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We derive the triply differential spectrum for the inclusive rare decay B! Xs‘
�‘� in the shape-

function region, in which Xs is jetlike with m2
X & mb�QCD. Experimental cuts make this a relevant region.

The perturbative and nonperturbative parts of the matrix elements can be defined with the soft-collinear
effective theory, which is used to incorporate �s corrections consistently. We prove that, with a suitable
power counting for the dilepton invariant mass, the same universal jet and shape functions appear as in
B! Xs� and B! Xu‘ �� decays. Parts of the usual �s�mb� corrections go into the jet function at a lower
scale, and parts go into the nonperturbative shape function. For B! Xs‘

�‘�, the perturbative series in �s
are of a different character above and below� � mb. We introduce a ‘‘split matching’’ method that allows
the series in these regions to be treated independently.

DOI: 10.1103/PhysRevD.74.014005 PACS numbers: 13.20.He, 12.38.Bx, 12.39.Hg
I. INTRODUCTION

The B meson is particularly suitable for probing QCD
and flavor physics in the standard model, since the large
mass of the b quark relative to �QCD provides a useful
expansion parameter, �QCD=mb � 0:1. The study of inclu-
sive B decays circumvents the need for precision hadronic
form factors, while still allowing model-independent pre-
dictions. Rare inclusive decays, which involve flavor-
changing neutral currents (FCNCs), not only allow mea-
surements of CKM matrix elements, in particular Vts and
Vtd, but are also highly sensitive to new physics, since they
do not occur at tree level in the standard model.

Among the inclusive rare B decays, the radiative process
B! Xs� has received the most attention, having been
measured first by CLEO [1] and subsequently by other
experiments [2–5]. These measurements have provided
significant constraints on extensions to the standard model.
The decay B! Xs‘�‘� is complementary to, and more
complicated than, B! Xs�. Its potential for revealing
information beyond that supplied by the radiative decay
is due to the presence of two extra operators in the effective
electroweak Hamiltonian and the availability of additional
kinematical variables, such as the dilepton invariant-mass
spectrum and the forward-backward asymmetry. Belle and
BABAR have already made initial measurements of this
dilepton process [6–8].

Provided that one makes suitable phase-space cuts to
avoid c �c resonances, B! Xs‘�‘� is dominated by the
quark-level process, which was calculated in Ref. [9].
Owing to the disparate scales, mb � mW , one encounters
large logarithms of the form �ns �mb�logn�mb=mW� (leading
log�LL	), �n�1

s �mb�logn�mb=mW� (next-to-leading
log�NLL	), . . ., which should be summed. The NLL cal-
address: ksml@mit.edu
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culations were completed in Refs. [10,11], and the NNLL
analysis, although technically not fully complete, is at a
level that the scale uncertainties have been substantially
reduced, after the combined efforts of a number of groups
[12–16].

Nonperturbative corrections to the quark-level result can
also be calculated by means of a local operator product
expansion (OPE) [17], with nonperturbative matrix ele-
ments defined with the help of the heavy quark effective
theory (HQET) [18]. As is the case for B! Xs� and B!
Xu‘ ��, there are no O�1=mb� corrections. The O�1=m2

b�
corrections and OPE were considered in Ref. [19] and
subsequently corrected in Ref. [20]. The O�1=m3

b� correc-
tions were computed in Ref. [21]. There are also non-
perturbative contributions arising from the c �c inter-
mediate states. The largest c �c resonances, i.e. the J= 
and  0, can be removed by suitable cuts in the dilepton
mass spectrum. It is generally believed that the operator
product expansion holds for the computation of the dilep-
ton invariant mass as long as one avoids the region with the
first two narrow resonances, although no complete proof of
this (for the full operator basis) has been given. A picture
for the structure of resonances can be obtained using the
model of Krüger and Sehgal [22], which estimates factor-
izable contributions based on a dispersion relation and
experimental data on ��e�e� ! c �c� hadrons�. Nonfac-
torizable effects have been estimated in a model-
independent way by means of an expansion in 1=mc [23],
which is valid only away from the resonances.

Staying away from the resonance regions in the dilepton
mass spectrum leaves two perturbative windows, the low-
and high-q2 regions, corresponding to q2 
 6 GeV2 and
q2 � 14:4 GeV2 respectively. These have complementary
advantages and disadvantages [16]. For example, the latter
has significant 1=mb corrections but negligible scale and
charm-mass dependence, whereas the former has small
1=mb corrections but non-negligible scale and charm-
-1 © 2006 The American Physical Society
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FIG. 1 (color online). The kinematic range for p�X and p�X
given the experimental cuts of q2 < 6 GeV2 and mX 
 2:0 GeV
for B! Xs‘

�‘�.

1In Ref. [44] it was pointed out that even a cut of E� � E0 �
1:8 GeV, corresponding to mX & 3 GeV, might not guarantee
that a theoretical description in terms of the local OPE is
sufficient, owing to sensitivity to the scale � � mb � 2E0 in
power and perturbative corrections. Using a multiscale OPE with
an expansion in �=� allows the shape-function and local OPE
regions to be connected [33,34,44].

2Note that the operator product expansion used here occurs at
� ’

�����������
mb�

p
, rather than at m2

b, as in the standard local OPE.
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mass dependence. The low-q2 region has a high rate com-
pared to the high-q2 region and so experimental spectra
will become precise for this region first. However, at low q2

an additional cut is required, making measurements less
inclusive. In particular, a hadronic invariant-mass cut is
imposed in order to eliminate the combinatorial back-
ground, which includes the semileptonic decay b!
c�! se���e� �� � b! se�e� �missing energy. The lat-
est analyses from BABAR and Belle impose cuts of mX 

1:8 GeV and mX 
 2:0 GeV respectively [6–8], which in
the B-meson rest frame correspond to q0 * 2:3 GeV and
put the decay rate in the so-called shape-function region
[24]. This cut dependence has so far been analyzed only in
the Fermi-motion model [25].

Existing calculations for B! Xs‘�‘� are based on a
local operator product expansion in �QCD=mb. When
m2
X & mb�� �2 GeV�2, this operator product expansion

breaks down, and, instead of depending on nonperturbative
parameters ��1; �2; . . .� that are matrix elements of local
operators, the decay rates depend on nonperturbative func-
tions. Furthermore, in this region the standard perturbative
�s corrections to the partonic process b! s‘�‘� do not
apply, since some of these corrections become nonpertur-
bative. Thus, even at leading order there does not exist in
the literature a model-independent computation of the B!
Xs‘

�‘� decay rate that can be compared directly with the
data at low q2.

Here we study B! Xs‘
�‘� (‘ � e, �) in the shape-

function region for the first time. The relevant scales are
m2
W � m2

b � mb�QCD � �2
QCD. In this paper we derive

the proper theoretical expression for the leading-order
triply differential decay rate, which incorporates nonper-
turbative effects that appear at this order and a correct
treatment of the perturbative corrections at each of the
scales. Using the soft-collinear effective theory (SCET)
[26–29] we prove that the nonperturbative dynamics gov-
erning the measurable low-q2 spectra in B! Xs‘

�‘� is
determined by the same universal shape function as in
endpoint B! Xu‘ �� and B! Xs� decays. We also prove
that the decay rate can be split into a product of scale-
invariant terms, capturing physics at scales above and
below mb. We show that this procedure, which we call
‘‘split matching’’, can be used to deal with a tension
between the perturbative corrections that come from these
two regions. Implications for relating the B! Xs‘�‘�

measurements with the mX cut to the Wilson coefficients
are presented in a companion publication [30].

In the shape-function region, the set of outgoing had-
ronic states becomes jetlike and the relevant degrees of
freedom are collinear and ultrasoft modes. This is why the
appropriate theoretical method is SCET. The endpoint
region has been the focus of much work in the context of
B! Xs� and B! Xu‘ �� (see e.g. Refs. [24,29,31–43]). In
B! Xu‘ �� this is because of the cuts used to eliminate the
dominant b! c background. In B! Xs�, it is known that
014005
cuts with q0 * 2:1 GeV put us in the shape-function
region.1

In the small-q2 region of B! Xs‘�‘� with q0 �
2:3 GeV, shape-function effects also dominate rather
than the expansion in local operators. To see this, we
note that the mX cut causes 2mBEX � m2

B �m
2
X � q

2 �
m2
X. Decomposing 2EX � p�X � p

�
X withm2

X � p�X p
�
X , we

see that the Xs is jetlike with p�X � p�X , and the restricted
sum over states in the Xs causes the nonperturbative shape
functions to become important. For the experimental cuts
on q2 and mX, values for pX are shown in Fig. 1. It should
be clear from this figure that the measurable spectrum is
dominated by decays for which p�X � p�X .

To compute B! Xs‘
�‘� in the shape-function region

with renormalization-group evolution requires the follow-
ing steps:
(i) m
-2
atching the standard model at � ’ mW on to HW ,

(ii) r
unning HW to � ’ mb,
(iii) m
atching at � ’ mb on to operators in SCET,����������p

(iv) r
unning in SCET to � ’ mb�,

(v) c
omputation of the imaginary part of forward-

scattering time-ordered products in SCET at � ’����������
mb�

p
. This leads to a separation of scales in a

factorization theorem, which at LO takes the form2

 d3��0� � H
Z
dkJ �0��k�f�0��k�;

with perturbative H and J �0�, and the LO non-
perturbative shape function f�0�,
(vi) e
volution of the shape function f�0� from �QCD up
to � ’

������������������
mb�QCD

q
.
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For the shape-function decay rate, steps (i–ii) are the same
as the local OPE results for B! Xs‘

�‘�. Furthermore,
based on the structure of leading-order SCEToperators that
we find for B! Xs‘�‘�, we demonstrate that results for
other inclusive endpoint analyses can be used in steps (iv)
and (vi) [26,27,34].3 Because of this our computations
focussed on steps (iii) and (v). In step (iii) we show how
to implement the split-matching procedure to formulate the
perturbative corrections, which we elaborate on below. In
step (v) we derive a factorization theorem for B!
3In step (iv) we can run the hard functions down using results
from Refs. [26,27]. In step (vi) we can run the shape function up
to the intermediate scale using the simple result from Ref. [34].
An equally valid option would be to evolve the perturbative parts
of the rate down to a scale � ’ 1 GeV, as considered earlier
[26,33,42,45].

