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We investigate the dependence of the Drell-Yan cross section on lepton polar and azimuthal angles, as
generated by the lowest-order QCD annihilation and Compton processes. We focus, in particular, on the
azimuthal-angular distributions, which are of the form cos� and cos2�. At small transverse momentum
qT of the lepton pair, qT � Q, withQ the pair mass, these terms are known to be suppressed relative to the
�-independent part of the Drell-Yan cross section by one or two powers of the transverse momentum.
Nonetheless, as we show, like the �-independent part they are subject to large logarithmic corrections,
whose precise form, however, depends on the reference frame chosen. These logarithmic contributions
ultimately require resummation to all orders in the strong coupling. We discuss the potential effects of
resummation on the various angular terms in the cross section and on the Lam-Tung relation.
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I. INTRODUCTION

It is well known that the angular distribution of the
leptons in the Drell-Yan process P1P2 ! ‘ �‘X may possess
azimuthal asymmetries. These correspond to angular-
dependent terms in the ratio of differential cross sections,

 

dN
d�
�

�
d�

d4q

�
�1 d�

d�d4q
; (1)

where q is the four-momentum of the virtual photon (or Z
boson, if the energy is sufficiently high) decaying into the
lepton pair, and d� � d cos�d� is the solid angle of the
lepton ‘ in terms of its polar and azimuthal angles in the
center-of-mass system (c.m.s.) of the lepton pair. As we
shall review below, an analysis of the general Lorentz
structure of the hadronic tensor yields the following angu-
lar structure [1,2]:

 

dN
d�
�

3

8�
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: (2)

Here the ‘‘structure functions’’ WT;L;�;�� depend on the
virtual photon’s invariant mass Q, its transverse momen-
tum QT , and its rapidity y. Within the lepton pair c.m.s.
there is still freedom to choose the axes of the coordinate
system, with respect to which the lepton angles are defined.
The WT;L;�;�� also depend on this choice. Equivalently to
Eq. (2), one also often writes the lepton angular distribu-
tion as
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One obviously has
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:

(4)

A third, again equivalent, parametrization for the lepton
angular distribution [3] that is also often employed is
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Evidently,
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or

 A0 �
2WL

2WT �WL
; A1 �

2W�

2WT �WL
;

A2 �
4W��

2WT �WL
:

(7)

If Q is large, one may calculate the structure functions
using parton model concepts, factorizing them into col-
linear convolutions of the parton distributions of the two
scattering hadrons and partonic hard-scattering cross sec-
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tions that are amenable to QCD perturbation theory. For
nonvanishing transverse momentum QT of the virtual pho-
ton, the lowest-order (LO) partonic processes are q �q!
��g and qg! ��q. The contributions to the angular dis-
tributions by these processes have been calculated in
Refs. [4–8]. Also, the next-to-leading-order (NLO) cor-
rections have been derived [9,10].

Experimentally, for a given lepton pair invariant massQ,
the bulk of the Drell-Yan events is at rather low transverse
momenta of the pair, QT � Q. It is this regime that is also
most interesting from a theoretical point of view.
‘‘Intrinsic’’ transverse momenta of the initial partons may
become relevant. Also, as QT � Q, fixed-order calcula-
tions of the partonic cross sections are bound to fail. When
QT ! 0, gluon radiation is inhibited, so that only relatively
soft gluons may be emitted into the final state. The can-
cellation of infrared singularities between real and virtual
diagrams in the perturbative series then leaves behind large
logarithmic remainders of the form 	kslnm�Q2=Q2

T�=Q
2
T in

the cross section d�=d4q at the kth order of perturbation
theory, where m � 1; . . . ; 2k� 1. Ultimately, when QT �
Q, 	s will not be useful anymore as the expansion parame-
ter in the perturbative series since the logarithms will
compensate for the smallness of 	s. Accordingly, in order
to obtain a reliable estimate for the cross section, one has to
sum up (‘‘resum’’) the large logarithmic contributions to
all orders in 	s. Techniques for this resummation are well
established, starting with pioneering work mostly on the
Drell-Yan process from the late 1970s to mid 1980s [11–
18]. The ‘‘Collins-Soper-Sterman’’ (CSS) formalism [18]
has become the standard method for QT resummation. It is
formulated in impact-parameter (b) space, which guaran-
tees conservation of the transverse momenta of the emitted
soft gluons.

The large terms 	kslnm�Q2=Q2
T�=Q

2
T just described occur

only in the part proportional to WT of the cross section
d�=d�d4q. The functionW� is less singular by one power
of QT at small QT , while WL and W�� are suppressed even
by a factor Q2

T relative to WT . For W� and W�� this can be
understood as follows: at QT � 0 the angle � cannot be
defined, hence no azimuthal asymmetry could be observ-
able, and, therefore, the asymmetries should smoothly go
to zero in the limit of QT ! 0.

