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Two body B decays with isosinglet final states in soft collinear effective theory

Alexander R. Williamson1 and Jure Zupan1,2

1Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
2J. Stefan Institute, Jamova 39, P.O. Box 3000, 1001 Ljubljana, Slovenia

(Received 7 February 2006; published 7 July 2006; corrected 28 July 2006)
1550-7998=20
Expressions for decay amplitudes of �B0, B�, and �B0
s mesons to two light pseudoscalar or vector mesons,

including isosinglet mesons �, �0, !, �, are obtained using soft collinear effective theory (SCET) at LO
in 1=mb. These are then used to predict unmeasured branching ratios, direct, and indirect CP asymmetries
in �B0, B�, and �B0

s decays into two light pseudoscalars, following a determination of nonperturbative SCET
parameters from existing data using a �2-fit. A separate discussion of indirect CP asymmetries in penguin
dominated �B0 ! ��

0�KS;L, �0KS;L decays is given.
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I. INTRODUCTION

Hadronic two body B decays constitute both a probe of
the electroweak structure of the standard model as well as a
testing ground for our understanding of QCD dynamics. In
B! MM0 decays with two energetic light final mesonsM,
M0 going back-to-back in opposite directions, the ampli-
tude factorizes in the limit mb � �QCD, mM;M0 . This had
made possible the great advancements in our theoretical
understanding of B! MM0 decays over the past several
years [1–22]. The observation of factorization initially
relied on a two-loop proof [1] (for earlier attempts see
[2]). Following the advent of soft collinear effective theory
(SCET) [3] the factorization was then shown to hold to all
orders in �S at leading order in 1=mb [4–9], with a
possible exception of the contributions from intermediate
charm quark states [9–11,23].

In this paper we present the first SCET analysis of two
body B decays where one of the final mesons contains an
isospin singlet admixture to the wave function. This in-
cludes all the decays with �, �0 or�,!mesons in the final
state. As we will show the factorization in the limit mb !
1 which was obtained for nonisosinglet final states in
Refs. [7–10], generalizes to the case of isospin singlet final
states. The expression for the B! MM0 amplitude is then
schematically

 A / T� ��M � �BM
0
� TJ ��M � �BM

0

J � . . . ; (1)

with � denoting the convolutions over momenta fractions,
�M the light cone distribution amplitude (LCDA) of a
meson that does not absorb the spectator quark, �BM

0
the

soft overlap function, �BM
0

J the function describing the
completely factorizable contribution, and T�;J the corre-
sponding hard scattering kernels, while the ellipsis denotes
the charming penguin contributions.

Equation (1) already contains additional contributions
arising from purely gluonic configurations that are specific
to decays into pseudoscalar isosinglet states. These for
instance lead to new jet functions in the SCETI !
06=74(1)=014003(31) 014003
SCETII matching in addition to the ones found in [9],

so that both �B�
�0 �

and �B�
�0�

J receive leading order gluonic
contributions. The phenomenological importance of �0

gluonic content was emphasized by a number of authors
[24–26] after a discovery of surprisingly large branch-
ing ratio �10�4 for semi-inclusive B! �0X decays
some years ago [27]. These expectations are at least
partially confirmed by our SCET analysis. The gluonic
contributions to the amplitude where the spectator light
quark in the B meson is annihilated in the weak vertex
are of leading order in the 1=mb and �S�mb� expan-
sions. This result also confirms the discussion of gluonic
contributions presented in the QCD factorization calcu-
lation of B! �0K modes [13,14], where a similar contri-
bution was taken into account as part of B! �0 form
factor. Unlike the authors of Refs. [13,14], which were
forced to assign a rather arbitrary size of either 0% or
�40% for the gluonic contribution to the B! �0 form
factor, we are able to use the wealth of new data from the B
factories and fit for the corresponding SCET nonperturba-
tive parameters.

Following [9] we do not expand the jet functions in
terms of �S�

����������
�mb

p
� and treat the corresponding functions

as nonperturbative parameters that are determined from
data along with the charming penguins. Although BBNS
[1,12,15] have argued that the charming penguins are
perturbatively calculable, the more conservative approach
of determining the charming penguins from data avoids
any inherent uncertainties associated with possibly leading
order long distance effects [9–11,23]. Taking a conserva-
tive approach is especially important, if one aims at inter-
preting hints of beyond the standard model contributions to
the observables in �S � 1 processes: the �K puzzle [28–
30] and the deviations of S parameters in penguin domi-
nated modes KS�0, KS�0, KS� from the naive expectation
of S� sin2� [31–33]. We devote the second part of our
paper to these phenomenological considerations. In the
numerical studies we assume that 1=mb corrections are
of typical size �20% [11].
-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.74.014003


ALEXANDER R. WILLIAMSON AND JURE ZUPAN PHYSICAL REVIEW D 74, 014003 (2006)
In this paper we provide expressions for B! PP, PV,
and VV decays at LO in the 1=mb and �S�mb� expansions,
while in the numerical estimates we restrict the analysis to
the decays into two pseudoscalars. Similar numerical
analyses of B! ��, �K and B! KK decays using
SCET were performed previously in Refs. [9,10]. In addi-
tion to these modes we also discuss decays into final states
with � and �0 mesons, using a �2-fit to extract the SCET
parameters. Since in [10] a subset of measured observables
rather than a �2-fit was used to fix the values of SCET
parameters, the numerical results of the two analyses do
not match exactly, but they do agree within the errors
quoted. Furthermore SU(3) flavor symmetry for the
SCET parameters is needed at the present due to limited
data for decays into � and �0 mesons.

Assuming only isospin symmetry, the amplitudes for
�S�0 decays with isosinglets in the final states, i.e. the
decays B! ���

0� and B! ��
0���

0�, are written in terms of
eight new real nonperturbative SCET parameters beyond
those describing the B!�� system (see Eqs. (43)–(49)
below) at leading order in 1=mb. In total there are 19 ob-
servables inB!���

0� and B!��
0���

0� decays, only four of
which have been measured so far. Therefore, we are forced
to use SU(3) flavor symmetry to reduce the number of un-
knowns. The situation is very similar for �S�1 B!K��

0�

decays with a total of ten observables, seven of which have
been measured so far,while the amplitudes are expressed in
terms of eight new real parameters beyond the ones already
present in B!�� and B!�K decays. Using SU(3) fla-
vor symmetry greatly reduces the number of parameters. In
this limit all the B!PP decays are described at LO in 1=mb
in terms of only eight real unknowns (four without isosing-
let final states). This should be contrasted with the conven-
tional use of SU(3) decomposition that leads to 18 reduced
matrix elements (nine for each of the two independent
Cabibbo-Kobayashi-Maskawa (CKM) elements combina-
tion, see Appendix C) and therefore to 35 real unknowns
and one unobservable overall phase. We thus choose to
work in the SU(3) flavor limit and perform an analysis of
all presently available data on B!PP decays from which
we predict the values of yet unmeasured observables in
both �S�0 and �S�1 decays of �B0, B�, and �B0

s .
The paper is organized as follows: in Sec. II the match-

ing of QCD! SCETI ! SCETII and the resulting ampli-
tudes for two body decays into light pseudoscalar and
vector mesons (including decays into flavor singlet me-
sons) at leading order in 1=mb are derived. The phenome-
nological implications of these results for B�, �B0, and �B0

s
decays into two light pseudoscalar mesons are then devel-
oped in Sec. III. Notation used throughout the paper is
collected in Appendix A, while Appendix B deals with the
Dirac structure of the operators multiplying jet functions.
Finally, in Appendix C our results are rewritten in terms of
SU(3) reduced matrix elements and a translation to the
diagrammatic notation is made.
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II. TWO BODY B DECAYS IN SCET

The starting point is the effective weak Hamiltonian at
the scale ��mb for the �S � 1 two body B decays [34]

 HW �
GF���

2
p

X
p�u;c

	�s�p

�
C1O

p
1 � C2O

p
2 �

X10;7
;8g

i�3

CiOi

�
; (2)

where the CKM factors are 	�s�p � VpbV
	
ps and the standard

basis of four-quark operators is

 Op
1 �� �pb���sp��; Op

2 �� �p�b����s�p���;

O3;5���sb�� �qq�
; O4;6���s�b��� �q�q��
;

O7;9�
3eq
2
��sb�� �qq��; O8;10�

3eq
2
��s�b��� �q�q���;

(3)

with the abbreviation � �q1
��1� 
5�q2�� �q3
��1


5�q4� � � �q1q2�� �q3q4�
. The color indices �, � are dis-
played only when the sum is over fields in different brack-
ets. In the definition of the penguin operators O3�10 in (3)
there is also an implicit sum over q � fu; d; s; c; bg. The
electromagnetic and chromomagnetic operators are

 Of7
;8gg � �
mb

4�2
�s���feF��; gG��gPRb: (4)

The weak Hamiltonian for �S � 0 decays is obtained from
(2)–(4) through the replacement s! d. We will be work-
ing to leading order in �S�mb� so the values for the Wilson
coefficients in (2) are given at leading logarithm (LL) order
in the naive dimensional regularization (NDR) scheme for
�S�mZ� � 0:119, �em � 1=128, mt � 174:3, even though
next-to-leading logarithm (NLL) values are available [34].
At the scale � � mb � 4:8 GeV the Wilson coefficients
Ci for tree and QCD penguin operators (2) are [34]

 C1�6�mb�� f1:110;�0:253;0:011;�0:026;0:008;�0:032g;

(5)

while for electroweak penguin (EWP) operators [12,34]

 C7�10�mb� � f0:09; 0:24;�10:3; 2:2g 
 10�3; (6)

and for the magnetic operators C7
�mb� � �0:315,
C8g�mb� � �0:149.

The effective weak Hamiltonian (2) of full QCD is
matched to the corresponding weak Hamiltonian in
SCET. In the two body B! M1M2 decays there are three
distinct scales, the hard scale �mb due to the energy
available to the decay products in the B rest frame, the
typical hadronic soft scale �, and the hard collinear scale����������
mb�

p
. This last scale corresponds to the typical momen-

tum transfer needed to boost the spectator quark in the B
meson with soft momentum k�� so that it ends up in the
final mesonM1 with a momentum p�mb�	

2; 1; 	�, where
	 � �=mb. The notation here is p� � �n � p; �n � p; p?�,
with the meson M1 containing the spectator quark going in
the n� � �1; 0; 0;�1� direction, while M2 goes in the
opposite �n� � �1; 0; 0; 1� direction. The presence of three
-2
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distinct scales leads to a two-step matching procedure [35].
First hard scale mb is integrated out so that the effective
weak Hamiltonian (2) in full QCD is matched to the
Hamiltonian in SCETI where the scaling of jet momenta
in n and �n directions are mb�	; 1;

����
	
p
� and mb�1; 	;

����
	
p
�,

respectively. This is then matched to a set of nonlocal
operators in SCETII with jet functions as Wilson coeffi-
cients [35]. In the following two subsections we closely
follow the matching at LO in 1=mb performed in Ref. [9],
extending it at the same time to a larger set of operators
including the operators that contribute only for the iso-
singlet final states.

A. Matching to SCETI

To have a complete set of leading order contributions in
the second step, we keep in the SCETI Hamiltonian [9]

 HW �
2GF���

2
p

X
n; �n

�X
i

Z
�d!j�

3
j�1c

�f�
i �!j�Q

�0�
if �!j�

�
X
i

Z
�d!j�

4
j�1b

�f�
i �!j�Q

�1�
if �!j� �Q �cc

�
; (7)

both the leading order operators Q�0�if as well as a subset of

relevant subleading operators Q�1�if in the
����
	
p

expansion,
where f � d (f � s) for �S � 0 (�S � 1) processes. In
(7) the charming penguin contributions [23] are isolated in
the operator Q �cc. Since 2mc �mb the intermediate charm
quarks annihilating into two collinear quarks (see Fig. 1) is
a configuration where the intermediate on shell charm
quarks have a small relative velocity v and can lead to
long distance nonperturbative effects due to the exchange
of soft gluons. These contributions are
�S�2mc�f�2mc=mb�v parametrically suppressed [9–11],
with f�2mc=mb� a factor encoding that only in part of the
phase space the charm quarks have small relative veloc-
ities. The view of BBNS [1,15] is that this phase space
suppression of the threshold region is strong enough so that
nonperturbative contributions are subleading. Bauer et al.
[9–11] on the other hand argue that since 2mc=mb �O�1�
then also f�2mc=mb� � 1. Sizable charming penguin con-
tributions have also been found in recent light cone calcu-
lation [36]. The most conservative approach is to introduce
FIG. 1. The configuration with intermediate on shell charm
quarks annihilating into two collinear quarks going in the
opposite directions can lead to nonperturbative long distance
contributions due to soft gluon exchanges [9]. The double line
denotes heavy quark, spectator quark is not shown.
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new unknown parameters describing charming penguin
contributions that are then fit from data, so this is the
approach we will follow.

In (7) the same notation as in Refs. [9,10] is used. The
set of leading order operators in this notation is
 

Q�0�1s � � �un;!1
6n�PLbv���s �n;!2

6nPLu �n;!3
�;

Q�0�2s;3s � ��sn;!1
6n�PLbv�� �u �n;!2

6nPL;Ru �n;!3
�;

Q�0�4s � � �qn;!1
6n�PLbv���s �n;!2

6nPLq �n;!3
�;

Q�0�5s;6s � ��sn;!1
6n�PLbv�� �q �n;!2

6nPL;Rq �n;!3
�;

(8)

and the gluonic operator

 Q�0�gs � mb��sn;!1
6n�PLbv�Tr�B?��n;!2

B?��n;!3
�i
?��; (9)

where the trace is over color indices. Above, an implicit
summation over light quark flavors q � fu; d; sg is under-
stood. The operators Q�0�5s;6s;gs contribute only to isospin
singlet mesons and were not needed in [9,10]. The quark
fields in Eqs. (8) and (9) already contain the Wilson line
together with the collinear quark field

 qn;! � ���!� �n � P �Wyn �
�q�
n �; (10)

with the usual bracket prescription that P operates only
inside the square brackets [3]. We also define a purely
gluonic operator related to the ( �n, ? ) component of the
gluon field strength

 igB?�n;! �
1

��!�
�Wyn �i �n �Dc;n; iD

�
n;?�Wn��!� �n � P y��:

(11)

In (8) the operators with TA � TA color structure were not
listed, since they do not contribute to color singlet final
states. Similarly, a gluonic operator with 
?�� ! g?�� in
(9) is not considered, as it does not contribute to P, V final
states due to parity. The Q�0�id operators for the �S � 0
weak Hamiltonian are obtained from (8) and (9) with the
replacement s! d.

The relevant O�
����
	
p
� operators are [9]

 

Q�1�1s �
�2

mb
� �un;!1

igB6 ?n;!4
PLbv���s �n;!2

6nPLu �n;!3
�;

Q�1�2s;3s �
�2

mb
� �sn;!1

igB6 ?n;!4
PLbv�� �u �n;!2

6nPL;Ru �n;!3
�;

Q�1�4s �
�2

mb
� �qn;!1

igB6 ?n;!4
PLbv���s �n;!2

6nPLq �n;!3
�;

Q�1�5s;6s �
�2

mb
� �sn;!1

igB6 ?n;!4
PLbv�� �q �n;!2

6nPL;Rq �n;!3
�;

Q�1�7s �
�2

mb
� �un;!1

igB?�n;!4
PLbv���s �n;!2

6n
?�PRu �n;!3
�;

Q�1�8s �
�2

mb
� �qn;!1

igB?�n;!4
PLbv���s �n;!2

6n
?�PRq �n;!3
�;

(12)
-3



(a)

08g

08g

08g

(b)

FIG. 2. Matching to Q�0�gs vanishes at LO in 1=mb with a
representative diagram given in (a). In (b) nonzero diagrams
that contribute at LO in 1=mb to Q�1�gs matching are given. The
square represents insertion of O8g. The up- (down-) going
wiggly solid lines denote �n�n� collinear gluons. The off shell
gluon (wiggly line) in the third diagram can also attach to any of
the cross vertices.

(c)(a)                                    (b)

c c cc c c

FIG. 3. The power suppressed contributions with off shell
charm quarks emitting collinear gluons in �n direction.
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and the operator with additional �n collinear gluon fields

 Q�1�gs � �2� �sn;!1
igB6 ?n;!4

PLbv�Tr�B?��n;!2
B?��n;!3

�i
?��;

(13)

while, quite similarly to (9), we do not consider the addi-
tional gluonic operator with g?�� instead of 
?�� in (13),
since it does not contribute to P, V final states due to parity
conservation. As before Q�1�id are obtained by making the
replacement s! d in the above definitions.

The Wilson coefficients c�f�i for the operators in (8) and
b�1�1s;2s for the operators in (12) are known to next-to-leading
order (NLO) in �S�mb� [1,8,37], while the rest of the
Wilson coefficients b�f�i for the operators in (12) are at
present known only to leading order. In the phenomeno-
logical part of our paper, Sec. III, we work at LO in the
�S�mb� expansion. At this order there are no contributions
from Q�0�gs and Q�1�gs operators (9) and (13) since the tree-
level matching shown in Fig. 2 and given explicitly below,
is already �S�mb� suppressed.