014005
Xs‘
�‘�. This includes computing the hard coefficient

functions H at NLL order and formulating the structure
of these terms to all orders in �s. It also includes a
derivation of formulas for the decay rate and forward-
backward asymmetry that properly take into account the
effect of the current experimental cuts and the perturbative
and nonperturbative corrections.

At leading order in the power expansion the result of
steps (i)-(vi) takes the schematic form
 

d3��0� � E��W�UW��W;�0�B��0�UH��0; �i�J ��i�US��i;���f
�0�����;

�W ’ mW; �0 ’ mb; �i ’ �mb��1=2; �� ’ 1 GeV;
(1)
where E, B and J represent matching at various scales,
and UW , UH and US represent the running between these
scales. Equation (1) shows only the scale dependence
explicitly, not the kinematic dependences or the convolu-
tions between J , US, and f�0�, which we describe later on.

In a standard application of renormalization-group im-
proved perturbation theory (LL, NLL, NNLL, etc.), the
results at each stage of matching and running are tied
together, as depicted in Eq. (1). Usually this would not
be a problem, but for B! Xs‘

�‘� the nature of the
perturbative expansion above and below � ’ mb is differ-
ent. Above � ’ mb the series of ��s ln�k terms are of the
traditional form, with a basis of �10 operators (including
four-quark operators), whose mixing is crucial. Below� ’
mb we demonstrate that the evolution is universal (to all
orders in �s) for the leading-order operators, but there are
Sudakov double logarithms of the ratios of scales, which
give a more complicated series. It turns out to be conve-
nient to decouple these two stages of resummation so that
one can consider working to different orders in the �s
expansion above and below � � mb. There is a simple
reason why this decoupling is important: for � � mb the
power counting and running are for currents in the electro-
weak Hamiltonian and dictate treating C9 � 1=�s with
C7 � 1 and C10 � 1. However, at � � mb the coefficients
C9 andC10 are numerically comparable. For� 
 mb in the
shape-function region we must organize the power count-
ing and running for time-ordered products of currents in
SCET rather than amplitudes, and it would be vexing to
have to include terms / C2

9 to O��2
s� before including the

C2
10 and C2

7 terms at order O��0
s�. Thus, once we are below

the scale mb, a counting with C9 � C10 � C7 � 1 is more
appropriate.
To decouple these two regions for B! Xs‘�‘� decays
we make use of two facts: (i) for � � mb the operator O10

involves a conserved current and has no operators mixing
into it, so it does not have an anomalous dimension, and
(ii) for � 
 mb all LO biquark operators in the soft-
collinear effective theory have the same anomalous dimen-
sion [27]. We shall show that the operators for B!
Xs‘�‘� are related to these biquark operators. These prop-
erties ensure that we can separate the perturbative treat-
ments in these two regions at any order in perturbation
theory. This is done by introducing two matching scales,
�0 ’ mb and �b ’ mb. The two aforementioned facts
allow us to write

 UW��W;�0�B��0�UH��0; �i�

� UW��W;�0�B��0; �b�UH��b;�i�

� UW��W;�0�B1��0�B2��b�UH��b;�i�; (2)

with well-defined B1 and B2. We define B2��b� by using
the matching for the operator O10 and extend this to findB2

matching coefficients for the other operators using prop-
erty (ii) above. The remaining contributions match on to
B1. Diagrams which are related to the anomalous dimen-
sion for � � mb end up being matched at the scale �0 on
to B1, while those related to anomalous dimensions for
� 
 mb are matched at a different scale,�b, on to B2. This
leaves

 

d3��0� � �E��W�UW��W;�0�B1��0�	�B2��b�UH��b;�i�

� J ��i�US��i;���f�0�����	; (3)

which is the product of two pieces that are separately
�-independent. We refer to this procedure as ‘‘split match-
ing’’ because formally we match diagrams at two scales
rather than at a single scale. The two matching �’s are
-3
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‘‘split’’ because they are parametrically similar in the
power-counting sense.

We organize the remainder of our paper as follows. We
begin by using split matching to determine the hard match-
ing functions, B � B1B2, for B! Xs‘�‘� in SCET; this
is one of the main points of our paper. It is discussed in
Sec. II A at leading power and one-loop order (including
both bottom-, charm-, and light-quark loops and other
virtual corrections). The extension to higher orders is
also illustrated. Steps (i) and (ii) are summarized in
Sec. II A, together with Appendix A. In Sec. II B we
discuss the running for step (iv) and give a brief derivation
of why the anomalous dimension is independent of the
Dirac structure to all orders in �s. In Sec. II C, we discuss
the basic ingredients for the triply differential decay rate
and the forward-backward asymmetry in terms of hadronic
tensors. A second main point of our paper is the SCET
matrix-element computation for B! Xs‘

�‘�, step (v),
which is performed in Sec. II D. In Sec. II E we review
the running for the shape function, step (vi). In Sec. III
we present our final results for the differential decay
rates at leading order in the power expansion, including
all the ingredients from Sec. II and incorporating the
relevant experimental cuts. The triply differential spec-
trum and doubly differential spectra are derived in
subsections III A, III B, III C, and III D. Readers interested
only in our final results may skip directly to Sec. III. We
compare numerical results for matching coefficients at mb
with terms in the local OPE in Sec. III E. In Appendix B we
briefly comment on how our analysis will change if we
assume a parametrically small dilepton invariant mass,
q2 � �2, rather than the scaling q2 � �0 used in the body
of the paper. (For the case q2 � �2, the rate for B!
Xs‘

�‘� would not be determined by a factorization theo-
rem with the same structure as for B! Xu‘ ��.)
II. ANALYSIS IN THE SHAPE-FUNCTION REGION

A. Matching on to SCET

We begin by reviewing the form of the electroweak
Hamiltonian obtained after evolution down to the scale
� ’ mb, and then perform the leading-order matching of
this Hamiltonian on to operators in SCET. For the treat-
ment of �5 we use the NDR scheme throughout. Below the
scale � � mW , the effective Hamiltonian for b! s‘�‘�

takes the form [9]
 H W � �
4GF���

2
p VtbV

�
ts

X10

i�1

Ci���Oi���; (4)
where we have used unitarity of the CKM matrix to remove
VcbV�cs dependence and have neglected the tiny VubV�us
terms. The operators Oi��� are
014005
 

O1 � � �sL���bL��� �cL��
�cL��;

O2 � � �sL���bL��� �cL���cL��;

O3 � � �sL���bL��
X

q�u;d;s;c;b

� �qL��
�qL��;

O4 � � �sL���bL��
X

q�u;d;s;c;b

� �qL���qL��;

O5 � � �sL���bL��
X

q�u;d;s;c;b

� �qR���qR��;

O6 � � �sL���bL��
X

q�u;d;s;c;b

� �qR��
�qR��;

O7 �
e

16�2 �s���F
��� �mbPR � �msPL�b;

O8 �
g

16�2
�s�Ta������ �mbPR � �msPL�b�Ga��;

O9 �
e2

16�2
�sL���bL� �‘��‘;

O10 �
e2

16�2
�sL���bL� �‘���5‘;

(5)
where PR;L � �1 �5�=2. In the following, we shall ne-
glect the mass of the strange quark in O7;8. For our analy-
sis, ms is not needed as a regulator for IR divergences,
which are explicitly cut off by nonperturbative scales
��QCD. In the shape-function region, the ms dependence
is small and was computed in Ref. [46]. Nonperturbative
sensitivity to ms shows up only at subleading power, while
computable O�m2

s=mb�QCD� jet-function corrections are
numerically smaller than the �QCD=mb power corrections.

At NLL order, one requires the NLL Wilson coefficient
of O9 and the LL coefficients of the other operators. For
O7;9;10 these are given by [10,11]
 

CNDR
7 ��� � r�16=23

0 C7�MW��
8

3
�r�14=23

0 � r�16=23
0 �C8�MW�

�
X8

i�1

tir
�ai
0 ;

CNDR
9 ��� � PNDR

0 ����
Y�m2

t =M2
W�

sin2	W
� 4Z�m2

t =M
2
W�

�PE���E�m
2
t =M

2
W�;

C10��� �C10�MW� ��
Y�m2

t =M2
W�

sin2	W
;

(6)
where C7�mW�, C8�mW� and the Inami-Lim functions Y, Z,
and E are obtained from matching at � � mW , and are
given in Appendix A. The �-dependent factors include
[10,11]
-4
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PNDR
0 ��� �

�
�s�MW�

�
�0:1875�

X8

i�1

pir
�ai�1
0

�
� 1:2468

�
X8

i�1

r�ai0 �

NDR
i � sir�1

0 �;

PE��� � 0:1405�
X8

i�1

qir
�ai�1
0 ; r0 �

�s���
�s�mW�

: (7)

The numbers ti, ai, 
NDR
i , si, qi that appear here are listed

in Appendix A. Results for the running coefficients of the
four-quark operators, C1–6���, can be found in Ref. [10].
We have modified the standard notation slightly (e.g.
r0���) to conform with additional stages of the RG evolu-
tion discussed in Secs. II B and II E. Contributions beyond
NLL will be mentioned below.

