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The most precise comparison between theory and experiment for the B! Xs‘
�‘� rate is in the low q2

region, but the hadronic uncertainties associated with an experimentally required cut on mX potentially
spoil the search for new physics in these decays. We show that a 10%–30% reduction of d��B!
Xs‘

�‘��=dq2 due to the mX cut can be accurately computed using the B! Xs� shape function. The
effect is universal for all short distance contributions in the limit m2

X � m2
B, and this universality is spoiled

neither by realistic values of the mX cut nor by �s corrections. Both the differential decay rate and
forward-backward asymmetry with an mX cut are computed.

DOI: 10.1103/PhysRevD.74.011501 PACS numbers: 13.20.He, 12.38.Bx

I. INTRODUCTION

In the standard model (SM) the flavor-changing neutral
current process B! Xs‘�‘� does not occur at tree level
and is thus a sensitive probe of new physics. Predicting its
rate involves integrating out the W, Z, and t at a scale of
order mW by matching on to the Hamiltonian [1,2]

 HW � �
GF���

2
p VtbV

�
ts

�X6

i�1

CiOi �
1

4�2

X10

i�7

CiOi

�
; (1)

evolving to � � mb, and computing matrix elements of
HW . Here O1 �O6 are four-quark operators and

 O7 � mb �s���eF��PRb;

O8 � mb �s���gG
��PRb;

O9 � e2��s��PLb�� �‘��‘�;

O10 � e2� �s��PLb�� �‘���5‘�;

(2)

where PL;R � �1� �5�=2. Measurements of C7;8;9;10 probe
flavor-changing neutral currents and test the SM. This can
be done with the dilepton invariant mass spectrum,
d�=dq2, with q2 � �p‘� � p‘��

2. It is calculable in an
operator product expansion (OPE), and the nonperturbative
corrections are O��2

QCD=m
2
b� [3,4]. The matching and

anomalous dimensions for Ci are known at next-to-next-
to-leading log (NNLL) order, as are the perturbative QCD
corrections to the matrix elements of Oi [5–7] (except
small O3�6 terms).

A complication in B! Xs‘
�‘� compared with B!

Xs� is that the long distance contributions, B! J= Xs
and  0Xs followed by J= ;  0 ! ‘�‘�, are 2 orders of
magnitude above the short distance prediction, a fact which
is not well understood. Therefore, either theory and data
are both interpolated, or the short distance calculation is
compared with the data for q2 <m2

J= or q2 >m2
 0 . The

low q2 region, q2 < 6 GeV2, allows the most precise com-
parison with the SM, but requires a cut on the invariant
mass of the hadronic final state, mX <mcut

X . In the latest

Belle analysis mcut
X � 2 GeV [8], while BABAR uses

mcut
X � 1:8 GeV [9]. This cut is to remove backgrounds

and will likely be required for quite some time [10]. So far,
its effect has been studied only in the Fermi-motion model
[11]. [The high q2 region is unaffected by the mX cut, but
the rate is lower, and calculating it involves an expansion in

�QCD=�mb �
�����
q2

p
�.]

In this letter we compute the B! Xs‘
�‘� rate with an

mX cut in the low q2 region in a model-independent frame-
work. For �mcut

X �
2 � O��QCDmb�, the local OPE used in all

earlier analyses breaks down and must be replaced by an
OPE involving b quark distribution functions (shape func-
tions), as explained below. We will compute

 �cut
ij �

Z q2
2

q2
1

dq2
Z mcut

X

0
dmX Re�cic�j �

d2�ij
dq2dmX

; (3)

and study the ratios

 �ij�m
cut
X ; q

2
1; q

2
2� �

�cut
ij

�0
ij

: (4)

For convenience we define normalization factors

 �0
ij �

�0

m5
B

Z q2
2

q2
1

dq2Re�cic�j �
�m2

b � q
2�2

m3
b

Gij;

�0 �
G2
Fm

5
B

192�3

�2
em

4�2 jVtbV
�
tsj

2;

(5)

with kinematic dependence G99 � G00 � �2q2 �m2
b�,

G77 � 4m2
B�1� 2m2

b=q
2�, and G79 � 12mBmb. Here and

below, mb is a short distance mass, such as m1S
b [12]. In

Eqs. (3)–(5), ij � f77; 99; 00; 79g label contributions of
time-ordered products of operators, TfOyj ; Oig. The total
decay rate with cuts is the sum of these contributions,