If one is just interested in the small-QT behavior of the
cross section d�=d4q, it will be sufficient to take into
account the resummation of the large logarithms in WT .
However, this may become different if one considers the
parameters �, �, � or A0;1;2 defined above, which were the
object of dedicated experimental studies in��N Drell-Yan
experiments about 20 years ago [19–21] (experimental
evidence for nonzero WL was already reported in [22]).
Superficially, one might think that, in order to improve the
theoretical prediction for these coefficients by resumma-
tion, it will be sufficient to perform the resummation inWT

alone. This is, in fact, what has been done in the literature

so far in [23] for Drell-Yan and in [24–26] for the related
‘‘semi-inclusive deeply inelastic scattering’’ (SIDIS) pro-
cess and has led, for example, to the claim in Ref. [23] that
resummation has a strong effect on the perturbative-QCD
results for �, �, and � at small QT . However, even though
WL, W�, and W�� are down by powers of QT as QT ! 0,
they all individually may receive very similar large loga-
rithmic corrections at small QT as WT does. Therefore, it
may well happen that in a ratio such as A2 �
4W��=�2WT �WL� the resummation effects cancel to a
large degree, if not completely. In the present paper, we
will investigate the small-QT behavior of WL, W�, and
W��, and we will also address some qualitative consequen-
ces for the QT resummation for these and for the various
coefficients constructed from them. A complication arises
from the fact that the WL, W�, and W�� depend on the
coordinate frame chosen. In a change of frame, terms
proportional to QT or Q2

T may be redistributed among
WT and the WL;�;�� and, because WT is more singular at
smallQT , may alter the small-QT behavior ofWL;�;��. Our
aim is to exhibit this feature very explicitly by considering
two particular frames commonly used in the literature, in
order to eliminate some misconceptions concerning the
small-QT behavior and the resummation of angular
distributions.

As discussed above, the CSS formalism [18] describes
the behavior of the structure function WT at small QT . It
may be used to predict the QT-singular pieces arising at a
given perturbative order. To LO, these have a particularly
simple structure [17], involving the first-order expansion of
the Sudakov form factor and the LO DGLAP [27] splitting
functions. This structure is straightforwardly recovered
from explicit calculations of the cross sections for the
partonic reactions q �q! ��g and qg! ��q. When we
use these processes to determine the small-QT behavior
of the other structure functions WL, W�, and W��, we find
a closely related, but different, form that involves different
‘‘splitting functions.’’ This is likely due to the fact that the
direction of the observed transverse momentum matters for
these structure functions. It is important to emphasize that
the CSS formalism was not constructed to treat the direc-
tional dependence of the transverse momentum distribu-
tion. Even though we will discuss in this paper some
features of the resummation of the WL;�;��, we have not
been able to organize their small-QT behavior beyond the
leading logarithms into a resummed form in terms of an
‘‘extended’’ CSS formalism that goes beyond collinear
factorization. We therefore hope that the study presented
in this paper will serve as a motivation for a more general
analysis of resummation in cases where the direction of the
observed transverse momentum matters. In this respect the
proper starting point will be to consider the factorizations
and techniques put forward in Refs. [15,16,28].

The article is organized as follows. In Sec. II we express
the azimuthal asymmetries in terms of structure functions
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in two different frames that are commonly used in the
literature. This analysis is exact in QT and does not rely
on the use of perturbative QCD, just on kinematical con-
siderations. In Sec. III we discuss the LO perturbative-
QCD results, and in Sec. IV we investigate their
small-QT limit. In Sec. V we address some aspects of the
resummation of the angular terms in this limit. We present
our conclusions in Sec. VI.

II. AZIMUTHAL DEPENDENCES IN TERMS OF
STRUCTURE FUNCTIONS

In this section we discuss in detail the � dependence of
the differential cross section in terms of the structure
functions WT;L;�;��. This is a purely kinematical analysis,
which will set the notation to be used later on. We follow
(in part) the notation of Refs. [2,29], but use the metric
diag�� ����. In passing, we will point out some differ-
ences with results that appeared in the earlier literature.

We first define invariant structure functions W1;2;3;4

through the following parametrization of the hadronic
tensor:
 

W�� � �

�
g�� �

q�q�

q2

�
W1 � ~P� ~P�W2

�
1

2
� ~P� ~p� � ~p� ~P��W3 � ~p� ~p�W4; (8)

where P � P1 � P2, p � P1 � P2, ~P� � �P� � q� 	
�P 
 q�=Q2�=

���
s
p

, ~p� � �p� � q��p 
 q�=Q2�=
���
s
p

, with
P1;2 the initial hadron momenta and q the momentum of
the virtual photon, Q2 � q2. The hadronic c.m.s. energy is���
s
p
�

�����������������������
�P1 � P2�

2
p

.
As mentioned in the Introduction, we will use two differ-

ent reference frames: the so-called Collins-Soper (CS)
frame [3] and the Gottfried-Jackson (GJ) frame [2] (also
sometimes referred to as the ‘‘t-channel helicity frame’’).
Both frames are rest frames of the virtual photon or,
equivalently, of the lepton pair. However, this property
does not completely specify a frame, as one has a freedom
in the choice of the coordinate axes, corresponding to
rotations among the frames. In both the CS and GJ frames,
a set of orthonormal axes (X, Y, Z, and T) are defined, and
the hadronic tensor is reexpressed as
 

