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The decoupling of spurious states leads to linear relations among four-point functions in the high-
energy limit of string theory. Recently it was shown that the linear relations uniquely determine ratios
among four-point functions at the leading order. The purpose of this paper is to extend the validity of the
same approach to the next-to-leading order and higher orders.

DOI: 10.1103/PhysRevD.73.126007 PACS numbers: 11.25.�w, 11.25.Mj, 11.25.Sq

I. MOTIVATION

Many have posed the question of whether there is a
fundamental principle underlying string theory, in a way
analogous to how the equivalence principle led Einstein to
general relativity. For example, for the bosonic open string
theory, Witten’s cubic string field theory is formally a
Chern-Simons theory with infinite gauge symmetry, but
the gauge symmetry of the infinitely many massive higher
spin gauge fields is not manifest in the flat background. It is
tempting to imagine that a Higgs mechanism is responsible
for the masses of the gauge fields, and the symmetry will be
restored when we consider physics at sufficiently high
energies. Gross and Mende [1], Gross [2], and Gross and
Manes [3] explored this possibility for bosonic open and
closed strings. They used the saddle point approximation to
evaluate the integral over moduli space for four-point
functions. They found that, to the 0th order approximation
in the high-energy limit, the saddle point is independent of
the particles participating in the scattering, and claimed
that this is a signal of the hidden symmetry. Unfortunately,
it was shown later [4–6] that some of their results are
incorrect. On the other hand, it is not clear how the exis-
tence of a universal 0th order saddle point is related to the
existence of symmetry.

Following a series of earlier works [4–13], our approach
is to explore the implication of the decoupling of spurious
states from other physical states. Spurious states corre-
spond to gauge symmetries. One of the most salient fea-
tures of string theory is that it has infinitely many higher
spin gauge fields with infinitely many gauge symmetries.
There is a delicate conspiracy among all the fields and
symmetries so that, in spite of many no-go theorems and
folklore about interacting higher spin gauge fields, string
theory is a consistent interacting theory of massive higher
spin gauge fields in flat spacetime. In view of this mystery
it is worthwhile to study spurious states in detail.

In [4–6,9–13], the decoupling of spurious states is used
to derive linear relations among four-point functions at the
leading order in the high-energy limit. In the old covariant

first quantized formulation of string theory, spurious states
represent gauge transformations. Normally, on-shell gauge
transformations only transform a state to itself in a differ-
ent gauge, and never transform a state to another different
state. The crucial step which made it possible to relate
physically inequivalent states is that, in the high-energy
limit, we ignore subleading terms in the gauge transforma-
tion, and the spurious states are no longer exactly orthogo-
nal to all physical states. It turns out that the many gauge
transformations intertwine and overlap with each other so
much that the assumption of a smooth, consistent high-
energy limit of string theory uniquely fixes ratios among
four-point functions to the leading order. Remarkably, via
simple algebraic manipulations, numerical ratios among
four-point functions were obtained explicitly for all mass
levels [9–11]. These ratios involve all four-point functions
at the leading order in the high-energy limit.

The purpose of this paper is to extend our understanding
to the next-to-leading order. The first question is whether
amplitudes at the next-to-leading order are also unique up
to an overall constant at all mass levels. Our answer is yes.
We also claim that there are linear relations at higher orders
(see Sec. VI), although they are not sufficient to fix all
amplitudes of that order to be proportional to each other.

There are other approaches in the literature which are
also based on studies of the algebraic structure of the string
worldsheet theory, such as [14,15]. Our approach distin-
guishes itself by giving the simplest and most explicit
relations among correlation functions. People have also
tried to define tensionless strings [16] to describe strings
in the high-energy limit, as well as to construct various
higher spin gauge theories [17] to mimic string theory.
These approaches illuminate different aspects of the prob-
lem and suggest answers in different directions. Hopefully
we will be able to make connections with these other
approaches to have a better understanding of the hidden
symmetry.

II. PRELIMINARIES AND CONVENTIONS

The focus of this paper is on four-point functions at the
next-to-leading order. Three-point functions are trivial in
the sense that we can not take a high-energy limit without
going off shell, and there is no parameter other than the
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center of mass energy so that all amplitudes of the same
order are trivially identical up to a constant factor. On the
other hand, five-point functions depend on too many pa-
rameters and so the linear relations are insufficient to
determine their ratios uniquely.

For the scattering process of two incoming and two
outgoing particles, the four momenta define a 2� 1 di-
mensional scattering plane. Because of the Poincaré sym-
metry, the scattering amplitude only depends on two
parameters. We choose them to be E and �. E is the center
of mass energy (s � 4E2), and � is the scattering angle
between the momenta of the 1st and 3rd particles in the
center of mass frame.

