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We improve, in the energy region between the �KK threshold and �1:4 GeV, the energy-dependent
phase shift analysis of �� scattering presented in a previous paper. For the S0 wave, we have included
more data above the �KK threshold and we have taken into account systematically the elasticity data on the
reaction ��! �KK. We here made a coupled channel fit. For the D0 wave, we have considered
information on low energy parameters, and imposed a better fit to the f2 resonance. For both waves
the expressions we now find are substantially more precise than the previous ones. We also provide
slightly improved D2 and P waves, including the estimated inelasticity for the first, and a more flexible
parametrization between 1 and 1.42 GeV for the second. The accuracy of our amplitudes is now such that
it requires a refinement of the Regge analysis, for s1=2 � 1:42 GeV, which we also carry out. We show
that this more realistic input produces �� scattering amplitudes that satisfy better forward dispersion
relations, particularly for �0�0 scattering.
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I. INTRODUCTION

In a recent paper by two of us [1] (J. R. P. and F. J. Y.) that
we will consistently denote by PY05, we have presented a
set of fits to the data on �� scattering phase shifts and
inelasticities, and we also checked how well forward dis-
persion relations are satisfied by the different �� scatter-
ing phase shift analyses (including our own). These various
sets differ on the values of the S0 phase shifts below the
�KK threshold. We found that some of the most frequently

used sets of phase shifts fail to satisfy forward dispersion
relations and we then presented a consistent energy-
dependent phase shift analysis of�� scattering amplitudes
that satisfies well forward dispersion relations for energies
below �1 GeV. Above this energy, we found a certain
mismatch between the real parts of the scattering ampli-
tudes, calculated from phase shifts and inelasticities, and
the result of the dispersive evaluations, particularly for
�0�0 scattering. This we attributed to imperfect experi-
mental information in the region 1 GeV & s1=2 &

1:4 GeV. In the present paper we improve our analysis of
the S0 wave, the D0 wave and, to a lesser extent, the D2
and P waves1 in the energy range around and above the �KK
threshold (for the D0 wave, we also slightly improve the
low energy region). For the S0 wave we take into account
systematically the elasticity data from the reaction ��!

�KK; for the D0 wave we include information on low
energy parameters, and we improve the fit to the
f2�1270� resonance, to describe better its width and in-
elasticity. These two parametrizations are more accurate
than what we had in PY05; not only in that they include
more data, but also because they have smaller errors. A
slight improvement for the P wave (using a more flexible
parametrization) between the �KK threshold and 1.42 GeV
is also presented and, for the D2 wave, we improve on
PY05 by including its estimated inelasticity above
�1 GeV. We have also found convenient to reconsider
the Regge analysis, for the energy region above
1.42 GeV, particularly in view of the accuracy of the
present parametrizations. This we do by taking into ac-
count more precise values for the intercepts ���0� and
�P0 �0� than those used in PY05. Although the changes
this induces are very small, and indeed quite unnoticeable
below 1 GeV, the verification of the dispersion relation for
exchange of isospin 1 above the �KK threshold is sensitive
to this Regge improvement. We then also show that, with
this more accurate input in the phase shift analysis, the
forward �0�0 dispersion relation is much better satisfied
than with the amplitudes in PY05, particularly for energies
above 1 GeV. The �0�� dispersion relation is also im-
proved, but only a little. Finally, the dispersion relation for
exchange of isospin unity is practically unchanged below
1 GeV, and deteriorates slightly above. The new, improved
parametrizations therefore provide a very precise and reli-
able representation of pion-pion amplitudes at all energies:

1We will use consistently the self-explanatory notation S0, S2,
P, D0, D2, F, . . . for the �� partial waves.

PHYSICAL REVIEW D 74, 014001 (2006)

1550-7998=2006=74(1)=014001(15) 014001-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.74.014001


the average fulfillment of the dispersion relations is at the
level of 1:05�, for energies below 0.93 GeV, and of 1:27�
for energies up to 1.42 GeV.

II. THE S0 WAVE AT HIGH ENERGY

In PY05 we provided fits to data for the S0 wave that
satisfied forward dispersion relations reasonably well be-
low 0.925 GeV, as well as an improved parametrization
constrained to satisfy forward dispersion relations below
this energy and to fit data. Here we will concentrate on a
parametrization at higher energies, taking care to match it
to the low energy one, which we do at 0.92 GeV. The
information on the S0 wave at high energy (s1=2 >
0:92 GeV) comes from two sources: �� scattering experi-
ments [2–6] and, above �KK threshold, also from ��!
�KK scattering [7]. The second provides reliable measure-

ments of the elasticity parameter,2 ��0�0 �s�: since there are
no isospin 2 waves in ��! �KK scattering, and the ���
�KK coupling is very weak for P and D0 waves, it follows

that measurements of the differential cross section for
��! �KK give directly the quantity 1� ���0�0 �

2 with
good accuracy, so long as the multipion cross section is
small; see the discussion of this below. Below the �KK
threshold we fit data between 0.929 and 0.970 GeV from
Hyams et al. [2], Protopopescu et al. [4], and from Grayer
et al. [3], as composed in PY05 [1]:

 ��0�0 �0:9292 GeV2� 	 112:5
 13�;

��0�0 �0:9352 GeV2� 	 109
 8�;

��0�0 �0:9522 GeV2� 	 126
 16�;

��0�0 �0:9652 GeV2� 	 134
 14�;

��0�0 �0:9702 GeV2� 	 141
 18�:

(2.1a)

As explained in PY05, these errors cover the systematic
uncertainties, which are large. We also add the recent data
of Kamiński et al. [5] and we include in the fit the value

 ��0�0 �4m
2
K� 	 205
 8� (2.1b)

obtained in the constant K-matrix fit of Hyams et al. [2],
which is compatible with the other data used here. Finally,
we include two values that follow from the low energy
analysis in PY05 from the global data fit (i.e., before
imposing forward dispersion relations, to avoid correla-
tions with other waves),

 ��0�0 �0:9002 GeV2� 	 101:0
 3:7�;

��0�0 �0:9202 GeV2� 	 102:6
 4�:
(2.1c)

To fit the data above the �KK threshold, we notice that

analyses based on �� scattering experiments only deter-
mine a combination of phase shift and inelasticity and,
indeed, different results are obtained for the S0 wave in the
various analyses. For this wave we only fit data sets whose
inelasticity is compatible with what is found in ��! �KK
scattering [7], in the region 4m2

K � s & �1:25 GeV�2. This
includes the solution3 �� ��� of Hyams et al. [6], the
data of Hyams et al. [2] (or4 of Grayer et al. [3]), and the
data of Kamiński et al. [5].

For the elasticity parameter, ��0�0 , we will improve on the
analysis of PY05 by including more data5 (especially,
��! �KK data) and being more realistic in the parame-
trization. First of all, we remark that the modulus squared
of the S0 amplitude for ��! �KK scattering is propor-
tional to 1

4�1� ��
�0�
0 �

2�, provided the two-channel approxi-
mation is valid. This is known to be the case
experimentally for s1=2 & 1:25 GeV for such waves as
have been measured, and will very likely be also true for
our case (as we verify in Appendix B). In this range, the
��! �KK scattering experiments give the more reliable
measurements of the parameter ��0�0 . Therefore, in the
region s1=2 & 1:25 GeV we fit ��! �KK data [7] and,
among the ��! �� data sets, only those whose inelas-
ticity is compatible with that from ��! �KK below
�1:25 GeV. This includes the data sets of Hyams et al.
[2] (or Grayer et al. [3]); the data from Ref. [6], solution
�� ���; and the data of Ref. [5]. We however do not
include in the fits the data of Protopopescu et al. [4], since
they are quite incompatible with the ��! �KK
information.