W�����g���T�T���WT�W����2X�X�W��

�Z�Z��WL�WT�W�����X�Z��Z�X��W�:

(9)

In this way one has W�
� � ��2WT �WL�, which is the

quantity that appears in the differential cross section
d�=d4q, the denominator of dN=d� in Eq. (1).
Contracting with the straightforwardly calculated leptonic
tensor, one finds the cross section in terms of the structure
functions:

 

d�

d�d4q
�

	2

2�2��4Q2s2 fWT�1� cos2�� �WL�1� cos2��

�W� sin2� cos��W��sin2� cos2�g; (10)

again valid in both frames. Here 	 is the electromagnetic
coupling constant. From Eq. (10) one immediately repro-
duces Eq. (2). Higher harmonics in cos�n�� do not occur in
the angular distribution due to the fact that the kinematics
of the process are fully determined by only three momen-
tum vectors, P1, P2, and q. In case the polarization of the
leptons is not summed over or in case of electroweak
corrections sin� and sin2� terms will also be present,
but these will not be considered here. We also note that
the structure functions WT;L;�;�� are associated with spe-
cific polarizations of the virtual photon [2]: WT � W1;1,
WL � W0;0, W� � �W

0;1 �W1;0�=
���
2
p

, and W�� � W1;�1,
where the first (second) superscript denotes the photon
helicity in the amplitude (its complex conjugate) of the
Drell-Yan process. The azimuthal dependence introduced
by W� and W�� therefore comes from their single- or
double-spin-flip property, respectively.

In both frames, T� � q�=Q and Y� � 
��	�X�Z	T�.
In the CS frame, the Z axis is defined as pointing in the
direction that bisects the angle between the three-vectors
~P2 and � ~P1; see Fig. 1. This gives

 Z� �
1�������������������

Q2 �Q2
T

q �qp ~P� � qP~p��

�
2

s
�������������������
Q2 �Q2

T

q ��P2 
 q� ~P
�
1 � �P1 
 q� ~P

�
2 �; (11)

where Q2
T � q

2
T is the square of the transverse momentum

qT of the virtual photon with respect to the two hadron
momenta. Furthermore, qP � �P 
 q�=

���
s
p

, qp �
��p 
 q�=

���
s
p

(in the hadronic c.m.s. qP is the energy of
the virtual photon, while qp is its z component). Finally, in
Eq. (11) ~P�i � P�i � q

��P1 
 q�=Q2 (note there is no fac-
tor 1=

���
s
p

in the latter definition, compared to the definitions
of ~P and ~p above). For the X axis one chooses

^

x̂P2P1

φ

θ

lepton plane (cm)

l
z

l’

FIG. 1 (color online). The Collins-Soper frame.
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Q

QT

�������������������
Q2 �Q2

T

q �qP ~P� � qp ~p��

� �
2Q

sQT

�������������������
Q2 �Q2

T

q ��P2 
 q� ~P
�
1 � �P1 
 q� ~P

�
2 �: (12)

In the GJ frame, the Z axis points in the direction of the
three-vector ~P1 (see Fig. 2):

 Z� �
Q

qP � qp
� ~P� � ~p�� �

Q
P1 
 q

~P�1 : (13)

Furthermore,
 

X� � �
1

QT�Q
2 �Q2

T�
��Q2qP �Q2

Tqp� ~P
�

� �Q2qp �Q2
TqP�~p

��

� �
2Q
sQT
��P2 
 Z� ~P

�
1 � �P1 
 Z� ~P

�
2 �: (14)

One finds that the three-vector components of the X and
Z axes of the two frames are related by a rotation:

 

~Z GJ � cos� ~ZCS � sin� ~XCS; (15)

 

~X GJ � � sin� ~ZCS � cos� ~XCS; (16)

where

 cos� �
Q�������������������

Q2 �Q2
T

q ; sin� � �
QT�������������������

Q2 �Q2
T

q : (17)

Thus, in the limit QT ! 0 the two sets of X, Z axes
coincide.

Inserting the above definitions of the coordinate axes
into the hadronic tensor in Eq. (9) and comparing to
Eq. (8), one can derive for each frame the relations between
the sets W1;2;3;4 and WT;L;�;�� of structure functions. For
the CS frame this gives [this is Eq. (B2) of Ref. [2]]

 

WT �W1�W��;

WL�W1�
1

Q2�Q2
T

�q2
pW2�qpqPW3�q

2
PW4�;

W���
QT

Q�Q2�Q2
T�

�
qpqP�W2�W4��

1

2
�q2
P�q

2
p�W3

�
;

W����
Q2
T

2Q2�Q2�Q2
T�
�q2
PW2�qpqPW3�q

2
pW4�; (18)

while for the GJ frame one finds [this is a corrected version
of Eq. (B3) of [2] and also of a corresponding expression in
reference-note 5 of [29]]
 

WT � W1 �W��;

WL � W1 � �	
2W2 � 	�W3 � �

2W4�;

W� �
QT

qP � qp

�
	
�
W2 �

1

2
W3

�
� �

�
W4 �

1

2
W3

��
;

W�� � �
Q2
T

2�qP � qp�
2 �W2 �W3 �W4�; (19)

where

 	 �
qP
Q
�

Q
qP � qp
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qp
Q
�

Q
qP � qp

: (20)

The relation between the structure functions in the CS
frame and the GJ one is given by the following linear
transformation:
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;

(21)

where � � QT=Q. Expressed in terms of the angle �
defined above, the matrix in the above equation is identical
to the one presented in [29] [their Eq. (4)], apart from a
sign in the third entry of the first row.