The scattering amplitude is given by a four-point corre-
lation function. The high-energy limit we consider is

 E! 1; � � fixed: (1)

That is, we compute four-point functions and keep only the
first nonvanishing terms in the 1=E expansion.

For a particle of mass M and momentum

 P � �E; k; 0; � � � ; 0�; (2)

we will use the following basis of polarizations:

 eP � �E=M; k=M; 0; � � � ; 0�; (3)

 eL � �k=M;E=M; 0; � � � ; 0�; (4)

 eT � �0; 0; 1; � � � ; 0�; (5)

and call them the momentum, longitudinal, and transverse
polarizations, respectively. These constitute the basis of
vectors on the scattering plane. We will use eI to denote
unit vectors perpendicular to the scattering plane.

When we compare four-point functions, we fix three of
the four vertices (say V2, V3, V4), and let only one vertex
(V1) be different. Each polarization vector �eT; eL; eI� of
the vertex operator

 V1�k1� � ��@X
L�m�@XT�n�@XI�q � � ��eik1�X; (6)

which corresponds to the state

 ��L�1�
m��T�1�

n��I�1�
q � � � j0; ki; (7)

will have to be contracted with another vector to form a
Lorentz invariant in the expression of the scattering am-
plitude. In the high-energy limit, the amplitude is domi-
nated by contractions with momenta ki. The polarizations
eI perpendicular to the scattering plane are kinematically
suppressed as their contractions with ki’s vanish. The time-
like polarization eP can also be avoided as a choice of
gauge fixing. Therefore, we will focus our attention on
only two polarizations, eL and eT .

At the leading order in the 1=E expansion of the four-
point function, in addition to the common factor resem-
bling the four-tachyon amplitude, each factor of @nX� in
the vertex operator contributes a certain power of E to the

scattering amplitude. We have [9]

 ��L�1�
2m 	 E2m; (8)

 ��L�1�
2m�1 	 E2m; (9)

 �L�n 	 E2; n 
 2; (10)

 �T�n 	 E
1; n 
 1: (11)

In general, when we compare four-point functions for
different V1’s at the same mass level, the highest spin state
��T�1�

nj0; ki is always at the leading order. There are more
and more other states at the leading order when we go to
higher and higher mass levels. They are all of the form [9]

 ��L�1�
2m��T�1�

n��L�2�
qj0; ki: (12)

Ratios between two four-point functions at the leading
order are uniquely fixed by the requirement that spurious
states be decoupled from all physical states, assuming that
string theory has a smooth high-energy limit. The master
equation which gives the ratio between any two leading-
order amplitudes (for V1’s at the same mass level) is [9–11]
 

lim
E!1

T �jV1i � ��T�1�
n�2m�2q��L�1�

2m��L�2�
qj0; k1i�

T �jV1i � ��
T
�1�

nj0; k1i�

�

�
�1

m1

�
2m�q

�
1

2

�
m�q
�2m� 1�!!: (13)

The same result can also be derived from Virasoro
constraints.

The linear relations found before and those that will be
derived here apply to different choices of V1 at the same
mass level, and are independent of the choices of V2, V3,
V4. When we say that an amplitude is at the leading order,
we mean that it is among the most dominant amplitudes in
the high-energy limit for all possible choices of V1 at the
same mass level (without changing V2, V3, V4).
Equation (13) says that the � dependence of the leading-
order terms in the 1=E expansion of all leading-order
amplitudes is the same (for a given mass level), and the
numerical ratios can be uniquely determined by requiring
the decoupling of spurious states.

In this paper we focus on the bosonic open string theory.
Our result can be immediately applied to bosonic closed
strings, whose amplitudes factorize into open string ampli-
tudes. It should also be possible to extend our results to
superstrings. Definitions of the kinematic variables of four-
point functions are given in the Appendix, and we will use
the convention that �0 � 1=2.

