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Dynamics of warped compactifications and the shape of the warped landscape
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The dynamics of warped/flux compactifications is studied, including warping effects, providing a firmer
footing for investigation of the ‘‘landscape.’’ We present a general formula for the four-dimensional
potential of warped compactifications in terms of ten-dimensional quantities. This allows a systematic
investigation of moduli-fixing effects and potentials for mobile branes. We provide a necessary criterion,
‘‘slope dominance,’’ for evading ‘‘no-go’’ results for de Sitter vacua. We outline the ten-dimensional
derivation of the nonperturbative effects that should accomplish this in examples of Kachru, Kallosh,
Linde and Trivedi and outline a systematic discussion of their corrections. We show that potentials for
mobile branes receive generic contributions inhibiting slow-roll inflation. We give a linearized analysis of
general scalar perturbations of warped IIB compactifications, revealing new features for both time-
independent and dependent moduli, and new aspects of the kinetic part of the four-dimensional effective
action. The universal Kahler modulus is found not to be a simple scaling of the internal metric, and a
prescription is given for defining holomorphic Kahler moduli, including warping effects. In the presence
of mobile branes, this prescription elucidates couplings between bulk and brane fields. Our results are thus
relevant to investigations of the existence of de Sitter vacua in string theory, and of their phenomenology,
cosmology, and statistics.
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I. INTRODUCTION

Compactifications of string theory in the presence of
fluxes have provided us with phenomenologically attrac-
tive vacua of string theory and at the same time have
significantly advanced our thinking about the space of
string theoretic vacua. In the string revolution of 1984,
many phenomenologically important features were found
to emerge from compactification on a Calabi-Yau (CY)
manifold—low-energy supersymmetry, generations,
mechanisms for GUT breaking, etc. However, one of the
thorny problems remaining was that of the moduli of these
compactifications, giving phenomenologically unaccept-
able light scalar fields.

Recent developments in warped flux compactifications
have shown how these moduli can be fixed [1,2], have
indicated the possibility of finding vacua with positive
cosmological constant [2], and have pointed towards a
new view of the space of string vacua in which it may be
that the only way to determine details of much of low-
energy physics is through the principle of environmental
selection [3,4]. Moreover, these compactifications have
suggested new possible mechanisms for inflation [5], and
have suggested that the fundamental scale of physics could
be unexpectedly low (for general discussion of scales in
these compactifications, see [6]), raising the possibility that
superstrings could be detected as cosmic strings [7], or
black holes and strings could even be studied at accelera-
tors [8,9].

Given the possibly profound implications arising from
the study of flux vacua and warped compactifications (a
ress: giddings@physics.ucsb.edu
ress: anshuman@physics.ucsb.edu
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partial list references includes [10–15]; useful reviews
include [16,17]), it is particularly important to understand
the space of such compactifications and their dynamics.
While there have been many advances, the inherently
greater complexity of these compactifications has left the
subject in a significantly more primitive state than that of
the traditional Kaluza-Klein compactifications of string/M
theory.

Many questions have received at best partial answers in
the literature. A proper description of spacetime-dependent
warped compactifications has not been given, and indeed
puzzles have remained regarding even the moduli of static
solutions. One would expect dynamic solutions to be gov-
erned by a four-dimensional effective action, but there are
various subtleties in deriving such an action from a more
fundamental ten-dimensional formulation. Moreover, in
order to verify the existence of the de Sitter vacua proposed
in [2], one needs to carefully understand the sources and
impact of possible corrections to these solutions in a sys-
tematic analysis. The possibility of achieving slow-roll
inflation has been raised, but found difficult to achieve
[5]; a more systematic understanding would be desirable.
And treatment of environmental selection has indicated the
need to understand the systematics of such vacua, but again
a careful understanding of their construction is needed first.
In short, many aspects of both cosmology and phenome-
nology require dynamical knowledge of the four-
dimensional physics of these compactifications, and only
pieces of this are known so far.

This paper will take steps towards providing some of
these missing pieces. One of the results of this paper is a
systematic linearized treatment of dynamic perturbations
of the moduli in such warped compactifications. This treat-
ment, which is needed for a proper understanding of the
-1 © 2006 The American Physical Society
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reduction from the ten-dimensional theory to a four-
dimensional effective theory, reveals some features that
some may consider unexpected both in the description of
the moduli and in the form of the corresponding time-
dependent solutions of the ten-dimensional equations of
motion. These include proper treatment of the universal
Kahler deformation—which is not a simple scaling of the
internal metric—and extra ‘‘compensator’’ deformations
needed to obtain a consistent ten-dimensional solution.
While this work is a prelude to a systematic derivation of
a four-dimensional effective action in the presence of
warping, and provides some important clues as to its
structure, we are not yet able to give such a derivation,
primarily due to issues with kinetic terms.