 �cut � �
������ mX<m

cut
X

q2
1
<q2<q2

2

�
X
ij

�cut
ij : (6)

We will also study �0ij � �0ij�p
�cut
X ; q2

1; q
2
2�, which differs

from �ij by the replacement of mX by p�X � EX � j ~pXj:
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 �0ij �
1

�0
ij

Z q2
2

q2
1

dq2
Z p�cut

X

0
dp�XRe�cic

�
j �

d2�ij
dq2dp�X

: (7)

In Eqs. (3)–(7) the short distance coefficients c7;9;0 track
the C7;9;10 dependence in Eq. (1) that one would like to
measure. Here c7 � Cmix

7 �q
2�, c9 � Cmix

9 �q
2�, and c0 �

C10 can be obtained from local OPE calculations [13] at
each order, as discussed in Ref. [14].

The �ij’s contain the effects of the mX cut, and are
defined with a normalization that makes them less sensitive
to the choice of ij. At leading order in �QCD=mb and �s,
�ij give the fraction of events withmX <mcut

X , and �ij � 1
for mcut

X � mB. This interpretation is altered at subleading
order by �s corrections, but knowing �ij at a given order in
perturbation theory is still sufficient to determine �cut

ij and
thus the total rate with cuts in Eq. (6), at this order. In
principle, �ij depend in a nontrivial way on ij (and q2

1 and
q2

2) due to different dependence on kinematic variables, �s
corrections, etc. At leading order in �QCD=mb, we demon-
strate that �ij are actually independent of the choice of ij, a
property which we call ‘‘universality’’. We first show this
formally in Sec. II at leading order in p�X =mB � 1 for
�0�p�cut

X �. Then in Sec. III we demonstrate it numerically
for the experimentally relevant ��mcut

X �, including the �s
corrections and phase space effects.

We also compute the decay rate for current experimental
cuts. We find that the rate is sensitive to the choice of the
cut, and that the cut causes a reduction in the rate by 10%–
30%. Since the same shape function occurs in B!
Xs‘

�‘�, Xu‘ ��, and Xs�, the mcut
X or p�cut

X dependence in
one can be accurately determined from the others, and the
magnitude of the reduction can be computed quite accu-
rately. Alternatively, instead of using the theoretical com-
putation of the mcut

X dependence, universality can be
exploited to remove the main uncertainties, by normalizing
the B! Xs‘�‘� rate to B! Xu‘ ��.

II. mX CUT EFFECTS AT LEADING ORDER

For simplicity, consider the kinematics in the B meson’s
rest frame. Since q � pB � pX,

 2mBEX � m2
B �m

2
X � q

2: (8)

If m2
X � m2

B and q2 is not near m2
B, then EX � O�mB�.

Since E2
X 	 m2

X, pX is near the light-cone, with p�X �
EX � j ~pXj � O��QCD� and p�X � EX � j ~pXj � O�mB�.
Of the variables symmetric in p‘� and p‘� (p
X , EX, q2,
m2
X), only two are independent, and we work with q2 and

p�X or mX. The phase space cuts are shown in Fig. 1.
For the p�X � p�X region, factorization of the form d� �

HJ � f̂�0� has been proven for semileptonic and radiative B
decays [15], where H contains perturbative physics at

�b �mb, J at �i �
������������������
�QCDmb

q
, and f̂�0��!� is a universal

nonperturbative shape function [16]. This factorization

also applies for B! Xs‘
�‘� with the same f̂�0�, as long

as q2 is not parametrically small [14].
In the q2 < 6 GeV2 region, jCmix

9 �q
2;�0�4:8 GeV�j�

4:52 to better than 1%, and can be taken to be constant. We
neglect �s corrections in this section and find
 

d�

dp�X dq2 � f̂�0��p�X �
�0

m5
B

�mB � p�X �
2 � q2�2

�mB � p
�
X �

3

�

�
�jCmix

9 j
2 � C2

10�2q
2 � �mB � p

�
X �

2�

� 4m2
BjC

mix
7 j

2

�
1�

2�mB � p�X �
2

q2

�

� 12mB ReCmix
7 Cmix�

9 ��mB � p�X �
�
; (9)

where f̂�0��!� has support in ! 2 0;1�. As a function of
p�X , the kinematic terms in Eq. (9) vary only on a scale mB,
while f̂�0��p�X � varies on a scale �QCD. Writing mB �

mb �
�� and expanding in �p�X � ���=mB decouple the

p�X and q2 dependences in Eq. (9), and give exactly the
local OPE prefactors, �m2

b � q
2�2Gij�q

2�, used in Eq. (5).
For �0ij�p

�cut
X ; q2

1; q
2
2�, the p�X integration is over a rectangle

in Fig. 1, whose boundaries do not couple p�X and q2. Thus,
with the above expansion, we find �0ij � �0, where