III. FIRST MASSIVE LEVEL (M2 � 2)

In this section we take the first massive level as an
example to review earlier results [4–6]. Readers familiar
with these results should skip to the next section.
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Physical states in the first massive level are

 �����
�
�1�

�
�1 � ���

�
�2�j0; ki; (14)

where the parameters ���, ��, and k� satisfy

 k2 � �M2 � �2; 2���k
� � 2�� � 0;

��� � 2��k� � 0:
(15)

There are two sets of spurious states,

 L�1�
�
�1j0; ki � �p��

�
�1�

�
�1 � �

�
�2�j0; ki; (16)

 L�2j0; ki � �12���a
�
�1�

�
�1 � p��

�
�2�j0; ki: (17)

Some states are both spurious and physical;, they have
zero norm and are called zero-norm states. There are two
sets of zero-norm states at this mass level,

 ����p��a
�
�1�

�
�1 ����

�
�2�j0; ki; � � p � 0; (18)

 ���12��� �
3
2p�p��a

�
�1�

�
�1 �

5
2p��

�
�2�j0; ki: (19)

The first step of our approach is to demand zero-norm
states to be decoupled from physical states,

 T � hV1�k1�V2�k2�V3�k3�V4�k4�i � 0; (20)

where V1 is the vertex operator of a zero-norm state, while
V2, V3, and V4 are vertex operators of three arbitrary
physical states. Taking V1 to be at this mass level, and
thus of the form (14), we can decompose T as

 T � ���T
�� � ��T

�; (21)

where T �� and T � are the correlation functions with V1

being the basis states ���1�
�
�1j0; ki and ���2j0; ki,

 T �� $ V1 � @X�@X�eik1�X;

T � $ V1 � @2X�eik1�X:
(22)

Strictly speaking, T �� and T � are not well defined be-
cause only physical states admit a path integral indepen-
dent of the gauge-fixing condition. Hence we should
restrict our attention to those linear combinations that
correspond to physical states.

The decoupling of the zero-norm states (18) and (19)
from other physical states implies that

 

���
2
p

T LP �T L � 0; (23)

 

���
2
p

T TP �T T � 0; (24)

 T �
� � 6T PP � 5

���
2
p

T P � 0; (25)

where P, L, T stand for contraction with the polarization
vectors eP, eL, eT , respectively. We will refer to these
relations as Ward identities.

For higher and higher mass levels, zero-norm states are
more and more complicated, and so are the corresponding

Ward identities. But since we will only focus on the high-
energy limit, there is an easier way to derive the Ward
identities. When we take the high-energy limit of a zero-
norm state, it will not be of zero norm anymore because we
will ignore higher order components in the 1=E expansion.
Thus we should simply consider the decoupling of the
spurious states. The Ward identities derived from spurious
states are

 

���
2
p

T �P �T � � 0; (26)

 

1
2T

�
� �

���
2
p

T P � 0: (27)

Notice that Eqs. (23)–(25) are linear combinations of
Eqs. (26) and (27). The spurious states constitute a larger
symmetry because they lead to a Ward identity (

���
2
p

T PP �
T P � 0) which does not exist in Eqs. (23)–(25).

Now we assume that scattering amplitudes remain the
same at the leading order in the high-energy limit under the
replacement

 eP ! eL: (28)

Naively, this seems a direct result of the fact that eP �
eL � O�1=E�. However, if the scattering amplitude does
not have a smooth high-energy limit, this assumption may
not be correct. The validity of the replacement (28) is an
assertion of the smoothness of the high-energy limit of
string theory [6].

Under the replacement (28), Eqs. (26) and (27) become

 

���
2
p

T LP �T L � 0 !
���
2
p

T LL �T L � 0; (29)

 

���
2
p

T TP �T T � 0 !
���
2
p

T TL �T T � 0; (30)

 

1
2��T

PP �T LL �T TT� �
���
2
p

T P � 0

! 1
2T

TT �
���
2
p

T L � 0: (31)

Here we used the fact that transverse polarizations eI are
kinematically suppressed to rewrite T �

� as �T PP �

T LL �T TT . (After replacing P by L, T �
� becomes

just T TT .)
ForM2 � 2, the physical amplitudes at the leading order

are T LL and T TT . Note that, although �L�1�
L
�1j0; ki and

�T�1�
T
�1j0; ki are not physical states, they can be extended

into physical states without changing the four-point func-
tion,

 ��L�1�
L
�1 � �

I
�1�

I
�1�j0; ki ! T LL; (32)

 ��T�1�
T
�1 � �

I
�1�

I
�1�j0; ki ! T TT: (33)

From Eqs. (29) and (31), we expect T LL and T TT to
have the ratio 1:4 in the high-energy limit. By directly
calculating the exact amplitudes and expanding them in
powers of 1=E, we can verify this result. As an example,
the exact four-point function T �� with V2, V3, V4 corre-
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sponding to three tachyons is

 T ���
Z 1
�1

Y4

i�1

dxih: @X�@X�eik1�X:: eik2�X:: eik3�X:: eik4�X:i

(34)

 

