  0:5, which implies substantial decays to
multipion final states. We computed in our formalism the
integrated cross section for multipion production. The
014009
results are shown in Fig. 12 with two cuts W < 1:6 GeV
and W < 2 GeV. The experimental points are from
Ref. [16].
VII. CONCLUSIONS

We described in this article a general formalism for
analysing the excitation of resonances by neutrinos. We
adopt a notation for the cross section very similar to that of
DIS by introducing structure functions. We give explicit
formulas for the structure functions in terms of form fac-
tors. The form factors describe the structure of the tran-
sition amplitudes from nucleons to resonances. The vector
components appear in electro- and neutrino-production.
We use recent data on helicity amplitudes from JLAB
and the Mainz accelerator to determine the form factors
including Q2 dependences. We found out, that several of
them fall slower than the dipole form factor, at least for
Q2 < 2–3 GeV2. The accuracy of these results is illus-
trated in Figs. 2 and 4–6.

We obtain values for two axial form factors by applying
PCAC (see Appendix A) whenever the decay width and
elasticity is known. For the spin-3=2 resonances there is
still freedom for two additional axial form factors whose
contribution may be important. This should be tested in the
experiments.

We present differential and integrated cross sections in
Secs. V and VI. For the P33�1232� we point out, that the
structure functions W 4 and W 5 are important for experi-
ments with �-leptons because they modify the Q2 depen-
dence and influence the integrated cross section.

The second resonance region has a noticeable peak in
d�=dW (Fig. 9), which grows as E� increases from 1 to
3 GeV. The integrated cross section for the I � 1=2 chan-
nel also grows with energy of the beam and may require
stronger contribution from the resonance region and a
nonresonant background (Fig. 11).
-11
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Our results are important for the new oscillation experi-
ments. In addition to the production of the resonances and
the decays to one-pion and a nucleon, there are also decays
to two and more pions. Multipion decays contribute to the
integrated cross section with the cut W < 2 GeV at the
level of �2–3� � 10�39 cm2 for E� > 4 GeV. Thus our re-
sults are useful in understanding the second resonance
region and may point the way how the resonances sum
up to merge at higher Q2 into the DIS region.
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APPENDIX A: DECAYS OF THE RESONANCES
AND PCAC

1. P33�1232�

For P33�1232� isospin invariance defines the following
effective Lagrangian for the �N� interactions:

 L P33�1232�
�NR � g�

�
����� p@��

� �

���
1

3

s
����n@��

�

�

���
1

3

s
��0
�p@��� �

���
2

3

s
����p@��0

�

���
2

3

s
��0
�n@��0 � ����n@���

�

The total width of the �N decay of each ���, ��, �0 or
�� is calculated in a straightforward way

 �� �
g2

�

8�
1

3M2
R


�MR �mN�
2 �m2

��jp�j3; (A1)

where the pion momentum for the on-mass-shell resonance
is

 p� �
1

2MR

��������������������������������������������������������������
�M2

R �m
2
N �m

2
��

2 � 4m2
Nm

2
�

q
:

For the experimental value �� � 0:114 GeV, we obtain
g� � 15:3 GeV�1. The resonance width (A1) is propor-
tional to the third power of the pion momentum, so for the
running resonance width we use

 �����W� � ����0

�
p��W�
p��MR�

�
3
:
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According to PCAC

 hR�j@�A
��0�jni � �im2

�f�
1

q2 �m2
�
T���n! R��;

(A2)

where f� � 0:97m�.
For P33�1232� the relation (A2) turns into

 i � ��
� q�

�
CA5 �

CA6
m2
N

q2

�
uN;�

���
1

3

s
�im2

�f�
q2 �m2

�

� ��
� g�q

�uN;

and we obtain in the limit m� ! 0 a relation between the
two form factors

 CA6 � �m
2
N
CA5
q2 : (A3)

The denominator of the above formula is phenomenolog-
ically extended as q2 �m2

�. Making use of the relation
(A3) for Q2 ! 0 one also obtains CA5 � g�f�=

���
3
p

. Thus

 CA6 �P33� � m2
N
CA5 �P33�

m2
� �Q2 ; CA5 �P33� �

g�f����
3
p � 1:2:

(A4)

For the ��� the �NR vertex is
���
3
p

times bigger, so, strictly
speaking, CA5 is also

���
3
p

times bigger. However, for histori-
cal reasons, the form factors are conventionally defined for
the vertex W�n! R� and a factor

���
3
p

appears in vertex
for W�n! R��.