We also work at leading order in �=mb. In particular this
means that we systematically neglect the contributions to
B! P��

0� amplitudes with two collinear gluons being
emitted from the charm loop [see Fig. 3(a)]. Here the
intermediate charm quarks are off shell, unlike the charm-
ing penguin configuration, Fig. 1. The diagram in Fig. 3(a)
matches onto the �

����
	
p
�2 suppressed operator
014003
 ��sn;!1
6n�PLbv�Tr�B?��n;!2

i �n �D �nB
?�
�n;!3
�
?��; (14)

with a Wilson coefficient that is a function of 2mc=mb and
can be found from results in [13]. Similarly, the remaining
diagrams of Fig. 3 with one �n gluon emitted from b or n
collinear quark line are part of the matching onto at least����
	
p

suppressed operators.
This leaves us with the set of operators (8) and (12) that

contribute at LO in 1=mb and �S�mb�. Note that the Wilson
coefficients in (7) already contain the CKM elements.
Furthermore, the basis of operators (8) and (12) is a mini-
mal choice, where the operator relation O9;10 �

3
2 �O

u
2;1 �

Oc
2;1� �

1
2O3;4, valid after off shell b quarks are integrated

out, was utilized. This leads to the following tree-level
matching for the four-quark operators

 

c�f�1;2 � 	�f�u

�
C1;2 �

1

N
C2;1

�
� 	�f�t

3

2

�
1

N
C9;10 � C10;9

�
;

c�f�3 � �
3

2
	�f�t

�
C7 �

1

N
C8

�
;

c�f�4;5 � �	
�f�
t

�
1

N
C3;4 � C4;3 �

1

2N
C9;10 �

1

2
C10;9

�
;

c�f�6 � �	
�f�
t

�
C5 �

1

N
C6 �

1

2
C7 �

1

2N
C8

�
:

(15)

while NLO matching can be obtained from [1,8]. The tree-
level matching of the dimension seven operators leads to
 

b�f�1;2 � 	�f�u

�
C1;2 �

1

N

�
1�

mb

!3

�
C2;1

�
� 	�f�t

3

2

�
C10;9 �

1

N

�
1�

mb

!3

�
C9;10

�
; b�f�3 � �	

�f�
t

3

2

�
C7 �

�
1�

mb

!2

�
1

N
C8

�
;

b�f�4;5 � �	
�f�
t

�
C4;3 �

1

N

�
1�

mb

!3

�
C3;4

�
� 	�f�t

1

2

�
C10;9 �

1

N

�
1�

mb

!3

�
C9;10

�
;

b�f�6 � �	
�f�
t

�
C5 �

1

N

�
1�

mb

!2

�
C6

�
� 	�f�t

1

2

�
C7 �

1

N

�
1�

mb

!2

�
C8

�
; b�f�7 � �	

�f�
t

�
C5 �

1

2
C7

�
1

N

�
mb

!1
�

1

2

mb

!3

�
;

b�f�8 � �	
�f�
t

3

2
C7

1

N

�
mb

!1
�

1

2

mb

!3

�
; (16)

while the NLO contributions from tree operators only was recently obtained in [37].
For completeness we also list the result of tree-level matching forQ�0�gs andQ�1�gs operators (9) and (13) following from the

diagrams in Fig. 2
-4
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 c�f�g � 0; (17)

and
 

b�f�g � 	�f�t C8g
�S�mb�

16CF

�
1

�u
�

1

u

��
2� z
1� z

� 2
�
1�

1

N2

�



u �u

�1� zu��1� z �u�

�
; (18)

where z � !1=mb and u � !3=mb, with !1;3 the fraction
momenta in (13), while CF � �N2 � 1�=2N and N � 3.
Even though the matching result (17) and (18), which is
already NLO in �S�mb�, will not be needed for our phe-
nomenological discussions in Sec. III, it does represent first
nonzero contribution fromO8g weak operator to the match-
ing. Since this chromomagnetic operator may be enhanced
in new physics models (in MSSM this is due to the fact that
the chirality flip can be performed on gluino line instead of
on the b line [33,38]), we provide the matching as an
important input for future studies of such new physics
effects in two body B decays using SCET.

B. Matching to SCETII

The matching of SCETI onto SCETII is performed by
integrating out the degrees of freedom with p2 ��mb. To
do so it is useful to perform a redefinition of fields �~n !

Y~n�~n, A~n ! Y~nA~nY
y
~n , where ~n denotes either n or �n direc-

tion, while Y~n are Wilson lines of ~n � Aus SCETI usoft
gluon fields. After the redefinition the usoft fields decouple
from collinear fields in the leading order SCETI

Lagrangian [4,5,9]. They still appear in the operators
Qis 2 fQ

�0�
1s ; . . . ; Q�0�6s ; Q

�0�
gs ; Q

�1�
1s ; . . . ; Q�1�8s ; Q

�1�
gs g, but only

in the combination Yyn bv. Thus n collinear and �n collinear
sectors decouple [5] and the operators Qis factor into1 [9]

 Qis � Qn
isQ

�n
is: (19)

Since the n and �n operators do not communicate through
usoft gluons, we can focus only on the matching of Qn

is
operators onto SCETII operators. The soft spectator quark
in the B meson is boosted to a collinear quark in the
n-direction through an application of the O�

����
	
p
� sup-

pressed Lagrangian [39]

 L �1�
�nq
� �qusYnigB6 ?n W

y
n �n � H:c:; (20)

in the T products [9] (see also Fig. 4)

 T1;if �
Z
d4yd4y0T�Qn�0�

if �0�; iL
�1�
�n�n
�y0�

� iL�1�cg �y0�; iL
�1�
�nq
�y��

�
Z
d4yT�Qn�0�

if �0�; iL
�1;2�
�nq
�y��; (21)
1Operators Q�0�4s , Q�1�4s;8s factorize into a sum
P
qQ

n
q;isQ

�n
q;is, but

we suppress this sum in the notation.
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and

 T2;if �
Z
d4yT�Qn�1�

if �0�; iL
�1�
�nq
�y��: (22)

The explicit forms of subleading SCET Lagrangians L�1��n�n ,

L�1�cg , L�2��nq can be found in [35]. Note that all the terms in

T1;if and T2;if have the same
����
	
p

scaling. The superficially

enhanced T product T�Qn�0�
if �0�; iL

�1�
�nq
�y�� gets suppressed

once the external momenta are restricted to SCETII scal-
ing, since it involves an odd number of D?c [35].

The matrix elements hMjT1;ifjBi lead to endpoint singu-
larities, signaling a presence of soft-overlap contributions
both for nonisosinglet final states [35,40– 47] as well as for
isosinglet M. Following [9] we therefore define the matrix
elements of T1;if as new nonperturbative functions to be
determined from data

 hMjT1;ifjBi � CBMif �
BM: (23)

The final meson M can be either P, or Vk, while
hV?jT1;ifjBi vanish at leading order [9]. The coefficients
CBMif � 1, �1=

���
2
p

describe the flavor content of the final
meson.

To facilitate the calculation of T2;if the Qn�1�
if operators

are stripped of the soft quark fields �
�Yyn bv�ia (�Yyn bv�ia in
the case of Qn�1�

7s;8s) and similarly L�1��nq is stripped of
� �q0usYn�jb. The common matching result is then (see
Appendix B)
 

T�� ���q�n Wn�z!igB?�n;�z!PR;L�
ia�0��igB6 ?n W

y
n �
�q0�
n �

jb
0 �y�

� i�ab��y���
�2��y?�

Z 1

0
dx
Z dk�

2�
eik�y�=2




�
1

!
J�z;x;k���6nPL;R


�
?�

ji� �qn;x!6n�PL;Rq
0
n;� �x!�

�
1

!
J?�z;x;k��

�
6n
2
PR;L
�?


�
?�

ji� �qn;x!6n�
?�q
0
n;� �x!�

��q;q0Jg�z;x;k���6nPL;R

?
� �

jiTr�B?�n;x!B?�n; �x!�

��q;q0J0g�z;x;k���6nPL;R
�?�
jiTr�B?n;x! �B

?
n; �x!�g� . . . ;

(24)

where the trace is over color indices, while ellipses denote
operators with nontrivial color structure that do not con-
tribute to color singlet initial state. This generalizes the
result of Ref. [9] to the case of isosinglet final state, where
also the operators with two interpolating gluon fields con-
tribute, leading to two additional jet functions Jg�z; x; k��
and J0g�z; x; k��. At tree level J�z; x; k�� � J?�z; x; k�� �
��z� x��S�CF=�Nc �xk��, with one-loop corrections cal-
culated in [42,46], and Jg�z; x; k�� � ��z�
x��S2�=�Nck��, J0g�z; x; k�� � 0.
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FIG. 5. The SCETI ! SCETII matching onto operators con-
tributing only to B	 decays with isosinglet mesons in �n direction.
The weak SCETI operator arising at tree level from O8g insertion
(large black dot) is enhanced due to one less �n gluon field
compared to operators in Fig. 4, which is compensated by
additional soft gluon in the initial state. Additional diagrams
similar to Fig. 4(b) and 4(d) are possible for isosinglet final state
in n direction.

(a) d)(c)(b)

FIG. 4 (color online). The T-products of weak Hamiltonian operators (large black dot) with L�1��nq (20) that boosts soft quark (dashed
line) to n collinear quark (dark gray solid line). Two representatives of soft overlap contribution diagrams (21) with (a) outgoing n
collinear quarks and (b) outgoing n collinear gluons are shown. Diagrams (c) and (d) give factorizable contributions corresponding to
(22). The light gray solid lines denote �n collinear quarks, the dark gray wiggly and solid lines the n collinear gluons, while double lines
denote heavy quarks. The diagrams (b) and (d) contribute only to �, �0 going in n direction. The �S�mb� suppressed diagrams with �n
collinear gluons are not shown.
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The matching of different Qn�1�
is operators is obtained

from (24) by multiplying with �PR

�Yyn bv�

ia (by
�PLY

y
n bv�

ia in the case of Qn�1�
7s;8s) and with � �q0usYn�jb. The

final result for B! M1M2 amplitude depends on only two
jet functions, J and Jg. The operators multiplying J0g do not
contribute since the matrix elements of Tr�B?n;x! �B

?
n; �x!�

between vacuum and pseudoscalar meson or between vac-
uum and vector meson vanish due to parity conservation.
That J? jet function does not appear in B! M1M2 am-
plitudes when M1;2 are nonisosinglet mesons was already
shown in [9], and is true also when either of the two
outgoing light mesons M1;2 is an isosinglet meson.
Namely, the operator multiplying J? cancels in the match-
ing ofQn�1�

1s . . .Qn�1�
6s ; Q

n�1�
gs operators because 
�?


�
?
?� �

0. It also cancels in the matching of the Qn�1�
7s;8s operators,

since 6nPL
�?

�
? � �g

��
? � i


��
? �6nPL leads to a vanishing

term

 �g��? � i

��
? �� �q �n 6nPL


?
� q
0
�n� � 0; (25)

where for the last equality the relation 
�?

�
?
?� � 0 was

used once again. Furthermore, matching of the Qn�1�
7s;8s op-

erators leads to a soft operator � �qus 6nPR
�?bv� multiplying
J, Jg, or J0g jet functions. The matrix element of this
operator between vacuum and pseudoscalar jBi states van-
ishes. ThusQn�1�

7s;8s operators contribute only to B	 and not at
all to B! M1M2 decays.

We note on passing that B	 decays into two light mesons
would also receive, at leading order in 1=mb, contributions
from nonvalence Fock state of the B meson with an addi-
tional soft gluon, i.e. from the configurations with incom-
ing heavy quark, soft spectator quark, and soft gluon. The
SCETI ! SCETII matching is shown on Fig. 5. Since the
weak SCETI operators are 1=

����
	
p

enhanced compared to
T1;if, T2;if (the T products in n direction are the same as in
(21) and (22), while in �n direction the weak operator has
only one B?�n field), this allows for another external Aus
field. Because of Dirac structure these operators do not
contribute to B decays, quite similar to equivalent contri-
014003
butions found in B	 ! P
 [48], with P an isosinglet. Note
that these contributions would not be present in B	 ! M
form factors.

We are now ready to write down the final result for the
B! M1M2 amplitude at LO in 1=mb in SCET that will
extend the result of Ref. [9] to the decays including iso-
singlet mesons. This result exhibits two levels of factoriza-
tion: the �n direction collinear modes decouple from the
rest, and for the T2;if term the n collinear fields decouple
from soft fields. Because of the factorization, the amplitude
has a very simple form (1) expressible in terms of several
universal nonperturbative functions such as the �BM (23)
function and the twist-2 light cone distribution amplitudes
(LCDA) [49] that are for pseudoscalar final state defined
through (see e.g. [50])

 hPa�p�j �qn;!1
	a6n�
5q

0
n;!2
j0i � �ifP2E�Pa�u�; (26)

with M � 	aPay a 3
 3 matrix of light pseudoscalar
fields Pa given in (C1), and for the longitudinally polarized
vector meson final state through

 hVa
k
�p�j �qn;!1

	a6n�q0n;!2
j0i � ifV2E�Va

k �u�: (27)

Amplitudes for decays to transversely polarized vector
-6
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mesons do not receive leading order contributions from
operators (8) and (12) (see also discussion around
Eq. (36)).

For the gluonic operator on the other hand [51]

 i
?��hP�p�jTr�B?�n;!1
B?�n;�!2

�j0i �
i
4

�������
CF

p
f1
P

��g
P�u�; (28)

where f1
�q �

��������
2=3

p
f�q , f

1
�s � f�s=

���
3
p

, and f1
P � 0 for

other pseudoscalars. Here f�q and f�s are the decay con-

stants corresponding to �qq � � �uu� �dd�=
���
2
p

and �ss axial
currents in (26), respectively. The matrix elements of
gluonic operators between vacuum and vector meson states
vanish. In all of the above definitions the integrationR

1
0 du��!1 � u �n � p���!2 � �u �n �p� on the right-hand

side (r.h.s.) is implicitly assumed. The LCDA ��g
P�u� is

related to the LCDA �Pg�u� used in [51] through

 

�� g
P�u� �

�Pg�u�

u�1� u�
; (29)

and coincides with the definition in [52]. It has the sym-
metry property ��g

P�u� � � ��g
P�1� u�, as can be easily

seen from (28). Finally, the relevant B meson LCDA is
[41,53]

 h0j� �qsYn�jx� 6n�1� 
5��Y
y
n bv�j0jBi

� �ifBmB

Z
dr�e�ir�x�=2��B �r��: (30)

Combining the SCETI ! SCETII matching (24) with
the definitions of the nonperturbative matrix elements
and using the relation

 6nPLB6 ?n;x!B6 ?n; �x! � �g?�� � i
?���B
?�
n;x!B?�n; �x! 6nPL;

(31)

for the gluonic operator in (24), we arrive at the expression
for the decay amplitude into pseudoscalar or longitudinally
polarized vector mesons M1;2 valid at leading order in
1=mb and to all orders in �S�mb�
 

A�B! M1M2�

�
GF���

2
p m2

B

�
fM1

Z
du�M1

�u�
Z
dzT1J�u; z��

BM2
J �z�

� fM1

Z
du�M1

�u�T1� �u��
BM2

� f1
M1

Z
du ��g

M1
�u�

Z
dzTg1J�u; z��

BM2
J �z�

� f1
M1

Z
du ��g

M1
�u�Tg1� �u��

BM2

� 1$ 2� 	�f�c A
M1M2
cc

�
; (32)

where AM1M2
cc is a term denoting the nonperturbative charm-

ing penguin contributions to be discussed in more detail
below, see Eqs. (47)–(54), �BM was defined in (23), while
�BMJ �z� is given in terms of the jet functions (24) as
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�BMJ �z� �
fBfM
mB

Z
dk��

�
B �k��




�
CBMJ

Z
dx�M�x�J�z; x; k��

� CBMg
1

4

�������
CF
3

s Z
dx ��g

M�x�Jg�z; x; k��
�
; (33)

for both isosinglet and nonisosinglet mesons M. The term
with gluonic jet function Jg�z; x; k�� contributes only when
M � �q; �s. The coefficients CBMJ;g parametrizing the rela-
tive weights of the two contributions in �BMJ �z� are
BM
-7
CBMJ
 CBMg

�B0�q, B��q
 1
 2

�B0�s, B��s
 0
 1

�B0�s
 1
 1

�B0�q
 0
 2
In all other cases, when M is either an isospin nonsinglet
pseudoscalar meson or a vector meson, we have simply
CBMJ � 1 and CBMg � 0. Because �q � �u �u� d �d�=

���
2
p

con-
tains two quark flavors the gluonic coefficient CBMg is twice as
large as for �s (the normalization factor 1=

���
2
p

is absorbed in
hard kernels).

The hard kernels T1J�u; z� in (32) are

 

T1J�u;z��
X
i

bi�u;z�C
M1
i; �n C

M2
i;n ��VM1

��PM1


�1�2�i;3�2�i;6��; (34)

where CM1
i; �n , CM2

i;n are coefficients describing the content of
final state mesons going in the n, �n directions, respectively,
while �i;j are Kronecker deltas. The hard kernels T2J�u; z�
are obtained from the above expression with the replace-
ment 1$ 2, while the hard kernels T1� �u�, T2� �u� are
obtained from T1J�u; z�, T2J�u; z� by replacing bi ! ci.
For the reader’s convenience, explicit formulas for the
hard kernels are provided in Tables I, II, III, and IV for
the �S � 0 and �S � 1 decays of �B0, B�, and �B0

s mesons
(Feldmann-Kroll-Stech (FKS) mixing scheme is used for
treatment of �, �0 final states, see discussion above and
below Eq. (41)). Note that our phase convention for final
states,�� � u �d,�0 � �u �u� d �d�=

���
2
p

,�� � d �u, �K0 � s �d,
K0 � d �s, K� � u �s, K� � s �u, �q � �u �u� d �d�=

���
2
p

, �s �
s�s, differs from the one used in [9,10].

The terms in the third and fourth line of Eq. (32) are
coming from Q�1�gs and Q�0�gs operators, respectively. They
contribute only if M1 is an isosinglet pseudoscalar meson,
with hard kernels Tg1J�u; z�, T

g
1� �u� that start at NLO in

�S�mb� (17) and (18)

 Tg1J �

�������
CF
p

2
C�f�BM2

b�f�g ; Tg1� �

�������
CF
p

2
C�f�BM2

c�f�g ; (35)

where C�f�BM2
is a coefficient describing the �qf flavor con-



TABLE I. Table of hard kernels for �S � 0 decays of B�, �B0, and �B0
s into isosinglet mesons,

separated, respectively, by horizontal lines. The superscript (d) in the coefficients c�d�i is not
displayed. T1J and T2J are obtained with the replacement ci ! bi.