For future reference, we also give the transformation
between the sets of coefficients �, �, � in the two frames,
which were defined in Eq. (4). From Eq. (21) one finds

 

�

�

�

0
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1
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GJ

�
1

�CS

1� 1
2�

2 �3� 3
4�

2

� 1��2 �1
2�

�2 2� 1� 1
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2
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1
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�
�

0
@
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A
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;

(22)

where

 � � 1� �2 � 1
2�

2�� ��� 1
4�

2�: (23)

^
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z

P2 φ

lepton plane (cm)

θ

l’

l

FIG. 2 (color online). The Gottfried-Jackson frame.

DANIËL BOER AND WERNER VOGELSANG PHYSICAL REVIEW D 74, 014004 (2006)

014004-4



The reverse transformation from the GJ frame to the CS
frame is the same upon replacement of �! �� (and
exchange of the labels CS and GJ). This is in agreement
with Ref. [19] [note that what is referred to as the
‘‘u-channel’’ (UC) frame in that reference corresponds to
the GJ frame used here, which accounts for the �! ��
difference with respect to our Eq. (22)]. One notes that, if
�! 0, the rotation matrix becomes the unit matrix, as
expected. All results presented so far are exact in �.

III. AZIMUTHAL ASYMMETRIES FROM LO
PERTURBATIVE-QCD PROCESSES

The structure functions can be calculated employing
collinear factorization and QCD perturbation theory. One
writes down an expression analogous to (8) or (9) for the
partonic tensor, in terms of partonic structure functions Ŵi.
The hadronic structure functions are obtained as convolu-
tions of the partonic ones with the appropriate parton
distribution functions. The Ŵi may be evaluated directly
from partonic hard-scattering processes, which at LO are
the annihilation (or gluon bremsstrahlung) reaction q �q!
��g and the (QCD) Compton process qg! ��q. The
annihilation process is the dominant process in ��p
Drell-Yan scattering (likewise in the �pp Drell-Yan pro-
cess). The Compton process is dominant in the Drell-Yan
process in pp scattering at large QT .

In the following, we will first focus on the annihilation
process, which for our purposes is most relevant, since the
Compton process is subleading in the region of QT � Q
we are mostly interested in. For the process q �q! ��g one
has
 

Wi

x1x2
�
Z
d1

Z
d2���1 � x1��2 � x2� �Q2

T=s�

	
X
a

e2
aqa�1; �� �qa�2; ��

Ŵi

12
; (24)

where we define x1 and x2 by writing q � x1P
�
1 � x2P

�
2 �

qT , with the light-cone components of any four-vector v
given by v� � �v0 � v3�=

���
2
p

. We have x1 � �qP �
qp�=

���
s
p

, x2 � �qP � qp�=
���
s
p

with qP, qp as introduced in
the previous section [note that in the hadronic c.m.s. one

has qP � �s�Q2�=2
���
s
p

, qp �
�������������������������������
q2
P �Q

2 �Q2
T

q
�

�����������������������������������������
�s�Q2�2=4s�Q2

T

q
]. For the partonic collinear momenta

we define p�1 � 1P
�
1 and p�2 � 2P

�
2 . The delta function

in (24) expresses the on-mass-shell condition for the out-
going ‘‘unobserved’’ gluon in the process q �q! ��g.
Equation (24) contains the appropriate sum over all quark
and antiquark flavors a, each with their corresponding
parton distributions qa�x;�� and q �a�x;�� � �qa�x;��, re-
spectively, where��Q is the factorization scale; e2

a is the
quark’s squared electromagnetic charge. Note that, since
we are only interested in the lepton angular distribution
dN=d�, which is a ratio of cross sections, we are free to
adjust the overall normalization of the tensors, which we
do in such a way as to simplify the formulas. The annihi-
lation process then has the following partonic structure
functions [5,6]:

 

Ŵ1 �
	s
2�

CFs

12Q
2
T

�
Q4

s2 �
2Q2

T

s
12 � 2

1
2
2

�

�
	s
2�

CF
t̂ û
�t̂�Q2�2 � �û�Q2�2�;

Ŵ2 � �
	s
2�

CFQ2

12Q2
T

2
1 � 

2
2� � �

	s
2�

CFsQ2

t̂ û
2

1 � 
2
2�;

Ŵ3 �
CF	s
�

Q2

12Q2
T

2
1 � 

2
2� �

	s
2�

2CFsQ
2

t̂ û
2

1 � 
2
2�;

Ŵ4 � Ŵ2; (25)

where CF � 4=3, and where ŝ � �1P1 � 2P2�
2 �

12s, t̂ � �q� 1P1�
2, and û � �q� 2P2�

2.
Constructing via Eq. (18) the structure functions
WT;L;�;�� and inserting these into Eq. (2), one finds [6–
8] in the CS frame