At a scale � � mb, we need to match b! s‘�‘�

matrix elements of HW on to matrix elements of operators
in SCET with a power expansion in the small parameter �,
where �2 � �QCD=mb. For convenience, we refer to the
resulting four-fermion scalar operators in SCET as ‘‘cur-
rents’’ and use the notation J‘‘. In SCET we also need the
effective Lagrangians. The heavy quark in the initial state
is matched on to an HQET field hv, and the light energetic
strange quark is matched on to a collinear field �n. For the
leading-order analysis in �=mb we need only the lowest-
order terms,

 H W � �
GF����

2
p
�
�VtbV�ts�J

�0�
‘‘ ; L � L�0�HQET �L�0�SCET;

(8)

where J�0�‘‘ is the LO operator and the quark contributions to
the HQET and SCET actions are
 

L�0�HQET �
�hviv �Dushv;

L�0�SCET �
��n

�
in �Dc � i 6D

?
c

1

i �n �Dc
i 6D?c

� �6n
2
�n:

(9)

The covariant derivatives Dus and Dc involve ultrasoft and
collinear gluons, respectively, and we have made a field
redefinition on the collinear fields to decouple the ultrasoft
gluons at LO [29]. For convenience, we define the objects
 

H v � Yyhv;  us � Yyqus; Dus � YyDusY

�n � Wy�n; Dc � WyDcW;

igB�
c �

�
1
�P
Wy�i �n �Dc; iD

�
c 	W

�
;

(10)

which contain ultrasoft and collinear Wilson lines,

 Y�x� � P exp
�
ig
Z 0

�1
dsn � Aus�x� ns�

�
(11)

and
014005
 W�x� � P exp
�
ig
Z 0

�1
ds �n � An�x� s �n�

�
; (12)

as well as the label operator �P [28].
To simplify the analysis we treat bothmc andmb as hard

scales and integrate out both charm and bottom loops at
� ’ mb. At leading order in SCET, the currents that we
match on to are
 

J�0�‘‘ �
X

i�a;b;c

C9i�s�� ��n;p��v��i H v�� �‘��‘�

�
X

i�a;b;c

C10i�s�� ��n;p��v��i H v�� �‘���5‘�

�
X

j�a;...;d

C7j�s�2mB� ��n;p��t��j H v�� �‘��‘�; (13)

where the sum is over Dirac structures to be discussed
below. The simple structure of these LO SCET operators
is quite important to our analysis: for example, by power
counting there are no four-quark operators that need to be
included in SCET at this order. In Eq. (13) two auxiliary
four-vectors appear, v� and n�. The B momentum, total
momentum of the leptons, and jet momentum (sum of the
four-momenta of all the hadrons in Xs) are

 p�B � mBv�; q� � p�‘� � p
�
‘� ;

p�X � n � pX
�n�

2
� �n � pX

n�

2
;

(14)

respectively. Here v2 � 1 and n� and �n� are lightlike
vectors, which satisfy n2 � �n2 � 0 and n � �n � 2. The
components of a vector can then be written as
�p�; p�; p?� � �n � p; �n � p; p�?�. We use a frame in which
q�? � v�? � 0 and v� � �n� � �n��=2. Since pX �
mBv� q we have
 

p2
X � m2

X � �n � pXn � pX

� m2
B � q

2 �mB�n � q� �n � q�;

q2 � �n � qn � q;

�n � pX � mB � �n � q;

n � pX � mB � n � q:

(15)

For later convenience we define the hadronic dimension-
less variables
 

xH �
2E‘�

mB
; �yH �

�n � pX
mB

;

uH �
n � pX
mB

; yH �
q2

m2
B

:
(16)

In SCET the total partonic �n � p momentum of the jet is
a hard momentum �mb and also appears in the SCET
Wilson coefficients. At LO, �n � p � �m2

b � q
2�=mb and

demanding that �n � p is large means only that q2 cannot
be too close to m2

b. For example, neither q2 � 0 nor
-5
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q2 � m2
b=2 modifies the power counting for �n � p. Thus,

there is no requirement to impose a scaling that q2 be
small. For convenience, in the hard coefficients we write

 C� �n � p;mb;�0; �b� ! C�s;mb;�0; �b�; s �
q2

m2
b

;

(17)

since the partonic variable s is a more natural choice in
b! s‘�‘� and is equivalent at LO. For purposes of power
counting in this paper we count s� �0. We shall see in
Sec. III E that varying s causes a very mild change in the
coefficients. In Appendix B we briefly explore a different
scenario, in which s� �2. A distinction between two
matching scales �0 and �b is made in C in order to
separate the decay rate into two �-independent pieces, as
displayed in Eq. (3). For power-counting purposes, �0 �
�b �mb and formally �0 � �b. For numerical work one
can take �0 � �b.

In Eq. (13) we begin with a complete set of Dirac
structures for the vector and tensor currents in SCET,
namely

 ��v�a�c � PR

�
��; v�;

n�

n � v

�
;

��t�a�d � PR
q
q2

�
i��; ���v	;

���n	

n � v
;
n��v	

n � v

�
:

(18)

These come with Wilson coefficients C9a;b;c and C7a;b;c;d

respectively. This basis is over-complete for B! Xs‘�‘�,
but considering a redundant basis makes it easy to incor-
porate pre-existing perturbative calculations for the cur-
rents into our computations. Only the coefficients C7a;9a

appear at tree level, but for heavy-to-light currents it is
known that the other structures become relevant once
perturbative corrections are included. For simplicity of
notation, we treat the 1=q2 photon propagator in ��t�j as
part of the effective-theory operator.4

To further reduce the basis in Eq. (18) we can use
(i) current conservation, q� �‘��‘ � 0, (ii) q� �‘���5‘ �
0 for massless leptons, (iii) a reduction of the tensor ��t�

Dirac structures into vector structures, since they are all
contracted with q. Constraint (ii) allows us to eliminate
C10c. Taken together, constraints (i) and (iii) allow us to
reduce the seven terms C9i and C7i to two independent
coefficients. For our new basis of operators we take
4If we instead demand that the momentum q2 be collinear in
the �n direction, with s� �2, then the SCET operator with a
photon field strength should be kept, and will then be contracted
with an operator with collinear leptons within SCET. In this case
there will also be additional four-quark operators needed in the
basis in Eq. (19).
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J�0�‘‘ � C9� ��n;pPR�
�H v�� �‘��‘�

� C7
2mBq
q2 � ��n;pPRi�

�H v�� �‘��‘�

� C10a� ��n;pPR�
�H v�� �‘���5‘�

� C10b� ��n;pPRv
�H v�� �‘���5‘�; (19)

and find that
 

C9 � C9a �
C9b

2
�

mB

n � q
C7b

�
2mB�C7c � C7d� � n � qC9c

n � q� �n � q
;

C7 � C7a �
C7b

2
�

�n � q
4mB

C9b �
1

n � q� �n � q

�

�
�q2

2mB
C9c � n � qC7c � �n � qC7d

�
;

C10a � C10a;

C10b � C10b �
2n � q

n � q� �n � q
C10c:

(20)

Our Dirac structures for the C9 and C7 terms in Eq. (19)
were deliberately chosen, in order to make results for the
decay rates appear as much as possible like those in the
local OPE. The fact that the basis of SCET operators for
B! Xs‘

�‘� involves only bilinear hadronic currents at
LO means that in the leading-order factorization theorem
we find the exact same nonperturbative shape function as
for B! Xs� and B! Xu‘ ��. This is immediately evident
from the operator-based proof of factorization in Ref. [29],
for example. While the coefficients C9i, C7i, C10i in
Eq. (13) are functions only of s � �n � q�� �n � q�=m2

b, the
reduction of the basis of operators brings in additional
kinematic dependence on �n � q and n � q for the Ci’s (which
is also the case in analyzing exclusive dilepton decays
[47]). At tree level we have O9;10 contributing to C9a and
C10a, and a contribution from O7 with the photon produc-
ing an ‘�‘� pair, which give

 C 9 � CNDR
9 ��0�; C7 �

�mb��0�

mB
CNDR

7 ��0�;

C10a � C10; C10b � 0:

(21)

Beyond tree level there will be C7 dependence in C9, and
C9 dependence in C7. Equation (21) indicates that with our
choice of basis the same short-distance dependence domi-
nates in SCET: C9 � C9, etc. We explore this further in
Sec. III E. In Eq. (21) there is no distinction as to whether
this matching is done at� � �0 or� � �b. The effective-
theory operator in Eq. (19) was defined with a factor of mB
pulled out so that the �-dependent factors �mbCNDR

7 are
contained in the coefficients C7.

At one-loop order, the full-theory diagrams needed for
the matching are shown in Fig. 2 (plus wave-function
-6
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renormalization, which is not shown). At this order the
four-quark operators O1–6 contribute through Fig. 2(a).
The one-loop graphs in SCET with the operators in
Eq. (19) are shown in Fig. 3 (plus wave-function renor-
malization, which is not shown). There are no graphs with
four-quark operators within SCET since we treat q2 � �0,
so Fig. 2(a) matches directly on to C9.

As discussed in the introduction, we perform a split-
matching procedure from the full theory above mb on to
SCET below mb, making use of two matching scales �0

and �b. Contributions from this stage of matching there-
fore take the form

 B ��0; �b� � B1��0�B2��b�: (22)

Since O10 has no anomalous dimension abovemb and there
is a common universal anomalous dimension for all the
operators in J�0�‘‘ belowmb, there is a well-defined prescrip-
tion for carrying this out. We take all contributions that
cause perturbative corrections to C10a and C10b to be at the
scale �b, so for this operator B1��0� � C10, and at one-
loop order B2��b� includes �s��b�ln

2��b�, �s��b� ln��b�,
and �s��b� terms from matching the vertex diagram
Fig. 2(b) and wave-function diagrams on to SCET. The
analogous contributions from vertex diagrams for C9 and
C7 are also matched at� � �b to determine their B2��b�’s
(for C7 the full-theory tensor current has a ln� that is
matched at � � �0). The universality of the anomalous
dimensions in SCET guarantees that this procedure re-
mains well-defined at any order in perturbation theory
and can be organized into the product structure displayed
in Eq. (22). For C9 and C7 there are additional non-vertex-
like contributions that are matched on to B1��0� at a scale
014005
�0 � �b. These include contributions from four-quark
operators O1–6 in the full theory, which will match on to
C9 and C7 in SCET.