�

�
���s2 � 1����t2 � 1�

��u2� 2�
�

���t2 � 1����u2 � 1�

��s2� 2�

�
���u2 � 1����s2 � 1�

��t2� 2�

�
�s=2�s=2� 1�k�3 k

�
3

� 2�s=2� 1��u=2� 1�k��2 k
��
3 � u=2�u=2� 1�k�2 k

�
2�

� �k3 $ k4�; (35)

where s � ��k2 � k1�
2, t � ��k2 � k3�

2, and u �
��k2 � k4�

2.
We can now calculate all amplitudes in Eq. (35). After

some algebra, we get

 T LL � T �2�E6

�
2sin2��O

�
1

E4

��
; (36)

 T TT � T �2�E6

�
8sin2�� 20sin2�

1

E2 �O
�

1

E4

��
;

(37)

 

T LT � T �2�E5

�
4
���
2
p

cos� sin�� 6
���
2
p

cos� sin�
1

E2

�O
�

1

E4

��
; (38)

where
 

T �2� �
���s2 � 1����t2 � 1�

��u2� 2�
�

���t2 � 1����u2 � 1�

��s2� 2�

�
���u2 � 1����s2 � 1�

��t2� 2�
: (39)

We find that indeed T LL:T TT � 1:4 in the high-energy
limit.

At this mass level, T LL and T TT are the only physical
amplitudes at the leading order. All other physical states
are either related to them via zero-norm states, or are at a
lower order.

It is interesting that Eqs. (29) and (31) also determine
T L to have a fixed ratio with T LL and T TT ,

 T LL:T TT :T L � 1:4:�
���
2
p
; (40)

although T L does not correspond to a physical state.
Under conformal transformations, the path integral is not
invariant for nonphysical states, so it seems weird to pre-
dict a fixed relation involving T L. The reason is that the
conformal anomaly of T L appears only at the subleading
order ( 1

E2 ). On the other hand, for the amplitude T T , which

is at a lower order than T L, anomaly occurs at its leading
order, so it cannot have a well-defined value.

At this mass level, there is only one amplitude T LT at
the next-to-leading order, so we need to look at higher mass
levels.

IV. SECOND MASSIVE LEVEL (M2 � 4)

The details of computation for the second massive level
(M2 � 4) are similar to that for the first massive level in the
previous section. We simply list the results here.

The physical states of interest are

 jAi � ���T�1�
3 � 3��I�1�

2�T�1�j0; ki; (41)

 jBi � ��T�1��
L
�1�

2 � �T�1��
I
�1�

2�j0; ki; (42)

 jCi � ��L�1��
T
�1�

2 � �L�1��
I
�1�

2�j0; ki; (43)

 jDi � ���L�1�
3 � 3�L�1��

I
�1�

2�j0; ki; (44)

 jEi �
1

2
��T�1�

L
�2 � �

L
�1�

T
�2�j0; ki: (45)

The 2nd terms on the right-hand side can be ignored in the
high-energy limit.

With the following notation for amplitudes associated
with different choices of V1,

 T ��� $ ���1�
�
�1�

�
�1j0; ki; (46)

 T �� $ ���1�
�
�2j0; ki; (47)

 T � $ ���3j0; ki; (48)

the decoupling of spurious states implies, after replacing P
by L,

 T LTT �T TT � 0; (49)

 T LLT �T �LT� � 0; (50)

 T LLL �T LL � 0; (51)

 T LT �T T � 0; (52)

 T LL �T L � 0; (53)

 T TT � 2T L � 0; (54)

 

1
2T

TTT � 2T TL �T T � 0; (55)

 

1
2T

LTT � 2T LL �T L � 0; (56)

where T �LT� � 1
2 �T

LT �T TL�.
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Together with some rough power counting, these linear
relations allow us to determine which amplitudes are at the
leading order, as well as their ratios. It turns out that the
states jAi, jBi, and jEi are at the leading order and have the
ratios [4]

 T �A�:T �B�:T �E� � 8:1:� 1: (57)

The ratios can be derived algebraically from Eqs. (49)–
(56). Similar to the case of M2 � 2, there is another non-
physical state (��T�1�

L
�2 � �

L
�1�

T
�2�j0; ki) at M2 � 4

which is linearly related to these states at the leading order.
What is new is that the amplitudes at the next-to-leading

order are also identical up to numerical constant factors

 T �C�:T �D� � 2:1: (58)

This ratio can be solved from the Ward identities (51), (53),
and (56) above. Unlike the leading-order case, only physi-
cal amplitudes have fixed ratios with each other. Because
of this difference, it is much harder to derive a master
formula for the ratio between any two next-to-leading-
order amplitudes at arbitrary mass levels, since we do not
have general formulas for physical states at arbitrary mass
levels.