 

dN
d�
�

3

16�

�Q2 � 3
2Q

2
T

Q2 �Q2
T

�
Q2 � 1

2Q
2
T

Q2 �Q2
T

cos2�CS

�
QTQ

Q2 �Q2
T

K�x1; x2; QT=s� sin2�CS cos�CS

�
1

2

Q2
T

Q2 �Q2
T

sin2�CS cos2�CS

�
; (26)

where the function K�x1; x2; QT=s� is given by

 K�x1; x2; QT=s� �

R
d1

R
d2���1 � x1��2 � x2� �Q2

T=s�
P
a
e2
aqa�1; �� �qa�2; ���x2

1=
2
1 � x

2
2=

2
2�R

d1

R
d2���1 � x1��2 � x2� �Q

2
T=s�

P
a
e2
aqa�1; �� �qa�2; ���x

2
1=

2
1 � x

2
2=

2
2�
: (27)

As one can see, for the annihilation contribution in the CS
frame all effects of the partonic light-cone momentum
fractions and the parton densities cancel in dN=d�, except
for the term involving sin2�CS cos�CS associated with the
ratio W�=�2WT �WL�. As a consequence, the coefficients
� and � defined in Eq. (4) are also free of any dependence

on the parton distributions to this order [6]. One reads off

 �CS �
Q2 � 1

2Q
2
T

Q2 � 3
2Q

2
T

; �CS �
Q2
T

Q2 � 3
2Q

2
T

; (28)

so that
 1� �CS � 2�CS � 0; (29)
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which is the well-known Lam-Tung (LT) relation [2,30]. It
is equivalent to WL � 2W�� and A0 � A2; its origin is the
equality of Ŵ2 and Ŵ4 in Eq. (25).

In the Gottfried-Jackson frame one finds that all terms in
dN=d� depend on the parton densities and do not have
particularly simple expressions. Remarkably, the LT rela-
tion continues to hold in this frame, however. This may be
seen from Eq. (22) which readily shows that the LT relation
indeed holds in the GJ frame if it holds in the CS frame, and
vice versa. In fact, it turns out that the LT relation holds for
any definition of the lepton pair c.m.s. frame to this order.

Next, we consider the qg! ��q subprocess. The con-
tributions to the partonic structure functions for q�1�g�2�
are [5]:

 Ŵ 1 � �
	s
2�

2TR
ŝ t̂
�ŝ�Q2�2 � �t̂�Q2�2�;

Ŵ2 �
	s
2�

2TRsQ2

ŝ t̂
21�1 � 2� � 

2
2�;

Ŵ3 �
	s
2�

4TRsQ2

ŝ t̂
2

2 � 22
1�;

Ŵ4 �
	s
2�

2TRsQ
2

ŝ t̂
21�1 � 2� � 2

2�;

(30)

where TR � 1=2. For the contribution from g�1�q�2� one
has to interchange 1 and 2, t̂ and û, and, in addition,
change the sign of Ŵ3.

From the expressions in (30) one finds that for the
Compton process the ratios �, �, � all depend on the
parton distribution functions. As discussed in Ref. [8],
there is, in fact, no frame in which any of the azimuthal
distributions for this process become independent of the
parton densities (only for very large QT does this become
approximately the case in the CS frame). Even if there
were a frame in which this happened, the result would have
no practical relevance, since one would always need to add
the contribution by the annihilation process in the numera-
tor and the denominator of the azimuthal ratios, which
would spoil the cancellation of the parton distributions
anyway. In fact, even the cancellation of the parton den-
sities in �CS and �CS in Eq. (28) for the annihilation process
is of limited use, except in a pure flavor nonsinglet situ-
ation where the Compton process is absent.

However, despite the fact that Ŵ2 � Ŵ4, the LT relation
does hold for the Compton process as well, and therefore

for the complete LO Drell-Yan cross section [5,30]. In the
next section we will verify the LT relation very explicitly in
the small-QT limit. However, it is valid at LO regardless of
the value of QT . It is known to be (mildly) broken by NLO
corrections [9,10]. Experimentally the LT relation was
found to be rather strongly violated in the ��p Drell-
Yan process [19–21], in disagreement (both in magnitude
and in sign) with the slight violation predicted at NLO.
This has prompted much theoretical work [31–39], offer-
ing explanations that go beyond the framework of collinear
factorization and perturbative QCD to which we restrict
ourselves in this paper.

As a final point in this discussion of the LO contribu-
tions, we would like to stress that the above discussion is
not specific to the Drell-Yan process, but also applies to
similar processes like SIDIS [24–26,40] and back-to-back
hadron production in two-jet events in electron-positron
annihilation [41], when appropriate definitions of the
frames and coordinate axes are used.