A convenient way to fit phase shift and inelasticity is to
use the K-matrix formalism. This has the advantage over
the method of polynomial fits, used in PY05 (see also
Appendix B here), that the relations that occur at threshold
between ��0�0 and ��0�0 , given in Appendix A [Eq. (A6)], are
automatically fulfilled. The method, however, presents the
drawback that it is not possible to take into account the
existence of other channels unless one introduces an ex-
cessive number of parameters. This is why we present an
alternate polynomial fit in Appendix B. Fortunately, the fits
given in Appendix B show that the contribution of such
multiparticle channels is rather small; in fact, within the
errors of the two-channel fit (this smallness is probably due
to the fact that, because of its quantum numbers, the first
quasi-two-body channel that contributes is ��). So we
would expect that neglecting those other channels will

2In the present paper we refer to � as the elasticity, or
elasticity parameter. The inelasticity is

���������������
1� �2

p
.

3�� ��� is the preferred solution in the original reference.
Unfortunately, this reference only provided numbers for the
statistical uncertainties. We add to these 5� as estimated system-
atic error, in agreement with an analysis similar to that of PY05.

4The data of Grayer et al. in Ref. [3], and those of Hyams et al.
in Ref. [2] come from the same experiment.

5In all cases we add an estimated error of 0.04 to data that only
give statistical errors.
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not produce an excessive bias, being anyway covered by our uncertainties.
To perform the fit, we consider ��0�0 and ��0�0 to be given in terms of the K-matrix elements by the expressions

(cf. Appendix A)

 tan��0�0 �s�	

8>>>>>>><>>>>>>>:

k1jk2jdetK�k1K11

1�jk2jK22
; s�4m2

K;

1

2k1�K11�k2
2K22 detK�

fk2
1K

2
11�k

2
2K

2
22�k

2
1k

2
2�detK�2�1

�
�������������������������������������������������������������������������������������������������
�k2

1K
2
11�k

2
2K

2
22�k

2
1k

2
2�detK�2�1�2�4k2

1k
2
2K

4
12

q
g; s�4m2

K;

(2.2)

and

 ��0�0 �s� 	

�����������������������������������������������������������������������������
�1� k1k2 detK�2 � �k1K11 � k2K22�

2

�1� k1k2 detK�2 � �k1K11 � k2K22�
2

s
; s � 4m2

K: (2.3)

Then we write a standard diadic expansion for K, with a
constant background (like, e.g., in Hyams et al. [2]):

 Kij�s� 	
��i�j
M2

1 � s
�
��i�j
M2

2 � s
�

1

�
	ij (2.4a)

and � is a mass scale, that we take � 	 1 GeV. The
powers of � have been arranged so that the �i, �i, 	ij
are dimensionless; they are also assumed to be constant.
The pole at M2

1 simulates the left-hand cut of K, and the
pole at M2

2 is connected with the phase shift crossing 270�

around 1.3 GeV; both poles are necessary to get a good fit.
We fit simultaneously all data, above as well as below

the �KK threshold for the phase shift. For ��0�0 , we also fit all
data, ��! �� and ��! �KK, over the whole range,
which is justified since we are neglecting other inelastic
channels. We require perfect matching with the lower
energy determination of the phase shift at 0.920 GeV, as
obtained in PY05. We find a 
2=d:o:f: 	 0:6 and the values
of the parameters are

 �1	0:727
0:014; �2	0:19
0:04;

�1	1:01
0:08; �2	1:29
0:03;

M1	0:909
0:007 GeV; M2	1:324
0:006 GeV;

	11	2:87
0:17; 	12	1:93
0:18;

	22	�6:44
0:17; ��0�0 ��0:92 GeV�2�	102:6
4:6�:

(2.4b)

Note thatM1 indeed lies near the beginning of the left-hand
cut for �KK ! �� scattering, located at 0.952 GeV. The
parameters in (2.4b) are strongly correlated. In fact, we
have verified that there exists a wide set of minima, with
very different values of the parameters. This is not surpris-
ing, since we do not have sufficiently many observables to
determine the three Kij on an energy independent basis.

Nevertheless, the corresponding values of ��0�0 and ��0�0
vary very little in all these minima, so that (2.4b) can be
considered a faithful representation of the S0 wave for ��

scattering, albeit very likely with somewhat underesti-
mated errors due to our neglecting other channels, like
��! 4�. The corresponding phase shift and elasticity

850 900 950 1000 1050 1100 1150 1200 1250 1300 1350 1400

s
1/2 

 (MeV)

90

120

150

180

210

240

270

300

K-matrix
PY05
Kaminski et al.
Grayer et al. Sol.B (Hyams et al.)
Averaged exp. data
Hyams et al. (---)
Low energy PY05 points used in new fit

δ
0

(0)

(a)

1000 1100 1200 1300 1400

s
1/2

(MeV)

0

0.25

0.5

0.75

1

η0
0
(s)

Cohen et al.
Etkin et al.
Wetzel et al.
Hyams et al.
Kaminski et al.
K-matrix up to 1420 MeV
PY05 Polynomial fit

ππ      KK

ππ       ππ

(b)

FIG. 1 (color online). (a) K-matrix fit to ��0�0 (solid line and
dark area). Dotted lines: the fit in PY05. (b) K-matrix fit to ��0�0

using (2.4), with error given by the shaded area. The dotted lines
represent the central values and error limits of the old fit in PY05.
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parameter are shown in Figs. 1(a) and 1(b). Both phase
shift and elasticity clearly improve what we had in PY05. It
is mainly because of the use of the phase shift in (2.4a) and,
above all, the smaller inelasticity driven by ��! �KK
data, that we find a substantial improvement in forward
�0�0 dispersion relations above 1 GeV (see below), as
already remarked in PY05.

III. THE IMPROVED D0, D2 WAVES

A. The D0 wave

The experimental data on the D0 wave are of poor
quality; different experiments give very incompatible re-
sults, particularly below 0.93 GeV. Above 1.1 GeV, and
although the data of Refs. [2,6] (but not Ref. [3]) are
compatible, it is better to use directly the Particle Data
Table’s information [8] on the f2 resonance, which sum-
marizes the existing experimental data.