Mode T1� T2�

���q, ���q
1��
2
p �c1 � c4�

1��
2
p �c2 � c3 � c4� �

���
2
p
�c5 � c6�

���s, ���s c1 � c4 c5 � c6

���, ��� 0 c5 � c6

��!, ��! 1��
2
p �c1 � c4�

1��
2
p �c2 � c3 � c4� �

���
2
p
�c5 � c6�

Mode T1� T2�

�0�s, �0�s
1��
2
p �c2 
 c3 � c4� � 1��

2
p �c5 � c6�

�0�q, �0�q
1
2 �c2 
 c3 � c4� � 1

2 �c2 � c3 � c4� � c5 � c6

�0�, �0� 0 � 1��
2
p �c5 � c6�

�0!, �0! 1
2 �c2 
 c3 � c4� � 1

2 �c2 � c3 � c4� � c5 � c6

�q�, !� 0 1��
2
p �c5 � c6�

�q!, !! 1
2 �c2 
 c3 � c4� � c5 
 c6

1
2 �c2 � c3 � c4� � c5 � c6

�q�q
1
2 �c2 � c3 � c4� � c5 � c6

1
2 �c2 � c3 � c4� � c5 � c6

�q�s
1��
2
p �c2 � c3 � c4� �

���
2
p
�c5 � c6�

1��
2
p �c5 � c6�

�s�s c5 � c6 c5 � c6

Mode T1� T2�

K0�	��, K0�	��s {0, c4g c5 � c6

K0�	�!, K0�	��q {0, 1��
2
p c4g

1��
2
p �c2 � c3 � c4� �

���
2
p
�c5 � c6�
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tent of M2, with q the flavor of spectator quark. For
instance C�d�B��� � 1, C�d��B0�0 � �1=

���
2
p

, while C�s�B��� � 0.
The discussion of B decays into transversely polarized

vector mesons is complicated by the presence of mb en-
hanced electromagnetic operator, as pointed out recently in
Ref. [54]. Namely, for the decays into neutral V? mesons
the 1=	 enhanced operator

 Q��1�

 � m2

b� �sn;!1
6n�
�?PRbv��B

?�

; �n;!2

�; (36)
TABLE II. Table of hard kernels for �S � 1 decays of B�, �B0,
and �B0

s into isosinglet mesons (separated by horizontal lines in
the table). The superscript (s) on coefficients c�s�i is not dis-
played. T1J and T2J follow from the replacement ci ! bi.

Mode T1� T2�

K��	��q, K��	�! 1��
2
p �c1 � c4�

1��
2
p �c2 
 c3 � 2c5 
 2c6�

K��	��s, K��	�� fc1 � c4, 0} c4 � c5 
 c6

Mode T1� T2�
�K0�	��q, �K0�	�! 1��

2
p c4

1��
2
p �c2 
 c3 � 2c5 
 2c6�

�K0�	��s, �K0�	�� fc4, 0} c4 � c5 
 c6

Mode T1� T2�

�s�
0, ��0 0 1��

2
p �c2 � c3�

�s�
0, ��0 0 1��

2
p �c2 � c3�

�q�
0, �q�0 0 1

2 �c2 
 c3�

�q�q
c2

2 �
c3

2 � c5 � c6
c2

2 �
c3

2 � c5 � c6

�s�q, ��q
1��
2
p �c4 � c5 
 c6�

1��
2
p �c2 � c3 � 2c5 � 2c6�

�s�s, �� c4 � c5 
 c6 c4 � c5 
 c6

��s c4 � c5 � c6 c4 � c5 � c6

�s!, �! 0 1��
2
p �c2 � c3 � 2c5 � 2c6�
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also contributes. Here ieB?�
; �n;! is a purely electromagnetic
operator related to the ( �n, ? ) component of the electro-
magnetic field strength, defined in the same way as the
gluonic counterpart in (11), but with the replacement of
QCD Wilson lines and covariant derivatives with the QED
ones, Wn ! W
n, iDc� ! i@� � eA�. At leading order in
the electromagnetic coupling the operator (36) is a result of
a tree-level matching of O7
 (4) and of four quark opera-
torsO1;...;10 with a photon emitted from a closed quark loop
[54].
TABLE III. Table of hard kernels for �S � 0 decays of B�,
�B0, and �B0

s mesons, respectively, (separated by horizontal lines in
the table) without isosinglets in the final state. The superscripts
on c�d�i are not displayed for brevity. T2J and T1J are obtained
with the replacement ci ! bi.

Mode T1� T2�

���0, ���0 1��
2
p �c1 � c4�

1��
2
p �c2 � c3 � c4�

���0, ���0 1��
2
p �c1 � c4�

1��
2
p �c2 � c3 � c4�

K0�	�K��	� c4 0

Mode T1� T2�

����, ���� 0 c1 � c4

����, ���� 0 c1 � c4

�0�0, �0�0 1
2 ��c2 � c3 � c4�

1
2 ��c2 � c3 � c4�

�0�0 1
2 ��c2 � c3 � c4�

1
2 ��c2 � c3 � c4�

K0�	� �K0�	� c4 0

Mode T1� T2�

��K��	�, ��K��	� c1 � c4 0
�0K0�	�, �0K0�	� 1��

2
p �c2 
 c3 � c4� 0
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TABLE IV. Table of hard kernels for �S � 1 decays of B�,
�B0, and �B0

s mesons, respectively, (separated by horizontal lines in
the table) without isosinglets in the final state. T2J and T1J are
obtained with the replacement ci ! bi.

Mode T1� T2�

K��	��0, K��	��0 1��
2
p �c�s�1 � c

�s�
4 �

1��
2
p �c�s�2 
 c

�s�
3 �

�K0�	���, �K0�	��� c�s�4 0

Mode T1� T2�
�K0�	��0, �K0�	��0 � 1��

2
p c�s�4

1��
2
p �c�s�2 
 c

�s�
3 �

K��	���, K��	��� c�s�1 � c
�s�
4 0

Mode T1� T2�

K��	�K��	� c�s�1 � c
�s�
4 0

�K0�	�K0�	� c�s�4 0
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The operator (36) leads to contributions that are mb=�
enhanced compared to the amplitudes for B! VkVk in
(32), but which are, on the other hand, also �em suppressed
due to the exchanged photon. Numerically thus the con-
tributions from (36) can be expected to be smaller than the
O�m0

b� terms in (32). Thus at leading order the only con-
tributions to B! V?V? can arise from nonperturbative
charming penguins Acc [9], possibly explaining large trans-
versely polarized amplitudes in B! �K	 decays [55],
while the other terms are either 1=mb or �em

0 mb=� sup-
pressed (for alternative explanations see [22,56]).
Therefore, a complete first order treatment of observables,
most notably all the CP asymmetries, in B! V?V? de-
cays requires an inclusion of 1=mb operators, which is
beyond the scope of the present paper and will not be
pursued further.

The amplitude (32) has the form of a convolution of
nonperturbative light cone wave functions �M�x�, ��g

M�x�,
��B �k

�� and the perturbative hard kernel and jet functions.
With prior knowledge of the light cone wave function from
a fit to an unrelated experiment, a prediction for B!
M1M2 decays can be made using a perturbative expansion
in �S�

����������
mb�

p
� for the jet functions and in �S�mb� for the

hard kernels. Alternatively, the nonperturbative parameters
can be fit from observables in B! M1M2 decays. This
approach is especially useful at leading order in �S�mb�,
since then the hard kernels T1�;2� �u� are constants, while
T1J;2J�u; z� are functions of u only. Furthermore, at this
order the hard kernels Tg1J;2J�u; z�, T

g
1�;2� �u� do not contrib-

ute at all. At LO in �S�mb� thus
 

AB!M1M2
�
GF���

2
p m2

B

�
fM1

�BM2
J

Z
du�M1

�u�T1J�u�

� fM1
�BM2T1� � 1$ 2� 	�f�c A

M1M2
cc

�
; (37)

where �BM1 and

 �BM1
J �

Z
dz�BM1

J �z�; (38)
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are treated as nonperturbative parameters to be fit from
experiment. Note that in this way no perturbative expan-
sion in �S�

����������
mb�

p
� is needed. Equation (37) has exactly the

same form as a factorization formula obtained in
Refs. [9,10] for decays into nonisosinglet mesons, but is
now valid also for decays into isosinglets. We will use this
form for the factorized amplitudes in the phenomenologi-
cal analyses in Sec. III.

We turn now to the treatment of � and �0 states, where
we use the FKS mixing scheme [57]. An arbitrary isospin
zero biquark operator O can be written as a linear combi-
nation of Oq � �u �u� d �d�=

���
2
p

and Os � s�s operators with
well-defined flavor structure (here Dirac structure is
ignored for simplicity). The matrix elements of O �
cqOq � csOs between ��

0� states and the vacuum can
then be parametrized in a completely general way by

 h0jOj�i � cq cos�qhOqi � cs sin�shOsi; (39)

 h0jOj�0i � cq sin�qhOqi � cs cos�shOsi; (40)

where the four matrix elements h0jOq;sj��
0�i have been

traded for two angles �q;s and two reduced matrix ele-
ments hOq;si, all of which in principle depend on the
structure of operator O. Phenomenologically, �q � �s �

� to a very good degree, with � � �39:3� 1:0�� irrespec-
tive of the operator O [57]. In other words, if the mass
eigenstates �, �0 are related to the flavor basis through

 � � �q cos�� �s sin�; �0 � �q sin�� �s cos�;

(41)

then to a very good approximation (i) the matrix elements
corresponding to Okubo-Zweig-Iizuka (OZI) suppressed
processes vanish, h0jOqj�si � h0jOsj�qi � 0, and (ii) the
shapes of �q;s components of the wave functions do not
depend on the mass eigenstate so that the reduced matrix
elements hOqi� � h0jOqj�i= cos�, hOqi�0 �

h0jOqj�0i= sin� (and similarly for Os) are independent
of the final state particle, hOqi� � hOqi�0 .

We will make one further assumption

 ���u;�� � ��q�u;��; (42)

that is well respected by data. The relation (42) is true for
asymptotic forms of LCDA, where for �! 1 one has
���u� � ��q�u� � 6u �u. It can be, however, only approxi-
mately true for all other scales, since ��q�u;��mixes with

gluonic LCDA ��g
�q�u;��, while ���u;�� does not. Even

so, for � as low as � � 1 GeV the relation (42) is very
well respected [51]. The inverse moments or � and �q
LCDA for instance agree within experimental errors,
which are at the level of 3%–5%.

Equation (42) leads to relations between the nonpertur-
bative function ��J� and Acc for decays into �, �q, so that
one can write
-9



FIG. 6. The gluonic charming penguin contributions with in-
termediate on shell charm quarks annihilating into two collinear
quarks going in the opposite directions, with n collinear quark
annihilating with spectator quark and producing two n collinear
gluons (compare also with diagrams (b) and (d) of Fig. 4).
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 �
B�q
�J� � �B�

�J� � 2��J�g; (43)

with ��J�g new nonperturbative functions that are entirely
due to contributions from interpolating gluons (the func-
tion �Jg for instance is equal to the second term in (33)).
The decomposition (43) is useful only in the limit of exact
flavor SU(3) symmetry, when

 �B�s
�J� � ��J�g: (44)

Similar relations for Acc will be given below.
Using SU(3) symmetry further relations are possible. In

the exact SU(3) limit only two � functions are needed for
the decays without isosinglet mesons

 ��J� � �B�
�J� � �BK

�J� � �BsK
�J� : (45)

Furthermore, to describe all the decays into isosinglet
mesons only the two new functions ��J�g defined in (43),
are needed. Namely, in exact SU(3) one has (cf. Eq. (33))

 �
Bs�q
�J� � 2��J�g; �Bs�s

�J� � ��J� � ��J�g; (46)

in addition to the relations (43) and (44).
Let us now discuss the nonperturbative charming pen-

guin contributions AM1M2
cc (37) in the isospin limit assuming

FKS mixing along with relation (42). The charming pen-
guins in �B0, B� decays into ��q, ��s, and �� final states
are parametrized in terms of four complex parameters

 A��cc � A�
���

cc � A�
0�0

cc ;

A��scc;g � A�
��s

cc � �
���
2
p
A�

0�s
cc �

���
2
p
A
�q�s
cc ;

(47)

and A��cc , A
��q
cc;g in terms of which

 

A
���q
cc �

���
2
p
�A��cc � A

��q
cc;g �; A

�0�q
cc � �A��cc � A

��q
cc;g ;

A
�q�q
cc � A��cc � 2A

��q
cc;g ; (48)

and A�
��0

cc � 0. Here A
��q;s
cc;g describes the charming pen-

guin contributions, where the n collinear quark coming
from the annihilation of charm quarks annihilates the
spectator quark and produces two n collinear gluons,
Fig. 6. At LO in 1=mb there is one additional relation

 A��cc � A��cc : (49)

The amplitude A��cc receives contributions from SCET
operators of higher order in 1=mb, where the spectator
quark directly attaches to the weak vertex. These higher
order corrections correspond to penguin annihilation in the
diagrammatic language and do not contribute to A��cc .

At LO in 1=mb one further parameter is introduced for
�S � 0 decays into two kaons

 AKKcc � AK
0K�

cc � AK
0 �K0

cc ; (50)

while higher order penguin annihilation contributions to
AK

0 �K0

cc distinguish between the two amplitudes.
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Three additional complex parameters describe charming
penguins in �S � 1 decays of �B0, B�
 

AK�cc � AK
���

cc � A �K0��
cc � �

���
2
p
A �K0�0

cc �
���
2
p
AK

��0

cc ;���
2
p
A
K�q
cc;g �

1���
2
p AK�cc � A

�K0�q
cc � A

K��q
cc ;

AK�scc;g � A
K�s
cc � AK

��s
cc � A

�K0�s
cc ;

(51)

where the gluonic component AK�scc;g has been pulled out for
later convenience. An additional six complex parameters
describe charming penguin contributions in �B0

s decays
 

A�Kcc �s� � A
�B0
s!��K�
cc � �

���
2
p
A

�B0
s!�0K0

cc ;

AKKcc �s� � A
�B0
s!K�K�
cc � A

�B0
s!K0 �K0

cc ;���
2
p
A
�s�q
ccg �s� � A

�B0
s!�s�q
cc ;

2A�s�scc �s� � 2A�s�sccg �s� � A
�B0
s!�s�s
cc ;

1���
2
p A�Kcc �s� �

���
2
p
A
K�q
ccg �s� � A

�B0
s!K0�q
cc ;

AK�scc �s� � A
K�s
ccg �s� � A

�B0
s!K0�s
cc ;

(52)

where the subscript g again denotes gluonic contributions
as before. Note that the above relations are valid to all
orders in the �S�mb� and 1=mb expansions, under the
assumptions leading to FKS mixing along with relation
(42).

In the limit of exact SU(3) and at LO in 1=mb the above
17 complex parameters in (47)–(52) are related to only two
complex parameters
 

Acc � A��cc � A��cc � AK�cc � AK�scc � AKKcc � A�Kcc �s�

� AKKcc �s� � A�s�scc �s� � AK�scc �s�; (53)

and

 Accg � A
��q
cc;g � A��scc;g � A

K�q
cc;g � AK�scc;g � A

�s�q
ccg �s�

� A�s�sccg �s� � A
K�q
ccg �s� � AK�sccg �s�; (54)
-10
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The same relations also apply to B decays into two vector
mesons, with the replacements �q ! !, �s ! �, �! �,
K ! K	, but with additional simplification since the
gluonic contributions (54) vanish. The relations apply for
each polarization of the vector mesons separately, with
transversely polarized vector mesons receiving only con-
tributions from nonperturbative charming penguins [9].
The relations between Acc for B! PV decays are slightly
more complicated, because separate nonperturbative pa-
rameters are needed if pseudoscalar or vector meson ab-
sorb the spectator quark. Since we will not perform the
phenomenological analysis of B! PV decays we do not
display these relations.

C. Semileptonic B decays into isosinglet mesons

Using the above derivations, it is fairly straightforward
to obtain the results for vector and axial vector form factors
in semileptonic B decays to light pseudoscalar or vector
mesons at q2 � 0. The V � A current �q
��1� 
5�b is
matched to SCETI LO and NLO currents [3,39,40,44,47]
 Z
d!1c0�!1�j

�
0 �!1� �

X
~n�n; �n

Z
�d!1;2�c1~n�!1;2�j

�
1~n�!1;2�

� . . . ; (55)

where

 j�0 � n�� �qn;!1
6n�PLbv�; (56)

 j�1n �
�2

mB
n�� �qn;!1

igB6 ?n;!2
PLbv�; (57)

 j�1 �n �
�2

mB
�n�� �qn;!1

igB6 ?n;!2
PLbv�; (58)

with the ellipses denoting the remaining SCETI currents
that either receive contributions only at NLO in �S�mb� or
contribute to the form factors at subleading order in 1=mb.
At leading order in �S�mB�

 c0 � c1n � c1 �n � 1: (59)

Since j�0 , j�1n are equal to n�Qn�0;1�
1d;2d;2s in (19) for b! u, d, s

transitions, respectively, while j�1 �n is equal to �n�Qn�1�
1d;2d;2s,

we can readily obtain the result for the SCETI to SCETII

matching of the V � A current from the results obtained in
the previous subsection for the four quark operators. The
soft overlap contribution is proportional to n�, while the
hard scattering contributions contribute equally to terms
with n� and �n� Lorentz structure. More precisely, the soft
overlap for b! d decay equals n�T1;2d, leading to a
contribution of mBn

��BM to the matrix element
hMj �d
��1� 
5�bjBi at q2 � 0, with similar results for
the hard scattering contributions. Using a definition of
form factors
014003
 hPj �q
��1� 
5�bjBi � CBP
�
mBn

�fBP� �0�

�
mB

2
�n��fBP� �0� � f

BP
� �0��

�
;

(60)

where the relations p�B � mBv
�, and p�P � mBn

�=2 have
been used, this gives for the form factors of B! P tran-
sition at maximal recoil at LO in 1=mb and �S�mb�

 fBP� �0� � �BP � �BPJ ; (61)

 fBP� �0� � f
BP
� �0� � 2�BPJ : (62)

Quite similarly one obtains for the form factors at q2 � 0
in B! V transition

 A0�0� �
mB

2mV
�A1�0� � A2�0�� � A3�0� � �BV � �BVJ ;

(63)

and

 A2�0� � 2mVmB
d�A3 � A0�

dq2

��������q2�0
� �

4mV

mB
�BVJ ; (64)

where the standard definition of form factors has been used
(and can be found e.g. in [58]). The coefficients CBP in the
definition of B! P form factors (60) and equivalent co-
efficients CBV in the definition of B! V form factors, take
care of the flavor content of the final state M. For instance
for �q;! these are CB

�M � C �B0M � 1=
���
2
p

, while for �s,
�, they are CB

�M � C �B0M � 1. The expressions for �J
parameters in terms of jet functions are given in Eq. (33).
Note that the derived relations between form factors and
the SCET nonperturbative functions are valid also for
isosinglet mesons and in this sense extend the previous
discussions of B! P, V form factors [35,40–47]. In
particular, the B! �q form factors f��0� receive the
gluonic contribution as can be seen from (33).
III. PHENOMENOLOGY

We now apply the LO (in 1=mb and �S�mb� expansions)
factorization formula Eq. (37) to B decays into pseudosca-
lar mesons.