 �0 �
Z

dp�X f̂
�0��p�X �; (10)

independent of ij and q2
1, q2

2. While themX cut retains more
events than the p�X cut, the latter may give theoretically
cleaner constraints on short distance physics when statis-
tical errors become small.

The effect of the mX cut is q2 dependent, because the
upper limit of the p�X integration is q2 dependent, as shown
in Fig. 1. When we include the full p�X dependence in
Eq. (9), the universality of �ij�mcut

X ; q
2
1; q

2
2� is maintained to

better than 3% for 1 GeV2 � q2
1 � 2 GeV2, 5 GeV2 �

q2
2 � 7 GeV2, and mcut

X � 1:7 GeV, because the region
where the p�X and q2 integration limits are coupled has a
small effect on the ij dependence. This is exhibited in
Fig. 2, where the solid curves show

GeV

q2

( )

GeVp+( )
XX

mX = 1.8 GeV

mX = 2.0 GeV
q 2

q 2
2

1

1.0 2.0 3.0 4.0 5.0

5

10

15

p+
X

cut

q 2 = mB- p +
X( )2

cut

cut
2

FIG. 1 (color online). Phase space cuts. A substantial part of
the rate for q2

1 < q2 < q2
2 falls in the rectangle bounded by p�X <

p�cut
X .
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�ij�m
cut
X ; 1 GeV2; 6 GeV2� with the shape function set to

model 1 of [17], with m1S
b � 4:68 GeV and �1 from [18].

(Taking q2
1 � 1 GeV2 instead of 4m2

‘ increases the sensi-
tivity to C9;10, but one may be concerned by local duality/
resonances near q2 � 1 GeV2. To estimate this uncer-
tainty, assume the 	 is just below the cut and B�B!
Xs	� � 10�B�B! K���	�. Then B! Xs	! Xs‘

�‘�

is �2% of the Xs‘�‘� rate.)
The local OPE results for �ij�mcut

X ; q
2
1; q

2
2� are obtained

by replacing f̂�0��p�X � by 
� ��� p�X � in Eq. (9). Performing
the p�X integral sets �mB � p

�
X � � mb and implies m2

X >
���mB � q2=mb�. This makes the lower limit on q2 equal
maxfq2

1; mbmB � �m
cut
X �

2= ���g, and so the �ij’s depend on
the shape of d�ij. In Fig. 2 the local OPE results are shown
by dashed lines, and clearly �77 � �99. However, the local
OPE is not applicable for p�X ��QCD.

The universality of�ij found here could be broken by�s
corrections in the H or J functions, or by renormalization
group evolution, since these effects couple p�X and q2 and
have been neglected so far. We consider these next.

III. CALCULATION AND RESULTS AT O��s�

A complication in calculating B! Xs‘�‘� compared
with B! Xu‘ �� is that, in the evolution of the effective
Hamiltonian down to mb, C9��� receives a ln�m2

W=m
2
b�

enhanced contribution from the mixing of O2. Thus, for-
mally, C9 �O�1=�s�, and conventionally one expands the
amplitude in �s, treating �s ln�m2

W=m
2
b� � O�1� [13]. In

the local OPE this is reasonable, since the nonperturbative
corrections are small, and at next-to-leading log (NLL) all
dominant terms in the rate are included. However, in the
shape function region nonperturbative effects are O�1� and
only the rate is calculable, not the amplitude. With the
traditional counting, the C2

9 contribution to the rate would
be needed to O��2

s� before theC2
10 terms could be included.

This would be a bad way to organize the perturbative
corrections (numerically jC9�mb�j � jC10j). It can be cir-
cumvented by using a ‘‘split matching’’ procedure to de-
couple the perturbation series above and below the scale
mb [14]. This allows us to consider the short distance
coefficients Cmix

7 , Cmix
9 , and C10 as O�1� numbers when

organizing the perturbation theory at m2
b and mb�QCD.