Utilizing the ratios among the leading-order amplitudes,
one can construct physical states whose four-point func-
tions are next to the next-to-leading order,

 �jAi � 8jBi�; �jEi � 2jBi�: (59)

Unfortunately, the ratio of their amplitudes is not a
constant.

V. THIRD MASSIVE LEVEL (M2 � 6)

Analogous to the previous two cases, we list all the
physical states that we should consider:

 jAi � ���T�1�
4 � 6��T�1�

2��I�1�
2 � ��I�1�

4�j0; ki; (60)

 jBi � ���T�1�
3�L�1 � 3�T�1�

L
�1��

I
�1�

2�j0; ki; (61)

 

jCi � ���T�1�
2��L�1�

2 � ��I�1�
2��L�1�

2 � ��I�1�
2��T�1�

2

� 1
3��

I
�1�

4�j0; ki; (62)

 jDi � ���L�1�
3�T�1 � 3�L�1�

T
�1��

I
�1�

2�j0; ki; (63)

 jEi � ���L�1�
4 � 6��L�1�

2��I�1�
2 � ��I � 1�4�j0; ki;

(64)

 jFi � ��T�1�
T
�3 �

3
4��

T
�2�

2 � 3��T�1�
2��I�1�

2

� 1
2��

I
�1�

4�j0; ki; (65)

 jGi � ��T�1�
L
�3 � �

L
�1�

T
�3 �

3
2�

T
�2�

L
�2

� 6�T�1�
L
�1�a

I
�1�

2�j0; ki; (66)

 jHi � ��L�1�
L
�3 �

3
4��

L
�2�

2 � 3��L�1�
2��I�1�

2

� 1
2��

I
�1�

4�j0; ki; (67)

 jIi � 1
2���

T
�1�

2�L�2 � ��
I
�1�

2�L�2 � �
T
�1�

L
�1�

T
�2

� �I�1�
L
�1�

I
�2�j0; ki; (68)

 jJi � 1
2���

L
�1�

2�T�2 � ��
I
�1�

2�T�2 � �
L
�1�

T
�1�

L
�2

� �I�1�
T
�1�

I
�2�j0; ki: (69)

To skip lengthy details, let us just give the final result.
Solving the constraint obtained from decoupling spurious
states (and replacing eP by eL), one can find the ratios
among amplitudes at the leading order [4],

 T �A�:T �C�:T �E�:T �H�:T �I� � 96:8:2:� 3:� 4
���
6
p
:

(70)

For example,

 T �A� � T �6�E12

�
32sin4�� 160sin4�

1

E2 �O
�

1

E4

��
;

(71)

where
 

T �6� �
���s2 � 1����t2 � 1�

��u2� 2�
�

���t2 � 1����u2 � 1�

��s2� 2�

�
���u2 � 1����s2 � 1�

��t2� 2�
: (72)

[Notice that T �6� has the same form as T �2� in Eq. (39),
but the definitions of s, t, and u depend on the mass levels.]
Again, there is another nonphysical state such as
��T�1�

2�L�2j0; ki which is linearly related to these states
at the leading order. A new result of this paper is the ratio
among the next-to-leading-order amplitudes,

 T �B�:T �D�:T �G�:T �J� � 36:11:3:2
���
6
p
: (73)

For the four-point functions involving three tachyons, we
have
 

T �B� � T �6�E11

�
16

���
6
p

cos�sin3��
64

���
6
p

cos�sin3�

E2

�O
�

1

E4

��
; (74)

etc., and the ratios above are verified.
Unlike the leading-order amplitudes, there is no non-

physical state whose amplitude has a definite ratio with any
physical amplitude.

The next-to-leading-order amplitudes are of order 1=E
smaller than the leading-order amplitudes. There are also
amplitudes of order 1=E2 smaller than the leading-order
amplitudes, such as those for jFi, �jAi � 12jCi�,

���
6
p
jIi �

3jCi, and �jCi � 4jEi�. They are not all proportional to
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each other, but they are not independent either:

 T �F� � T �6�E10

�
8sin2��

24sin2�

E2 �O
�

1

E4

��
; (75)

 

T �A� 12C� � T �6�E10

�
�16�33cos2�� 1�sin2�

�
4�193� 191 cos�2��sin2�

E2

�O
�

1

E4

��
; (76)

 T �C� 4E� � T �6�E10

�
�4�73cos2�� 1�sin2�

3

�
2�151� 169 cos�2��sin2��

3E2

�O
�

1

E4

��
; (77)

 T �
���
6
p
I � 3C� � T �6�E10

�
144cos2�sin2�

�
6�35� 37 cos�2���sin2�

E2

�O
�

1

E4

��
: (78)

We can see that in the 1=E expansion, there are only 2
degrees of freedom at the leading order which are propor-
tional to cos2�sin2� and sin2�. This result is consistent
with the del Giudice, di Vecchia, Fubini (DDF) gauge
consideration (see below): there are only two independent
states AT�1A

T
�3j0; ki and AT�2A

T
�2j0; ki at the 2nd subleading

order.