For the nonperturbative parameters AM1M2
cc and �BMi

�J�

exact SU(3) relations (43)–(46), (53), and (54) will be
used, leading to four independent real parameters ��J�,
��J�g and two complex parameters Acc, Accg describing
nonperturbative charming penguins. The parameters ��J�g
and Accg correspond to gluonic contributions and are spe-
cific to the decays into isosinglet final states. We will thus
first determine ��J� and Acc using a �2-fit to observables in
B! ��, B! �K decays and then fix the remaining
parameters ��J�g and Accg from a separate �2-fit to observ-
ables in B! ��

0��, B! ��
0�K decays.
-11
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The data used in the analysis are from HFAG, Summer
2005 compilation [59], apart from the observables where
different experiments do not agree, in which case the errors
are inflated according to the PDG prescription [60]. The
observables used throughout the analysis are the CP aver-
aged decay widths

 

���B! f� �
j ~pj

8�mB

1

2
�j �Afj2 � jAfj2�; (65)

with j ~pj � mB=2�O�m2
M=m

2
B� the three momentum of

light mesons in the B rest frame, and an additional factor of
1=2 on the right-hand side, if two identical mesons are in
the final state, while the abbreviations are �Af � A �B!f,
Af � AB! �f. Then the direct CP asymmetries

 A CP
f �

j �Afj2 � jAfj2

j �Afj2 � jAfj2
; (66)

and the additional observables, Sf, Hf, that can be ex-
tracted from time dependent decays of neutral B mesons
are (restricting f to have definite CP)
 

��B0
q�t� ! f� � e��t ���Bq ! f�




�
cosh

�
��t

2

�
�Hf sinh

�
��t

2

�

�ACP
f cos��mt� � Sf sin��mt�

�
; (67)

where �m � mH �mL > 0, � is the average decay width
and �� � �H � �L the difference of decay widths for
heavier and lighter B0

q mass eigenstates. The time depen-
dent decay width �� �B0

q�t� ! f� is obtained from the above
expression by flipping the signs of the cos��mt� and
sin��mt� terms.

Since ���=��Bd � 1 in the B0
d system, only measure-

ments of the parameter

 Sf � 2
Im�e�i2� �Af�Af�

	�

j �Afj
2 � jAfj

2
; (68)

are experimentally feasible in the foreseeable future. In the
above relation (68) the phase convention with argVcb �
argVcs � arg��Vcd� � 0, so that � �
arg��V	cbV

	
tdVcdVtb� � arg�V	tdVtb� was employed [61].

In the Bs system, on the other hand, we expect a much
larger decay width difference ���=��Bs � �0:12� 0:05
within the standard model [62], while experimentally
���=��Bs � �0:33�0:09

�0:11 [59], so that both

 �Sf�Bs � 2
Im�e�i2
 �Af�Af�	�

j �Afj2 � jAfj2
; (69)

and

 �Hf�Bs � 2
Re�e�i2
 �Af�Af�

	�

j �Afj
2 � jAfj

2
; (70)
014003
might be experimentally accessible [63]. Thus predictions
for both (69) and (70) will be given in Sec. III D. In writing
(69) and (70) the same phase convention as in (68) was
used, with 
 � arg��VcbVtsV	csV	tb� [61,64].

In our numerical estimates we use preferred values of
Ref. [65] for inverse moments of LCDA at 1 GeV hx�1i� �
3:3 and hx�1

s iK � 2:79, hx�1
q iK � h�1� xs��1iK � 3:81,

and take hx�1i�q � hx
�1i�s � hx

�1i�. Note that this
choice respects the sum rule for inverse moments [66]

 hx�1i� � 3hx�1i� � 2�hx�1
s iK � hx�1

q iK�: (71)

The inverse moment of the pion LCDA also agrees with the
experimental determination hx�1i� � 2:91� 0:54 ob-
tained from CLEO data on the pion’s electromagnetic
form factor in Ref. [67]. The values of the CKM elements
and the CKM unitarity triangle angles 
 and � are taken
from CKM fitter, Summer 2005 update [68]. In particular,
jVubj � �3:899� 0:10� 
 10�3, 
 � 58:6� � 6:4�, and
� � 23:22� � 0:75�, while for the weak phase in the B0

s �
�B0
s mixing 
 � 1:04� � 0:07� [68]. These values agree

with the ones obtained by the UTFit collaboration [69].
Note that the constraints on CKM angle 
��� are obtained
using an isospin decomposition of time dependent B!
��, ��, �� decays [70,71] (for a discussion of isospin
violating effects see [72]) and from B! DK decays
[73,74]. No use of theoretical inputs from a 1=mb expan-
sion has been made at this point (such a possibility for
using SCET to facilitate extraction of � from B! �� has
been discussed in [75]). Also, B! �� data are not re-
strictive at present in the determination of �, so essentially
no use of B! PP data has been made to fix the above
CKM parameters to be used in our analysis. For the decay
constants we use f� � 131 MeV, fB � 218� 23 MeV
[76] and f�q � 140� 3 MeV, f�s � 176� 8 MeV [57].

Since our phase convention for the � states, �� � u �d,
�0 � 1=

���
2
p
�u �u� d �d�, �� � d �u and the kaon states �K0 �

�ds, K0 � �sd, K� � �su, K� � �us differs from the one used
in Refs. [9,10] the corresponding hard kernels are gathered
in Tables III and IV.

A. Analysis of B! �� and B! �K decays

Let us start the analysis with a discussion of the �S � 0
B! �� and �S � 1 B! �K decays. Our analysis dif-
fers in the treatment of errors and in the way the SCET
nonperturbative parameters ��J�, Acc are determined from
LO SCET analysis of the same decay modes in
Refs. [9,10]. Here a combined �2-fit to available experi-
mental information will be made to determine the SCET
parameters, while in [10] only a subset of modes was used
for this purpose. The values of the SCET parameters that
will be determined in this section will then be used in
subsequent sections; in the discussion of decays into final
states with ��

0� mesons in Sec. III B, for predictions on S
-12
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parameters in penguin dominated modes in Sec. III C, and
for prediction of observables in �B0

s decays in Sec. III D.
The majority of the differences between B! �� and

B! �K decays can be explained by a CKM hierarchy of
different contributions. Here and in the rest of the analysis
we will split the amplitudes into ‘‘tree’’ and ‘‘penguin’’
contributions according to the CKM elements. Using the
unitarity relation 	�d;s�t � �	�d;s�c � 	�d;s�u we define

 A �B!f � 	�d;s�u T �B!f � 	
�d;s�
c P �B!f; (72)

for any process �B! f. In addition we will also use the
nomenclature where tree contributions (without quotation
marks) will denote insertions of Ou

1;2 (2) operators and will
be present only in tree amplitudes TB!f, charming penguin
contributions will denote insertions of Oc

1;2 and will be
present only in penguin amplitudes PB!f, while QCD
penguin and EWP contributions will denote insertions of
the operators O3;...;6 and O7;...;10, respectively and will
contribute to both TB!f and PB!f.

In �S � 1 decays, such as B! �K, there is a strong
CKM hierarchy between the two terms in (72) since
j	�s�u j � 0:02j	�s�c j. No such CKM hierarchy is present in
�S � 0 decays, where both terms are of the same order in
the Wolfenstein expansion j	�d�u j � j	

�d�
c j � 	3 [77]. One

therefore expects sizeable direct CP asymmetries in �S �
0 processes and much smaller ones in �S � 1 decays.

There are a number of other observations that can be
made using the LO SCET expression (37) even before the
nonperturbative parameters of SCET are determined from
the data. Because of the intriguing discrepancies between
theoretical expectations and experiment in the �S � 1
transition, we will focus in this section mainly on B!
�K decays. We start with the isospin decomposition of
B! �K decay amplitudes [78–80]

 A �B0!��K� � A0
1=2 � A

1
3=2 � A

1
1=2; (73)

 AB�!�0K� �
1���
2
p A0

1=2 �
���
2
p
A1

3=2 �
1���
2
p A1

1=2; (74)

 A �B0!�0 �K0 � �
1���
2
p A0

1=2 �
���
2
p
A1

3=2 �
1���
2
p A1

1=2; (75)

 AB�!�� �K0 � A0
1=2 � A

1
3=2 � A

1
1=2; (76)

with I and �I in the reduced matrix elements A�I
I denoting

the isospin I � 3=2, 1=2 of the final states and �I � 1, 0
denoting the isospin content of the weak Hamiltonian. If
electroweak penguin contributions are neglected, the re-
duced matrix elements A1

3=2 and A1
1=2 receive contributions

only from tree operators Ou
1;2, while A0

1=2 receives both
penguin and tree contributions. Explicitly, at LO in SCET
014003
 A0
1=2 � m2

B
GF���

2
p

�
	�s�c AK�cc �

fK
2
��B��c�s�1 � 2c�s�4 �

� �B�J �b
�s�
1 � 2b�s�4 ��

�
; (77)

 

A1
1=2 � �

m2
B

6

GF���
2
p ffK��B�c

�s�
1 � �

B�
J b�s�1 �

� 2f���
BK�c�s�3 � c

�s�
2 � � �

BK
J �b

�s�
3 � b

�s�
2 ��g; (78)

 

A1
3=2 � �

m2
B

3

GF���
2
p ffK��B�c

�s�
1 � �

B�
J b�s�1 �

� f���
BK�c�s�3 � c

�s�
2 � � �

BK
J �b

�s�
3 � b

�s�
2 ��g; (79)

where SCET Wilson coefficients c�s�i , b�s�i are to be under-
stood as already convoluted with LCDA. This amounts to a
replacement !2;3 !�mB=hx

�1
s;q iK, in b�s�i that are multi-

plied by fK and a replacement !2;3 ! �mB=hx�1i� in b�s�i
that are multiplied by f�.

The dominant term in B! K� decays is the charming
penguin term AK�cc , which is 	�s�c =	

�s�
u enhanced over tree

contributions. Since it arises from insertions of Oc
1;2 opera-

tors it is also larger than QCD penguins by a factor
C1�S�2mc�=max�C3; . . . ; C6� � 10. The charming pen-
guin contribution has �I � 0 and is thus present only in
A0

1=2 (77). Similarly, the reduced matrix elements A1
3=2;1=2

do not receive contributions from QCD penguins since
these are �I � 0 operators. Note also, that the presence
of the inverse moment hx�1i�;K � 3 in bi lifts the color
suppression of tree operators in �B0 ! �K0�0. Similarly the
color suppression of EWP contributions to �B0 ! ��K�

and B� ! �� �K0 is lifted as well. Isospin decomposition
also leads to the relation

 AB�!K��0 �
1���
2
p �A �B0!K��� � AB�! �K0��� � A �B0! �K0�0 ;

(80)

valid to all orders in 1=mb and �S [78–80]. As pointed out
recently in Ref. [81] this relation furthermore receives
corrections from isospin breaking which are of only second
order numerically, with corrections to penguins that are
linear in mu;d=� canceling exactly.

The dominance of the AK�cc term in B! K� amplitudes
leads to the approximate relation between branching ratios

 Br��K� ’ Br�� �K0 ’ 2Br�0K� ’ 2Br�0 �K0 ; (81)

that is well obeyed by the data. The corrections to these
relations come from A1

1=2;3=2 reduced matrix elements (78)

and (79) that receive only contributions from j	�s�u j �
0:02j	�s�c j suppressed tree operators or from EWP. To study
them it is useful to construct ratios of CP averaged decay
widths in which the dependence on A�Kcc cancels to first
approximation. Following the notation in the literature we
-13



TABLE V. Predicted CP averaged branching ratios (
 10�6,
first row) and direct CP asymmetries (second row in each mode)
for �S � 0 and �S � 1 B decays (separated by horizontal line)
to two nonisosinglet pseudoscalar mesons. The errors on the
predictions are estimates of SU(3) breaking, 1=mb corrections,
and due to errors on SCET parameters, respectively.

Mode Exp. Theory
�B0 ! ���� 5:0� 0:4 5:4� 1:3� 1:4� 0:4

0:37� 0:23a 0:20� 0:17� 0:19� 0:05
�B0 ! �0�0 1:45� 0:52b 0:84� 0:29� 0:30� 0:19

0:28� 0:40 �0:58� 0:39� 0:39� 0:13
B� ! �0�� 5:5� 0:6 5:2� 1:6� 2:1� 0:6

0:01� 0:06 <0:04
B� ! K0K� 1:2� 0:3 1:1� 0:4� 1:4� 0:03

� � � � � �
�B0 ! K0 �K0 0:96� 0:25 1:0� 0:4� 1:4� 0:03

� � � � � �

Mode Exp. Theory
�B0 ! �0 �K0 11:5� 1:0 9:4� 3:6� 0:2� 0:3

0:02� 0:13 0:05� 0:04� 0:04� 0:01
�B0 ! K��� 18:9� 0:7 20:1� 7:4� 1:3� 0:6

�0:115� 0:018 �0:06� 0:05� 0:06� 0:02
B� ! K��0 12:1� 0:8 11:3� 4:1� 1:0� 0:3

0:04� 0:04 �0:11� 0:09� 0:11� 0:02
B� ! �K0�� 24:1� 1:8c 20:8� 7:9� 0:6� 0:7

�0:02� 0:05d <0:05

aError scaled according to PDG (S � 2:3)
bError scaled according to PDG (S � 1:8)
cError scaled according to PDG (S � 1:4)
dError scaled according to PDG (S � 1:5)
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define [82,83]

 R �
��� �B0 ! K����
���B� ! �K0���

�
exp:

0:84� 0:07; (82)

 Rc � 2
���B� ! K��0�
���B� ! �K0���

�
exp:

1:00� 0:10; (83)

 Rn �
1

2

��� �B0 ! K����
��� �B0 ! �K0�0�

�
exp:

0:82� 0:08; (84)

where the experimental information on the ratios has also
been displayed. For the reader’s convenience we will also
discuss the ratio R00 � R=Rn proposed in [14]

 R00 � 2
��� �B0 ! �K0�0�
���B� ! �K0���

�
exp:

1:03� 0:12: (85)

The deviations from 1 are experimentally only at the level
of at most 2�. Also, of the CP asymmetries only ACP

K��� is
well measured, so that the values of the SCET parameters
�BK
�J� , �B�

�J� and the phase of A�Kcc cannot at present be reliably
extracted from B! K� experimental data alone. We thus
impose SU(3) symmetry Acc � A��cc � A�Kcc , ��J� � �BK

�J� �

�B��J� and construct �2 from observables in B! �� and
B! �K decays.

In B! �� decays there is experimental information on
seven observables: the time dependent CP asymmetry
S���� , the three CP averaged decay widths ���B!
�����, ���B! �0�0�, ���B! ���0�, and three direct
CP asymmetries ACP

���� , ACP
�0�0 ACP

���0 . This latter is
not used in the fit since B� ! ���0 is a �I � 3=2 process
and thus does not receive QCD or charming penguin con-
tributions, so that strong phases are generated only at NLO
in �S�mb�, while at LO the asymmetry is zero irrespective
of the SCET parameters.

In addition, the following observables in B! K� de-
cays are used in the �2-fit: the four CP averaged decay
widths ���B! �K0�0�, ���B! K����, ���B! K��0�,
���B! �K0���, but only three direct CP asymmetries
ACP

�K0�0 , ACP
K��� , ACP

K��0 . The prediction for the remaining
direct CP asymmetry ACP

�K0��
can receive large corrections

at NLO in �S�mb� from terms of the form 	�s�u C1;2�S�mb�.
These can be comparable in size to LO terms proportional
to 	�s�u which come entirely from QCD penguin operators.
Also, the experimental information on SKS�0 is not used in
the �2-fit, and will be discussed separately in Sec. III C.

From the �2-fit to the B! ��, K� data we then obtain

 � � �7:3� 1:8� 
 10�2; �J � �10:3� 1:6� 
 10�2;

(86)

and
014003
 

jAccj � �46:8� 0:8� 
 10�4 GeV;

arg�Acc� � 156� � 6�;
(87)

with �2=d:o:f: � 44:6=�13� 4�, where the largest discrep-
ancies are in ACP

�0K�
, ACP

��K� as can be seen from Table V.
This very high value of �2 predominantly reflects the fact
that the expected theory errors coming from NLO 1=mb
and �S�mb� terms and from SU(3) breaking are larger than
experimental errors. If the estimates for these errors, to be
discussed below, that are given as first and second errors on
the theoretical values in Table V, are added quadratically to
experimental errors in the definition of �2, the resulting
value is �2=d:o:f: � 8:9=�13� 4� (�2=d:o:f: �
15:3=�13� 4� if SU(3) breaking errors are taken to be
correlated). The extracted values of SCET parameters
(86) and (87) agree within errors with similar extractions
from only �� data or a combination of �� and �K data
without modes that depend on �BK

�J� that were performed in
Ref. [10].

Using the above values for the SCET parameters one can
predict CP averaged decay widths and direct CP asymme-
tries with the results listed in Tables Vand VI. These results
were obtained in the limit of exact SU(3) and as such an
error of 20% is introduced as an estimate of SU(3) breaking
-14



TABLE VI. Predictions for the CP violating S parameters. The
errors on the predictions are estimates of SU(3) breaking, 1=mb
corrections, and errors due to SCET parameters, respectively.

Mode Exp. Theory

�B0 ! ���� �0:50� 0:19a �0:86� 0:07� 0:07� 0:02
�B0 ! �0�0 � � � 0:71� 0:34� 0:33� 0:10

�B0 ! �0KS 0:31� 0:26 0:80� 0:02� 0:02� 0:01

aError scaled according to PDG (S � 1:5).

2The result of this fit is � � 0:26� 0:05, �J � �0:19� 0:05,
Acc � �48:8� 1:1� 
 10�2, argAcc � 131� 13�, which gives
unacceptably small Br�B� ! ���0� � �0:4�0:9

�0:4� 
 10�6.
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effects in the relation ��J� � �BK
�J� � �B�

�J� . Similarly an addi-
tional 20% error on the magnitude and 20� error on the
strong phase is introduced due to SU(3) breaking and 1=mb
corrections in the relation Acc � A�Kcc � A��cc . These var-
iations result in the first theoretical error estimate in
Tables V and VI. The second error is an estimate of the
remaining 1=mb and �S�mb� corrections which we take to
have a magnitude of 20% of the leading order contributions
proportional to 	�f�u and 	�f�t CKM elements and assume
that they introduce an error of 20� on the strong phase
(with the exception of Acc in �S � 0 decays, where the
error of 5% on the magnitude is assigned due to insertions
of O3;...;10 operators leading to nonperturbative charm con-
tributions proportional to 	�d�u instead of 	�d�c , while in
�S � 1 decays this effect is negligible).