The difference between the full-theory diagram in
Fig. 2(b) and the SCET graphs in Fig. 3(b) and 3(c) is IR
finite (where we must use the same IR regulator in both
theories, as is always the case for matching computations).
In the UV the full-theory graph in Fig. 2(b) plus wave-
function renormalization is �-independent since the cur-
rent is conserved. The graphs in SCET induce a � depen-
dence and an anomalous dimension for the effective-theory
currents. These terms are matched at � � �b. We start
with the basis in Eq. (13) and find
 

C10a��0; �b� � C10

�
1�

�s��b�

�
!V
a �s; �b�

�
;

C10b;10c��0; �b� � C10
�s��b�

�
!V
b;c�s�;

(23)

with a constant �0-independent C10. The perturbative co-
efficients were computed in Ref. [27], and setting �n �
p=mb � �1� s� we find
 

!V
a �s; �b� � �

1

3

�
2ln2�1� s� � 2Li2�s�

� ln�1� s�
�
1� 3s
s

�
�
�2

12
� 6� 2ln2

�
�b

mb

�

� 5 ln
�
�b

mb

�
� 4 ln�1� s� ln

�
�b

mb

��
;

!V
b �s� �

1

3

�
2

s
�

2�1� s�

s2 ln�1� s�
�
;

!V
c �s� �

1

3

�
�2s� 1��1� s�

s2 ln�1� s� �
�1� s�
s

�
:

(24)

For the matching on to C9a;b;c in the basis in Eq. (13) we
have the same perturbative coefficients !a;b;c as for
C10a;b;c, because only the leptonic current differs:
 

C9a��0; �b� � Cmix
9 ��0�

�
1�

�s��b�

�
!V
a �s; �b�

�
;

C9b;9c��0; �b� � Cmix
9 ��0�

�
�s��b�

�
!V
b;c�s�

�
:

(25)

However, for C9i there are additional contributions,
Cmix

9 ��0�, from the matching at � � �0, which at one-
loop order and O��0

s� includes Fig. 2(a):
 

Cmix
9 ��0� � CNDR

9 ��0� �
2

9
�3C3 � C4 � 3C5 � C6� �

1

2
h�1; s��4C3 � 4C4 � 3C5 � C6�

� h
�
mc

mb
; s
�
�3C1 � C2 � 3C3 � C4 � 3C5 � C6� �

1

2
h�0; s��C3 � 3C4� �

�s��0�

�
Cmix�1�

9 ��0�; (26)
-7
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where all running coefficients on the RHS are Ci �
Ci��0�. We shall discuss the relation of Cmix

9 to ~Ceff
9 in

the local OPE analysis [10,11] after Eq. (33). In Eq. (26)
the functions h�1; s�, h�z; s�, and h�0; s� for the b-quark,
c-quark, and light-quark penguin loops are [9,11]
 

h�z; s� �
8

9
ln
�
�0

mb

�
�

8

9
lnz�

8

27
�

4

9
� �

2

9
�2� ��

���������������
j1� �j

q

�

�
	�1� ��

�
�i�� ln

1�
������������
1� �
p

1�
������������
1� �
p

�

�	�� � 1�2arctan
1������������
� � 1
p

�
;

h�0; s� �
8

27
�

8

9
ln
�
�0

mb

�
�

4

9
lns�

4

9
i�; (27)

with � � 4z2=s. Higher-order O��s� corrections in
Eq. (26) are denoted by the Cmix�1�

9 term. An important
class of these corrections from mixing can be determined
from the NNLL analysis in Refs. [13,14,16]:
 

Cmix�1�
9 ��0� � CNDR

8 �8!9�s; �0� � C1�1!9�s; �0; m̂c�

� C2�2!9�s;�0; m̂c�: (28)

To determine these terms one must be careful to separate
out the factors in square brackets in Eq. (25). However we
shall not attempt to include all NNLL terms consistently
here. Contributions to Cmix�1�

9 from the penguin coefficients
C3–6 are unknown but expected to be small (at the �1%
level).

Lastly, we turn to the results for C7i. From the vertex
graphs we have
 

C7a��0; �b� � Cmix
7 ��0�

�
1�

�s��b�

�
!T
a �s;�b�

�
;

C7b;7c;7d��0; �b� � Cmix
7 ��0�

�s��b�

�
!T
b;c;d�s�:

(29)

The!T
i perturbative corrections are again determined from
014005
the SCET matching in Ref. [27], which (switching to s)
gives
 

!T
a �s; �b� � �

1

3

�
2ln2�1� s� � 2Li2�s�

� ln�1� s�
�
2� 4s
s

�
�
�2

12
� 6� 2ln2

�
�b

mb

�

� 5 ln
�
�b

mb

�
� 4 ln�1� s� ln

�
�b

mb

��
;

!T
b �s� � !T

d �s� � 0;

!T
c �s� �

1

3

�
�2�1� s� ln�1� s�

s

�
: (30)

Additional contributions from other diagrams are matched
at the scale �0 into Cmix

7 ��0�. Note that, unlike the vector
currents, the tensor current for O7 gets renormalized
for �>mb, and we must include the corresponding
ln��0=mb� in Cmix

7 ��0�, i.e.
 

Cmix
7 ��0� �

�mb��0�

mB

�
CNDR

7 ��0�

�
1�

2�s��0�

3�
ln
�
�0

mb

��

�
�s��0�

�
Cmix�1�

7 ��0�

�
; (31)

where, much like in the case of Cmix
9 , we have

 Cmix�1�
7 ��0� � CNDR

8 �8
a�s; �0� � C1�

1
a�s;�0; m̂c�

� C2�2
a�s;�0; m̂c�; (32)

and the results for �8!7�s;�0�, �1!7�s;�0; m̂c�, and
�2!7�s;�0; m̂c� can be found in Ref. [48]. Contributions
to Cmix�1�

7 from the penguin coefficients C3–6 can be found
in Ref. [49].

Using Eq. (20), �n � qn � q=m2
B � yH, and n � q=mB �

1� uH, we can use the above results to give the final
coefficients for our basis of operators with the minimal
number of Dirac structures, namely
 

C9 � Cmix
9 ��0�

�
1�

�s��b�

�

�
!V
a �s; �b� �

1

2
!V
b �s� �

�1� uH�
2!V

c �s�

�1� uH�2 � yH

��

� Cmix
7 ��0�

�s��b�

�

�
2�1� uH��!

T
c �s� �!

T
d �s�	

�1� uH�
2 � yH

�
!T
b �s�

�1� uH�

�
;

C7 � Cmix
7 ��0�

�
1�

�s��b�

�

�
!T
a �s; �b� �

1

2
!T
b �s� �

yH!
T
d �s� � �1� uH�

2!T
c �s�

�1� uH�2 � yH

��

� Cmix
9 ��0�

�s��b�

�

�
yH!

V
b �s�

4�1� uH�
�
yH�1� uH�!V

c �s�

2��1� uH�
2 � yH	

�
;

C10a � C10

�
1�

�s��b�

�
!V
a �s;�b�

�
;

C10b � C10
�s��b�

�

�
!V
b �s� �

2�1� uH�
2

�1� uH�
2 � yH

!V
c �s�

�
;

(33)
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where the terms have the structure of a sum over products
B1��0�B2��b�, as desired.

In using the results in Eq. (33) one can choose to work to
different orders in the �0- and �b-dependent terms, as
shown in Eq. (3). For the �0 dependence, Cmix

9 ��0� and
Cmix

7 ��0� include terms from matching at mW and running
to mb, as well as matching contributions at mb that cancel
the �0 dependence from the other pieces. Thus, these
coefficients have only a small residual �0 dependence,
which is canceled at higher orders, just as in the local
OPE. The Ci coefficients depend on �b, both through
�s��b� and through explicit �b dependence in !T

a and
!V
a . The ln�b dependence in !V

a and !T
a is identical, as

expected from the known independence of the anomalous
dimension on the Dirac structure in SCET. The �b depen-
dence in Ci��b;�0� is universal, and will cancel against the
universal �b dependence in the jet and shape functions,
which they multiply in the decay rates. We consider the
phenomenological organization of the perturbative series
for �0 and �b terms in turn.

First consider the�0 terms. Because of mixing, the sizes
of contributions to CNDR

9 are comparable at LL and NLL
orders [10,11], so a reasonable first approximation is to
take the NLL result ( just as for the local OPE decay rate).
This entails dropping the O��s� matching corrections
Cmix�1�

9 and Cmix�1�
7 , and running C9 at NLL order with C7

at LL order. As an improved approximation, we would then
adopt the operationally well-defined NNLL approach [13]
of running both C9 and C7 to NLL order and keeping the
O��s� matching corrections at mb.5

Below mb there are Sudakov logarithms. For the �b
dependence, the RG evolution in SCET sums these
double-logarithmic series. As a first approximation we
could take the LL and NLL running in UH��b;�i� and
US��i;��� in Eq. (3), while using tree-level matching for
B2��b� and J ��i�. This is consistent because the NLL
running is equivalent to LL running in a single-log resum-
mation. As a second approximation we could then take
NNLL running in both terms and include one-loop match-
ing for both B2��b� and J ��i�. However since the scales
m2
b � mb�� 1 GeV2 are not as well separated asm2

W �
m2
b, we could instead consider the second approximation to

include the one-loop matching for B2��b� and J ��i� with
NLL running, but without including the full NNLL running
(for which parts remain unknown).

Our procedure for split matching above was based on the
nonrenormalization of O10 in QCD. It can also be thought
of as matching in two steps. First one matches at �0 on to
the scale-invariant operators
5We assume that matching at the high scale, mW , is always
done at the order appropriate to the running of UW��W;�0� in
Eq. (3).
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J�0� � Cmix
9 � �sPR�

�b�� �‘��‘� � C10� �sPR��b�� �‘���5‘�

� Cmix
7

2mBq
q2 ���sPRi��b����mb�	� �‘��‘�; (34)

to determine the coefficients Cmix
7;9 . These coefficients are

�0 independent at the order in perturbation theory to which
the matching is done. Secondly, the operators in Eq. (34)
are matched on to the SCET currents in Eq. (19) at the scale
�b to determine the coefficients C7, C9, C10a;b. In Eq. (34)
the operators for Cmix

9 and C10 are conserved, but the tensor
current has an anomalous dimension, and so we take � �
mb as a reference point for matching on to a scale-invariant
operator. This choice corresponds to the lnmb factor in
Eq. (31) for Cmix

7 . A different choice will affect the division
of �s��0� or �s��b� terms. Note that Eq. (34) should be
thought of only as an auxiliary step to facilitate the split
matching; there is no sense in which the running of the
tensor current is relevant by itself. In general the split-
matching procedure could be carried out in a manner that
gives different constant terms at a given order, but any such
ambiguity will cancel order by order in C7 and C9 (and
explicitly if �0 � �b).