The reliable information on this wave is then of three
kinds. First, in the range around 1.27 GeV, we have the
referred very precise measurements of the f2�1270� reso-
nance parameters, which give [8] a mass Mf2

	 1275:4

1:2 MeV, a width �f2 	 185:1
 3:4 MeV, and a ��
branching ratio of 84:7
 2:4%. Second, the Froissart-
Gribov representation allows an accurate determination
of the scattering length, a�0�2 , and effective range parameter,
b�0�2 , as shown in PY05;6 one finds [1]

 a�0�2 	 �18:7
 0:4� 
 10�4M�5
� ;

b�0�2 	 ��4:2
 0:3� 
 10�4M�7
� :

(3.1)

This helps us to fix the phase shift at low energy. Third, we
have the 1973 data of Hyams et al. [2], Protopopescu et al.
[4], and solution �� ��� of Hyams et al. [6] in the range
0:935 GeV � s1=2 � 1:1 GeV, which are reasonably com-
patible among themselves; see Fig. 2. We denote them by,
respectively, H73, P, and H�� ���. The data we include
thus are

 

E; in GeV cot��0�2 source
0:935 10:4
 2 P
0:950 10:2
 5:5 H73
0:965 7:3
 2 P
0:970 4:0
 2:2 H73
0:990 4:8
 1:4 H73

(3.2a)

and, above �KK threshold,

 

E; in GeV cot��0�2 source
1:00 5:1
 2 P
1:01 3:6
 0:8 H73
1:02 3:6
 0:8 H�� ���
1:03 3:0
 0:6 H73
1:04 3:3
 0:8 P

E; in GeV cot��0�2 source
1:05 3:8
 0:9 H73
1:06 2:8
 0:8 H�� ���
1:07 2:5
 0:4 H73
1:09 2:7
 0:45 H73
1:10 2:1
 0:8 H�� ���:

(3.2b)

A few words must be said about the errors in (3.2). Since
H�� ��� do not give errors, we take them as equal to
those of P. We also multiplied all errors by a factor 2, to
take into account the estimated systematic errors (for e.g. P,
estimated as the difference between the fits XIII and VI in
Ref. [4]).

We present the details of the fits. To take into account the
analyticity structure, we fit with different expressions for
energies below and above the �KK threshold, requiring
however exact matching at s 	 4m2

K. Below the �KK
threshold we take into account the existence of non-
negligible inelasticity above 1.05 GeV, which is near the
!� or ��� thresholds, by choosing a conformal variable
w appropriate to a plane cut for s > �1:05 GeV�2. So we
write
 

cot��0�2 �s� 	
s1=2

2k5
�M2

f2
� s�M2

�fB0 � B1wg; s < 4m2
K;

w 	

���
s
p
�

�����������
ŝ� s
p

���
s
p
�

�����������
ŝ� s
p ; ŝ1=2 	 1:05 GeV: (3.3a)
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New D0 fit
PY05

 δ2
(0)

(s)

FIG. 2. The D0 phase shift as determined here (continuous
line; the error is like the thickness of the line) and that from
PY05 (broken line). The experimental data points are also
shown. Note that the high energy fit is tightly constrained by
the f2�1270� mass and width.

6The values given below in (3.1) are those obtained in PY05,
with the old parametrizations. We have verified that they do not
change, within the accuracy of (3.1), if recalculating the
Froissart-Gribov representation with the parametrizations in
the present paper. This of course occurs because the new
parametrizations only change the amplitudes significantly above
1 GeV, a region to which a�0�2 and b�0�2 are almost not sensitive.
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The mass of the f2 we fix at Mf2
	 1275:4 MeV; no error

is taken for this quantity, since it is negligibly small
(1.2 MeV) when compared with the other errors. We fit
the values of a�0�2 and b�0�2 given in (3.1) and the data in
(3.2a). We find the values of the parameters

 B0 	 12:47
 0:12; B1 	 10:12
 0:16: (3.3b)

We note that the series shows good convergence. Above the
�KK threshold we use the following formula for the phase

shift:
 

cot��0�2 �s� 	
s1=2

2k5
�M2

f2
� s�M2

�fBh0 � Bh1wg; s > 4m2
K;

w 	

���
s
p
�

��������������
sh � s
p���

s
p
�

��������������
sh � s
p ; s1=2

h 	 1:45 GeV: (3.4a)

This neglects inelasticity below 1.45 GeV, which is ap-
proximately the �� threshold; inelasticity will be added by
hand, see below. We then fit the values for the width of
f2�1270�, as given above, and the set of data in (3.2b). We
get

 Bh0 	 18:77
 0:16; Bh1 	 43:7
 1:8: (3.4b)

As stated, we have required exact matching of high and low
energy at the �KK threshold, where our fits give
cot��0�2 �4m

2
K� 	 4:42
 0:04. This matching implies that

there is a relation among the four Bis, so there are in effect
only three free parameters. The overall chi-squared of the
fit is very good, 
2=d:o:f: 	 9:8=�18� 3�.

We note that, although not included in the fit, our new
D0 phase shift fits better than the old PY05 one the data
points of Hyams et al. [6], solution �� ���, above the f2

resonance: see Fig. 2. The data for the inelasticity are not
sufficiently good to improve significantly the fit in PY05;
so we simply write, as in Ref. [1],

 ��0�2 �s� 	

8><
>:

1; s < 4m2
K;

1� �
k2�s�

k2�M
2
f2
�
; s > 4m2

K; � 	 0:262
 0:030; k2 	
���������������������
s=4�m2

K

q
: (3.4c)

This probably only provides a fit to the elasticity parameter
on the average, but we have not been able to find a clear
improvement on this. The corresponding elasticity parame-
ter is shown7 in Fig. 3. Two important properties of the new
fit are that it reproduces better than the one in PY05 the
width and inelasticity of the f2 resonance, which is the
more salient feature of the D0 wave, and that it is more
precise than what we had in PY05. This improvement of
the D0 wave, although it does not give a phase shift very
different from that in PY05, also contributes a non-
negligible amount to the improved fulfillment of the
�0�0 dispersion relations.

B. The D2 wave

In PY05 we fitted the D2 wave with a single parametri-
zation over the whole energy range up to 1.42 GeV, and
neglected inelasticity. We wrote

 cot��2�2 �s� 	
s1=2

2k5
fB0 � B1w�s�

� B2w�s�
2g

M4
�s

4�M2
� � 


2� � s
(3.5a)

with 
 a free parameter fixing the zero of the phase shift
near threshold, and

 w�s� 	

���
s
p
�

�������������
s0 � s
p���

s
p
�

�������������
s0 � s
p ; s1=2

0 	 1450 MeV:

Since the data on this wave are not accurate we included
extra information. To be precise, we incorporated in the fit
the value of the scattering length that follows from the
Froissart-Gribov representation (PY05),

 a�2�2 	 �2:78
 0:37� 
 10�4M�5
� ;

but not that of the effective range parameter,

 b�2�2 	 ��3:89
 0:28� 
 10�4M�
�7:

We got a mediocre fit, 
2=d:o:f: 	 71=�25� 3�, and the
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FIG. 3 (color online). Fit to ��0�2 (continuous line and dark area
that covers the uncertainty) from PY05. Data from Refs. [2– 4,6].
The elasticity on the f2�1270�, from the PDT [8], is also shown
(large white dot).