A different approach is used for the observables in which
the subleading corrections are expected to be anomalously
large. This can happen in the decay modes in which the
leading contributions are not proportional to c�f�1 , b�f�1 or
c�f�2 , b�f�2 , so that 1=mb or �S�mb� suppressed contributions
may lead to O�1� corrections. For instance,

 AB�! �K0�� �
GF���

2
p m2

BffK��
B�c�s�4 � �

B�
J b�s�4 � � 	

�s�
c A�Kcc g;

(88)

where the meaning of SCETI Wilson coefficients c�s�i , b�s�i
is the same as in Eqs. (77)–(79). The 	�s�u part of the B� !
�K0�� can receive corrections of the form C1;2�S�mb�

which can compete in size with 	�s�u part of c�s�4 , b�s�4 in
LO hard kernel. Thus only a conservative upper bound on
the CP asymmetry is given in Table V. Similar reasoning
holds for B� ! K0K� decay

 AB�! �K0K� �
GF���

2
p m2

BffK��
BKc�d�4 � �

BK
J b�d�4 � � 	

�d�
c AKKcc g;

(89)

and for �B0 ! K0 �K0 decays, whose amplitude is equal to
(89) at LO in 1=mb and �S�mb�. Again, for the 	�d�u ‘‘tree’’
part of the amplitude we can expect large NLO corrections
from C1;2�S�mb� terms. Because there is no CKM hier-
archy between ‘‘tree’’ and ‘‘penguin’’ amplitudes the pre-
dictions for these two modes are even more uncertain, so
014003
that we do not give any bound on CP asymmetry, while the
estimate of �S�mb� corrections to branching ratios is taken
to be the same as for �B0 ! ����.

Many of the errors cancel to a large extent in the ratios of
the decay widths, which are then predicted more precisely
than the individual rates

 R� 1�
Th:
�3:7� 1:5� 3:9� 2:1� 
 10�2; (90)

 Rc � 1�
Th:
�8:8� 2:3� 6:9� 1:2� 
 10�2; (91)

 Rn � 1�
Th:
�6:9� 2:0� 7:5� 0:8� 
 10�2; (92)

 R00 � 1�
Th:
��3:0� 0:9� 3:2� 1:4� 
 10�2; (93)

with the errors estimating the SU(3) breaking, 1=mb and
�S�mb� corrections, and the errors due to uncertainties on
SCET parameters, respectively. Note that even though the
SCET parameters were determined using these data as
well, the agreement between predicted ratios and the ex-
perimental values (82)–(85) is far from impressive.
Experimentally R, Rn < 1 with about a 2� difference
from the above expectations.

An important input to the above theoretical predictions
was provided by�� data using SU(3) symmetry. If instead
no �� data is used and the SCET parameters are deter-
mined solely from the B! �K decays, the theoretical and
experimental values of the R ratios (82)–(84) would agree
within experimental errors, but with values of SCET pa-
rameters that differ significantly from (86), with � a factor
of 4 larger, while �J even flips sign.2 This leads us to two
conclusions, that (i) the SCET expansion on itself is not in
contradiction with �K data and (ii) without permitting
extremely large SU(3) breakings that allow even for a
change of sign for the nonperturbative parameters, there
is a discrepancy between data and theoretical expectations.
An independent check on the validity of the SCET 1=mb
expansion can be provided with a phenomenological
analysis of B! �K data using diagrammatic decomposi-
tion, where no SU(3) is assumed but annihilation topolo-
gies are neglected [68,84].

Especially interesting is the difference between Rn and
Rc [83,85]. Defining the tree and penguin contents of A�I

I
analogously to the general decomposition Eq. (72)

 A�I
I � 	�s�u T�I

I � 	
�s�
c P�I

I ; (94)

and using the fact that A�Kcc dominates the amplitudes so
that 	�s�c P0

1=2 � 	�s�u T1
3=2;1=2, 	�s�u T0

1=2 and 	�s�c P0
1=2 �

	�s�c P1
3=2;1=2 (this latter hierarchy follows from the fact

that P1
3=2;1=2 receive only EWP contributions and are thus
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smaller than charming penguin contributions in P0
1=2 that

arise from insertions of Oc
1;2), then completely model

independently to first order in small parameters

 Rc � Rn � 1� 6
�

Re
�
	�s�u

	�s�c

�
Re
�T1

3=2

P0
1=2

�
� Re

�P1
3=2

P0
1=2

��
:

(95)

The higher order corrections to the above relation amount
to a difference

 �Rc � Rn� �
Th:
�1:8� 0:9� 0:9� 0:4� 
 10�2; (96)

in the theoretical predictions (83) and (84). This is to be
contrasted with the difference between experimental val-
ues �Rc � Rn�exp: � 0:18� 0:13. If this difference persists
with reduced experimental errors, it will be very difficult to
explain in the standard model. A possible explanation due
to isospin violating new physics that changes EWP con-
tributions and thus enhances the P1

3=2 term in (95) has been
extensively discussed in the literature [28–30,86–88].

That the �K data alone are not inconsistent with the
theory is well demonstrated for instance by the sum of CP
averaged decay widths
 

2 ��� �B0 ! �K0�0� � ��� �B0 ! K����

� 2 ���B� ! K��0� � ���B� ! �K0���; (97)

first discussed by Lipkin [89] and by Gronau and Rosner
[90]. The sum (97) does not depend on A0

1=2 and thus on
AK�cc . In terms of the R ratios the sum (97) is

 �L � R00 � R� Rc � 1: (98)

Using the expansion to first order in small parameters
P1

3=2;1=2=P
0
1=2, T1;0

3=2;1=2=P
0
1=2 as in (95) for R00 and R

 R00 � 1� 2
�

Re
�
	�s�u

	�s�c

�
Re
�T1

3=2 � 2T1
1=2

P0
1=2

�

� Re
�P1

3=2 � 2P1
1=2

P0
1=2

��
; (99)

 R � 1� 4
�

Re
�
	�s�u

	�s�c

�
Re
�T1

3=2 � T
1
1=2

P0
1=2

�

� Re
�P1

3=2 � P
1
1=2

P0
1=2

��
; (100)

it is easy to check that �L is only of second order in small
parameters in accordance with the fact that all interference
terms with A0

1=2 in (97) cancel. In �L the dependence on
AK�cc drops out completely leading to the value of �L that is
j	�s�2u =	�s�2c j � 	4 � 2
 10�3 CKM suppressed. The ex-
periment at present is consistent with vanishing �L at one
�

014003
 �L �
exp:

0:19� 0:14; (101)

while the theoretical prediction using LO SCET expres-
sions and (86) and (87), is

 �L�
Th:
�2:0� 0:9� 0:7� 0:4� 
 10�2: (102)

Another very precisely predictable quantity is the sum of
partial decay differences �� � �� �B! f� � ��B! �f�
 

�� � 2���B� ! K��0� � ���B� ! �K0���

� 2��� �B0 ! �K0�0� ���� �B0 ! K����: (103)

In the limit of exact isospin and no EWP �� vanishes [91–
93]. However, even in the presence of EWP, the corrections
are subleading in the 1=mb expansion [93]. Using isospin
decomposition (77)–(79) and defining tree and penguin
terms of the corresponding reduced matrix elements (94)
one has

 �� � �24 Im�	�s�u 	
�s�	
c � Im��T1

1=2 � T
1
3=2�P

1	
3=2

� T1
3=2P

1	
1=2�: (104)

The ‘‘penguin’’ terms P1
3=2;1=2 receive only EWP contribu-

tions, while the ‘‘tree’’ terms T1
3=2;1=2 are a sum of tree and

EWP contributions, with tree contributions dominating due
to larger Wilson coefficients. At leading order in 1=mb and
�S�mb� expansion the strong phase is nonzero only due to
AK�cc . Thus at this order T1

3=2;1=2 and P1
3=2;1=2 are real (in our

phase convention) so that �� � 0 to the order that we are
working.

B. Decays into isosinglet states

At present the experimental data on the decays with ��
0�

are not abundant. Of the 55 observables describing the
complete set of �B0, B�, and �B0

s decays to two body final
states with ��

0�, only 11 have been measured so far. We will
thus assume the SU(3) relations (43)–(46), (53), and (54)
between SCET parameters as in the previous subsection
and furthermore use the determination of the SCET pa-
rameters ��J� and Acc from the �� and �K data given in
Eqs. (86) and (87). The remaining parameters specific to
isosinglet modes, ��J�g, describing gluonic contributions to
B! ��

0� form factors, and Accg, describing the gluonic
parts of charming penguin, Fig. 6, are then fixed from a
�2-fit to observables in the isosinglet modes.

As in the previous subsection only CP averaged decay
widths and direct CP asymmetries are used in this deter-
mination, while the discussion of SKS�0 is relegated to
Sec. III C. This leaves four observables from �S � 0
decays: two CP averaged decay widths and two direct
CP asymmetries in B� ! ����

0�, and six observables in
�S � 1 decays: three CP averaged decay widths and three
direct CP asymmetries in �B0 ! �K0�0 and B� ! K���

0�

modes.
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In the above modes the functions �g and �Jg enter in the

combinations c�f�1 �g � b
�f�
1 �Jg and c�f�4 �g � b

�f�
4 �Jg, with

the latter being numerically much smaller (cf. (5), (15),
and (16)). Since c�f�1 ’ b

�f�
1 we expect the combination

�g � �Jg to be relatively well determined from the data,
with the orthogonal combination only poorly constrained.
We thus define

 ��g � �g � �Jg; (105)

which are then fit from the data. We find two sets of SCET
parameters that minimize �2:

Solution I:

 ��g � ��9:9� 2:4� 
 10�2; (106)

 ��g � ��3:5� 14:6� 
 10�2; (107)

 jAccgj � �35:8� 1:9� 
 10�4 GeV; (108)

 arg�Accg� � �109� � 3�; (109)

with �2=d:o:f: � 25:0=�10� 4�, where the largest discrep-
ancy with data is in ACP

�K� . The value of �2 is reduced to
�2=d:o:f: � 7:6=�10� 4�, if theoretical errors due to
SU(3) breaking and estimated NLO corrections are added
quadratically to experimental errors in the definition of �2.
The second solution, on the other hand,

Solution II:

 ��g � ��6:6� 4:3� 
 10�2; (110)

 ��g � ��11:2� 28:7� 
 10�2; (111)

 jAccgj � �36:2� 2:2� 
 10�4 GeV; (112)

 arg�Accg� � 68� � 4�; (113)

has �2=d:o:f: � 40:8=�10� 4� or �2=d:o:f: � 5:4=�10�
4�, if theoretical errors are added in the definition of �2.
The largest discrepancies with experimental data in this
case is in ACP

��� while the prediction for ACP
�K� agrees

well with data in contrast to Solution I.
The strong phases of the gluonic charming penguin in

the two solutions lie in opposite quadrants, while the values
of jAcc;gj and ��g agree between the two solutions. The
gluonic contribution to the B! ��

0� form factors, �g �
�Jg, is similar in size to � and �J in (86) as expected from
SCET counting. Using Eq. (61) we find in the SU(3) limit
and at LO in 1=mb and �S�mb�

 f
B�q
� �0� �

�
��2:3� 4:8� 
 10�2;
�4:5� 8:6� 
 10�2;

(114)

 fB�s� �0� �
�
��9:9� 2:4� 
 10�2;
��6:6� 4:3� 
 10�2;

(115)
014003
to be compared with fB�� �0� � 0:176� 0:007, that is ob-
tained using the results of ��, �K fit (86). The upper
(lower) rows in (114) and (115) correspond to values in
Solution I (Solution II), where only experimental errors
due to the extracted SCET parameters are shown. Because
of the large experimental uncertainties, the gluonic contri-
butions to the form factors are still consistent with zero at a
little above the 1� level in Solution II. The gluonic charm-
ing penguin Accg on the other hand is shown to be nonzero
in both sets of solutions and is of similar size to Acc in (87)
in agreement with SCET counting.

That the gluonic contribution is of leading order in 1=mb
has already been recognized in the context of QCD facto-
rization. In the phenomenological analysis of Ref. [13], the
gluonic contributions to the B! �0 form factor are pro-
portional to F2, a parameter not known from other sources
and given the rather arbitrary values of F2 � 0, 0.1. With
these values, the gluonic contribution accounts for 0%,
40% of the B! �0 form factor with constructive interfer-
ence between the gluonic and the remaining contributions.
This can be compared with our analysis where, in the B!
�0 form factor, destructive interference between ��J�g and
��J� terms is found with the gluonic contribution from �g �
�Jg 2.1 (1.4) times larger than the contribution from � � �J
in Solution I(II).

The predicted branching ratios and CP asymmetries
using the above values are compiled in Tables VII and
VIII. The errors due to SU(3) breaking and 1=mb or
�S�mb� corrections are estimated in the same way as in
the previous subsection. An error of 20% and a variation on
charming penguin strong phase of 20� is assigned to
relations (43)–(46), (53), and (54) giving the first error
estimate in the Table VII. The remaining 1=mb and �S�mb�
errors, listed as second error estimates in Table VII, are
obtained by varying the size and strong phase of leading
order amplitudes proportional to 	�f�u or 	�f�t by 20% and
20�, respectively.

A prominent feature of B! K��
0� decays is the large

disparity between the branching ratios for B! K�0 and
B! K� decays. In the SCET framework this is quite
naturally explained through a constructive and destructive
interference of different terms in the amplitudes as has
been first suggested in [94,95]. Specifically, the amplitudes
AB!K��0 � are related to AB!K�q and AB!K�s through a

rotation (41)

 A �B! �K�0 � cos�A �B! �K�s � sin�A �B! �K�q; (116)

 A �B! �K� � � sin�A �B! �K�s � cos�A �B! �K�q; (117)

with � � �39:3� 1:0��, so that cos� ’ sin�. There is
therefore a constructive interference in A �B! �K�0 and a de-
structive interference in A �B! �K� provided that A �B! �K�q ’

A �B! �K�s , which is exactly what is found in SCET. In B!
K��

0� there is a similar hierarchy of terms that was found in
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TABLE VII. Predicted CP averaged branching ratios (
 10�6, first row) and direct CP asymmetries (second row for each mode) for
�S � 0 and �S � 1 B decays (separated by horizontal line) to isosinglet pseudoscalar mesons. The Theory I and Theory II columns
give predictions corresponding to Solution I, II sets of SCET parameters. The errors on the predictions are estimates of SU(3) breaking,
1=mb corrections, and errors due to SCET parameters, respectively. No prediction on CP asymmetries is given, if [� 1, 1] range is
allowed at 1�.

Mode Exp. Theory I Theory II
B� ! ��� 4:3� 0:5 (S � 1:3) 4:9� 1:7� 1:0� 0:5 5:0� 1:7� 1:2� 0:4

�0:11� 0:08 0:05� 0:19� 0:21� 0:05 0:37� 0:19� 0:21� 0:05
B� ! ���0 2:53� 0:79 (S � 1:5) 2:4� 1:2� 0:2� 0:4 2:8� 1:2� 0:3� 0:3

0:14� 0:15 0:21� 0:12� 0:10� 0:14 0:02� 0:10� 0:04� 0:15
�B0 ! �0� <2:5 0:88� 0:54� 0:06� 0:42 0:68� 0:46� 0:03� 0:41

� � � 0:03� 0:10� 0:12� 0:05 �0:07� 0:16� 0:04� 0:90
�B0 ! �0�0 <3:7 2:3� 0:8� 0:3� 2:7 1:3� 0:5� 0:1� 0:3

� � � �0:24� 0:10� 0:19� 0:24 � � �
�B0 ! �� <2:0 0:69� 0:38� 0:13� 0:58 1:0� 0:4� 0:3� 1:4

� � � �0:09� 0:24� 0:21� 0:04 0:48� 0:22� 0:20� 0:13
�B0 ! ��0 <4:6 1:0� 0:5� 0:1� 1:5 2:2� 0:7� 0:6� 5:4

� � � � � � 0:70� 0:13� 0:20� 0:04
�B0 ! �0�0 <10 0:57� 0:23� 0:03� 0:69 1:2� 0:4� 0:3� 3:7

� � � � � � 0:60� 0:11� 0:22� 0:29

Mode Exp. Theory I Theory II
�B0 ! �K0�0 63:2� 4:9 (S � 1:5) 63:2� 24:7� 4:2� 8:1 62:2� 23:7� 5:5� 7:2

0:07� 0:10 (S � 1:5) 0:011� 0:006� 0:012� 0:002 �0:027� 0:007� 0:008� 0:005
�B0 ! �K0� <1:9 2:4� 4:4� 0:2� 0:3 2:3� 4:4� 0:2� 0:5

� � � 0:21� 0:20� 0:04� 0:03 �0:18� 0:22� 0:06� 0:04
B� ! K��0 69:4� 2:7 69:5� 27:0� 4:3� 7:7 69:3� 26:0� 7:1� 6:3

0:031� 0:021 �0:010� 0:006� 0:007� 0:005 0:007� 0:005� 0:002� 0:009
B� ! K�� 2:5� 0:3 2:7� 4:8� 0:4� 0:3 2:3� 4:5� 0:4� 0:3

�0:33� 0:17 (S � 1:4) 0:33� 0:30� 0:07� 0:03 �0:33� 0:39� 0:10� 0:04
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B! �K decays so that charming penguin contributions
are the largest, while tree contributions are 	�s�u =	

�s�
c � 0:04

suppressed, and QCD penguin and EWP contributions
�max�C3; . . . ; C10�=�S�2mc�C1 � 0:1 suppressed. The
largest contributions to the amplitudes are thus

 AB�!�sK� �
GF���

2
p m2

Bf	
�s�
c �A

K�s
cc � A

K�s
cc;g� � � � �g

’ A �B0!�s �K0 ; (118)

 AB�!�qK� �
GF���

2
p m2

B

�
	�s�c

�
A�Kcc���

2
p �

���
2
p
A
K�q
cc;g

�
� � � �

�
’ A �B0!�q �K0 ;

(119)

where the ’ sign denotes equality up to smaller terms
represented by ellipses. This gives for the AB!K� and
AB!K�0 amplitudes
 

AB�!�K� �
GF���

2
p m2

B	
�s�
c cos�

�
�
���
2
p
� tan��Acc;g

�

�
1���
2
p � tan�

�
Acc � � � �

�
; (120)
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AB�!�0K� �
GF���

2
p m2

B	
�s�
c cos�

�
�1�

���
2
p

tan��Acc;g

�

�
1�

1���
2
p tan�

�
Acc � � � �

�
; (121)

where the SU(3) relations (53) and (54) were used. The
same expressions hold for �B0 ! �K0��

0� amplitudes. The
coefficient in front of Acc in the B! K� amplitude is �1����

2
p

tan��=�
���
2
p
� tan�� � �0:07 suppressed compared to

the one in the B! K�0 amplitude. The relative suppres-
sion of the Accg contributions �

���
2
p
� tan��=�1����

2
p

tan�� � 0:28 is not as strong, so that B� ! �K� and
�B0 ! � �K0 are dominated by gluonic charming penguin
contributions. In the absence of the Accg term, the corre-
sponding branching ratios for B! �K would be an order
of magnitude smaller still, i.e. of order O�10�7� instead of
O�10�6�.