Finally, note that our !a differs from the result for !OPE

identified in Ref. [11] for the partonic semileptonic decay
rate when using the local OPE,
 

!OPE
semi � �

1

3

�
2 ln�s� ln�1� s� � 4Li2�s�

� ln�1� s�
�
5� 4s
1� 2s

�
�

2s�1� s��1� 2s�

�1� s�2�1� 2s�
ln�s�

�
�5� 9s� 6s2�

2�1� s��1� 2s�
�

2�2

3

�
: (35)

Here !OPE
semi contains both vertex and bremsstrahlung con-

tributions evaluated in the full theory. Grouping these
contributions with the Wilson coefficient for O9 gives

 Clocal
9 ��� � Cmix

9 ��� � P
NDR
0 ���

�s���
�

!OPE
semi; (36)

which is ~Ceff
9 in the notation in Ref. [10]. At LO, the

restricted phase space in the shape-function region causes
bremsstrahlung to contribute only to the jet and shape
functions, and not at the scale � ’ mb. The shape function
and jet function also modify the contributions from the
vertex graphs. Thus, instead of !OPE

semi the final results in the
shape-function region are given by our !V

i and !T
i factors

appearing in C9i and C7i. Consequently, the main differ-
ence is in the terms we match at � � �b, while the terms
matched at � � �0 that appear in Cmix

9 and Cmix
7 are

identical to terms appearing in the local OPE analysis.

B. RG evolution between �b and �i
The running of the Wilson coefficients in SCET from the

scale �2
b �m

2
b to �2

i �mb�QCD involves double Sudakov
-9
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logarithms and was derived in Refs. [26,27] at NLL order.
The SCET running is independent of the Dirac structure of
the currents, which is a reflection of the spin symmetry
structure of the current. We briefly outline a short argument
for why this is true to all orders in perturbation theory. The
leading-order currents in SCET have the structure

 J � � ��nW�p��Yyhv�; (37)

and we wish to see that their anomalous dimension is
independent of �. The anomalous dimensions are com-
puted from the UV structure of SCET loop diagrams, with
the Lagrangians in Eq. (9). Soft gluon loops involve con-
tractions between the Wilson line Yy and the hv and do not
change the Dirac structure. Next consider the collinear
014005
loops. The attachment of a gluon from the Wilson line W
to the collinear quark gives a factor of a projection matrix,
which can be pushed through �?’s to give ��n �6nn6 =4 � ��n.
Thus it does not modify the Dirac structure, so only
insertions from the i 6D?c 1=�i �n �Dc�i 6D?c term are of con-
cern. These terms give structures of the form
�u�u�n �

�1

? �
�2

? � � ��
�2k
? �u�b�v , where all �i indices are con-

tracted with each other. Using f��?; �
�
?g � 2g��? and

��?�
?
� � d� 2 we can reduce this product to terms with

zero �?’s since all vector indices are contracted. Hence all
diagrams reduce to having the Dirac structure that was
present at tree level, �u�u�n �u�b�v .

Thus, all the LO coefficients obey the same homoge-
neous anomalous dimension equation,
 

�
d
d�

Ci��� �
�
��cusp��s� ln

�
�
�P

�
� ~���s�

�
Ci���

�

�
��cusp��s� ln

�
�
�b

�
�

�
~���s� � �cusp��s� ln

�
�n � p
�b

���
Ci���: (38)

This must be integrated together with the beta function � � �d=d��s��� to solve for UH in

 C i��i� �
������������������������
UH��i;�b�

q
Ci��b�: (39)

In the second line of Eq. (38) we used the fact that �P gives the total partonic �n � p momentum of the jet Xs in the B!
Xs‘

�‘� matrix element, and we introduced artificial dependence on the matching scale �b in order to make the �n � p
dependence appear in a small logarithm. Here �n � p � mb � �n � q. We write

 �cusp �
X1
n�0

�cusp
n

�
�s
4�

�
n�1

; ~� �
X1
n�0

~�n

�
�s
4�

�
n�1

; � � �2�s
X1
n�0

�n

�
�s
4�

�
n�1

: (40)

At NLL order we need �0 � 11CA=3� 2nf=3, �1 � 34C2
A=3� 10CAnf=3� 2CFnf and

 �cusp
0 � 4CF; �cusp

1 � 8CFB � 8CF

�
CA

�
67

18
�
�2

6

�
�

5

9
nf

�
; ~�0 � �5CF; (41)
where CA � 3 and CF � 4=3 for SU(3). For the number of
active flavors we take nf � 4 since we are running below
mb. The cusp anomalous dimension �cusp

1 was computed in
Ref. [50], and the result for �cusp

2 was recently found in
Ref. [51]. RG evolution in SCET at NNLL order has been
considered in Refs. [44,52]. For the NNLL result one needs
�cusp

2 , ~�1, and �2. For ~�1 an independent calculation does
not exist, but a conjecture for its value was given in
Ref. [44] based on the structure of the three-loop splitting
function [51]. For the sake of clarity we stick to NLL order
here. The result is

 UH��i;�b� � exp
�

2g0�r1�

�s��b�
� 2g1�r1; �n � p�

�
; (42)

where the independent variable is �i and
 r1��i� �
�s��i�

�s��b�
�

2�
2�� �0�s��b� ln��i=�b�

; (43)

with
 

g0�r1� � �
4�CF
�2

0

�
1

r1
� 1� lnr1

�
;

g1�r1; �n � p� � �
CF�1

�3
0

�
1� r1 � r1 lnr1 �

1

2
ln2r1

�

�
CF
�0

�
5

2
� 2 ln

�
�n � p
�b

��
lnr1

�
2CFB

�2
0

�r1 � 1� lnr1	: (44)

This is the form for the universal running of the LO SCET
currents found in Ref. [27]. Switching to �s��i� as the
independent variable, with r1 � �s��i�=�s��b�, gives
-10
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UH��i;�b� �

�
�n �p
�b

�
��4CF=�0� lnr1

exp
�

2g0�r1�

�s��b�
� 2~g1�r1�

�
;

(45)

where g0�r1� is as in Eq. (44) and

 

~g1�r1� �
CF�1

2�3
0

ln2r1 �
5CF
2�0

lnr1

�
CF
�3

0

�2B�0 � �1��1� r1 � lnr1�: (46)

This form of the evolution with �s��� as the variable was
used in Ref. [34], and is also the one we adopt here. The
decay rate is computed from a time-ordered product of
currents and so at the intermediate scale �2

i �mb� will
involve products
014005
 C i��i;�0�Cj��i;�0� � UH��i;�b�Ci��b;�0�Cj��b;�0�;

(47)

explaining why we used a notation with
�������
UH
p

in Eq. (39).

C. Hadronic tensor and decay rates

In the last two sections we constructed the required basis
of SCET current operators with matching at �2

0 ��
2
b �

m2
b and evolution to �2

i �mb�. At the scale �i we take
time-ordered products of the SCET currents and compute
the decay rates using the optical theorem. In this section we
discuss the tensor decomposition of the time-ordered prod-
ucts and results for differential decay rates.

In order to simplify the computation of decay rates it is
useful to write the sum of hadronic operators as a sum of
left-handed and right-handed terms since for massless
leptons we have only LL or RR contributions [20]. Doing
this for our current, we have
 

J �0�‘‘ � �C9 � C10a	� ��n��PLH v�� �‘�
�PL‘� � �C9 � C10a	� ��n��PLH v�� �‘�

�PR‘� � C10b� ��nv�PRH v�� �‘�
��5‘�

� C7
2mBq



q2 � ��ni��H v���l��l�

� �JL�L
�
L � JR�L

�
R �; (48)

where

 L�L � �‘��PL‘; L�R � �‘��PR‘; J�L�R� � ��nPR

�
�C9 � C10a��

� � C7
2mB��q6

q2 � C10bv
�
�
H v � ��n��L�R�H v:

(49)
Thus, the inclusive decay rate for �B! Xs‘�‘� is proportional to �WL

��L
��
L �W

R
��L

��
R �, where the leptonic parts L��L�R�

and hadronic parts W��
L�R� are given by

 L��L�R� �
X
spin

��lL�R��p����lL�R��p��	��lL�R��p����lL�R��p��	 � 2�p��p
�
� � p��p�� � g

��p� � p� � i�����p��p��	; (50)

and

 WL�R�
�� �

1

2mB

X
X

�2��3�4�pB � q� pX�h �BjJL�R�y� jXihXjJL�R�� j �Bi

� �g��W
L�R�
1 � v�v�W

L�R�
2 � i�����v�q�W

L�R�
3 � q�q�W

L�R�
4 � �v�q� � v�q��W

L�R�
5 : (51)

Here, we use relativistic normalization for the j �Bi states. For convenience, we define projection tensors P��i so that

 WL�R�
i � P��i WL�R�

�� : (52)

They are

 P��1 � �
1

2
g�� �

q2v�v� � q�q� � v � q�v�q� � v�q��

2�q2 � �v � q�2	
; P��2 �

3q2P��1 � q
2g�� � q�q�

�q2 � �v � q�2	
;

P��3 �
�i�����q�v�

2�q2 � �v � q�2	
; P��4 �

g�� � v�v� � 3P��1

�q2 � �v � q�2	
; P��5 �

g�� � 4P��1 � P
��
2 � q

2P��4

2v � q
:

(53)

The optical theorem relates WL�R�
�� to the forward-scattering amplitude defined as
-11
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 TL�� �
�i

2mB

Z
d4xe�iq�xh �BjTJLy� �x�JL� �0�j �Bi � �g��TL1 � v�v�T

L
2 � i�����v

�q�TL3 � q�q�T
L
4 � �v�q� � v�q��T

L
5 ;

(54)
with an analogous definition for TR��, giving

 WL
i � �

1

�
ImTLi ; WR

i � �
1

�
ImTRi : (55)

Contracting the lepton tensor L��L�R� with W��
L�R� and ne-

glecting the mass of the leptons give the differential decay
rate

 

d3�

dq2dE�dE�
� �0

96

m5
B

�q2W1 � �2E�E� � q2=2�W2

� q2�E� � E��W3		�4E�E� � q
2�;