7Although there is nothing new in this fit, we show the picture
because we had not shown it in PY05.
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values of the parameters were

 B0 	 �2:4
 0:3� 
 103; B1 	 �7:8
 0:8� 
 103;

B2 	 �23:7
 3:8� 
 103; 
 	 196
 20 MeV:

(3.5b)

The corresponding numbers for the scattering length and
for the effective range parameter b�2�2 that follow from this
are

 a�2�2 	 �2:5
 0:9� 
 10�4M�
�5;

b�2�2 	 ��2:7
 0:8� 
 10�4M�
�7:

The last is a bit away from what one has from the Froissart-
Gribov representation, but still is compatible at the 2�
level. The low quality of the fit may be traced to the fact
that the various data sets are not very compatible among
themselves. Therefore, there is no chance to improve the fit
as we did for the D0 wave (where we had the very precise
data on the f2 resonance). We here merely improve the
treatment of this wave by including the inelasticity by
hand. To get an estimate of the inelasticity, we have two
possible methods: we can take the inelasticity to be similar
to that of the D0 wave or we can make a model calculation;
for example, that of Ref. [9], in which the authors assume
inelasticity to go via rho intermediate states, fixing the
coupling parameters to reproduce the properties of the
better known waves. Both methods yield negligible inelas-
ticity below ��� threshold, and something around 5%
inelasticity at the highest energy considered, 1.42 GeV.
For the elasticity parameter we thus simply write, above
1.05 GeV,
 

��2�2 �s� 	 1� ��1� ŝ=s�3; ŝ1=2 	 1:05 GeV;

� 	 0:2
 0:2; (3.5c)

this is negligible up to 1.25 GeV and, above that, covers
both what was estimated in Ref. [9], and the fact that
experiments fail to detect inelasticity.

IV. THE IMPROVED P WAVE BETWEEN THE �KK
THRESHOLD AND 1.42 GEV

We next fit the P wave above 2mK ’ 0:992 GeV, incor-
porating in the fit the data from solution �� ��� of
Hyams et al. [6], besides the data from Protopopescu
et al. [4] (the last is the one more compatible with what
one finds from the pion form factor). We have added
estimated errors of 2� to the phase shift and 0.04 to the
elasticity parameter for the data of solution �� ��� in
Hyams et al. [6], since no errors are provided in this
reference. We now use one more parameter both for the
phase shift and for the elasticity parameter than what we
had in PY05, writing

 

�1�s� 	 �0��1�
���������������
s=4m2

K

q
� 1���2�

���������������
s=4m2

K

q
� 1�2;

�1�s� 	 1��1

�����������������������
1� 4m2

K=s
q

� �2�1� 4m2
K=s�; s> 4m2

K:

(4.1)

The phase at the low energy edge, �1�0:9922 GeV2� 	
153:5
 0:6�, is obtained from the fit to the form factor
of the pion (Ref. [10]; see also Ref. [1]). This fixes the vale
of �0. The fits are reasonable; we get 
2=d:o:f: 	 0:6 for
the phase and 
2=d:o:f: 	 1:1 for the elasticity. We find the
parameters

 �0 	 2:687
 0:008; �1 	 1:57
 0:18;

�2 	 �1:96
 0:49; �1 	 0:10
 0:06;

�2 	 0:11
 0:11:

(4.2)

The only noticeable differences with the fit in PY05 is that
the phase shift and elasticity parameter are now less rigid,
that we match the low and high energy expressions at �KK
threshold, and that the inelasticity is now somewhat larger
than what we had in PY05. This improved solution, to-
gether with that in PY05, are shown in Fig. 4. Another
matter is the contribution of the ��1020� resonance. This
can be included in the standard way, by adding to the P
wave a resonant piece

 f̂ 1�s� ! f̂1�s� � f̂
�
1 �s�; (4.3a)

where f̂1�s� is normalized so that, in the elastic case,

 f̂ 1 	 sin�1e
i�1
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s
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Protopopescu et al. Table VI
Protopopescu et al. Table XIII
Fit in PY05
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1

FIG. 4 (color online). The fit to the P wave above the �KK
threshold (continuous line and dark area that covers the uncer-
tainty), with data from solution �� ��� of Hyams et al. [6] and
of Protopopescu et al. [4] Note that the errors shown for the data
are only the statistical errors; systematic errors, estimated as in
the text, about double them. The broken lines are the phase shift
and elasticity parameter of PY05. The effect of the ��1020�
resonance is not shown in this figure.
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and

 f̂ �1 �s�	

M�

s1=2

�
k2

k2�M2
��

�
3
M��

M2
��s� i

M�

s1=2

�
k2

k2�M
2
��

�
3
M��

B��; s�4m2
K;

(4.3b)

here k2 	
���������������������
s=4�m2

K

q
, and the width and �� branching

ratio of the ��1020� resonance are � 	 4:26
 0:05 MeV
and B�� 	 �7:3
 1:3� 
 10�5. Something similar could
be done for the contribution of the !. The influence of
these resonances is totally negligible and, in fact, we will
not include them in our calculations of dispersion relations
below.

V. IMPROVEMENT OF THE REGGE INPUT

To evaluate the dispersion relations, we need an estimate
for the high energy (s1=2 � 1:42 GeV) scattering ampli-
tudes. This is furnished by the Regge model. We have here
three amplitudes, one for each of the exchange of isospin 0,
1, and 2. We first take, for these Regge amplitudes, the
results of the fits in Ref. [11]; see also PY05, Appendix B.
Then we will consider improvement of the Regge
parameters.

The expressions for the amplitudes for exchange of
isospin 1 and 0 are, respectively,

 ImF�It	1��s; 0� ’
s!1

���0��s=ŝ�
���0�; s � �1:42 GeV�2;

(5.1a)

and
 

ImF�It	0�
�� �s;0� ’

s!1
P�s;0��P0�s;0�; s��1:42 GeV�2;

P�s;0�	�P�s=ŝ��P�0�; P0�s;0�	�P0 �s=ŝ��P0 �0�: (5.1b)

In both expressions ŝ 	 1 GeV2. The values of the pa-
rameters are (Refs. [1,11], Appendix B)

 ���0� 	 1:02
 0:11; ���0� 	 0:52
 0:02 (5.2)

and

 �P 	 2:54
 0:03; �P0 	 1:05
 0:02;

�P0 �0� 	 ���0�; �P�0� 	 1:
(5.3)

For exchange of isospin 2, which is very small, we also
take the amplitude of Ref. [11]:

 ImF�It	2��s; 0� ’s!1 �2�s=ŝ�
2���0��1;

�2 	 0:2
 0:2; s � �1:42 GeV�2:
(5.4)

The first two, however, will now be improved: as we
have seen in previous sections, the precision of our new
parametrizations in the intermediate energy range (� 1 to
�1:4 GeV) is such that one is sensitive to small details of

the Regge amplitudes; so, it is convenient to reassess the
derivation of the values for the Regge parameters in
Eqs. (5.2) and (5.3). The expressions (5.2) and (5.3) were
obtained in Ref. [11] and PY05 as follows. We fixed ���0�
as the average between what is found in deep inelastic
scattering [12], �� 	 0:48, and in the analysis of hadron
collisions by Rarita et al. [13], who get �� 	 0:56. We also
imposed degeneracy, so that the intercept of � and P0 were
forced to be the same. We then fitted experimental ��
cross sections, which gives ���0� 	 1:0
 0:3, and im-
proved this result demanding fulfillment of a crossing
sum rule. For isospin zero exchange, the expression (5.3)
was obtained requiring simultaneous fits to ��, �N, and
NN data, using factorization, fixing the intercept of the P0

to 0.52 (as already stated). However, more complete fits
[14] than that of Rarita et al. [13] have been performed in
the past years; especially, for the rho trajectory, individual
data on pp, �pp, and np have been included in the fits,
which permits improvement of the determination of the rho
parameters using factorization. These fits, in particular,
allowed a relaxation of the exact degeneracy condition
���0� 	 �P0 �0�, and yield central values for the rho inter-
cept �� 	 0:46, more in agreement with the result from
deep inelastic scattering. For �P0 , one finds a value higher
than for the rho intercept: �P0 	 0:54. We may then repeat
the analysis of Ref. [11], but fixing now the intercepts of
rho and P0 trajectories to the likely more precise values