Note that the partial cancellation of charming penguin
contributions in B! �K amplitudes occurs regardless of
the strong phases carried by Acc and Acc;g. In particular, the
strong phases of Acc and Acc;g that were obtained from the
fit (87), (109), and (113), are near 180� and 90� mod 180�,
respectively, so that there is little further cancellation
between the two terms in (120). A similar pattern of
-18
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destructive and constructive interference has also been
observed in the framework of QCD factorization [13,14].

Note that the enhancement of Br�B! K�0� over
Br�B! �K� is almost entirely due to the additional
gluonic charming penguin Accg that arises from the anni-
hilation of the n direction collinear quark with the specta-
tor quark, where simultaneously two new n collinear
gluons are emitted, Fig. 6. These contributions correspond
to singlet penguin amplitude s in the diagrammatic SU(3)
approach, see Appendix C. Explicitly, in the SU(3) limit
 

AB�!�0K�

A �B0!��K�
’

�
cos��

sin����
2
p

�
Acc
Acc
� �cos��

���
2
p

sin��



Accg
Acc
� � � �

’ 1:22� 1:67
Accg
Acc

; (122)

where ellipses denote numerically smaller terms. In the
limit Accg ! 0 thus Br�B! K�0� and Br�B! �K� would
be of similar size, while in SCET we expect Accg � Acc
which provides the observed enhancement.

In QCD factorization, Accg is perturbative and is pro-

portional to the F2 contribution in the FB!�;�
0

0 form factors
of Ref. [13]. As previously discussed,F2 is not known from
other sources and the authors of [13] assume the arbitrary
values F2 � 0, 0.1. Other mechanisms that were proposed
in the literature to explain the large Br�B! K�0� are found
to be either �S�mb� or 1=mb suppressed in SCET. The
contributions due to b! sgg! s�0 coupling that would
arise from integrating out the charm loop, Fig. 3,
[13,96,97] and could be interpreted as effective charm
content of �0 meson [13,98,99], lead to a 1=m2

b suppressed
operator (14) once matching to SCETII is performed. A
mechanism in which one gluon is emitted from b or s
quarks, with the other gluon coming from charm loop or
from O8g insertion, Fig. 2, leads to either �S�mb� or 1=mb

suppressed contributions as already discussed below
Eq. (13). The hard spectator contribution b! sg	g	 !
s�0 discussed in [100], where one of the hard off shell
gluons is emitted from the spectator quark, matches onto
power suppressed SCETI operators with additional soft and
collinear spectator quark fields obtained by integrating out
the hard gluon (and other hard degrees of freedom).
Similarly, the gluon condensate mechanism of Ref. [101]
corresponds to a matching onto power suppressed opera-
tors with additional soft gluon fields once the intermediate
hard-collinear gluon is integrated out.

Since the smallness of Br�B! �K� arises from two
large numbers cancelling, the predictions for this mode
are rather uncertain, with modest variations on input pa-
rameters leading to larger relative variations on the observ-
ables. This could be used in the future to better constrain
the SCET parameters ��J�g, Accg. Of special interest are the
direct CP asymmetries in B� ! �K� and �B0 ! � �K0 that
014003
can resolve between the two solutions (cf. Table VII).
Defining the tree and penguin amplitudes as in (72), one
has
 

T �B0!�q �K0 �
GF���

2
p m2

B

f�q���
2
p

�
�BK

�
C2 �

1

N
C1

�

� �BKJ

�
C2 �

1

N
�1� hx�1i�q�C1

��
� � � � ;

(123)

 TB�!�qK� � T �B0!�q �K0 �
GF���

2
p m2

B
fK���

2
p

�
�B�q

�
C1 �

1

N
C2

�

� �
B�q
J

�
C1 �

1

N
�1� hx�1

q iK�C2

��
� � � � ;

(124)

where ellipses denote smaller terms coming from inser-
tions of QCD penguin and EWP operators. The ‘‘tree’’
amplitude TB�!�qK� receives contributions from configu-
rations with two n-collinear gluons, Fig. 4, that are part of
�
B�q
�J� SCET parameters (43). In the diagrammatic approach

these terms correspond to often neglected annihilation
amplitudes as shown in Appendix C. We find them to be
of LO in 1=mb and should be kept in the analysis (in �S �
1 decays they are CKM suppressed and are thus numeri-
cally significant only for direct CP asymmetries).

At LO in �S�mb� the ‘‘tree’’ amplitudes T �B0!�s �K0 and
TB�!�sK� do not receive contributions from tree operators
Ou

1;2, so that

 T �B0!�s �K0 � T �B0!�q �K0 ; TB�!�sK� � TB�!�qK� ;

(125)

from which one obtains an approximate relation

 

T �B!� �K

cos�
’
T �B!�0 �K

sin�
; (126)

where �B� �K� can be either B��K�� or �B0� �K0�. No such
simple relation exists between P �B!� �K and P �B!�0 �K. These

are given by (120) and (121) (after division by 	�s�c ) up to
numerically smaller terms, and have a hierarchy P �B!� �K �

P �B!�0 �K as already discussed before.
Defining

 rfe
i�f � �2 Im

�
	�s�u

	�s�c

� T �B!f

P �B!f
; (127)

where �2 Im	�s�u =	
�s�
c � 0:037, the CP asymmetries are to

first order in small parameter rf

 A CP
f � rf sin�f �O�r2

f�: (128)

The values of rf and the strong phase difference �f be-
tween ‘‘tree’’ and ‘‘penguin’’ amplitudes for �B! ��

0� �K
decays are given in Table IX. While the tree amplitudes in
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�B! �0 �K and �B! � �K are of approximately the same size
(126), the penguin amplitudes in �B! � �K are on the con-
trary suppressed as discussed above, leading to an order of
magnitude larger value for r� �K. Furthermore, in �B! � �K
decays the strong phase difference is predominantly deter-
mined by the gluonic charming penguin Accg due to a much
larger suppression of Acc, so that the corresponding CP
asymmetries are very sensitive to the value of argAccg.

A different type of cancellation occurs in the �B0 ! �0�
amplitude. The two relevant amplitudes are (taking
hx�1i� � hx�1i�q)
 

A �B0!�0�s �
GF���

2
p m2

B

�
c�d�2���

2
p f��

B�s �
b�d�2���

2
p f��

B�s
J

�
	�d�c A

��
cc;g���

2
p � � � �

�
; (129)

 

A �B0!�0�q �
GF���

2
p m2

B

�
c�d�2

2
�f��B�q � f�q�

B��

�
b�d�2

2
�f��

B�q
J � f�q�

B�
J �

� 	�d�c �A
��
cc;g � A��cc � � � � �

�
; (130)

where the ellipses represent the numerically smaller con-
tributions from Q3d;...;6d operators, while b�d�2 is evaluated
as 	�d�u �C2 � �1� hx�1i��C1=N� � � � � . Since f�q ’ f�
and �

B�q
�J� ’ �

B�
�J� � 2�B�s

�J� , the tree amplitudes T �B0!�0��
0 �

are predominantly coming from �B�s
�J� , i.e. from gluonic

contributions. Furthermore, the combination c�d�2 �g �

b�d�2 �Jg is a linear combination of ��g and ��g . Since the
latter parameter is largely unknown, cf. (107) and (111),
this leads to relatively large errors on the predicted observ-
ables in �B0 ! �0��

0� decays as can be seen from
Tables VII and VIII. Measuring these observables would
thus greatly improve our knowledge of ��g .

The situation is reversed for charming penguin contri-
butions. In �B0 ! �0� the contributions from A��cc;g par-
TABLE VIII. Predictions for the CP violating S parameters. The
corrections, and errors due to SCET parameters, respectively.

Mode Exp. T
�B0 ! �0� � � � �0:90� 0
�B0 ! �0�0 � � � �0:96� 0
�B0 ! �� � � � �0:98� 0
�B0 ! ��0 � � � �0:82� 0
�B0 ! �0�0 � � � �0:59� 0

Mode Exp. T
�B0 ! KS�

0 0:50� 0:13 (S � 1:4) 0:706� 0:0
�B0 ! KS� � � � 0:69� 0
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tially cancel, just like in B! K�. However, unlike
B! K�, the nongluonic contribution A��cc is present
only in A �B0!�0�q and not in A �B0!�0�s and therefore does
not cancel in �B0 ! �0�. The same conclusions regarding
charming penguins hold for B� ! ���. Note that unlike
�B0 ! �0�q, the ‘‘tree’’ term in AB�!�q�� , on the other
hand, is not predominantly gluonic since there is no
equivalent cancellation to the one in the ‘‘tree’’ term of
(130).

The predictions are fairly uncertain also for observables
in �B0 ! ��

0���
0� decays, since these depend on both ��g and

��g , similarly to �B! ��
0�� decays. We have

 A �B0!�� � A �B0!�q�qcos2�� A �B0!�s�ssin2�

� A �B0!�q�s sin2�; (131)

 A �B0!��0 � �A �B0!�q�q � A �B0!�s�s�
sin2�

2

� A �B0!�q�s cos2�; (132)

 A �B0!�0�0 � A �B0!�q�qsin2�� A �B0!�s�scos2�

� A �B0!�q�s sin2�: (133)

The amplitude A �B0!�s�s receives contributions only from
Q6d;7d operators and thus has no charming penguin con-
tributions. These are present in A �B0!�q�q and A �B0!�q�s and
therefore also in the amplitudes for the decays into mass
eigenstates ��

0���0�.

C. S parameters in penguin dominated modes

The CP violating S parameters in the �S � 1 decays
B0�t� ! KS;L�0, B0�t� ! KS;L��

0� are of special interest
because of the large CKM suppression of ‘‘tree’’ ampli-
tudes over ‘‘penguin’’ amplitudes that was already dis-
cussed in the previous subsection. The decay amplitudes
thus to a first approximation do not carry any weak phase
and cancel in (104), leading to the approximate relation
Sf ’ ��CPf sin2� where �CPf is the CP of the final state.
This leads us to define an effective angle through
errors on the predictions are estimates of SU(3) breaking, 1=mb

heory I Theory II
:08� 0:03� 0:22 �0:67� 0:14� 0:03� 0:81
:03� 0:05� 0:11 �0:60� 0:08� 0:08� 1:30
:06� 0:03� 0:09 �0:78� 0:19� 0:12� 0:22
:02� 0:04� 0:77 �0:71� 0:14� 0:19� 0:29
:05� 0:08� 1:10 �0:78� 0:09� 0:19� 0:23

heory I Theory II
05� 0:006� 0:003 0:715� 0:005� 0:008� 0:002
:15� 0:05� 0:01 0:79� 0:14� 0:04� 0:01
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TABLE IX. Predictions for ‘‘tree’’ over ‘‘penguin’’ ratios rf
(first row of each mode, in terms of 
10�2) and strong phase
differences �f (second row), defined in Eq. (127), for several
�S � 1 B0 and B� decays (separated by horizontal line).
Theory I (II) column correspond to two sets of SCET parameters
Solution I (II) in (106)–(113). Since B0 ! �0 �K0 does not
depend on isosinglet SCET parameters only one prediction is
given. The meaning of errors is the same as in Table VIII.

Mode Theory I Theory II
�0 �K0 2:9� 0:7� 0:7� 0:4 3:0� 0:7� 0:7� 0:5

�159� 10� 24� 4�� ��117� 11� 24� 6��

� �K0 21� 20� 4� 3 23� 24� 5� 4
�101� 58� 20� 4�� ��58� 62� 20� 7��

�0 �K0 14� 4� 3� 2
�24� 20� 20� 6��

Mode Theory I Theory II
�0K� 2:8� 0:8� 0:5� 1:3 0:8� 0:6� 0:1� 1:1

��22� 11� 17� 4�� �61� 11� 15� 4��

�K� 34� 31� 7� 3 42� 46� 9� 5
�105� 57� 20� 3�� ��65� 67� 20� 4��
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 Sf � ��
CP
f sin2�eff

f : (134)

In this way the modes withKS andKL in the final state have
the same �eff (neglecting CP violation in the kaon sector).

In the decays at hand the common final state of B0 and
�B0 is provided by K0 � �K0 mixing, that causes the mass

eigenstates KS;L to be an admixture of K0 and �K0 states.
For instance, we have

 

A �B0!�KS;L

AB0!�KS;L

� 

pK
qK

�A �B0!� �K0

AB0!�K0

; (135)

with qK=pK � �V	usVud=VusV	ud ’ �1, where the phases
of j �K0i, jK0i, j �B0i, jB0i were chosen so that CPj �K0i �
jK0i and CPj �B0i � jB0i. This relation can then be used in
(68) to obtain the expression for Sf. As in the previous
subsections we decompose the amplitude into ‘‘tree’’ and
‘‘penguin’’ parts according to CKM element content
A �B!f � 	�s�c P �B!f � 	

�s�
u T �B!f. Because of the large CKM

hierarchy in the �S � 1 decays ‘‘penguin’’ terms domi-
nate over ‘‘tree’’, with the last term �	2 � 0:04 CKM
suppressed compared to the first one, as discussed in
Sec. III B. Expanding in this small ratio we have [102]

 �Sf � sin2�eff
f � sin2� � rf cos�f cos2��O�r2

f�;

(136)

where the ‘‘tree’’ over ‘‘penguin’’ ratio, rfei�f , was defined
in Eq. (127) and already contains the ratio of CKM
elements.

The difference between sin2�eff
f and sin2� vanishes if

either rf is zero or if the strong phase difference �f
between ‘‘tree’’ and ‘‘penguin’’ amplitudes is equal to
�90�. The largest deviation, on the other hand, is obtained
for �f � 0�, 180�. The deviation itself cannot be very large
in the standard model because of the already mentioned
CKM suppression of order 	2 � 0:04, unless the ratio
Tf=Pf is very large. This can happen in �KS;L decay
modes, where there is large cancellation in P �B0!� �K0

(120). No such cancellations are possible in �0KS;L modes.
The large branching ratios of �0K necessarily imply small
deviations of sin2�eff

�0KS;L
from sin2� in the context of

standard model. Using the values of parameters in (86),
(87), and (106)–(113), obtained in the previous two sec-
tions

 �S�0KS;L �
Th:
�
��1:9� 0:5� 0:6� 0:3� 
 10�2;
��1:0� 0:5� 0:8� 0:2� 
 10�2;

(137)

 �S�KS;L �
Th:
�
��3:4� 15:5� 5:4� 1:4� 
 10�2;
�7:0� 13:6� 4:2� 1:1� 
 10�2;

(138)

where the upper (lower) rows correspond to Solution I (II)
sets of SCET parameters in (106)–(113), while

 �S�0KS;L �
Th:
�7:7� 2:2� 1:8� 1:0� 
 10�2; (139)
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where again the first two errors are due to SU(3) breaking
and expected 1=mb, �s�mb� corrections, while the last is
due to experimental uncertainties on SCET parameters
extracted from the �2-fit to branching ratios and direct
CP asymmetries.

It is illuminating to evaluate the ratios rfei�f (127) of
‘‘tree’’ and ‘‘penguin’’ terms for these modes. The numeri-
cal values are gathered in Table IX. As expected from the
general arguments outlined above, the ratio rf is relatively
large for �B0 ! �KS;L due to cancellations in ‘‘penguin’’
amplitudes. The corresponding strong phases �f both for
Solution I and Solution II sets of SCET parameters (106)–
(113) are not close to 0� or 180�, so the values of �S�KS;L
in (138) are not close to the maximal possible deviations
for given values of rf. On the contrary, �S�0KS;L in (139) is
already close to maximal positive deviation for fixed value
of rf. Phenomenologically probably most interesting is
�S�0KS;L , whose absolute value is much smaller and is
below 4% even if �f is taken to be completely unknown.
In accordance with general expectations very small values
of j�S�0KS;L j have also been found in other approaches to
two bodyB decays; in QCD factorization [14,103], in QCD
factorization with modeled rescattering [104], and are
consistent with bounds obtained using SU(3) symmetry
[92,105].

The predictions (138) and (139) are to be contrasted with
the experimental findings, where (neglecting the small
difference between SJ=�KS;L and sin2� [106])

 �S�0KS �
exp:
�0:23� 0:13 (140)

and
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 �S�0KS;L �
exp:
�0:41� 0:26; (141)

while no information on �S�KS is yet available. The dif-
ference between S�0KS , S�0KS , and sin2� has been even
more pronounced in the past, and has been reduced in the
past year to the present level of almost 2�. Since predic-
tions for these two quantities in SCET are not prone to
large uncertainties as shown by the errors in (137) and
(139), a further reduction of experimental errors with un-
changed central values would be a clear signal of beyond
the standard model physics.