However, we are able to give a very general formula for
the four-dimensional potential in a general warped com-
pactification. This formula, which provides the potential in
terms of ten-dimensional quantities, and explicitly includes
warping effects, arises from investigation of the ten-
dimensional equations of motion and provides a link be-
tween ten- and four-dimensional analysis. One can check
that it yields the familiar results for flux and brane gen-
erated potentials on a compact space, together with cor-
rections due to warping. It also gives a systematic
rederivation of the potential for complex structure pertur-
bations given in [1,6]. Moreover, this formula allows a
systematic derivation of the potential once other effects,
such as antibranes or nonperturbative effects are included,
as in recent work on constructing de Sitter vacua [2]. It also
extends to treat the case of mobile branes, and thus pro-
vides a controlled derivation of interbrane potentials rele-
vant for investigating the possibility of inflation in these
and other models.

We are also able to improve understanding of several
issues in warped compactification dynamics. Our discus-
sion clarifies the origin of ‘‘no-go’’ theorems for de Sitter
compactifications [18,19], and formulates a necessary con-
dition, which we refer to as ‘‘slope dominance,’’ for their
evasion such as in [2]. In the process, we also explain the
relative role of other competing formulas for the potential
with less acceptable features; for example, [20] showed
that a naı̈ve derivation gives a negative definite potential.
We outline a ten-dimensional description of the origin of
the nonperturbative effects (Euclidean D3 branes, gaugino
condensation on D7 branes) that should give the necessary
slope dominance in the models of Kachru, Kallosh, Linde
and Trivedi (KKLT), and we outline a systematic discus-
sion of the corrections to the potential for these models
which is relevant to checking their validity. Moreover, our
discussion of potentials for mobile branes elaborates the
origin of troubling terms—noticed in [5]—that generi-
cally spoil slow-roll inflation. Our treatment of nonpertur-
bative effects combined with our earlier discussion of
proper treatment of moduli of solutions also suggests a
useful definition of the holomorphic Kahler moduli with
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mobile branes present, that yields a clear and general
resolution to puzzles over couplings between these fields
and gauge fields on D7 branes (the ‘‘rho problem’’
[15,21,22]).

In outline, the next section reviews the IIB warped
solutions of [1]. Section III then describes the origin of
the light spectrum from the underlying Calabi-Yau, and
describes the form of static deformations of the Giddings-
Kachru-Polchinski (GKP) solutions both before and after
three-flux has lifted complex structure moduli. A particular
focus is the parametrization of the universal Kahler modu-
lus, which is not a simple rescaling of the compact geome-
try. Section IV gives an overview of dynamic moduli
perturbations, and, in particular, the role of compensator
fields in lifting to ten-dimensional solutions. It also de-
scribes some of the progress and issues with deriving the
full four-dimensional effective action, and outlines the
basics of the Kaluza-Klein expansion.

Section V derives a general formula for the four-
dimensional potential of a general warped compactifica-
tion, with full account of warping contributions: the central
formula is (5.8). Simple examples of potentials due to
branes and fluxes are given, along with a discussion of
radial dilaton dynamics that elucidates the relative role of
other expressions for the potential. This formula is also
applied to the GKP solutions [1], with generalization to
more generic sources such as anti-D3 branes. Finally,
de Sitter no-go results are investigated, and our necessary
condition for their violation, slope dominance, is
formulated.

Section VI describes potential terms used to lift Kahler
moduli directions—both nonperturbative potentials and
their ten-dimensional origin, and those due to anti-D3
branes. Section VII then provides a general discussion of
the systematics of moduli-lifting effects, such as in [2], and
the various sources of corrections and their importance.
The interplay with the slope-dominance condition yields
the fine-tuning conditions on the superpotential and the
redshifted tension of the anti-D3 branes. We also discuss
effects of warping, which could modify vacuum statistics
results or even the presence of a controlled approximation
in which to derive de Sitter vacua.

Section VIII treats dynamics of mobile D3 branes, using
the general potential formula. Potentials for such motion
are derived in terms of geometrical quantities, and the
origin of a generic problem for slow roll in models with
fixed moduli is described. This section also clarifies the
definition of holomorphic Kahler moduli when mobile
branes are present, thus giving a general resolution to the
rho problem.

Appendix A gives a ten-dimensional treatment of line-
arized perturbations of warped compactifications, with
particular emphasis on those of [1]. We provide expres-
sions for the perturbed metric and curvatures for a general
warped compactification, and for perturbed stresses, and
-2
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outline the solution of the equations of motion with both
zero and nonzero three-form flux. This clarifies the role of
‘‘compensators’’—extra field components in time-
dependent situations—and the need for Kaluza-Klein ex-
citations, and provides some discussion of the problem of
deriving the four-dimensional effective action.
Appendix A also presents an argument that the remaining
flat directions after fluxes are turned on are indeed purely
Kahler, with no admixture of complex structure/axidilaton
deformations, resolving questions raised previously [23].
Appendix B closes with brief comments on relations to
other work on dynamical warped compactifications.