 ���0� 	 0:46
 0:02; �P0 �0� 	 0:54
 0:02; (5.5a)

with conservative errors. We also here improve the error
estimate for the rho residue �� with the crossing sum rule,
as we did in PY05 to get (5.2). This sum rule we calculate
using the new phase shifts and inelasticities we have
evaluated in the present paper. We then find

 �� 	 1:22
 0:14; �P 	 2:54
 0:04;

�P0 	 0:83
 0:05:
(5.5b)

The errors are slightly larger now, which is due to the fact
that we do not impose the exact degeneracy relation
���0� 	 �P0 �0�. For the amplitude with exchange of iso-
spin 2, we still keep (5.4) since no new information is
available. The difference between what we have now,
(5.5), and what was used in PY05 is much smaller than
what would appear at first sight; in fact, because the ��0�
and � are strongly correlated, the changes in one quantity
are compensated by those in the other: the amplitudes
described by (5.2), (5.3), and (5.5) are very similar in the
energy region of interest (cf. Fig. 5). However, these am-
plitudes differ in some details. So, the rho amplitude
described by (5.5) is tilted with respect to that given by
(5.2): the amplitude described by (5.5) is slightly larger
than that described by (5.3) below �5 GeV, where they
cross over, and is larger above this energy. Likewise, for
exchange of isospin zero (5.5) gives a smaller amplitude at
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low energy, which then crosses over the amplitude given by
(5.3) at higher energy.

As just stated, these changes induced by using (5.5) do
almost compensate each other and, indeed, they have only
a minute effect in dispersion relations below 1 GeV. At the
level of precision attained by our parametrizations in the
region above 1 GeV, however, the dispersion relations are
sensitive to the details of the Regge behavior; because of
this, we will evaluate the dispersion relations with both
(5.2) and (5.4) and with (5.5). A last question related to the
high energy, s1=2 � 1:42 GeV, input is the matching of the
Regge amplitudes to the amplitude obtained below
1.42 GeV with our phase shift analyses. Although we
have verified that the low and high energy amplitudes are
compatible, within errors, at 1.42 GeV, we have not re-
quired exact matching. The reason for this is that at the
lower energy Regge range, say below �1:8 GeV, some
amplitudes still present structure; for example, for the

amplitudes with isospin unity, the structure associated
with the ��1450�, ��1700�, and �3�1690� resonances. It
is true that these resonances couple weakly to ��, but, at
the level of precision required in the present paper, this is
not negligible: as happens in the case of ��p scattering
(see e.g. Fig. 2 in Ref. [11]), one expects the Regge
amplitude to provide only a fit in the mean. This mismatch
produces distortions near the boundary, s1=2 	 1:42 GeV,
clearly seen in some of the dispersion relation calculations
below; particularly, for �0�� scattering, where the P and,
to a lesser extent, the F waves are important. We have done
nothing to correct this distortion which, anyway, only
affects the points very near 1.42 GeV. The alternate possi-
bility, which would be to use phase shift analyses up to
higher energies, say 1.8 GeV, would only make matters
worse since it would have to contend with the nonunique-
ness and unreliability of the experimental data in that
region, as discussed, for example, in Ref. [15].

VI. FORWARD DISPERSION RELATIONS

In this section we will evaluate forward dispersion rela-
tions for the three independent �� scattering amplitudes.
For these calculations we will take the parameters for all
partial waves from the fits to data8 in Ref. [1] (PY05),
except for the S0 and P waves above 0.92 GeV, where we
use the expressions found in the present paper (for the S0
wave, with the K-matrix fit), and for the D2 wave, where
we take into account the inelasticity above 1.05 GeV. For
the D0 wave we use the expressions given in the present
paper all the way from threshold. To measure the fulfill-
ment of the dispersion relations we calculate the average
chi-squared, �
2. This is defined as the sum of the squares of
the real part minus the result of the dispersive integral,
divided by the (correlated) errors squared; this we do at
energy intervals of 25 MeV, and divide by the number of
points. Note however, that this average �
2 does not come
from a fit to the dispersion relations, but is simply a
measure of how well the forward dispersion relations are
satisfied by the data fits, which are independent for each
wave, and independent of dispersion relations. When cal-
culating this �
2, we first use the parameters for phase shifts
and inelasticities in PY05; then, we replace the relevant
waves by the ones in the present paper; and, finally, we also
replace the PY05 Regge parameters with the ones in
Eq. (5.5).

2 3 4 5 6 7 8 9 10 15 20
s 

1/2
 (GeV)

0

0.1

0.2

0.3

0.4

Nondegenerate P’-  ρ intercepts (New fit)
Degenerate P’- ρ  intercepts (PY05)

Im F
 (It=0) 

 in  ππ −> ππ  (Pomeron+P’)

5 10 15 20
s

1/2
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0

0.05

0.1

0.15 Nondegenerate P’- ρ intercepts. (New fit)
Degenerate P’-ρ intercepts. (PY05)

Im F
(It=1)

 in  ππ−>ππ ( ρ  exchange)

(a)

(b)

FIG. 5 (color online). (a) The scattering amplitude
ImF�It	1��s; 0� as described by (5.2), broken line, and (5.5), solid
line with error included (gray band). (b) The scattering ampli-
tude ImF�It	0��s; 0� as described by (5.3), broken line, and (5.5),
solid line with error included (gray band).

8In PY05 we gave two sets of phase shifts and inelasticities:
one by fitting directly the various sets of experimental data
(Sec. 2 in Ref. [1]); and a set obtained by requiring, besides fit
to data, fulfillment of dispersion relations (summarized in
Appendix 1 of Ref. [1]). In the present paper we of course
only use the amplitudes obtained in PY05 by fitting data, since
the ones improved with dispersion relations use a high energy
(s1=2 > 0:92 GeV) input that is superseded by our calculations in
the present paper.
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A. The �0�0 and �0�� dispersion relations

We first evaluate the forward dispersion relation for
�0�0 scattering, the one that was worse verified in PY05
and the one for which the improvement due to the new
parametrizations is more marked. We write
 

ReF00�s� � F00�4M
2
��

	
s�s� 4M2

��

�
P:P:

Z 1
4M2

�

ds0



�2s0 � 4M2

�� ImF00�s
0�

s0�s0 � s��s0 � 4M2
���s0 � s� 4M2

��
: (6.1)

The result of the calculation is shown in Fig. 6, where the

continuous curve is the real part evaluated from the pa-
rametrizations, and the broken curve is the result of the
dispersive integral, i.e., the right-hand side of (6.1). The
fulfillment of this dispersion relation improves substan-
tially what we had in PY05:9 the changes in the average
chi-squared are
 

�0�0: PY05 New phase sh: New Regge

�
2 	 3:8! 1:52 ! 1:41; for s1=2 � 930 MeV;

�
2 	 4:8! 1:76 ! 1:63; for s1=2 � 1420 MeV:

(6.2)

Here and in similar expressions below, ‘‘New phase sh.’’
means that we use the new, improved phase shifts (and
inelasticities) of the present paper; ‘‘New Regge’’ means
that we also use the new Regge parameters in (5.5). In both
cases we use the K-matrix fit for the S0 wave, Eqs. (2.4).