2. D13�1520�

For D13�1520� the isospin-invariant Lagrangian of the
D13�1520�N� interactions is defined as:

 L D13
�NR � �gD13

� ���
2

3

s
�D���5n@��� �

���
2

3

s
�D0
��5p@���

�

���
1

3

s
�D���5p@��0 �

���
1

3

s
�D0
��5n@��0:

�

The decay width to the �N is

 �D�N �
g2
D

8�
1

3M2
R


�MR �mN�
2 �m2

��jp�j
3: (A5)

The total width of the D13�1520� resonances is approxi-
mately 0.125 GeV and the elasticity is about 0.5. For this
values we obtain gD � 15:5 GeV�1 and the running width
of the resonance is again proportional to the third power of
the pion momentum. The PCAC relation turns into

 i � D�q
�
�
CA5 �

CA6
m2
N

q2

�
�5uN

� �

���
2

3

s
�im2

�f�
q2 �m2

�

� D�gDq
��5uN;
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which results in

 CA6 �D13� � m2
N
CA5 �D13�

m2
� �Q2

with CA5 �D13��Q
2 � 0� � �

���
2

3

s
gDf� � �2:1:

(A6)

3. P11�1440�

For P11�1440� the isospin-invariant Lagrangian is de-
fined as

 L P11
�NR � �gP11

� ���
2

3

s
�P��5n�� �

���
2

3

s
�P0�5p��

�

���
1

3

s
�P��5p�0 �

���
1

3

s
�P0�5n�0

�
:

The decay width is

 �P11!�N �
g2
P

8�M2
R


�MR �mN�
2 �m2

��jp�j:

For the elasticity of 0.6 and the total width of 0.350 GeV we
obtain gP � 10:9.

The PCAC relation is

 i �uR�p0�
�
gA1�

�q� �
gA3
mN

q2

�
�5uN�p�

� �

���
2

3

s
��im2

��
f�

q2 �m2
�

�uR�p0�gP�5uN�p�:

At m� ! 0 it leads to

 gA3 �P11� � �
mN�MR �mN�

q2 �m2
�

gA1 �P11�;

(here the denominator is extended as before) and at Q2 !
0 the coupling is
014009
 gA1 �P11� � �

���
2

3

s
gPf�

MR �mN
� �0:51:
4. S11�1535�

For S11�1535� the isospin-invariant Lagrangian is de-
fined as

 L S11
�NR � �gS

� ���
2

3

s
�S�n�� �

���
2

3

s
�S0p�� �

���
1

3

s
�S�p�0

�

���
1

3

s
�S0n�0

�
:

The decay width is

 �S11!�N �
g2
S

8�M2
R


�MR �mN�
2 �m2

��jp�j:

For the elasticity of 0.4 and the total width of 0.150 GeV we
obtain gS � 1:12.

The PCAC relation is again

 i �uR�p
0�

�
gA1�

�q� �
gA3
mN

q2

�
uN�p�

� �

���
2

3

s
��im2

��
f�

q2 �m2
�

�uR�p0�gSuN�p�;

which at m� ! 0 leads to

 gA3 �S11� � �
mN�MR �mN�

q2 �m2
�

gA1 �S11�:

(here the denominator is extended as before) and at Q2 !
0 the coupling is

 gA1 �S11� � �

���
2

3

s
gSf�

MR �mN
� �0:21:
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