VI. COMMENTS ON THE LINEAR RELATIONS

The fact that we can relate all amplitudes at the leading
order to each other (for a given mass level) implies that it is
possible to choose another basis of physical states such that
there is a unique state in the basis at the leading order, with
all other states in the basis being subleading. This basis was
found in [11] and called the DDF gauge. A generic state in
the basis looks like

 Ai1�n1
� � �Aim�nm jp0i; (79)

where the Ai�n’s denote DDF operators. To define the DDF
operators, one has to choose a lightlike vector k. Here we
choose k to be proportional to �eL � eP�. For the state to
describe a particle with momentum p, we should choose
the parameter p0 in (79) to be p0 � p� �

P
ini�k, which is

a linear combination of eL and eP. The polarization ei of a
DDF operator Ai�n can only be one of the spatial directions
transverse to the momentum.

An important property of the state in the DDF gauge is
that it is only composed of the creation operators �i�n and
�L�P�n when we expand them in terms of the usual creation
operators ���n. In the computation of correlation functions,
we contract all Lorentz indices. Because the components in
the polarization vector eL�P � eL � eP are of order
O�E�1�, while those of eT are of order O�E0�, each factor
of �L�P�n contributes a relatively suppressed amplitude in
the high-energy limit. The conclusion of this consideration
is that a state created by m1 DDF operators dominates over
another state created by m2 DDF operators if and only if
m1 >m2. The difference in their scaling behavior in the
high-energy limit is simply Em1�m2 . Therefore, for our
computation of four-point functions, the unique state at
the leading order at mass level n is

 �AT�1�
nj0; p0i: (80)

Correspondingly, there is a unique four-point function at
the leading order for each mass level [up to an overall
constant factor given by (13)].

The state at the next-to-leading order is also unique,

 �AT�1�
n�2AT�2j0; p0i: (81)

This implies that all four-point functions at the next-to-
leading order must also be proportional to each other. This
is what we showed explicitly forM2 � 4 andM2 � 6. Less
obvious is that all the ratios among the four-point functions
can be algebraically derived by setting eP ! eL in the
spurious states.

At the 2nd subleading order (next to the next-to-leading
order), there are two independent DDF states,

 �AT�1�
n�3AT�3j0; p0i and �AT�1�

n�4�AT�2�
2j0; p0i: (82)

Unless the two states happen to have the same high-energy
behavior, we do not expect all amplitudes at the 2nd
subleading order to be proportional to each other. They
should satisfy linear relations involving three states at a
time, as each state at this order is a linear combination of
the two states above plus some other states at even lower
orders. This is indeed what we observed in Eqs. (75)–(78)
for the mass level M2 � 6. Similarly, there can be non-
trivial linear relations among amplitudes at any order for
sufficiently high mass levels. For example, at the next order
(the 3rd subleading order), we have three independent
amplitudes associated with the following DDF states:

 �AT�1�
n�4AT�4j0; p0i; �AT�1�

n�5AT�2A
T
�3j0; p0i;

�AT�1�
n�6�AT�2�

3j0; p0i:
(83)

After we learned that these linear relations are in some
sense ‘‘trivialized’’ in the DDF gauge, a legitimate ques-
tion is whether all these infinitely many linear relations
among amplitudes have anything to do with any symmetry
at all. The answer to this question is not obvious, but let us
try to give some hints. First, although the linear relations
seem trivial in the DDF gauge, the existence of the DDF
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gauge is highly nontrivial (for example, it exists only for
D � 26). The nontrivial content of the linear relations is
part of what made the DDF gauge possible, which tells us
that string theory has the same number of degrees of free-
dom as a theory of massless higher spin gauge fields.

Furthermore, there is ‘‘empirical evidence’’ supporting a
close connection between the linear relations and symme-
try. The evidence is the 2D string theory, which has a w1
symmetry dictating all scattering amplitudes [18]. The
generators of the w1 symmetry are vertex operators of
the so-called discrete states. It was shown [9] that, in the
high-energy limit, a class of zero-norm states approaches
the discrete states (also via the replacement eP ! eL), and
thus the conservation law for each discrete state is matched
with the Ward identity of a zero-norm state. This observa-
tion suggests that the linear relations derived from the
decoupling of zero-norm states could bear some resem-
blance with the algebraic structure of the hidden symmetry.