The improvement obtained for �0�0 when using the
new phase shifts is more impressive if we remember that
the errors we have now for the S0 wave above 0.92 GeV,
and for the D0 wave in the whole range, are substantially
smaller than what we had in PY05. It is also noteworthy
that the improvement in the dispersion relation is due
almost exclusively to the use of the new phase shifts and
inelasticities in the range �1 to 1.42 GeV; the improve-
ment due to introducing the Regge behavior (5.5) is much
more modest. The dispersion relation for �0�� scattering
reads, with F0��s� the forward �0�� amplitude,
 

ReF0��s� � F0��4M
2
��

	
s�s� 4M2

��

�
P:P:

Z 1
4M2

�

ds0



�2s0 � 4M2

�� ImF0��s
0�

s0�s0 � s��s0 � 4M2
���s0 � s� 4M2

��
: (6.3)

In Fig. 7 we show the fulfillment of (6.3), both with what
we had in PY05 and with the new phase shifts and Regge
parameters. The forward dispersion relation for �0��

scattering was already very well satisfied with the parame-
ters in PY05; it becomes slightly better satisfied now. The
changes in the average chi-squared are
 

�0��: PY05 New phase sh: New Regge

�
2 	 1:7! 1:75 ! 1:60; for s1=2 � 930 MeV;

�
2 	 1:7! 1:60 ! 1:44; for s1=2 � 1420 MeV:

(6.4)

The improvement here, although existing, is rather small:
not surprisingly as the corresponding amplitude does not
contain the S0 or D0 waves. The amelioration is due only
to use of the new Regge parameters from Eq. (5.5). The fact
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FIG. 6 (color online). (a) The �0�0 dispersion relation with
the new S0, D0, and D2 waves. Continuous line: real part,
evaluated directly with the parametrizations (the gray band
covers the error). Dashed line: the result of the dispersive
integral, with the Regge parameters of (5.5). (b) The �0�0

dispersion relation with the old, PY05 S0, D0, and D2 waves.
Continuous line: real part, evaluated directly with the parame-
trizations. Dashed line: the result of the dispersive integral, with
the Regge parameters as in PY05.

9Of course, we here compare with the results obtained using
the fits to data, before improving them by requiring fulfillment of
the dispersion relations at low energy
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that both the dispersion relations for �0�0 and �0��

improve with the present parameters for the P0 trajectory
confirms the correctness of the procedure for determining
it which we developed in Sec. V.

B. The dispersion relation for the It 	 1 scattering
amplitude

The dispersion relation for the It 	 1 scattering ampli-
tude does not require subtractions, and reads
 

ReF�It	1��s; 0� 	
2s� 4M2

�

�
P:P:

Z 1
4M2

�

ds0



ImF�It	1��s0; 0�

�s0 � s��s0 � s� 4M2
��
: (6.5)

The result of the calculation is shown in Fig. 8.

In this case the contribution of the Regge piece is very
important, although the details only matter in the region
above 1 GeV. Here the fulfillment of the dispersion relation
becomes entangled with which Regge behavior one uses;
particularly since we now have S0 and D0 amplitudes with
very small errors above 1 GeV, which is where the detailed
shape of the Regge amplitude has more influence. The
changes in the �
2 from what we had in PY05 are

 

It 	 1: PY05 New phase sh: New Regge

�
2 	 0:2! 0:57 ! 0:32 for s1=2 � 930 MeV;

�
2 	 1:4! 2:32 ! 1:76 for s1=2 � 1420 MeV:

(6.6)
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FIG. 7 (color online). (a) The �0�� dispersion relation with
the new P and D2 waves. Continuous line: real part, evaluated
directly with the parametrizations. Dashed line: the result of the
dispersive integral, with the Regge parameters of (5.5). (b) The
�0�� dispersion relation with the old, PY05 P and D2 waves.
Continuous line: real part, evaluated with the parametrizations.
Dashed line: the result of the dispersive integral, with the old,
PY05 Regge parameters.

400 600 800 1000 1200 1400
s

 1/2
  (MeV)

-1

0

1

2

3

PY05 direct from data
PY05 dispersive from data

I
t
=1

400 600 800 1000 1200 1400
s

 1/2
  (MeV)

-1

0

1

2

3

New direct
New dispersive

I
t
=1

(a)

(b)

FIG. 8 (color online). (a) The dispersion relation for the It 	 1
amplitude, calculated with the new amplitudes. Continuous line:
real part and error (shaded area) evaluated directly with the
parametrizations. Dashed line: the result of the dispersive inte-
gral, with the Regge parameters given in (5.5). (b) The dispersion
relation for the It 	 1 amplitude with the old, PY05 S0, D0, and
P waves. Continuous line: real part and error (shaded area)
evaluated directly. Dashed line: the result of the dispersive
integral, with the PY05 Regge parameters for the rho.
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The conventions are like in (6.2) above. The dispersion
relation deteriorates a little, which indicates that the rho
Regge parameters may still be improved. In fact, it is
remarkable that the simple change of (5.5) in place of
(5.2) and (5.3) improves so clearly the dispersion relation
above 0.9 GeV for exchange of isospin unity, while leaving
it almost unchanged below this energy for all processes.
This confirms that the Regge parameters are much better
determined for exchange of isospin zero than for exchange
of isospin 1, and indicates that a complete treatment of
dispersion relations (in particular, using them to improve
the scattering amplitudes) may require simultaneous con-
sideration of the Regge parameters and of the parameters
of the phase shift analyses, as in fact was done in PY05. We
will leave this for a forthcoming paper, where we will also
study the improvement of our parametrizations using the
dispersion relations as well as Roy equations. Finally, we
mention here that, although the improvements in the
present paper only affected the various waves above
�1 GeV (with the exception of the very small change of
the D0 wave below �KK threshold), there is a systematic
improvement of the dispersion relations also below that
energy, which is a nontrivial test of the consistency of the
parametrizations below and above the �KK threshold.