(56)

where E � v � p, W1 � WL
1 �W

R
1 , W2 � WL

2 �W
R
2 ,

W3 � WL
3 �W

R
3 and the normalization factor is

 �0 �
G2
Fm

5
B

192�3

�2

16�2 jVtbV
�
tsj

2: (57)
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The Wi are functions of q2 and v � q � v � �p� � p��.
Another quantity of interest is the forward-backward
asymmetry in the variable

 cos	 �
v � p� � v � p����������������������������
�v � q�2 � q2

p ; (58)

where 	 is the angle between the B and ‘� in the CM frame
of the ‘�‘� pair:
 

d2AFB

dv�qdq2 �
Z 1

�1
d�cos	�

sign�cos	�
�0

d3�

dv�qdq2d cos	

�
48q2

m5
B

��v�q�2 � q2	W3: (59)

In terms of the dimensionless variables

 xH �
2E‘�

mB
; �yH �

�n � pX
mB

; uH �
n � pX
mB

; (60)

the triply differential decay rate is
 

1

�0

d3�

dxHd �yHduH
� 24mB� �yH � uH�

�
�1� uH��1� �yH�W1 �

1

2
�1� xH � uH��xH � �yH � 1�W2

�
mB

2
�1� uH��1� �yH��2xH � uH � �yH � 2�W3

�
; (61)
where Wi � Wi�uH; �yH�. For a strict SCET expansion we
want n � pX � �n � pX i.e. uH � �yH. However, it is useful
to keep the full dependence on the phase-space prefactors
rather than expanding them, because it is then simpler to
make contact with the total rate in the local OPE, as
emphasized recently in Refs. [53,54], and so we keep these
factors here. We shall also keep the formally subleading
kinematic prefactors in our hard functions rather than
expanding them as we did in Ref. [38]. Other variables
of interest include the dilepton and hadronic invariant
masses,

 yH �
q2

m2
B

; sH �
m2
X

m2
B

; (62)

where

 sH � uH �yH; yH � �1� uH��1� �yH�; (63)

so that [ �yH � uH]

 f �yH; uHg �
1

2
�1� yH � sH 

����������������������������������������������
�1� yH � sH�

2 � 4sH
q

	:

(64)

A few interesting doubly differential spectra are
 

1

�0

d2�

d �yHduH
� 24mB� �yH�uH�

2

�
�1�uH��1� �yH�W1

�
1

12
� �yH�uH�

2W2

�
;

1

�0

d2�

dyHdsH
� 2mB

���������������������������������������������
�1� yH� sH�

2� 4sH
q

�f12yHW1���1� yH� sH�2� 4sH	W2g;

1

�0

d2�

dyHduH
�

2mB

�1� uH�3
��1� uH�2� yH	2

�

�
12yHW1�

�
�1�uH�2� yH
�1� uH�

�
2
W2

�
;

1

�0

d2�

dsHduH
�

2mB�sH�u
2
H�

2

u5
H

f12uH�1� uH��uH� sH�W1

��sH�u
2
H�

2W2g: (65)
For doubly differential forward-backward asymmetries we
find
-12
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FIG. 4 (color online). Time-ordered product for the leading-
order factorization theorem.
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d2AFB

d �yHduH
� 6m2

B� �yH � uH�
3�1� uH��1� �yH�W3;

d2AFB

dyHdsH
� 6m2

ByH��1� yH � sH�
2 � 4sH	W3;

d2AFB

dyHduH
� 6m2

B
yH��1� uH�2 � yH	3

�1� uH�4
W3;

d2AFB

dsHduH
� 6m2

B
�sH � u2

H�
3�uH � sH��1� uH�

u5
H

W3:

(66)

SHAPE-FUNCTION EFFECTS AND SPLIT MATCHING . . .
D. LO matrix elements in SCET

At lowest order in the �=mb expansion, the only time-
ordered product consists of two lowest-order currents J �0�‘‘
as shown in Fig. 4. The factorization of hard contributions
into the SCET Wilson coefficients and the decoupling of
soft and collinear gluons at lowest order are identical to the
steps for B! Xs� and B! Xu‘ ��, and directly give the
factorization theorem for these time-ordered products [29].
The SCET result agrees with the factorization theorem of
Korchemsky and Sterman [31]. However, the structure of
�s�

����������
mb�

p
� and �s�mb� corrections differs from the parton-

model rate, as mentioned in Refs. [33,34]. Beyond lowest
order in �s�mb� the kinematic dependences also differ, as
mentioned in Ref. [38]. For B! Xu‘ ��, the final triply
differential rate with perturbative corrections at O��s�
can be found in Refs. [33,34].

The factorization and use of the optical theorem is
carried out at the scale � � �i, and we expand Wi �

W�0�i �W
�2�
i � . . . in powers of � � ��QCD=mb�

1=2 (with
no linear term). For B! Xs‘

�‘� we have bilinear had-
ronic current operators in SCET in Eq. (19) and so, as is the
case for B! Xu‘ ��, we find
 

W�0�i � hi�p�X ; p
�
X ;�i�

Z p�X

0
dk�J �0��p�; k�; �i�

� f�0��k� � ��� p�X ;�i�: (67)

This result is important, since it states that the same shape
function f�0� appears in B! Xs‘�‘� as appears in B!
Xs� and B! Xu‘ ��. This formula relies on the power
counting s� yH � �0 that we adopted (and would not be
true for the counting s� �2 discussed in Appendix B). At
tree level the structure of this factorization theorem is
illustrated by Fig. 4. The hard coefficients here are
014005
 

h1�p�X ; p
�
X ;�i� �

1

4
Tr�Pv ��L�n6 �L�	P

��
1

�
1

4
Tr�Pv ��R�n6 �R� 	P

��
1 ;

h2�p�X ; p
�
X ;�i� �

1

4
Tr�Pv ��L�n6 �L�	P

��
2

�
1

4
Tr�Pv ��R�n6 �R� 	P

��
2 ;

h3�p�X ; p
�
X ;�i� �

1

4
Tr�Pv ��L�n6 �L�	P

��
3

�
1

4
Tr�Pv ��R�n6 �R� 	P

��
3 ;

(68)

with Pv � �1� v6 �=2 and �� � �0�y�0. In Eq. (67) we
have the same leading-order shape function as in B!
Xs� and B! Xu‘ ��, namely

 

f�0��‘�; �i� �
1

2

Z dx�

4�
e�ix

�‘�=2h �Bvj
�H v�~x�H v�0�j �Bvi

�
1

2
h �Bvj �hv��‘

� � in �D�hvj �Bvi; (69)

where ~x� � �n � xn�=2. This function was first discussed in
Ref. [24]. The jet function is defined by J �0��p�; k�� �

��1=�� ImJ �0�!�p��k
�� � 	�p�X � k

��, where

 i
�

0

								T
�

��n;!�0�
�6n

4Nc
�n;!0 �x�

�								0



� ��!�!0��2�x?���x��
Z dk�

2�
e�ik

�x�=2J �0�! �k��;

(70)

and is known at one-loop order [33,34], namely
 

J �0��p�; zp�X ;�i� �
1

p�X

�
��z�

�
1�

�s��i�CF
4�

�
2ln2 p

�p�X
�2
i

� 3 ln
p�p�X
�2
i

� 7� �2

��

�
�s��i�CF

4�

��
4 lnz
z

�
�
�

�
4 ln

p�p�X
�2
i

� 3
�

1

�z��

�
	�z�

�
	�1� z�; (71)
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where z � k�=p�X . Despite appearances, only the combi-
nation zp�X appears in J �0� apart from the 	�1� z�. This
last 	 function is induced by the soft function and, when
one takes the imaginary part of the full time-ordered
product, affects the complex structure. Therefore, we in-
clude it in our definition of J �0��p�; k��.

E. RG evolution between �� and �i
The function f�0� cannot be computed in perturbation

theory and must therefore be extracted from data. This
same function appears at LO in the B! Xs�, B! Xu‘ ��
and B! Xs‘�‘� decay rates. In practice, a model for f�0�

is written down with a few parameters, which are fitted to
the data. The support of f�0�� ��� r�� is �1 to �� since
r� 2 �0;1�. It is often convenient to switch variables to
f̂�0��r�� � f�0�� ��� r�� which has support from 0 to 1,
although we shall keep using f�0� here. A typical three-
parameter model is [36,53]

 f�0�� ��� r�; ��� � f̂�0��r�; ���

�
ab�r��b�1

��b�Lb
exp

�
�ar�

L

�
	�r��; (72)

where a, b are dimensionless and L��QCD. These pa-
rameters can be fitted to the B! Xs� photon spectrum and
the function f�0� can then be used elsewhere. The most
natural scale to fix this model at is � � �� � 1 GeV, at
which it contains no large logarithms. The result of evolv-
ing the shape function to the intermediate scale is then [34]

 f�0�� ��� r�; �i� � eVS��i;���
1

����

�
Z r�

0
dr�0

f�0�� ��� r�0; ���

��
��r

� � r�0�1��
: (73)

(The structure of this result also applies at higher orders in
RG-improved perturbation theory [44], and at one-loop
order a similar structure was considered earlier, in
Ref. [55].) At NLL order

 

VS��i;��� �
�cusp

0

2�2
0

�
�4�
�s����

�r2 � 1� lnr2� �
�1

2�0
ln2r2

�

�
�cusp

1

�cusp
0

�
�1

�0

��
1�

1

r2
� lnr2

��

�
�cusp

0

�0
�E lnr2 �

�0

�0
lnr2;

� �
�cusp

0

�0
lnr2:

(74)
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Here, r2 � �s����=�s��i�, �cusp
0 and �cusp

1 are the same as
in Sec. II B and �0 � �2CF. For numerical integration this
can be rewritten in the form

 f�0�� ��� r�; �i� � eVS��i;���
1

��1� ��

�
r�

��

�
�

�
Z 1

0
dtf�0�� ��� r��1� t1=��; ���:

(75)
III. B! Xs‘
�‘� SPECTRA IN THE SHAPE-

FUNCTION REGION

A. Triply differential spectrum

At lowest order in the power expansion, Eqs. (53) and
(67) give the result

 