D. Bs decays

Using SU(3) symmetry allows us to make predictions
for B0

s decays as well. Predictions made with the values of
SCET parameters (86), (87), and (106)–(113) for CP
averaged branching ratios and direct CP asymmetries are
collected in Table X, while the predictions for the observ-
ables �Sf�Bs (69) and �Hf�Bs (70) are given in Table XI. The
SU(3) breaking on the SCET parameters relations (43)–
(46) and (53) was assumed to be 20% with a 20� variation
on the charming penguin’s strong phases. The second
errors in Tables X and XI, estimate the remaining order
TABLE X. Predicted CP averaged branching ratios (
 10�6, first
�S � 0 and �S � 1 �B0

s decays (separated by horizontal line). The c
(106)–(113). Since the decays into nonisosinglet mesons do not depen
errors on the predictions are estimates of SU(3) breaking, 1=mb cor

Mode Exp. T
�B0
s ! ��K� <2:2fd=fs

a 4:9� 1
� � � 0:20� 0:1

�B0
s ! �0K0 � � � 0:76� 0:2

� � � �0:58� 0:3
�B0
s ! �K0 � � � 0:80� 0:4

� � � �0:56� 0:4
�B0
s ! �0K0 � � � 4:5� 1

� � � �0:14� 0:0

Mode Exp. T
�B0
s ! K�K� �9:5� 2:0�fd=fs

a 18:2� 6
� � � �0:06� 0:0

�B0
s ! K0 �K0 � � � 17:7� 6:

� � �
�B0
s ! ��0 � � � 0:014� 0:00

� � �
�B0
s ! �0�0 � � � 0:006� 0:00

� � �
�B0
s ! �� � � � 7:1� 6

� � � 0:079� 0:04
�B0
s ! ��0 � � � 24:0� 13

� � � 0:0004� 0:001
�B0
s ! �0�0 � � � 44:3� 19

� � � 0:009� 0:00

aThe production fraction ratio of B0
d;s mesons is fd=fs � 4 [60].
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1=mb and �S�mb� corrections. These are obtained from a
20% variation on the size and a 20� variation on the strong
phase of the leading order amplitudes proportional to 	�f�u
or 	�f�t .

Many observations made about �B0 and B� decays hold
also for �B0

s decays. For instance �S � 1 decays �B0
s ! K �K

and �B0
s ! ��

0���
0� are dominated by nonperturbative

charming penguins due to a CKM hierarchy just like B!
�K, B! K��

0� decays. Expanding in the CKM suppressed
‘‘tree’’ over ‘‘penguin’’ ratio rf (127) the observables from
time dependent decays (69) and (70)

 �Sf�Bs � �CPf sin2
� �CPf rf cos�f cos2
�O�r2
f�;

(142)

and

 �Hf�Bs � �CPf cos2

�
1�

r2
f

2

�
� �CPf sin2


�
rf cos�f

� r2
f

Re�	�s�u =	
�s�
c �

Im�	�s�u =	
�s�
c �

�
cos2�f �

1

2

��
�O�r3

f�;

(143)

while the expression for direct CP asymmetry to first order
row) and direct CP asymmetries (second row for each mode) for
olumns Theory I (II) correspond to two sets of SCET parameters
d on parameters in (106)–(113) only one prediction is given. The
rections, and errors due to SCET parameters, respectively.

heory I Theory II
:2� 1:3� 0:3
7� 0:19� 0:05
6� 0:27� 0:17
9� 0:39� 0:13
8� 0:29� 0:18 0:59� 0:34� 0:24� 0:15
6� 0:14� 0:06 0:61� 0:59� 0:12� 0:08
:5� 0:4� 0:5 3:9� 1:3� 0:5� 0:4
7� 0:16� 0:02 0:37� 0:08� 0:14� 0:04

heory I Theory II
:7� 1:1� 0:5
5� 0:06� 0:02
6� 0:5� 0:6
<0:1
4� 0:005� 0:004 0:016� 0:007� 0:005� 0:006
� � � � � �

3� 0:002�0:064
�0:006 0:038� 0:013� 0:016�0:260

�0:036

� � � � � �

:4� 0:2� 0:8 6:4� 6:3� 0:1� 0:7
9� 0:027� 0:015 �0:011� 0:050� 0:039� 0:010
:6� 1:4� 2:7 23:8� 13:2� 1:6� 2:9
4� 0:0039� 0:0043 0:023� 0:009� 0:008� 0:076
:7� 2:3� 17:1 49:4� 20:6� 8:4� 16:2
4� 0:006� 0:019 �0:037� 0:010� 0:012� 0:056
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�

TABLE XI. Predictions for �Sf�Bs (first row in each mode) and �Hf�Bs (second row) parameters in Bs decays. The columns Theory I
(II) correspond to two sets of SCET parameters (106)–(113). Since the decays into nonisosinglet mesons do not depend on parameters
in (106)–(113) only one prediction is given. The errors on the predictions are estimates of SU(3) breaking, 1=mb corrections, and
errors due to SCET parameters, respectively. No predictions are made for �Sf�Bs and �Hf�Bs in �B0

s ! K0 �K0 and �B0
s ! �0�0, see text.

Mode Exp. Theory I Theory II

�B0
s ! KS�

0 � � � �0:16� 0:41� 0:33� 0:17
� � � 0:80� 0:27� 0:25� 0:11

�B0
s ! KS� � � � 0:82� 0:32� 0:11� 0:04 0:63� 0:61� 0:16� 0:08

� � � 0:07� 0:56� 0:17� 0:05 0:49� 0:68� 0:21� 0:03
�B0
s ! KS�

0 � � � 0:38� 0:08� 0:10� 0:04 0:24� 0:09� 0:15� 0:05
� � � �0:92� 0:04� 0:04� 0:02 �0:90� 0:05� 0:05� 0:03

�B0
s ! K�K� � � � 0:19� 0:04� 0:04� 0:01

� � � 1� �0:021� 0:008� 0:007� 0:002�
�B0
s ! �0� � � � 0:45� 0:14� 0:42� 0:30 0:38� 0:20� 0:42� 0:37

� � � �0:89� 0:07� 0:21� 0:15 �0:92� 0:08� 0:17� 0:15
�B0
s ! �� � � � �0:026� 0:040� 0:030� 0:014 �0:077� 0:061� 0:022� 0:026

� � � 1� �0:0035� 0:0041� 0:0019� 0:0015� 1� �0:0030� 0:0048� 0:0017� 0:0021�
�B0
s ! ��0 � � � 0:041� 0:004� 0:002� 0:051 0:015� 0:010� 0:008� 0:069

� � � 1� �0:0008� 0:0002� 0:0001� 0:0021� 1� �0:0004� 0:0003� 0:0003� 0:0007�
�B0
s ! �0�0 � � � 0:049� 0:005� 0:005� 0:031 0:051� 0:009� 0:017� 0:039

� � � 1� �0:0012� 0:0003� 0:0002� 0:0017� 1� �0:0020� 0:0007� 0:0009� 0:0041�
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in rf is given in (128). Since 
� 1� in the standard model,
�Hf�Bs for the penguin dominated decays �B0

s ! K �K, and
�B0
s ! ��

0���
0� is expected to be very close to 1. In the

standard model sin2
� 0:035 and thus sin2
� rf, so
that the deviations of �Hf�Bs from unity are numerically
of order O�r2

f�. For 1� rf > 2 sin2
, the r2
f correction in

the first term in (143) is actually larger than the second
term in (143) which starts at linear order in rf. In this case
�CPf �Hf�Bs is smaller than 1 irrespective of the strong phase
difference �f. The deviations of �Hf�Bs from 1 for different
modes are listed in Table XI.

The charming penguin dominance in the K �K modes

 A �B0
s!K�K� �

GF���
2
p m2

B�	
�s�
s AKKcc � � � �� ’ A �B0

s!K0 �K0 ; (144)

furthermore leads to an approximate relation

 

�� �B0
s!K�K� ’

�� �B0
s!K0 �K0 : (145)

The amplitude for �B0
s ! K0 �K0 does not receive any LO

contributions from Q�0�;�1�1s;2s operators, cf. Table IV, so that at
this order in the �S�mB� expansion the tree amplitude is
entirely due to QCD penguin and EWP operator insertions.
At NLO in �S�mB� there could, however, be contributions
proportional to C1;2�S�mB� leading to a large correction to
the predicted direct CP asymmetry. We thus give in
Table X only an estimated upper bound of this observable.
Similarly, no prediction of �Sf�Bs , �Hf�Bs for this mode is
made in Table XI, but conservatively we can expect

 j�SKSKS�Bs j< j�SK�K��Bs j; (146)
014003
 j1� �HKSKS�Bs j< j1� �HK�K��Bs j: (147)

In �B0
s ! ��

0���
0� amplitudes the dominating contribu-

tions are also given by charming penguins

 A �B0
s!�s�q �

GF���
2
p m2

B�
���
2
p
	�s�s A

�s�q
ccg � � � ��; (148)

 A �B0
s!�s�s �

GF���
2
p m2

B�	
�s�
s 2�A�s�sccg �s� � A

�s�s
cc �s�� � � � ��;

(149)

with the ellipsis denoting smaller contributions, while in
A �B0

s!�q�q there are no charming penguins. Using (131)–
(133) we then get for the coefficients in front of Acc, Accg in
the SU(3) limit (apart from the common multiplicative
factor GFm2

B=
���
2
p

)

Mode
-23
Acc
 Accg

�B0
s ! ��
���
2
p

sin2�

���
2
p

sin2�� sin2�

�B0
s ! ��0
 1��

2
p sin2����p
 cos2�� 1��

2
p sin2����p
�B0
s ! �0�0
 2cos2�
 2cos2�� sin2�
which for � � 39� gives numerically
Mode
 Acc
 Accg

�B0
s ! ��
 �0:42
 0.56
�B0
s ! ��0
 �0:48
 0:69
�B0
s ! �0�0
 1.83
 0.85
explaining the pattern of branching ratios in Table X. Note
that the branching ratios for �B0

s ! �� and �B0
s ! �0�0 have
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an additional symmetry factor 1=2 in (65) because of indis-
tinguishable particles in the final state.

Since Bs ! KK and Bs ! ��
0���

0� decays are penguin
dominated, they represent ideal probes for new physics
searches. A very useful observable in this respect is
�Hf�Bs (143). In the standard model we have a very robust
prediction that �Hf�Bs ’ 1 for penguin dominated modes
Bs ! KK and Bs ! ��

0���
0�, where the deviations from

this relation are of order O�r2
f� as discussed above, where

rf itself is of order 	2 � 0:04 (127). The predicted values
in SCET for different modes are given in Table XII. The
deviations from �Hf�Bs � 1 are therefore expected to be
very small, well below percent level for Bs ! ��

0���
0�

modes. If virtual corrections from the beyond standard
model particles modify either the Bs � �Bs mixing phase
or introduce new phases in b! s penguins, a hint of which
may have already been experimentally seen in B! �K,
B! �0K modes, �Hf�Bs can easily deviate from 1 by a
correction of O�1�. Another attractive feature of �Hf�Bs is
that it can be measured in untagged Bs decays [63].

A special case among the �S � 1 Bs decays are the
decays B0

s ! �0��
0�. Since these are �I � 1 transitions,

there are no QCD penguin contributions to these decays,
including no contributions from the nonperturbative
charming penguins. The theoretical control over these
modes is thus much greater, on par with B� ! ���0,
where charming penguins are also absent. Furthermore,
B0
s ! �0��

0� decays are color suppressed, which makes
them a perfect probe of the SCET prediction that color
suppression is lifted due to Q�1�2s contributions.
Unfortunately their branching ratios are of the order
�10�7 � 10�8 because of the CKM suppression of the
tree amplitude. The absence of QCD penguins in B0

s !

�0��
0� also leads to a generic prediction that �Sf�Bs and 1�

�Hf�Bs can be of O�1�. Namely, the ‘‘penguin’’ amplitude
TABLE XII. Predictions for tree over penguin ratios rf (first
row of each mode, in terms of 
10�2) and strong phase
differences �f (second row), defined in Eq. (127), for penguin
dominated �S � 1 B0

s decays. Theory I (II) column correspond
to two sets of SCET parameters Solution I (II) in (106)–(113).
Since �B0

s ! K�K� does not depend on isosinglet SCET pa-
rameters only one prediction is given. The meaning of errors is
the same as in Table VIII.

Mode Theory I Theory II

K�K� 16:2� 3:5� 3:3� 1:0
��159� 18� 21� 5��

�� 10� 5� 2� 2 12� 7� 2� 2
�53� 25� 20� 4�� ��6� 26� 20� 4��

��0 0:5� 0:4� 0:2� 5:1 3:1� 1:0� 0:5� 0:5
�175� 17� 48� 4�� �47� 18� 18� 4��

�0�0 1:6� 0:5� 0:4� 3:6 4:0� 1:1� 1:0� 3:6
�145� 13� 25� 9�� ��112� 12� 25� 9��

014003
in B0
s ! �0��

0� is coming exclusively from EWP opera-
tors, which have small Wilson coefficients, making them of
similar size as the CKM suppressed ‘‘tree’’ amplitudes,
giving rf �O�1� in (142) and (143). Furthermore, because
there are no contributions from charming penguins, while
the other contributions factorize at LO in 1=mb, the strong
phase differences vanish at leading order in �s�mb� and
1=mb, �f � �0�mod 180��, so that ACP

f (128) in B0
s !

�0��
0� vanishes at this order. This will be lifted at NLO.

Scanning the allowed range of the at present very poorly
constrained parameter ��g (107) and (111), we find that a
cancellation between different terms in AB0

s!�0�0 is pos-
sible for special values of ��g . We thus give only a 1� range
for the decay width, while no prediction on �Sf�Bs and 1�
�Hf�Bs for B0

s ! �0�0 can be made.
The �S � 0 decays have tree and penguin contributions

of similar size. Furthermore, both �B0
s ! K0��

0� and �B0
s !

��K�, �0K0 do receive contributions from nonperturba-
tive charming penguins, leading to sizeable direct CP
asymmetries. A peculiar case is the �B0

s ! K0� decay,
where a similar cancellation occurs as in �B0 ! �K0� be-
tween charming penguin contributions due to �� �0 mix-
ing. Namely, up to numerically smaller terms fromQ3d;...;6d

insertions we have in the SU(3) limit

 A �B0
s! �K0�s �

GF���
2
p m2

B�	
�d�
c �Acc � Accg� � . . .�; (150)

 

A �B0
s! �K0�q �

GF���
2
p m2

B

�
	�d�c

�
1���
2
p Acc �

���
2
p
Accg

�
�
f�q���

2
p ��c�d�2

� �Jb
�d�
2 � � � � �

�
; (151)

giving a �1�
���
2
p

tan��=�
���
2
p
� tan�� � �0:07 suppressed

coefficient in front of Acc in �B0
s ! K0� compared to the

coefficient in front of Acc in �B0
s ! K0�0. Similarly, the

coefficient in front of Accg in �B0
s ! K0� is �1�

tan�=
���
2
p
�=�1=

���
2
p
� tan�� � 0:28 suppressed compared

to the one in �B0
s ! K0�0. No such cancellations are present

in tree amplitudes. Because �B0
s ! K0��

0� decays are �S �
0, with no CKM hierarchy between ‘‘tree’’ and ‘‘penguin’’
amplitudes, the effect of cancellations on predicted branch-
ing ratios is less drastic than in �B0 ! �K0��

0�, as can be seen
from results in Table X.
IV. CONCLUSIONS

We have provided expressions for decay amplitudes of
�B0, B�, and �B0

s mesons to two light pseudoscalar or vector
mesons, including isosinglet mesons �, �0, !, �, using
soft collinear effective theory at LO in 1=mb. For the
decays into �, �0 mesons the contributions where a spec-
tator quark is annihilated by the weak operator, while
two collinear gluons are created, is found to be of the
leading order in 1=mb. This leads to a new jet function in
-24
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SCETI ! SCETII matching for the operators that contrib-
ute only to isosinglet final states.

In the phenomenological analysis we work at LO in
�S�mb� and 1=mb. In particular, no expansion in
�S�

����������
�mb

p
� at intermediate scale is made. Instead, follow-

ing Refs. [9,10] a set of new nonperturbative SCET func-
tions is introduced, which are then extracted from data
using a �2-fit. The numerical analysis is performed for
the decays into two pseudoscalars. From separate �2-fits to
B! ��, �K data and to B! ���

0�, K��
0� data SCET

parameters for nonisosinglet final states and for isosinglet
final states are extracted, respectively. Because of scarce
data for isosinglet final states, SU(3) symmetry is imposed
on the SCET parameters. Even so, two sets of solutions are
found for the SCET parameters ��J�g, Accg that enter only in
the amplitudes for decays into isosinglet final states.

Predictions for branching ratios, direct, and indirect CP
asymmetries in �B0, B�, and �B0

s decays together with esti-
mates of theoretical errors due to SU(3) breaking, 1=mb
and �S�mb� corrections and errors due to extracted values
of SCET parameters are listed in Tables V, VI, VII, VIII, X,
and XI. We find:
(i) A
 discrepancy between theoretical and experimen-
tal values for the R and Rn ratios of decay widths
(82), (84), (90), and (92) at a level of 2� if both ��
and �K data are used simultaneously to determine
the SCET parameters. No statistically significant
deviations are found if only a fit to �K data is
made, but the resulting values of SCET parameters
strongly violate flavor SU(3).
(ii) T
he enhancement of Br�B! K�0� over Br�B!
K�� is naturally explained in SCET due to destruc-
tive and constructive interference governed by ��
�0 mixing as first proposed by Lipkin [94,95]. The
enhancement of Br�B! K�0� over Br�B! �K� is
due to the ‘‘gluonic’’ charming penguin Accg,
where the n collinear quark annihilates with the
spectator quark producing two n collinear gluons.
The other mechanisms for enhancing Br�B! K�0�
discussed in the literature are found to be sup-
pressed by at least one order of 1=mb.
(iii) T
he SCET parameters ��J�g and Accg corresponding
to annihilation diagrams with two simultaneously
emitted collinear gluons are found to be both para-
metrically and numerically of the same order as the
other leading order contributions in accordance
with SCET counting. The combination �Jg � �g is
at present very poorly constrained, but can be con-
strained by future measurements of decay widths
and CP asymmetries in B! �0��

0� and CP asym-
metries in B! K0��

0� decays. The orthogonal
combination �Jg � �g which also enters into B!
��
0� form factors is already much better constrained

and the corresponding values of the B! �q;s form
factors are given in Eqs. (114) and (115). In the
014003-25
future, with more abundant data on isosinglet de-
cays, the assumption of SU(3) flavor symmetry that
was used in the present analysis can be relaxed.
This will significantly reduce the theoretical uncer-
tainties associated with many of our predictions.
(iv) T
he deviation �S of the S parameter from sin2� in
�B0�t� ! KS�

0 decay, which was not used as a con-
straint in the �2-fit, is predicted to lie in the range
[� 0:026, 0] at 1� and to be below 4% even if no
information on the strong phases is used. Further
constraints on �S in �B0 ! KS�, KS�0 decays are
given in Subsection III C.
(v) P
redictions are made for the branching ratios in
Bs ! PP decays, as well as for related direct CP
asymmetries, �Sf�Bs parameters, and the coefficient
�Hf�Bs multiplying sinh���t=�� in the time depen-
dent decay width. A robust prediction, �Hf�Bs � 1,
for penguin dominated �S � 1 decays holds in the
standard model up to corrections that are at the
permil level for Bs ! ��

0���
0� decays and at the

percent level for Bs ! KK decays. This prediction
follows from general arguments independent of the
SCET framework. In beyond the standard model
scenarios, the relation �Hf�Bs � 1 can generically
receive corrections of O�1�, making them very
interesting probes of new physics.
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APPENDIX A: NOTATION

Choosing n� � �1; 0; 0;�1� and �n� � �1; 0; 0; 1�, so
that 6n � 
0 � 
3 and 6n� � �
0 � 
3�, while in shorthand
notation n � k � k� and �n � k � k� for any four-vector k�,
and choosing for the Levi-Civita tensor normalization to be

 
0123 � �1; (A1)

while 
5 � i
0
1
2
3, so that for instance
Tr�
5
�
�
�
�� � 4i
����, and furthermore defining

 
��? �
1
2

���� �n�n� (A2)

so that 
12
? � �


21
? � 1 and 
5 �

i
8 �6n�; 6n�
?��


�
?