VII. GENERIC MASS LEVELS

In this section we will give an explicit expression for the
next-to-leading-order amplitudes for all mass levels up to
an overall constant, and establish a remarkably simple
connection between the mass levels and the functional
dependence on the scattering angle �. Since all these
amplitudes at the same mass level are proportional to
each other, we only need to consider a representative
physical state at the next-to-leading order for each mass
level.

The representative physical state we choose to compute
is of the form

 

�
�L�1��

T
�1�

n�1 �
Xn�1

m�1

am�L�1��
T
�1�

n�1�m��I�1�
m
�
j0; ki;

(84)

where the numerical parameters ak should be chosen such
that this is a physical state. Since the state only involves
creation operators at level 1 (���1), almost all Virasoro
generators Ln with n > 0 trivially annihilate the state.
The only exception is the term 1

2�1 � �1 in L2. Thus it is
only the traceless condition that needs to be taken care of.
One can easily convince oneself that there are sufficient
parameters, ak’s, for this purpose. For our computation of
four-point functions in the high-energy limit, the values of
the ak’s are irrelevant. We focus our attention on the first
term in (84).

The tree level four-point function is an integral of

 A � jy12jjy13jjy23jhV1�y1�V2�y2�V3�y3�V4�y4�iD2
(85)

over the moduli space. The factor jy12jjy13jjy23j is given by
the ghost part of the vertices, and Vi’s stand for the matter
part. The vertex operators we will compute are of the form

 Vi�yi� �
�Yni
a�1

@X�a�yi�
�
eiki�X�yi�; i � 1; 2; 3; 4; (86)

where normal ordering is to be carried out.
There is a useful formula [19] to evaluate this correlation

function at tree level,
 �Yn

i�1

eiki�X�yi�
Yp
a�1

@yX
�a�y0a�

�
D2

� iC�2��26	�26�

�X
i

ki

�Y
i<j

jyijj
ki�kj

�

�Y
a

�v�a�y0a� � q�a�y0a��
�
D2

; (87)

where

 v��y� � �i
X
i

k�i
y� yi

(88)

and the q’s are contracted using

 hq��y�q��y0�i � �
���

�y� y0�2
: (89)

The calculation of the four-point functions is straightfor-
ward but tedious. Here we briefly describe the techniques
we use. We take the usual gauge-fixing condition

 y1 � 0; y2 � 1; y3 ! 1; y4 � x; (90)

where x is the only modular parameter to be integrated
over. A four-point function is always a linear combination
of integrals of the form

 

Z 1
�1

dxxA�1� x�B; (91)

where A and B are some of the Mandelstam variables s, t, u
plus constants. This integral can be decomposed into in-
tegrals over three different regions ��1; 0�, �0; 1�, and
�1;1�. We have

 

Z 1

0
dxxA�1� x�B �

��A� 1���B� 1�

��A� B� 2�
; (92)

and a change of variable x � 1� 1=x0 gives

 

Z 0

�1
dxxA�1� x�B � ��1�A

���A� B� 1���A� 1�

���B�
;

(93)

and yet another change of variable x � 1=x0 gives

 

Z 1
1
dxxA�1� x�B � ��1�B

���A� B� 1���B� 1�

���A�
:

(94)

Using the following identity for the Gamma function,

 ��A� 1� � A��A�; (95)
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we find that, for all three integrals, the effect of increasing
the parameter A to A� 1 is equivalent to adding a multi-
plicative factor of

 

�
A� 1

A� B� 2

�
: (96)

Thanks to this observation, we can write the four-point
function in the form
 

A � iC�2��26	�26�

�X
i

ki

�

�

�Z 1
�1

x�t=2�2�1� x��u=2�2

�
B�s; t; u�; (97)

where B�s; t; u� is a fraction of polynomials of s, t, u. The
Mandelstam variables are linearly dependent:

 s� t� u �
X4

i�1

m2
i � 2�n� 4�; (98)

where mi �
��������������������
2�ni � 1�

p
is the mass of the ith particle, and

n �
P4
i�1 ni is the sum over mass levels.