W�0�i � hi�p�X ; p
�
X ;mb;�i�

Z p�X

0
dk�J �0��p�; k�; �i�

� f�0��k� � ��� p�X ;�i�; (76)

where RG evolution from the hard scale to the intermediate
scale gives

 hi�p�X ; p
�
X ;�i� � UH��i;�b�hi�p�X ; p

�
X ;�b�; (77)

and the results at� � �b are determined from the traces in
Eq. (68):

 h1�p
�
X ; p

�
X ;�b� �

1

2
�jC9j

2 � jC10aj
2� �

2 Re�C7C
�
9	

�1� �yH�

�
2jC7j

2

�1� �yH�
2 ;

h2�p
�
X ; p

�
X ;�b� �

2�1� uH�
� �yH � uH�

�jC9j
2 � jC10aj

2

� Re�C10aC
�
10b	� �

jC10bj
2

2

�
8jC7j

2

�1� �yH�� �yH � uH�
;

h3�p�X ; p
�
X ;�b� �

�4 Re�C10aC
�
7	

mB�1� �yH�� �yH � uH�

�
2 Re�C10aC

�
9	

mB� �yH � uH�
:

(78)

Here Ci � Ci�p�X ; p
�
X ;�b;�0; mb�, so these hard coeffi-

cients also depend on mb and have residual �0 scale
dependence. Explicit formulas are given in Eq. (33). For
convenience we define
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 F�0��p�X ; p
�
X � � UH��i;�b�

Z p�X

0
dk�J �0��p�; k�; �i�f�0��k� � ��� p�X ;�i�

� p�XUH��i;�b�
Z 1

0
dzJ �0��p�; zp�X ;�i�f

�0�� ��� p�X �1� z�; �i�: (79)

where p�X � p� � ��. In terms of this function,

 W�0�i � hi�p
�
X ; p

�
X ;�b�F

�0��p�X ; p
�
X �: (80)

We find that to NLL order
 

F�0��p�X ; p
�
X � � UH��i;�b�f

�0�� ��� p�X ;�i� �UH��i;�b�
�s��i�CF

4�

��
2ln2 p

�p�X
�2
i

� 3 ln
p�p�X
�2
i

� 7� �2

�

� f�0�� ��� p�X ;�i� �
Z 1

0

dz
z

�
4 ln

zp�p�X
�2
i

� 3
�
�f�0�� ��� p�X �1� z�; �i� � f�0�� ��� p�X ;�i�	

�
: (81)

Note that, until we include the �s corrections from the jet function, F�0� is independent of p�X , so that all of this dependence
is in the hi�p�X ; p

�
X ;�b� functions.

Now, the triply differential decay rate in Eq. (61) becomes

 

1

�0

d3�

dxHd �yHduH
� 24mB� �yH � uH�

�
�1� uH��1� �yH�h1 �

1

2
�1� xH � uH��xH � �yH � 1�h2

�
mB

2
�1� uH��1� �yH��2xH � uH � �yH � 2�h3

�
F�0��mBuH;mB �yH�; (82)
with h1;2;3 from Eq. (78). As a check on this result, one can
make the substitutions

 C 9a � �C10a � 1=2; C7 � C10b � 0;

GF����
2
p
�
VtbV�ts !

4GF���
2
p Vub;

(83)

after which the h1 and h2 terms in Eq. (82) agree with terms
in the leading-order shape-function spectrum for B!
Xu‘ �� [33,56]. The h3 term for B! Xs‘‘ was the differ-
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ence of products of left- and right-handed currents and so
should not agree in this limit.

B. d2�=dq2dm2
X spectrum with q2 and mX cuts

Next we discuss doubly differential rates and forward-
backward asymmetries. For d2�=dq2dm2

X the rate is ob-
tained from Eq. (82) by integrating over xH and changing
variables. In terms of dimensionless variables yH � q2=m2

B
and sH � m2

X=m
2
B we have
 

1

�0

d2�

dyHdsH
� Hys�yH; sH�mBF�0��mBuH�yH; sH�; mB �yH�yH; sH��;

1

�0

d2AFB

dyHdsH
� Kys�yH; sH�mBF�0��mBuH�yH; sH�; mB �yH�yH; sH��;

(84)

where

 Hys�yH; sH� � 2
����������������������������������������������
�1� yH � sH�2 � 4sH

q
f12yHh1 � ��1� yH � sH�2 � 4sH	h2g;

Kys�yH; sH� � 6yH��1� yH � sH�2 � 4sH	h3

(85)

and we need to substitute h1;2;3 from Eq. (78) and uH�yH; sH� and �yH�yH; sH�, as given in Eq. (64). When one takes
experimental cuts on q2 and m2

X,

 ymin
H < yH < ymax

H ; 0< sH < s0
H; (86)

the limits on the doubly differential rate and forward-backward asymmetry in Eq. (84) are
 

1� ymin
H 
 yH 
 ymax

H ; 0 
 sH 
 minfs0
H; �1�

������
yH
p
�2g;

2� 0 
 sH 
 s0
H; ymin

H 
 yH 
 minfymax
H ; �1�

������
sH
p
�2g; (87)
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depending on the desired order of integration.

C. d2�=dm2
Xdp

�
X spectrum with q2 and mX cuts

The hadronic invariant-mass spectrum and forward-backward asymmetry can be obtained by integrating the doubly
differential spectra

 

1

�0

d2�

dsHduH
� Hs�sH; uH�mBF

�0�

�
mBuH;mB

sH
uH

�
;

1

�0

d2AFB

dsHduH
� Ks�sH; uH�mBF

�0�

�
mBuH;mB

sH
uH

�
(88)

over uH. Here
 

Hs�sH; uH� �
4�sH � u2

H�
2

�uH � sH�u
4
H

�
�1� uH��uH � sH��3uH � 2sH � u

2
H��jC9j

2 � jC10aj
2� � 4uH�3uH � sH � 2u2

H�jC7j
2

� 12uH�1� uH��uH � sH�Re�C7C
�
9	 � �1� uH��uH � sH��sH � u

2
H�Re�C10aC

�
10b	

�
�uH � sH��sH � u2

H�
2

4uH
jC10bj

2

�
;

Ks�sH; uH� �
�12�sH � u2

H�
2�uH � sH��1� uH�

u4
H

�
Re�C9C

�
10a	 �

2uH
uH � sH

Re�C7C
�
10a	

�
;

(89)

and the limits with q2 and mX cuts are

 0 
 sH 
 s0
H; maxfsH; u1�sH�g 
 uH 
 minf

������
sH
p

; u2�sH�g;

u1�sH� �
1� sH � ymin

H �
�������������������������������������������������
�1� sH � ymin

H �
2 � 4sH

q
2

; u2�sH� �
1� sH � y

max
H �

��������������������������������������������������
�1� sH � y

max
H �

2 � 4sH
q

2
:

(90)

D. d2�=dq2dp�X spectrum with q2 and mX cuts

From Eqs. (65) and the above results, we can obtain the dilepton invariant-mass spectrum and forward-backward
asymmetry, for example, by integrating the doubly differential spectra

 

1

�0

d2�

dyHduH
� Hy�yH; uH�mBF

�0�

�
mBuH;mB

1� yH � uH
1� uH

�
;

1

�0

d2AFB

dyHduH
� Ky�yH; uH�mBF�0�

�
mBuH;mB

1� yH � uH
1� uH

� (91)

over uH. Here

 

Hy�yH; uH� �
4��1� uH�2 � yH	2

yH�1� uH�3

�
yH��1� uH�

2 � 2yH	�jC9j
2 � jC10aj

2� � �8�1� uH�
2 � 4yH	jC7j

2

� 12yH�1� uH�Re�C7C
�
9	 � yH��1� uH�

2 � yH	Re�C10aC
�
10b	 �

yH��1� uH�2 � yH	2

4�1� uH�
2 jC10bj

2

�
;

Ky�yH; uH� �
�12yH��1� uH�

2 � yH	
2

�1� uH�
3

�
Re�C9C

�
10a	 �

2�1� uH�
yH

Re�C7C
�
10a	

�
;

(92)

and the limits of integration with cuts are

 ymin
H < yH < ymax

H ; 0 
 uH 
 min
�
1�

������
yH
p

;
1� s0

H � yH �
����������������������������������������������
�1� s0

H � yH�
2 � 4s0

H

q
2

�
: (93)
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The opposite order of integration is also useful:

 

0 
 uH 
 1; y1�uH�< yH < y2�uH�;

y1�uH� � max
�
ymin
H ;
�1� uH��uH � s0

H�

uH

�
; y2�uH� � minfymax

H ; �1� uH�
2g:

(94)

The doubly differential rate can also be expressed in terms of the coefficients Cmix
9 , Cmix

7 , and C10. This is one step closer
to the short-distance coefficients C9, C7, and C10 of HW , which we wish to measure in order to test the standard model
predictions for the corresponding FCNC interactions. Substituting Eq. (33) into Eq. (92) gives

 

Hy�yH; uH� �
4��1� uH�2 � yH	2

�1� uH�3

�
jCmix

7 �s;�0�j
2

�
4�2

C�s; �b� �
8�1� uH�2

yH
�2
D�s;�b�

�

� �jCmix
9 �s;�0�j

2 � C2
10	�2yH�2

A�s; �b� � �1� uH�2�2
B�yH; uH; s; �b�	

� Re�Cmix
7 �s; �0�Cmix

9 �s; �0�
�	�12�1� uH��E�s;�b�	

�

Ky�yH; uH� �
�12yH��1� uH�2 � yH	2

�1� uH�
3

�
Re�Cmix

9 �s;�0�C
�
10	�

2
A�s;�b� �

2�1� uH�
yH

Re�Cmix
7 �s; �0�C

�
10	

��A�s;�b��D�s;�b�

�
;

(95)

where s � q2=m2
b and

 �A � 1�
�s��b�

�
!V
a �s;�b�; �B � 1�

�s��b�

�

�
!V
a �s; �b� �!V

c �s; �b� �
�1� uH�

2 � yH
2�1� uH�2

!V
b �s; �b�

�
;

�C � 1�
�s��b�

�
�!T

a �s;�b� �!T
b �s;�b� �!T

d �s;�b�	;

�D � 1�
�s��b�

�

�
!T
a �s; �b� �!T

c �s;�b� �
�1� uH�

2 � yH
2�1� uH�2

!T
b �s;�b�

�
; �E � �2�A�D ��B�C�=3:

(96)
This is the form that turned out to be the most useful for the
analysis in Ref. [30].