�
?, this

leads to the following relations

 6n
�?

�
?PL;R � �g

��
? � i


��
? �6nPL;R; (A3)

 6n� 
�?

�
?PL;R � �g

��
? 
 i


��
? �6n�PL;R; (A4)
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where g��? � g�� � 1
2 �n

� �n� � �n�n�� and PL;R �
�1
 
5�=2.
APPENDIX B: THE STRUCTURE OF JET
FUNCTIONS

In this appendix we show that in the matching (24) only
four jet functions appear to all orders in �S�

����������
�mb

p
�. Let us

first discuss the case where in

 T�� ��nW�z!igB?�n;��z!PR;L�
ia�0��igB6 ?n Wy�n�jb�y�; (B1)

the gluon fields are contracted, leading to J? and J jet
functions (24). At higher orders in �S�

����������
�mb

p
� the correc-

tions will come from insertions of leading order SCET
Lagrangian

 L �0�
�� �

��n;p0
�
in �Dc � i 6D?c

i
i �n �Dc

6D?c

�
6n�
2
�n;p; (B2)

and the purely gluonic L�0�cg . Thus the most general form of
the operator with two external collinear quark fields that
(B1) matches onto is (up to operators with nontrivial color
structure)

 �ab� �ucn
Y
i

�6n�
�i
? 


�i�1

? 6n�PR;L�i�

�
?

Y
j

�6n 6n�

�j

? 

�j�1

? �ucn�j;

(B3)

with 
�? coming from B6 ?n , 6n coming from the collinear
quark propagator, and pairs of 
? matrices coming from
L�0���. After Fierz transformation then (up to an overall
factor)

 �ab
X
I

� �un�Iun�




�

�?6n 6n�

Y
j

�

�j

? 

�j�1

? ��0I
Y
i

�
�i
? 


�i�1

? �6n� 6nPR;L

�
ji
;

(B4)

where

 �I � �0I �6n� � 6n�6n�
5 � 6n
5 �6n�

�
? � 6n
?�

�6n��1
 
5� � 6n�6n�
�? � 6n
?�: (B5)

In the last equality the action of 
5 on PR;L has been used.
The two Dirac structures give rise to the operators with jet
functions J and J? in (24). For instance the6n��1
 
5� � 6n
Dirac structure leads to the operator

 � �qn;x!6n�PL;Rq
0
n;� �x!��6n


�
?PR;L; �

ji; (B6)

which follows from the relation 6n 6n� 6n / 6n and the fact that
all the Lorentz indices in (B4) are contracted pairwise
(contraction with external p? momentum is subleading)
except for the index � which is carried by the remaining

?. Namely, the 
? matrices with contracted indices can
014003
be permuted to be next to each other so that the end result is
a pure number times 
�?.

The 6n�
�? � 6n
?� Dirac structure, on the other hand,
leads to the operator
 � �qn;x! 6n�
?� q0n;� �x!�

�
6n
2
PR;L
�?


�
?

�
ji
: (B7)
This immediately follows from the relation [odd] 
�?
[even] / 
�?


�
? to be proven below. Here [odd] and

[even] denote products of odd and even number of 
?
matrices, with 
�? either in [odd] or [even], while all other
indices are contracted.

Before we proceed let us show by induction that
�odd�
�?�odd� � 0, where the indices of 
? matrices in
[odd] are all contracted pairwise. This is true at lowest
order, 
�?


�
?
?� � 0. Now assume that the relation holds

for N � 2 
? matrices and look at the case of N 
?
matrices. Since in [odd] there is an odd number of 
?
there must be at least one pair of 
? matrices that has
contracted indices and sits on the opposite sides of 
�?.
Moving these matrices next to 
�? using 
�?


�
? � 2g��? �


�?

�
? leads to terms of form �odd�
�?�odd� with N � 2

matrices, which are zero by assumption, and a term [even]

�?


�
?
?� [even], which is also zero. Similarly, one can

show that �even�
�?�even� / 
�?. This holds trivially at
lowest order with [even] empty. Let us assume that it holds
for N � 2 
? matrices and move to N 
? matrices. If in
[even] 
�? [even] there are no cross contractions then
[even] is just a number. If there are cross contractions,
then as before the corresponding two matrices can be
moved next to 
�?. This leads to terms �even�
�?�even�
with N � 2 matrices, which are proportional to 
�? by
assumption, and a term �odd�
�?


�
?
?��odd�, which is

zero.
We can now show by induction that �odd�
�?�even� /


�?

�
?. The relation is trivially satisfied when [even] is an

empty set and �odd� � 
�?. Let us assume that the relation
holds also forN � 2 
? in [odd] and [even] and move toN

?. We distinguish two cases, (i) 
�? is in [odd] and (ii) 
�?
is in [even]. For option (i) the matrix 
�? can be moved to
the far left using 
�i

? 

�
? � 2g�i�

? � 
�?

�i
? . The terms

with g�i�
? have N � 2 
? and are proportional to 
�?


�
?

by assumption, leaving a term 
�? [even] 
�? [even] /

�?


�
? (since [even] 
�? [even] / 
�?). In the case (ii) 
�?

is moved to the right. This leads to terms with N � 2
gamma matrices, which are proportional to 
�?


�
? by

assumption, and a term [odd]
�? [odd] 
�?, which is zero
as shown above.

Finally let us discuss the matching in (B1) with fermion
fields contracted. Generally, this leads to an operator of the
form
-26
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 �ab
�

�?n

Y
i

�6n�
�i
? 


�i�1

? 6n�PR;L

�
ji
B�A
?n� �x!B

�A
?n�x!; (B8)

where one of the Lorentz indices is equal to �, while the
others are contracted pairwise. This general operator can
always be written as a linear combination of operators

 �ab�
�?6nPR;L�
jiBA

?n� �x! �B
A
?n�x!; (B9)

 �ab�B6 A?n� �x! 6nPR;L�
jiBA�

?n�x!; (B10)

 �ab�B6 A?n�x! 6nPR;L�
jiBA�

?n� �x!: (B11)

This is trivially satisfied for only 
�? in (B8) without
additional 
? insertions. It is also true in general, since
the Dirac structure [any] �any�
�?�any�
�?�any�
�?�any�,
where [any] is a product of an arbitrary number of 
?
matrices, with the unshown Lorentz indices contracted, is a
sum of 
�?


�
?


�
? and the similar terms with permuted

Lorentz indices. Decomposition in terms of operators
(B9)–(B11) then follows from

 
�?

�
?


�
? � g��? 


�
? � g

��
? 


�
? � g

��
? 
�?: (B12)

Since (B10) and (B11) differ merely by x$ �x interchange,
only one of the two is needed after integration over x in
(24).

APPENDIX C: SU(3) DECOMPOSITION

In the limit ms,mu;d � � a useful approach is to use the
transformation properties of the weak Hamiltonian (2)
under flavor SU(3) and decompose the decay amplitudes
in terms of reduced matrix elements [107]. The diagram-
matic approach of Refs. [108,109] is equivalent to the
SU(3) decomposition of the amplitudes (for recent appli-
cations see e.g. [30,110,111]). It is usually followed, how-
ever, by further dynamical assumptions, with annihilation
and exchange topologies neglected [110]. For nonisosing-
let final states this assumption can be justified using SCET,
since the reduced matrix elements corresponding to the
two topologies are found to be 1=mb suppressed
[9,10,112]. As we will show in this appendix, the annihi-
lation and exchange topologies, on the other hand, cannot
be neglected for isosinglet final states since they come as
leading order contributions in 1=mb expansion in SCET. In
this appendix we also provide the translation between our
LO SCET results (37) and the diagrammatic language. All
the results will be given assuming exact SU(3), using thus
the relations (45), (46), (53), and (54) along with a similar
relation for the decay constants fM � f� � fK � f�q �
f�s .

The effective weak Hamiltonian (2) transforms under
flavor SU(3) as �3 � 3 � �3 � �3 � �3 � 6 � 15, so that it can
be decomposed in terms of a vector Hi�3�, a traceless
tensor antisymmetric in upper indices,H�ij�k �6�, and a trace-
less tensor symmetric in the upper indices, H�ij�k �15�. We
014003
further define a vector of B fields Bi � �B�; B0; B0
s� and a

matrix of light pseudoscalar fields

 Mi
j �

�0��
2
p � �8��

6
p �� K�

�� � �0��
2
p � �8��

6
p �K0

K� K0
��
2
3

q
�8

0
BBB@

1
CCCA� �0���

3
p 1; (C1)

where the SU(3) singlet �0 � �u �u� d �d� s�s�=
���
3
p

and
octet �8 � �2s�s� u �u� d �d�=

���
6
p

admixtures of �q;s are
used, which is the natural choice in unbroken SU(3). The
most general Hamiltonian that has the same transformation
properties under SU(3) as the weak Hamiltonian in (2) is
then a sum of terms that contribute to both SU(3) singlet
and octet final states

 A 3BiH
i�3�Mj

kM
k
j � C3BiM

i
jM

j
kH

k�3�

�A6BiH
ij
k �6�M

l
jM

k
l � C6BiMi

jH
jk
l �6�M

l
k

�A15BiH
ij
k �15�Ml

jM
k
l � C15BiM

i
jH

jk
l �15�Ml

k; (C2)

and terms that are nonzero only if SU(3) singlet is in the
final state

 E 3BiM
i
jH

j�3�Mk
k �D3BiH

i�3�Mj
jM

k
k

�D6BiH
ij
k �6�M

k
jM

l
l �D15BiH

ij
k �15�Mk

jM
l
l; (C3)

where for �S � 0 decays

 H2�3� � 1; (C4)

 H12
1 �6� � �H

21
1 �6� � H23

3 �6� � �H
32
3 �6� � 1; (C5)

 

2H12
1 �15� � 2H21

1 �15� � �3H22
2 �15� � �6H23

3 �15�

� �6H32
3 �15� � 6; (C6)

with the remaining entries zero, while for �S � 1 decays
the nonzero entries in Hi�3�, Hij

k �6�, H
ij
k �15� are obtained

from (C4)–(C6) with the replacement 2$ 3. Note that
since the final state jPPi is symmetric, there are only 9
reduced matrix elements in B! PP [107]. Namely, the
coefficients C6, A6, D6 in the above decompositions (C2)
and (C3) always appear in the combinations C6 �A6 and
D6 �A6.

In the diagrammatic approach the linear combinations of
reduced matrix elements C3;6;15 are redefined as t, c, p
amplitudes

 t � 2C6 � 4C15; (C7)

 c � �2C6 � 4C15; (C8)

 p � C3 � C6 � C15; (C9)

while A3;6;15, leading to amplitudes e, a, pa in the dia-
grammatic notation, are usually neglected. This dynamical
assumption can be justified using SCET, where A3;6;15 are
-27



TABLE XIII. The SU(3) decomposition of �S � 0 (above horizontal line) and �S � 1 decays
(below horizontal line) into final states with �0. Each amplitude should be divided by the
common denominator in the Factor column, so that for instance AB�!���0

� �2C3 � C6 �

3C15 � 2A6 � 6A15 � 3E3 � 3D6 � 9D15�=
���
3
p
� �c� t� 2p� ts � ps�=

���
3
p

. The dia-
grammatic column shows the decomposition in the diagrammatic approach notation, with
A3;6;15 neglected.

Mode C3 C6 C15 A3 A6 A15 E3 D3 D6 D15 Factor Diagrammatic
B� ! ���0 2 1 3 0 2 6 3 0 3 9

���
3
p

t� c� 2p� ts � ps
�B0 ! �0�0 �2 �1 5 0 �2 10 �3 0 �3 15

���
6
p

�2p� cs � ps
�B0 ! �8�0 �2 3 �3 0 6 �6 �3 0 9 �9 3

���
2
p

��2c� 2p� cs � ps�
�B0 ! �0�0 2 0 0 6 0 0 6 18 0 0 3 2�c� p� cs � ps � s0�
�B0
s ! K0�0 2 �1 �1 0 �2 �2 3 0 �3 �3

���
3
p

c� 2p� ps

Mode C3 C6 C15 A3 A6 A15 E3 D3 D6 D15 Factor Diagrammatic
B� ! K��0 2 1 3 0 2 6 3 0 3 9

���
3
p

t0 � c0 � 2p0 � t0s � p
0
s

�B0 ! �K0�0 2 �1 �1 0 �2 �2 3 0 �3 �3
���
3
p

c0 � 2p0 � p0s
�B0
s ! �0�0 0 �2 4 0 �4 8 0 0 �6 12

���
6
p

c0 � c0s
�B0
s ! �8�0 4 0 �6 0 0 �12 6 0 0 �18 3

���
2
p

c0 � 4p0 � c0s � 2p0s
�B0
s ! �0�0 2 0 0 6 0 0 6 18 0 0 3 2�c0 � p0 � c0s � p

0
s � s

0
0�
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found to be 1=mb suppressed [9,10,112], while the remain-
ing amplitudes are at LO in 1=mb and �S�mb�

 t �
GF���

2
p m2

BfM�b
�d�
1 �J � c

�d�
1 ��; (C10)

 c �
GF���

2
p m2

BfM��b
�d�
2 � b

�d�
3 ��J � �c

�d�
2 � c

�d�
3 ���; (C11)

 p �
GF���

2
p m2

B�fM�b
�d�
4 �J � c

�d�
4 �� � 	�d�c Acc�: (C12)

The Wilson coefficients b�d�i are here understood to be
already convoluted with light pseudoscalar LCDA. In the
SU(3) limit this amounts to a replacement mb=!2 �

�mb=!3 � hx
�1i� � hx

�1iK � hx
�1i� ’ 3 in Eq. (16).

The amplitudes for �S � 1 transitions are obtained from
(C10)–(C12) with b�d�i ! b�s�i , c�d�i ! c�s�i .

The complete SU(3) decomposition of amplitudes for
decays not containing �0 is given in Ref. [109] both in
terms of reduced matrix elements A3;6;15, C3;6;15 as well as
in terms of diagrammatic amplitudes and will thus not be
repeated here. (In Ref. [109] a different phase convention
was used, so the replacements �0 ! ��0, �� ! ���,
K� ! �K� need to be made, while the amplitudes into
two indistinguishable states should be multiplied by

���
2
p

to
have our normalization of the amplitudes. In addition we
find the ‘‘Factor’’ in Table 2 of [109] for Bs�0�8 to be
�

���
3
p

.) The complete SU(3) decomposition of amplitudes
for decays into SU(3) singlets, on the other hand, is pro-
vided in Table XIII.

The reduced matrix elements E3 and D3;6;15 describing
the decays into SU(3) singlet final states are found in SCET
to be all nonzero already at leading order in 1=mb and
�S�mb�. Defining the singlet ‘‘diagrammatic’’ amplitudes
014003
 ts � 6�D6 � 2D15�; (C13)

 cs � �6�D6 � 2D15�; (C14)

 ps � 3�C6 � C15 �D6 �D15 � E3�; (C15)

 s0 � 9�D3 �D6 �D15�; (C16)

we find at leading order in 1=mb and �S�mb�

 ts �
GF���

2
p m2

B3fM�b
�d�
1 �Jg � c

�d�
1 �g�;

cs �
GF���

2
p m2

B3fM��b
�d�
2 � b

�d�
3 ��Jg � �c

�d�
2 � c

�d�
3 ��g�;

ps �
GF���

2
p m2

B3�fM��b
�d�
5 � b

�d�
6 ��J � �c

�d�
5 � c

�d�
6 ���

� fM�b
�d�
4 �Jg � c

�d�
4 �g� � 	

�d�
c Accg�;

s0 �
GF���

2
p m2

B9fM��b
�d�
5 � b

�d�
6 ��Jg � �c

�d�
5 � c

�d�
6 ��g�;

(C17)

where s0 contributes only to �0�0 decays. The �S � 1
amplitudes t0s, c0s, p0s, s00 are obtained by replacing d! s in
(C17). Note that these amplitudes are arising from gluon
content of isosinglet final states and correspond to dia-
grams on Fig. 4(b) and 4(d) and on Fig. 6, with ps receiving
also nongluonic contributions.

In the applications of SU(3) decomposition using the
diagrammatic approach it is frequently assumed that only
one reduced matrix element, E3, is nonzero, while D3;6;15

are assumed to be suppressed [109,110]. This corresponds
to taking ps nonzero, while neglecting ts, cs, and s0 (com-
monly s � ps=3 is introduced instead of ps). In the SCET
result (C17) this would correspond to a limit ��J�g � ��J�,
-28
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while from SCET scaling of the operators we expect
��J�g � ��J�. At present both possibilities are still allowed
by experiment, Eqs. (106), (107), (110), and (111), but
nonzero values of �g � �Jg are preferred. More precisely,
014003
in Solution I �Jg � �g cannot be zero, while it is still
consistent with zero at �1:5� in Solution II (the poorly
constrained orthogonal combination �Jg � �g is consistent
with zero in both cases).
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