The common factor ��� in Eq. (97) can be written down
more explicitly as

 

�Z 1
�1
x�t=2�2�1�x��u=2�2

�
�

��� t
2�1����u

2�1�

��s2�n�2�

�
��� s

2�n�1���� t
2�1�

��u2�2�

�
��� s

2�n�1����u
2�1�

��t2�2�
:

(99)

As a digression, we comment that the Sterling’s formula

 ��n� 1� ’
�������
2�
p

nn�1=2e�n (100)

is valid only for n > 0. The Gamma function diverges at
negative integers. The expression

 ���x� �
�

�x sin��x���x�
(101)

allows us to write down a valid approximation for large
negative values. However, since this common factor is
common to all amplitudes, this complication is unneces-
sary for our purpose of examining the relations among
scattering amplitudes. We only need the high-energy ex-
pansion of B.

Let us first recall that when all vertices are at the leading
order, e.g.,

 Vi � �@XT�nieiki�X; (102)

the four-point function has a simple high-energy limit with

 B ’ ��1�n1�n2��E sin��n: (103)

After lengthy calculation, we find that if the first k
vertices (0 
 k 
 4) correspond to states at the next-to-
leading order, e.g. (84), while the rest of the four vertices
are at the leading order, e.g. (102), the high-energy limit of
B is

 B ’ ��1�n1�n2��E sin��n�k
Yk
a�1

�
�
ma

2
cos�

�
: (104)

We can summarize the expression above by the follow-
ing rule:

 @XT ! �E sin�; (105)

 @XL ! �
m
2

cos�: (106)

That is, apart from the common factor of the four-point
function, for every factor of @XT , regardless of which
vertex it resides in, we associate a factor of ��E sin��.
The association of @XL with the factor of ��m

2 cos��
needs further explanation. We only considered the case
when a vertex involves at most a single factor of @XL.
Vertices with an even number of @XL and an arbitrary
number of @XT are at the leading order, and vertices with
an odd number of @XL and an arbitrary number of @XT are
at the next-to-leading order. The association is restricted to
states either of the form (84) or of the form (102).
Nevertheless, we can now write down the general expres-
sion of all next-to-leading-order amplitudes at any mass
level (up to numerical constant factors).

Our factorization rules (105) and (106) can also be
written in terms of the DDF operators as

 AT�1 ! �E sin�; AT�2 ! �
m
2

cos�: (107)

In our computation, we note that, when there are more
vertices involving @XL, there is more cancellation in the
1=E expansion of the product

Q
�v� q� in (87) since the

naive power counting would give @XL 	 E2 (which is
wrong). As a result the computation is more complicated
because we need to take into consideration higher and
higher order terms in the 1=E expansion. The many can-
cellations not only reduce the four-point function to a
lower order, but also lead to a result which is consistent
with the remarkably simple factorization rules (105) and
(106). The high-energy limit of string theory demonstrates
a much simpler structure than the theory at finite energy.

It is also interesting to note that, up to a sign, both the
leading and next-to-leading amplitudes [see Eqs. (97),
(99), (103), and (104)] depend only on the sum of mass
levels n, instead of depending on all four numbers
�n1; n2; n3; n4� (assuming that we use E and � as the
parameters). This is a feature valid only in the high-energy
limit. Its physical meaning remains to be understood.
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APPENDIX

Here we list our definition of the kinematic variables
involved in a four-point function. In Fig. 1, we take the
scattering plane to be the X1–X2 plane. The momenta of
the particles are

 k1 �

� ������������������
p2 �m2

1

q
;�p; 0

�
; (A1)

 k2 �

� ������������������
p2 �m2

2

q
; p; 0

�
; (A2)

 k3 �

�
�

������������������
q2 �m2

3

q
;�q cos�;�q sin�

�
; (A3)

 k4 �

�
�

������������������
q2 �m2

4

q
; q cos�; q sin�

�
: (A4)

They satisfy k2
i � �m

2
i . In the high-energy limit, the

Mandelstam variables are

 s � ��k1 � k2�
2 � 4E2; (A5)

 t � ��k2 � k3�
2; (A6)

 u � ��k1 � k3�
2: (A7)

The polarization vectors for the four particles are

 eL�1� �
1

m1

�
p;�

������������������
p2 �m2

1

q
; 0
�
; eT�1� � �0; 0;�1�;

(A8)

 eL�2� �
1

m2

�
p;

������������������
p2 �m2

2

q
; 0
�
; eT�2� � �0; 0; 1�;

(A9)

 

eL�3� �
1

m3

�
�q;�

������������������
q2 �m2

3

q
cos�;�

������������������
q2 �m2

3

q
sin�

�
;

eT�3� � �0;� sin�; cos��; (A10)

 

eL�4� �
1

m4

�
�q;

������������������
q2 �m4

q
cos�;

������������������
q2 �m2

4

q
sin�

�
;

eT�4� � �0; sin�;� cos��: (A11)
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