The rate and the forward-backward asymmetry are

 

d2�

dq2dp�X
�

�0

m2
B

H�q2; p�X �F
�0��p�X ; p

��;

d2AFB

dq2dp�X
�

�0

m2
B

K�q2; p�X �F
�0��p�X ; p

��;

(11)

where p� � mb � q
2=�mB � p

�
X �. The hard functions H

and K were computed in [14] using soft-collinear effective
theory (SCET) [19,20] and split matching. This factorizes
the dependence on scales above and below mb as �ij �

H1��0�H2��b�F
�0���b�, with separate �0 and�b indepen-

dence. Up to the order one is working at, H1 is �0 inde-
pendent, the �b dependence in H2 and F�0� cancels, and
F�0� is �i independent. The shape function model is speci-
fied at ��. The convolution of jet and shape functions at
NLL including �s corrections is

 

F�0��p�X ; p
�� � UH�p�; �i; �b�

�
f̂�0��p�X ;�i� �

�s��i�CF
4�

��
2ln2 p

�
X p
�

�2
i

� 3 ln
p�X p

�

�2
i

� 7� �2

�
f̂�0��p�X ;�i�

�
Z 1

0

dz
z

�
4 ln

zp�X p
�

�2
i

� 3
��
f̂�0��p�X �1� z�; �i� � f̂

�0��p�X ;�i�

���
;

f̂�0��!;�i� �
eVS��i;���

��1� ��

�
!
��

�
� Z 1

0
dt f̂�0�!�1� t1=��; ���;

(12)

where � � �16=25� ln�s����=�s��i��, UH was computed in Ref. [19], the one-loop jet function in Ref. [21,22], and the
shape function evolution up to �i in Refs. [19,22] (for earlier calculations, see Refs. [15,23]). The hard coefficients H and
K for B! Xs‘�‘� are

1.4 1.6 1.8 2.0 2.2
0

0.2

0.4

0.6

0.8

1
ij

ij  99,00=
79=
77=

ij 
ij 

η

shape function

local OPE

mX
cut GeV][

FIG. 2 (color online). �ij�m
cut
X ; 1 GeV2; 6 GeV2� as functions

of mcut
X . The dashed curves show the local OPE result, the solid

curves include the leading shape function effects. The upper-
most, middle, and lowest curves are �00;99, �79, and �77,
respectively.
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H�q2; p�X � �
�1� p̂�X �

2 � q̂2�2

�1� p̂�X �
3

�
jCmix

9 �s; �0�j
2 � C2

10�2q̂
2�2

A�s; �b� � �1� p̂
�
X �

2�2
B�s; p̂

�
X ;�b��

� 4jCmix
7 ��0�j

2

�
�2
C�s;�b� �

2�1� p̂�X �
2

q̂2 �2
D�s;�b�

�
� 12 ReCmix

7 ��0�C
mix
9 �s; �0�

���1� p̂�X ��E�s;�b�

�
;

K�q2; p�X � � �
3q̂2�1� p̂�X � � q̂

2�2

�1� p̂�X �
3 �A�s;�b�Re

�
C�10

�
Cmix

9 �s; �0��A�s; �b� �
2�1� p̂�X �

q̂2 Cmix
7 ��0��D�s; �b�

��
; (13)

where s � q2=m2
b, q̂2 � q2=m2

B, p̂�X � p�X =mB, and

 �A � 1�
�s
�
!V
a �s; �b�; �B � 1�

�s
�

�
!V
a �s;�b� �

�1� p̂�X �
2 � q̂2

2�1� p̂�X �
2 !V

b �s� �!
V
c �s�

�
;

�C � 1�
�s
�
!T
a �s;�b�; �D � 1�

�s
�
!T

a �s;�b� �!
T
c �s��; �E � �2�A�D ��B�C�=3:

(14)

Here �s � �s��b� and !V;T
i are defined in Ref. [14].

For each shape function model, the deviations of the
�ij’s from being universal, with all NLL corrections, are
still below 3%. Thus, the picture of universality in Fig. 2
remains valid at NLL order. For this reason we can explore
the overall shift by just studying �00.