VII. A BRIEF DISCUSSION

The results of the present article show that, if we im-
prove the scattering amplitudes above�1 GeV using more
reliable data sets that those we had in PY05, the ensuing
amplitudes verify much better forward dispersion rela-
tions, especially above the �KK threshold; but also below
it. Forward dispersion relations, particularly for �0�0 and
�0�� scattering, which (as discussed in PY05) have im-
portant positivity properties, constitute a very stringent
filter when used to discriminate against spurious parame-
trizations or calculations, as discussed in PY05 and
Ref. [15]. The fact that, with the small errors we have
now, all values for the �
2 are below the 1.8 level, implies
that a small change in the parameters would ensure com-
plete fulfillment (within errors). However, it is clear that,
although small, some alterations are to be expected of the
various parameters if we require the amplitudes to verify
dispersion relations at the �
2 	 1 level, which we will do
in a forthcoming article. These changes are forced by the
fact that the dispersion relations are not yet perfectly
satisfied. With respect to this, we have three suspects
here. First of all, we have that the experimental data for
the D2 wave (which contributes to all processes) are of
such a kind that our fit cannot be very reliable for the phase
shift above 1 GeV, and is almost pure guesswork for the
inelasticity. In fact, already in PY05 we discovered that
requiring fulfillment of the dispersion relations, within
errors, forces a change by more than 1� in the phase shift
parameters for this D2 wave. The second possible culprit is
the inelasticity for the D0 wave. Although it fits (by

construction) that of the f2 resonance, the expression we
have used is, probably, too rigid. There is unfortunately
very little one can do here, since the quality of the data does
not allow an accurate treatment. The final possible culprit
is the isospin 1 Regge amplitude: there is perhaps room for
improvement here. The same is true, albeit to a lesser
extent, for the amplitudes for P0 and for exchange of
isospin 2. (Alternatively, it may turn out that, once the
D2 wave is improved, any change in the Regge parameters
is unnecessary.) Finally, it is clear that one cannot improve
our amplitudes much, since they are quite good to begin
with. However, and based on the preliminary results that
we have at present, we expect to show, in a forthcoming
article, that it is still possible to hone our amplitude analy-
sis by requiring fulfillment of the Roy equations and,
especially, of forward dispersion relations over the whole
energy range.
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APPENDIX A: THE K-MATRIX FORMALISM

The phase shift �� and elasticity parameter � for the S0
partial wave, for �� scattering, are defined as

 f̂ 11�s� 	 sin��ei�� ; s < 4m2
K;

f̂11�s� 	
�e2i�� � 1

2i
; s > 4m2

K:
(A1)

We have changed a little the notation with respect to the
main text; thus, �� is what we called ��0�0 before, f̂11 was
called f̂�0�0 in the main text, etc. The index (11) in f̂11 is a
channel index; see below. Also, we do not write angular
momentum or isospin indices explicitly. We assume here,
as in the main text, that there are only two channels open
(which is likely a good approximation below �1:25 GeV,
and not too bad up to 1.42 GeV):

 �11�: ��!��; �12�: ��! �KK; �22�: �KK! �KK:

Because of time reversal invariance, the channels ��!
�KK and �KK ! �� are represented by the same amplitude.

We then form a matrix, with elements f̂ij, i, j 	 1, 2,
f̂11 	 f̂��!��, etc.:
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 f 	 f̂��!�� f̂��! �KK

f̂��! �KK f̂ �KK! �KK

 !

	

�e2i�� � 1

2i
1
2

���������������
1� �2

p
ei�����K�

1
2

���������������
1� �2

p
ei�����K�

�e2i�K � 1

2i

0
BB@

1
CCA: (A2)

�K is the phase shift for �KK ! �KK scattering. Below the
�KK threshold, the elasticity parameter is ��s� 	 1; above

the �KK threshold one has the bounds 0 � � � 1. We write
f as

 f 	 fk�1=2K�1k�1=2 � ig�1; k 	
k1 0
0 k2

� �
: (A3)

ki are the momenta, k1 	
���������������������
s=4�M2

�

p
, k2 	

���������������������
s=4�m2

K

q
.

Then, analyticity and unitarity imply that K is analytic in s
through the �KK threshold; hence, it only depends on k2

2:
Kij 	 Kij�k2

2�. This is the well-known K-matrix formalism,
which the reader may find developed in detail in the
standard textbook of Pilkuhn [16] or, perhaps more acces-
sible, in the lecture notes by one of us [17], and, applied to
the S0 wave in �� scattering, in Ref. [2]. Because of (A2)
and (A3), one can express �� and � in terms of the Kij as

 tan��

	

8>>><>>>:
k1jk2jdetK�k1K11

1�jk2jK22
; s�4m2

K;

1

2k1�K11�k2
2K22detK�

fk2
1K

2
11�k

2
2K

2
22�k

2
1k

2
2�detK�2�1�

�����������������������������������������������������������������������������������������������
�k2

1K
2
11�k

2
2K

2
22�k

2
1k

2
2�detK�2�1�2�4k2

1k
2
2K

4
12

q
g; s�4m2

K;

(A4a)

one also has

 � 	

�����������������������������������������������������������������������������
�1� k1k2 detK�2 � �k1K11 � k2K22�

2

�1� k1k2 detK�2 � �k1K11 � k2K22�
2

s
; s � 4m2

K: (A4b)

The sign in the surd in (A4a) is to be taken positive if, as
happens in our case, K11�k

2
2 	 0�> 0. From the relation

between the phase shift above and below threshold, and
also with the elasticity, it may appear that one could write
an expansion for ���s� below threshold and from it, deduce
corresponding expressions for ���s� and for ���s� above
threshold. This comes about as follows. Let us define �b

��s�
to be the phase shift below threshold, and �a

��s� that above
threshold, both as given in (A4a). Write the Taylor expan-
sion

 �b
��s� 	

X1
0

an�n=mn
K; a0 � d0 (A5)

and � 	 jk2j below threshold. Substituting this into the
expression, valid below threshold,

 f̂ ��!�� 	
e2i�� � 1

2i
; �s � 4m2

K�

and continuing this across the cut in the variable � 	 �ik2

above the threshold we find the expression, valid for s �
4m2

K,

 f̂ ��!��

	
e2�a1k2=mK�a3k3

2=m
3
K�����e2i�d0�a2k2

2=m
2
K�a4k4

2=m
4
K����� � 1

2i
;

�s � 4m2
K�:

On comparing with the expression above threshold given in
(A1) we find

 �a
��s� 	 d0 � a2k2

2=m
2
K � a4k4

2=m
4
K � � � � ;

��s� 	 e2�a1k2=mK�a3k3
2=m

3
K�����; �s � 4m2

K�:
(A6)

However, the convergence of (A6) can only be guaranteed
in a disk touching the left-hand cut of the K-matrix, a cut
due to the left-hand cut in �KK ! �� scattering,10 that runs
up to s 	 4�m2

K �M
2
��: therefore, only for jk2j<M�.

From a practical point of view, we have checked numeri-
cally that fitting with (A5) and (A6) represents reasonably
well �b

��s� and �a
��s� (this one with irrealistic errors) but

does certainly not represent ��s�, in the region away from
s 	 4m2

K, unless one adds an inordinately large number of
parameters. On the other hand, it is clear that all three
�b
��s�, �a

��s�, and ��s� are continuous functions of, respec-
tively, �, k2

2 and k2. Therefore they can be approximated by
polynomials in these variables over the whole range, even
if they are not one the continuation of the other.