E. Numerical analysis of Wilson coefficients

As shown in Fig. 1, for the small-q2 window (q2 <
6 GeV2) we have p�X � p�X . Generically, the hard contri-
butions in C9, C7, and C10a;10b from our split-matching
procedure depend on the variable q2. In Fig. 5 we plot
the q2 dependence of the real part of the coefficients and
see that there is in fact very little numerical change over the
low-
q2 window. Here Re�Clocal

9 	 varies by 1:5%, Re�Cmix
9 	 by

1%, and the real parts of fC9; C7; C10a; C10bg by
f1%;5%;2%;3%g. The imaginary parts are either
very small or also change by only a few percent over the
low-q2 window. The analytic formulas for the q2 depen-
dence mean that there is no problem keeping the exact
dependence, but this does make it necessary to perform
integrals over regions in q2 numerically. A reasonable first
approximation can actually be obtained by fixing a con-
stant q2 in the hard coefficients, while keeping the full q2

dependence elsewhere.
014005
Since the coefficients change very little with q2 we
continue our numerical analysis by fixing q2 � 3 GeV2.
If we then take �0 � �b � mb � 4:8 GeV, �mb��0� �
4:17 GeV, mc=mb � 0:292 and p�X � 0 we find that
Eq. (33) gives

 

C9 � 0:826Cmix
9 � 0:097Cmix

7

� 3:448
Cmix

9

CNDR
9

� 0:030
Cmix

7

CNDR
7

;

C7 � 0:823Cmix
7 � 0:001Cmix

9

� �0:239
Cmix

7

CNDR
7

� 0:005
Cmix

9

CNDR
9

:

(97)
These numbers indicate that, despite the entanglement of
Cmix

7;9 in C7;9 due to �s�mb� corrections, numerically C9 is
dominated by C9 and C7 is dominated by C7 in the standard
model.

For the coefficients at q2 � 3:0 GeV2, with the other
parameters as above, we have
-17
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FIG. 5 (color online). Comparison of the real part of Wilson
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Cmix
9 � 4:487� 0:046i;

Cmix
7 � �0:248;

C9�uH � 0� � 3:683� 0:038i;

C7�uH � 0� � �0:198� 6� 10�5i;

C9�uH � 0:2� � 3:663� 0:038i

C7�uH � 0:2� � �0:193� 10�4i;

C10a � �3:809;

C10b�uH � 0� � 0:214;

C10b�uH � 0:2� � 0:237:

(98)

The relevant range of p�X in Fig. 1 gives 0 
 uH 
 0:2.
From the above numbers it is easy to see that the uH
dependence of C9, C7, and C10b is very mild over the range
of interest. The perturbative �s corrections due to !V;T

i
reduce both C9 and C7 by 17% relative to Cmix

9 and Cmix
7

respectively, and C10a by 15%. This can be seen both in
Fig. 5 and in Eq. (98), when one notes that C10 � �4:480.
Comparing with coefficients in the local OPE, we note that
the !OPE

semi factor, which accounts for the difference between
Clocal

9 and Cmix
9 , is significantly smaller than the combina-

tion of �s corrections in the!V
i terms that shifts C9 from its

lowest-order value.
In quoting the above numbers, we have not varied the

scales �0 and �b. The main point was to compare the size
of the hard corrections in the shape-function and local OPE
regions, and to see how much deviation from Cmix

7;9 they
cause. The dependence on �0 for the Ci is similar to that in
the local OPE analysis at NLL [10,11] and will be reduced
by a similar amount when the full NNLL expressions are
included in Cmix

7;9 . The �b dependence of the Ci is fairly
strong because of the appearance of double logarithms, but
014005
it is canceled by the �b dependence in the function F�0�,
which contains the NLL jet and shape functions.
IV. CONCLUSION

In this paper we have performed a model-independent
analysis of B! Xs‘

�‘� decays with cuts giving the
small-q2 window and an mX cut to remove b! c back-
grounds. These cuts put us in the shape-function region.
We analyzed the rate for the formal counting with q2 � �0

and m2
X � �

2 and showed that the same universal shape
function as in B! Xu‘ �� and B! Xs� is the only non-
perturbative input needed for these decays. We also devel-
oped a new effective-theory technique of split matching.
Split matching between two effective theories is done not
at a single scale�, but rather at two nearby scales. ForB!
Xs‘�‘� this allowed us to decouple the perturbation-
theory analysis above and below mb, which simplifies the
organization of the �s contributions.

In Sec. III we presented the leading-power triply differ-
ential spectrum and doubly differential forward-backward
asymmetry with renormalization-group evolution and
matching to O��s�. Above the scale mb, we restricted
our analysis to include the standard NLL terms from the
local OPE, but illustrated how terms from NNLL can be
incorporated. Below mb we considered running to NLL
and matching at one-loop (NNLL evolution will be
straightforward to incorporate if desired). We then com-
puted several phenomenologically relevant doubly differ-
ential spectra with phase-space cuts on q2 and mX (from
which the singly differential spectra can be obtained by
numerical integration). In Sec. III E we discussed the nu-
merical size of our perturbative hard coefficients and com-
pared them to the local OPE results.

Our results for the doubly differential rate in Eqs. (91)
and (92), together with F�0� from Eq. (81), determine the
shape-function-dependent rate for B! Xs‘

�‘�. Using as
input a result for the nonperturbative shape function f�0�

from a fit to the B! Xs� spectrum or from B! Xu‘ ��
gives a model-independent result for B! Xs‘

�‘� with
phase-space cuts. A full investigation of the mX-cut depen-
dence and phenomenology is carried out in a companion
publication [30]. An intriguing universality of the cut
dependence is found, which makes the experimental ex-
traction of short-distance Wilson coefficients in the pres-
ence of cuts much simpler. An extension of the analysis of
this paper to include subleading shape-function effects will
be presented in the near future [57].
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APPENDIX A: WILSON COEFFICIENTS

The coefficients and functions that appear in Eq. (6) are defined as follows [10].

 C7�MW� � �
1

2
A�m2

t =M2
W�; C8�MW� � �

1

2
F�m2

t =M2
W�; Y�x� � C�x� � B�x�; Z�x� � C�x� �

1

4
D�x�;

A�x� �
x�8x2 � 5x� 7�

12�x� 1�3
�
x2�2� 3x�

2�x� 1�4
lnx; B�x� �

x
4�1� x�

�
x

4�x� 1�2
lnx;

C�x� �
x�x� 6�

8�x� 1�
�
x�3x� 2�

8�x� 1�2
lnx; D�x� �

�19x3 � 25x2

36�x� 1�3
�
x2�5x2 � 2x� 6�

18�x� 1�4
lnx�

4

9
lnx;

E�x� �
x�18� 11x� x2�

12�1� x�3
�
x2�15� 16x� 4x2�

6�1� x�4
lnx�

2

3
lnx; F�x� �

x�x2 � 5x� 2�

4�x� 1�3
�

3x2

2�x� 1�4
lnx;

and
 

ti �
�
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3

7
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1
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�
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ai �
�
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;
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;
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;�
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; 0:4086;�0:4230;�0:8994; 0:1456

�
;

pi �
�

0; 0;�
80

203
;

8

33
; 0:0433; 0:1384; 0:1648;�0:0073

�
;


NDR
i � �0; 0; 0:8966;�0:1960;�0:2011; 0:1328;�0:0292;�0:1858�;

si � �0; 0;�0:2009;�0:3579; 0:0490;�0:3616;�0:3554; 0:0072�;
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FIG. 6. Additional graphs in SCET for the matching compu-
tation for the case where q2 � �2.
APPENDIX B: THE CASE OF COLLINEAR q2

In the body of the paper we used q2 � �0. We were free
to choose this counting since the power counting for the
leptonic variable q2 does not affect the counting for pX in
the shape-function region. (The only restriction was not to
have q2 too close to m2

b.) However, we are free to consider
other choices. In this appendix we consider how our analy-
sis will change if we instead take q2 � �2. With this
scaling, new physical degrees of freedom are needed at
leading order in SCET, making the analysis more compli-
cated. In particular we must consider graphs with quark
fields that are collinear to the collinear photon (or dilepton
pair), since with this power counting we have �q0�2 � q2.

An example of a new nonzero graph is the one generated
by four-quark operators within SCET, as shown in Fig. 6,
which involve these additional degrees of freedom. In this
graph we have a light-quark loop of collinear- �n fields that
are collinear to the virtual photon. The presence of this type
of diagram changes the hard matching at �b � mb. It also
means that we have a more complicated pattern of operator
mixing within SCET, since divergences in the displayed
diagram will cause an evolution for C9, etc. Therefore, the
running below mb will no longer be universal. In the
presence of these diagrams the jet function will also no
014005
longer be given by a single bilinear operator, since it will
also involve some contributions with a factorized matrix
element of �n-fields, which are also integrated out at
p2 �mb�QCD. Finally, the appearance of these additional
degrees of freedom might also affect the number of non-
perturbative shape functions that appear in the factoriza-
tion theorem. It would be interesting to carry out a detailed
analysis of this q2 � �2 case in the future.

In B! Xs� at lowest order, the analog of the graph in
Fig. 6 vanishes at one-loop order, and this argument can be
extended to include higher orders in �s [44]. This relies on
the fact that here q2 � 0 and does not generate a scale. We
find that the same reasoning does not apply for B! Xs‘‘
for parametrically small but finite q2.
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Finally, we comment on the possibility of penguin
charm-loop effects. In our analysis we integrated out the
charm loops at the same time as the bottom loops. This is
reasonable when treating q2 � �0. One could also consider
the case m2

c �mb�, which is also reasonable numerically.
This type of power counting was considered for the simpler
case of B! Xc‘ �� decays with energetic Xc in Ref. [58]
014005
and it would be interesting to extend this to B! Xs‘‘. We
remark that the problematic region for B! �� factoriza-
tion theorems [59–62], which is near the charm threshold,
q2 � 4m2

c, is not relevant for our analysis. The experimen-
tal cuts on q2 explicitly remove the known large contribu-
tions from this region.
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