IV. SMALL-QT LIMIT OF THE STRUCTURE
FUNCTIONS WT, WL, W�, W�� AT LO

The LO results presented in the previous section should
provide good approximations for the angular distributions
in the Drell-Yan process at large transverse momentum,
QT �Q. We shall now investigate their behavior at small
QT . This is extracted most conveniently by using the
expansion [24]
 

���1� z1��1� z2� �Q
2
T=ŝ� �

��1� z1�

�1� z2��
�
��1� z2�

�1� z1��

� ��1� z1���1� z2� ln�2

�O��2� (31)

for the delta function in Eq. (24), where zi � xi=i. Here,
the ‘‘plus’’ distributions are defined as usual for an integral
from x to 1 as

 

Z 1

x

dz
z

f�z�
�1�z��

�
Z 1

x

dz
z
f�z��f�1�

1�z
�f�1� ln

1�x
x

; (32)

for any suitably regular function f. Inserting the structure
functions Ŵi of Eqs. (25) and (30) into Eqs. (18), and
expanding for small QT with the help of (31), one finds
in the CS frame

 

WT;CS �
	s
2�

1

�2 �CF�2 ln�2 � 3�q�x1� �q�x2� � q�x1��Pqq � �q��x2� � �Pqq � q��x1� �q�x2� � q�x1��Pqg � g��x2�

� �Pqg � g��x1� �q�x2� �O��2��;

WL;CS � 2W��;CS �
	s
2�
�CF�2 ln�2 � 3�q�x1� �q�x2� � q�x1��Pqq � �q��x2� � �Pqq � q��x1� �q�x2�

� q�x1��P0qg � g��x2� � �P0qg � g��x1� �q�x2� �O��2��;

W�;CS �
	s
2�

1

�
q�x1�� ~Pqq � �q��x2� � � ~Pqq � q��x1� �q�x2� � q�x1�� ~Pqg � g��x2� � � ~Pqg � g��x1� �q�x2� �O��2��; (33)
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where in each case we have kept the terms with the
leading-power behavior at small QT . Furthermore, we
have for notational simplicity suppressed the factorization
scale��Q in the parton distributions, as well as the sums
over flavors, and we have defined the usual convolutions

 �P � f��x1� �
Z 1

x1

dx
x
P �x�f

�
x1

x

�
; (34)

with P variously one of the well-known [27] LO splitting
functions

 Pqq�x� � CF

�
1� x2

�1� x��
�

3

2
��1� x�

�
;

Pqg�x� � TRx2 � �1� x�2�;

(35)

or one of

 P0qg�x� � Pqg��x�; ~Pqq�x� � CF�1� x�;

~Pqg�x� � TR�1� 2x2�:
(36)

Note that one could cancel the term �3CFq�x1� �q�x2� in
WT;CS against the contributions by the 3CF��1� x�=2 term
in the splitting function Pqq in Eq. (35). We have, however,
kept the term in order to have the full splitting function in
(35), and also because the term �CF�2 ln�2 � 3� is the
well-known first-order contribution to the Sudakov form

factor. We also note that we could have first taken the
small-QT limit of the structure functions W1;2;3;4 in
Eqs. (24) and (25) and then inserted the result into (18).
In that case, since all the Wi have the overall power Q�2

T
and may be multiplied by powers of QT in the transforma-
tion (18), it would have been crucial to keep the first
subleading term proportional to �0 in the Wi. Otherwise,
one would obtain an incorrect result.

As can be seen in Eqs. (33), the annihilation process
makes a logarithmic contribution to each of the structure
functionsWT ,WL, andW��, on top of their nominal power
in QT . The Compton process, on the other hand, does not
produce this leading-logarithmic behavior. It is also inter-
esting to note that, unlike the other structure functions,
W�;CS does not receive a logarithmic contribution at all.
This turns out to be a result specific to the CS frame. In
case of WT , the structure at small QT is well understood in
terms of the CSS formalism [18], as we shall briefly review
in the next section. The LO small-QT expressions for the
other structure functions are new. We note that the Lam-
Tung relation WL � 2W�� of course still holds in (33).

The small-QT expressions for the structure functions
WT;L;�;�� in the GJ frame can be obtained in the same
way, by using Eqs. (19), or alternatively Eqs. (21), and we
find

 

WT;GJ � WT;CS;

WL;GJ � 2W��;GJ � 2
	s
2�
�CF�2 ln�2 � 3�q�x1� �q�x2� � q�x1��P�qq � �q��x2� � �P�qq � q��x1� �q�x2�

� q�x1��P
0�
qg � g��x2� � �P

0�
qg � g��x1� �q�x2� �O��2��;

W�;GJ �
	s
2�

1

�
�CF�2 ln�2 � 3�q�x1� �q�x2� � q�x1��P�qq � �q��x2� � �P�qq � q��x1� �q�x2� � q�x1�� ~P

�
qg � g��x2�

� � ~P�qg � g��x1� �q�x2� �O��2��; (37)

where

 P�qq�x� � Pqq�x� � ~Pqq�x�; P0�qg�x� � Pqg�x� � P
0
qg�x� � 2 ~Pqg�x� �

�
4TR
8TRx2 ;

~P�qg�x� � Pqg�x� � ~Pqg�x� �
�

2TR�1� x�
2TRx�2x� 1�

;

(38)

with Pqq�x�, ~Pqq�x�, Pqg�x�, ~Pqg�x�, P0qg�x� as given above.
As one can see, in the GJ frame, all structure functions
receive logarithmic contributions at small QT . We observe
that apart from WT;GJ none of the functions contains sub-
leading terms (i.e., terms nonlogarithmic in �) that involve
only the usual splitting functions Pqq and Pqg of Eq. (35).
Therefore, WL and W�� are not proportional to WT at
subleading order for small �, not even if one restricts to
the annihilation process. The LT relation holds as before.