In Fig. 3 we plot �00�mcut
X ; 1 GeV2; 6 GeV2�, including

the �s corrections. We use ten different models for f̂�0�.
Our base model has five parameters, three of which are
chosen to obey the known constraints on its moments [22],
converted to the 1S mass scheme used here. For each of
five different choices of the remaining two parameters, we
choose two values of the scale, ��, where the model is
specified. The choice of these ten models is guided by
making them consistent with the B! Xs� data. The ten
orange, green and purple (medium, light, dark) curves
correspond to m1S

b � 4:68 GeV, 4.63 GeV, and 4.73 GeV,
respectively, with the central values �0 � �b � 4:8 GeV
and�i � 2:5 GeV. The curves with slightly lower [higher]
values of �00 at large mcut

X correspond to �� � 1:5 GeV

[2 GeV]. The spread in the curves gives our determination
of the uncertainty from the choice of shape function model
and from mb. For mcut

X � 2 GeV, varying �b in the range
3:5 GeV<�b < 7:5 GeV changes �00 by 
6%. We find
a 
5% variation for 2 GeV<�i < 3 GeV .

Using the ci’s at NLL, for 1 GeV2 < q2 < 6 GeV2 we
obtain cut branching ratios

 �cut�B �
�
�1:20
 0:15� � 10�6 mcut

X � 1:8 GeV�;
�1:48
 0:14� � 10�6 mcut

X � 2:0 GeV�;

(15)

where uncertainties are included frommb,�b,�i, and f̂�0�.
Changing �0 to 3.5 GeV (10 GeV) changes both of these
rates by �2% (� 7%), and this uncertainty will be re-
duced by including NNLL corrections [5–7].

The largest source of universality breaking in the �ij’s
and one of the largest uncertainties in the cut rate is due to
subleading shape functions, which affect the rate by �5%
for mcut

X � 2 GeV and by�10% for mcut
X � 1:8 GeV [24].

If the mcut
X dependence were not universal, it would

modify the zero of the forward-backward asymmetry,
AFB�q

2
0� � 0. For mcut

X � 2 GeV we find at NLL �q2
0 �

�0:04GeV2, much below the higher order uncertainties
[6,7]. However, we obtain q2

0 � 2:8 GeV2, lower than ear-
lier results [6]. The reason is that in the SCET calculation
of AFB, using K in Eq. (13), the pole mass mpole

b never
occurs, only mB � p

�
X and mb (at this order, Cmix

7 �
�mb=mB�Ceff

7 [14]). Thus, schematically, q2
0 �

2mbmb��0�C
eff
7 ��0��=ReCeff

9 �q
2
0��, and there is no reason

to expand mb in terms of mpole
b .

In the above analysis, the nonperturbative shape func-
tion f�0� was extracted from moments and the B! Xs�
energy spectrum, and this was used as input in determining
our B! Xs‘�‘� results. The overall 10% theoretical
uncertainty in this approach could be reduced by raising
the mcut

X . An alternative approach would be to keep mcut
X <

mD and measure

mX
cut

η
00

GeV][

m 4.63=
4.68=
4.73=

b GeV
1S

m b
1S

m b
1S

GeV
GeV

1.6 1.7 1.8 1.9 2.0 2.1 2.2

0.2

0.4

0.6

0.8

1

0

FIG. 3 (color online). �00�m
cut
X ; 1 GeV2; 6 GeV2� as a function

of mcut
X . The orange, green and purple (medium, light, dark)

curves show m1S
b � 4:68 GeV, 4:63 GeV, and 4:73 GeV , re-

spectively.
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 R �
�cut�B! Xs‘

�‘��
�cut�B! Xu‘ ���

; (16)

with the same cuts used in the numerator and denominator.
The dependence of the semileptonic rate on mcut

X is identi-
cal to that of �cut

00 . A measurement of R bypasses the need
for a shape function model, because we found that the
mX-cut effects are universal to a very good approximation
and therefore cancel between the numerator and denomi-
nator of R.

In conclusion, we pointed out that the observed B!
Xs‘�‘� rate in the low q2 region is sensitive to the experi-
mental upper cut on mX. The reduction in the rate due to
this cut is determined by the universal B shape function. In
the region of the experimental measurements an OPE
exists only for the decay rate and not for the amplitude, a
fact that necessitates a reorganization of the usual pertur-
bation expansion. Since one can use the shape function

measured in other processes, the sensitivity to new physics
is not reduced. We found that the �’s for the different
operators’ contributions are universal to a good approxi-
mation. These results also apply for B! Xd‘�‘�, which
may be studied at a higher luminosity B factory.
Subleading �QCD=mb as well as NNLL corrections to the
rate and the forward-backward asymmetry will be studied
in a separate publication [24].
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