10It is not difficult to check that, although f̂11�s� or f̂22�s� have
no left-hand cut above s 	 0, ��s� and �a�s� do. For e.g. the first,
we use (A1) and find

 �2 	
�2if̂11 � 1��2if̂22 � 1�

�2if̂11 � 1��2if̂22 � 1� � 4f̂2
12

from which it is obvious that � inherits the left-hand cut of f̂12.
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APPENDIX B: POLYNOMIAL FIT

We present here a polynomial fit to phase shift and
elasticity parameter in which the three quantities, phase
shift below �KK threshold, phase shift above this threshold,
and elasticity, are fitted separately. Although this fit is less

reliable than the K-matrix one, especially near the �KK
threshold, it will allow us to test the importance of multi-
body channels, not taken into account in the K-matrix fit.
For the phase we write

 ��0�0 �s� 	

8>>><
>>>:
d0 � a

jk2j

mK
� b
jk2j

2

m2
K

; �0:92 GeV�2 < s < 4m2
K;

d0 � B
k2

2

m2
K

; 4m2
K < s < �1:42 GeV�2; k2 	

���������������������
s=4�m2

K

q
:

(B1)

The parameters d0, a, and b are strongly correlated. One can get parameters with low correlation by eliminating the
parameter b in favor of the phase shift d1 at a low energy point, that we conveniently take s1=2 	 0:92 GeV. We thus
rewrite the parametrization as

 ��0�0 �s� 	

8>>><>>>:
d0 � a

jk2j

mK
�

jk2j
2

jk2�0:922 GeV2�j2

�
d1 � d0 � a

jk2�0:922 GeV2�j

mK

�
; �0:92 GeV�2 < s< 4m2

K;

d0 � B
k2

2

m2
K

; 4m2
K < s < �1:42 GeV�2; k2 	

���������������������
s=4�m2

K

q
:

(B2a)
In the previous Appendix A, we presented a discussion
about these expansions. From it it follows that, while the
expansion below threshold can be considered as conver-
gent in the range of interest here, 0:92 GeV � s1=2 �
2mK, the expansion above threshold (both for ��0�0 and
��0�0 , see below) should be taken as purely phenomenologi-
cal. In particular, we do not impose the equality b 	 �B
that would follow if we took (B2a) to be a Taylor expansion
[see Eq. (A6) in the Appendix]. It is possible to fit requiring
b 	 �B, at the cost of adding an extra parameter in (B1),
cjk2j

3=m3
K. The resulting fit is not satisfactory: it presents

excessively small errors for s > 4m2
K, due to the forced

relation b 	 �B, which should only be effective near
threshold, the only region where the expansion converges.

We fit separately data above and below the �KK thresh-
old. The fit returns a 
2=d:o:f: 	 0:4 below threshold, and

2=d:o:f: 	 0:9 above threshold; the values of the parame-
ters are

 d0 	 218:3
 4:5�; a 	 �537
 41�;

d1 	 ��0�0 �0:9202 GeV2� 	 102:6
 4�
(B2b)

and

 B 	 96
 3�: (B2c)

The resulting phase shift is shown in Fig. 9(a), compared
with the K-matrix fit. Above 1.25 GeV, the two-channel
formalism is spoiled by the appearance of new channels,
notably ��! 4�, so one does not have an exact connec-
tion between the data on ��! �KK and ��0�0 . In fact, the
numbers one gets for ��0�0 from ��! ��, and those that
follow from ��! �KK, assuming only two channels, are
slightly different; see below. We may take this into account
by using a polynomial fit (instead of a K-matrix one, as we
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FIG. 9 (color online). (a) Comparison of the fits to ��0�0 : poly-
nomial [Eq. (B2)] given by the dashed lines, and with the K-
matrix [Eq. (2.4)] (solid line and dark area). (b) Comparison of
the fits to ��0�0 : polynomial [Eq. (B3)] given by the dotted lines,
and with the K-matrix [Eq. (2.4)] (solid line and dark area).
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did in the main text). We next make a polynomial fit to the
elasticity parameter writing

 ��0�0 	 1�
�
�1
k2

s1=2
� �2

k2
2

s
� �3

k3
2

s3=2

�
: (B3a)

In principle, the values of the �i are related to the a; c; . . . of
(B1); see Appendix A, Eq. (A6). However, we will not
impose such relations, but will consider the �i as phenome-
nological parameters, completely free. The reason is that
the expansion 2�ak2=mk � ck

3
2=m

3
K � � � �� is very poorly

convergent above �1:2 GeV: something that is a disaster
for ��0�0 , since the expansion appears in an exponent (the
reason for this divergence, that can be traced to the left-
hand cut in ��! �KK scattering, may be found in

Appendix A). Therefore, we would need to add extra
phenomenological terms, very large, to compensate for
that: it is more reasonable to make the fit phenomenologi-
cal from the beginning. What we lose by so doing is that we
are overestimating the value of ��0�0 �s� for s very near
threshold, say for 2mK < s1=2 & 0:997 GeV, a reasonable
price to pay to get a good description of the elasticity in the
rest of the range.

We will consider the following possibilities: (a) To fit
only��! �� data above 1.25 GeV, in principle the more
reliable option; (b) To fit also ��! �KK data above
1.25 GeV; (c) To fit only ��! �KK data, in the whole
range. Of course, below 1.25 GeV we include both ��!
�KK and ��! �� data in the fits (a) and (b). We find

 �1 	 5:45
 0:04; �2 	 �30:0
 0:15; �3 	 46:3
 0:5; 
2=d:o:f: 	 1:1 �a�;

�1 	 5:27
 0:04; �2 	 �28:2
 0:15; �3 	 42:2
 0:5; 
2=d:o:f: 	 1:1 �b�;

�1 	 5:77
 0:05; �2 	 �32:9
 0:2; �3 	 51:1
 0:5; 
2=d:o:f: 	 0:2 �c�:

Note that the errors given here are purely nominal, as the
parameters are very strongly correlated, while they were
here treated as uncorrelated. Note also that the three fits are
less separated than it would seem, precisely because of that
correlation. Finally, we remark that the value of ��0�0 that
follows from (c) is larger than what follows from (a) or (b);
and (b) also slightly above (a). These two features con-
stitute very nice consistency tests, since taking ��0�0 to be
given from��! �KK as if only two channels were present
must surely underestimate the inelasticity; particularly
above�1:2 GeV, where the process��! 4� is expected
to become non-negligible.

We have verified that one may cover the two fits (a) and
(b) [and even overlap (c), at the edge of the error region] by
taking as central value that of the fit (a) above and slightly
enlarging the errors. We then get our best result:

 �1 	 5:45
 0:06; �2 	 �30:0
 0:2;

�3 	 46:3
 0:8;
(B3b)

the errors may now be taken as uncorrelated. The resulting
elasticity may be seen in Fig. 9(b), compared with what we
found with the K-matrix fit. The fact that both determina-
tions overlap is a good test of the correctness of our
assumption, for the K-matrix fit, that the contribution of
multiparticle channels is comparable to the error of the fit
itself.

The fulfillment of dispersion relations with these poly-
nomial fits is just as good as with the K-matrix fit; however,
the errors of the K-matrix fit are smaller than what we find
with the polynomial fit: the fulfillment of said dispersion
relations may therefore be considered to be marginally
better with the K-matrix formalism, which is why we
only gave results for the dispersion relations with the K-
matrix fit.
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093001 (2002); 71, 073008 (2005).
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[17] F. J. Ynduráin, hep-ph/0212282; see also F. J. Ynduráin,
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