Comparing the small-QT behavior in the CS and GJ
frames we find that the rotation between the two frames
simply ‘‘reshuffles’’ the various splitting functions appear-

ing in the WT;L;�;��. For example, in the annihilation
contribution the functions contributing to the subleading
terms in WL;�;�� are Pqq and � ~Pqq in the CS frame, but
Pqq � ~Pqq in the GJ one. This pattern, which also extends
to the Compton part, can be verified by inspection of
Eq. (21).

We finally note that the nonstandard splitting functions
in the above expressions for the small-QT limit are asso-
ciated with the polarization states of the virtual photon
contributing to the various structure functions. Only if
the photons in the amplitude and its complex conjugate
both have the same, and physical (transverse), polariza-
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tions does one recover the ordinary DGLAP splitting func-
tions at small QT . This is only the case for WT , cf. Sec. II.

V. EFFECTS OF RESUMMATION AT SMALL QT

The small-QT behavior of WT is predicted by the CSS
formalism [18] which resums its singular behavior at
QT=Q! 0 to all orders in the strong coupling constant.
The CSS resummation is formulated in impact-parameter
space. Schematically, keeping only those terms in the
formalism that play a role for our present study, one has

 WT �
Z d2b

4�
ei ~qT 
 ~b

X
a

e2
aqa�x1; b0=b� �qa�x2; b0=b�e

S�b;Q�:

(39)

Here, S�b;Q� is the Sudakov form factor, given by

 S�b;Q� � �
Z Q2

b2
0=b

2

dk2
T

k2
T

�
A�	s�kT�� ln

�
Q2

k2
T

�
� B�	s�kT��

�
;

(40)

where b0 � 2e��E with �E the Euler constant, and where
the functions A and B have perturbative expansions of the
form

 A�	s� �
X1
k�1

Ak

�
	s
�

�
k
; B�	s� �

X1
k�1

Bk

�
	s
�

�
k
: (41)

Here we step over the fact that the b integration also may
require the introduction of a nonperturbative Sudakov form
factor, and simply focus on the perturbative part.

For our purposes we only need the coefficients A1 and
B1, which read

 A1 � CF; B1 � �
3
2CF: (42)

The term / A1 in the Sudakov exponent generates the
leading logarithms, which in b space are of the form
	ksln2k�bQ�, corresponding to 	ksln2k�1�Q2=Q2

T�=Q
2
T in

QT space. Next-to-leading logarithms (NLL) are generated
by the term / B1, and by the running of the strong coupling
and of the parton distribution functions in (39). In the CSS-
resummed expression, the factorization scale is b0=b.
Using the customary DGLAP evolution equation, the par-
ton densities at this scale may be expressed by their values
at the scale ��Q. Expanding the corresponding evolu-
tion matrix for the parton densities and the Sudakov ex-
ponential in 	s and considering only the first-order term,
we recover the expression for WT;CS given in Eq. (33) [or
(37)]. The terms of WT;CS in (33) that involve the gluon
distribution are generated by the singlet mixing in the
evolution of the parton distributions between scales b0=b
and Q. Clearly, for WT;CS in Eq. (33) to be reproduced by
the CSS formalism, it is crucial that the splitting functions
in its expression are the usual DGLAP splitting functions
[27] Pqq and Pqg that are associated with the evolution of
quark and antiquark distributions.

This implies that the resummation of the structure func-
tions WL, W�, and W�� will not precisely follow the CSS
formalism. Taking their expressions (33) in the CS frame
as an example, we notice that the first-order expansion of
the Sudakov form factor appears in WL;CS and W��;CS,
indicating that the resummed expressions for these will
contain the exponential of S�b;Q�, as the one for WT does,
and hence have the same leading logarithms. However, the
splitting functions involved in the nonlogarithmic pieces
are not the usual ones, as we already observed in the
previous section. For W�;CS, even the Sudakov part is
absent, and the splitting functions are different again. All
this means that beyond NLL the resummed expressions for
WL;CS, W�;CS, and W��;CS will not organize into the struc-
ture given in Eq. (39). They likely will have a similar
structure, but contain additional terms depending on the
direction of b. To be clear, this is not a problem: while the
presence of the true spitting functions in the leading term
WT at smallQT is required by (collinear) factorization, this
is not the case for the other structure functions. In other
words, the splitting functions in these are not associated
with standard parton evolution or collinear singularities.
Therefore, the structure we find only means that the re-
summation of the WL;CS, W�;CS, and W��;CS (and likewise
in the GJ frame) is more complicated beyond the leading
logarithms. We do not address their full NLL resummation
in this work, but note that the techniques of
Refs. [15,16,28] that go beyond collinear factorization
should prove useful for this purpose.

Even without performing the full resummation, we can
make some qualitative observations regarding the effects
of resummation. The first observation from Eqs. (33) and
(37) is that the LT relation will not be affected by resum-
mation. Next, we focus on the angular coefficients �, �, �
or A0, A1, A2 introduced in Eqs. (3) and (5), respectively,
which are ratios of the structure functions. Because of the
structure of the leading logarithms, we expect that in the
CS frame � and �, and A0 and A2, will be rather insensitive
to resummation effects. Note that, if the annihilation pro-
cess alone contributes (which could, in principle, be real-
ized by considering a flavor nonsinglet combination of
cross sections), resummation effects cancel identically in
�CS and �CS, and they retain their LO forms given in
Eq. (28) even after resummation. On the other hand, �
and A1, for which there are no leading logarithms in the
numerator because of their absence in W�;CS, will be
subject to substantial modification by resummation. In
the GJ frame all ratios �, �, � will be affected by NLL
resummation effects. These need not be small, in particu-
lar, if the overall effects of resummation on WT are them-
selves large.

Next, we confront our findings with results of the pre-
vious literature. Chiappetta and Le Bellac [23] were the
first to study the effects of resummation on the azimuthal
asymmetries in the Drell-Yan process. Working in the CS
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frame, they argued that, since the structure functions WL,
W�, and W�� are less singular than WT , only the latter
requires resummation. Therefore, they took into account
resummation only in the denominators of the Ai, while for
the numerators they employed the LO expressions. In this
way they found large effects of resummation on the Ai. In
light of our discussion above, the neglect of resummation
in the numerators of the Ai is not justified.

Similarly, in studies [24–26] of resummation effects in
semi-inclusive DIS only the resummation of the
�-independent terms was taken into account.
Specifically, resummation was not applied in studies of
the ratio hcos2�i=hcos�i. Here, a Gottfried-Jackson type
of frame (one of the hadron momenta defined the Z axis)
was used. Our results above show that the numerator and
denominator of this quantity will have a somewhat differ-
ent resummation, even though it may well turn out to be the
case that the residual effects on the ratio are small. It would
be desirable to revisit this quantity in the framework of a
full NLL resummation study. This also applies to azimu-
thal asymmetries in polarized scattering [42].

VI. SUMMARY

We conclude by summarizing our main observations.
We have studied the structure functions WT;L;�;�� in the
Drell-Yan process, on the basis of the contributions by the
annihilation process q �q! ��g and the Compton channel
qg! ��q. The structure functions W� and W��, in par-
ticular, generate azimuthal asymmetries in the angular
distribution of the produced leptons. The structure func-
tions depend, in general, on the choice of coordinate axes,
and we have investigated the results in the Collins-Soper
and the Gottfried-Jackson frames.

We have focused on the behavior of the structure func-
tions at small transverse momentum QT of the lepton pair.
We have recovered the known small-QT behavior ofWT , in
terms of the leading-order DGLAP splitting functions and
of the first-order expansion of the Sudakov form factor. For
the other structure functions, which are all nominally sup-
pressed by one or two powers ofQT=Q with respect toWT ,
we have found that they, too, in general, have large loga-
rithmic terms at small QT , whose form depends on the
frame chosen. We are not aware that this feature was
pointed out previously in the literature. The small-QT
structure we find for WL;�;�� differs from that of WT ,
however. In the CS frame, WL and W�� receive large
leading-logarithmic corrections identical to the ones in

WT . By contrast, these are absent in W�. In the GJ frame,
all structure functions have leading-logarithmic terms.
Both frames have in common that the subleading terms
inWL;�;�� are different from those inWT . This implies that
the next-to-leading-logarithmic resummation at small QT
must proceed differently from that for WT given by the
CSS formalism which uses a collinear expansion.

Without actually deriving the NLL resummation, we
have discussed some generic features that we expect
from it. The Lam-Tung relation, which is an exact property
of the full leading-order contributions to the structure
functions, independent of the coordinate frame, is not
affected by resummation, even though the individual terms
entering in it are affected. Furthermore, in the CS frame,
the ratios � � �WT �WL�=�WT �WL� and � �
2W��=�WT �WL� will not receive large corrections from
resummation at small QT . In particular, when restricting to
the annihilation process, resummation has no effect on the
cos2� asymmetry. This observation is especially relevant
for the Drell-Yan process in �p or p �p scattering. The ratio
� � W�=�WT �WL�, on the other hand, will be subject to
considerable resummation effects, due to the lack of the
leading-logarithmic terms in its numerator. In the GJ frame
all ratios �, �, � will be affected by NLL resummation
effects, which are not necessarily small. Similar conclu-
sions were drawn for the ratios Ai.

We finally emphasize again that we hope that our study
will provide motivation for a development of the full NLL
resummation for the structure functionsWL;�;��. Given the
experimental information available on the Drell-Yan pro-
cess, on SIDIS, and on e�e� annihilation, this would also
have clear phenomenological relevance. Of further interest
would be studies of the angular distributions integrated
over QT [43]. Here, ‘‘threshold-type’’ logarithms may
emerge [44,45], whose structure and resummation in azi-
muthal distributions have so far not been investigated.
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