We end this introduction with a few comments on use of
the effective action, which has been, in particular,
criticized in [24,25]. Use of the effective action, and the
resulting equations of motion, is central to the approach of
the present work. We do not presently know the funda-
mental formulation of string/M theory. Since actions are a
particularly economical way of summarizing quantum dy-
namics, we might expect that string/M theory could be
described by functional integrals of the formZ

DMeiS�M��� � ��; (1.1)

where M represents a dynamical M-theory configuration,
although certainly some more fundamental formulation of
quantum dynamics may be discovered. In certain limits,
the configurations M can be well approximated by familiar
objects—supergravity fields, strings, D branes, etc.,
although ultimately we anticipate that the description of
these configurations respects a reduction of the number of
degrees of freedom arising from holographic or related
considerations. However, we believe it is sensible to use
the effective action in regions where the dynamics is well
approximated by these familiar configurations, as long as
we do not follow it into a region where it predicts its own
demise, for example, through evolution to black holes or
other strong gravity/string effects.1 It is in this spirit that we
use the effective action, and take it seriously as long as it
stays out of trouble, although it is not inconceivable that its
use is vitiated by some more subtle fundamental flaw.
II. REVIEW

We begin by reviewing the construction of the warped
IIB string compactifications of [1]. These are solutions to
leading order in �0, which are thus found as solutions to the
type IIB supergravity action, supplemented with local
terms that summarize the effects of branes and orientifolds.

The supergravity action (in Einstein frame) for the type
IIB string theory is
1For many purposes there appears to even be an effective field-
theory description of black holes; the effects of holography are
only believed to be revealed when computing particular classes
of observables.
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where G�3� � F�3� � �H�3� is the combined three-form
flux, with G�3� � dC�2�, H�3� � dB�2�,

� � C�0� � ie��; (2.2)

and

~F �5� � F�5� �
1
2C�2� ^H�3� �

1
2B�2� ^ F�3�; (2.3)

with F�5� � dC�4�. In addition to the equations of motion
obtained from the above action, the condition

~F �5� � 	 ~F�5� (2.4)

must be imposed by hand.
Reference [1] focuses on solutions with maximal sym-

metry in four dimensions,

ds2
10 � e2A�y�~g���x�dx�dx� � e�2A�y�~gmn�y�dymdyn

(2.5)

which are the general solutions to these equations with D3
and D7 brane as well as O3 plane sources. These obey a
BPS-like condition,

1
4 �T

m
m � T

�
� �loc 
 T3�loc

3 (2.6)

where �loc
3 is the D3 charge density of the localized

sources. The most general fluxes consistent with maximal
4D symmetry are three-form flux G�3� with all components
in the compact directions, a dilaton/axion that varies over
the compact manifold � � ��y�, and five-form flux of the
form

~F �5� � �1� 	��d��y� ^ dx0 ^ dx1 ^ dx2 ^ dx3�: (2.7)

Under these conditions, one can find the general solution
at leading order in �0. It is specified by the following data:
(a) T
-3
he underlying geometry is given by an orientifold
of a Calabi-Yau manifold, or more generally by an
F-theory compactification. In the first case, the data
is the Calabi-Yau metric,

~g mn � gCY
mn (2.8)

together with the orientifold projection. This in
general will have h2;1 complex moduli z� and h1;1

Kahler moduli �i. In the more general case, the
underlying geometry given by the F-theory solution
X, which projects to the six-dimensional data of a
(non–Calabi-Yau) metric ~gmn, the positions/charges
of the resulting D7 branes, and a varying axidilaton,
��y�.
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(b) C
losed three-form fluxes F�3�, H�3�, satisfying the
usual quantization conditions (to be described ex-
plicitly in the next section).
(c) T
he six-dimensional positions of a collection of
space-filling D3 branes.
This data must satisfy the Gauss-law constraint that the
total D3 charge in the compact space vanishes,

1

2�2
10T3

Z
M6

H�3� ^ F�3� �Q
loc
3 � 0; (2.9)

whereQloc
3 summarizes the D3 charge of the D3 branes and

either O3 planes, or that induced on the D7 branes as
discussed in [1]. In the latter case, one finds a contribution

QD7
3 � �

��X�
24

: (2.10)

For such a choice of data, [1] argues a supergravity
solution can be found with vanishing four-dimensional
curvature. (Many of the following formulas will be literally
true only for the orientifold case, but have more-or-less
obvious generalizations to the F-theory case.) The Bianchi
identity

d ~F�5� � H�3� ^ F�3� � 2�2
10T3 	6 �loc

3 (2.11)

(where 	6 denotes the dual with respect to the metric g6)
takes the form

~r 2� � ie2A Gmnp�	6G
mnp�

12Im�
� 2e�6A@m�@

me4A

� 2�2
10e

2AT3�loc
3 ; (2.12)

where tildes are used throughout the paper to denote co-
variant quantities constructed with the metric ~gmn.
Combining this with the trace of Einstein’s equations gives

~r2�e4A����
e2A

24Im�
jiG�3��	6G�3�j2�e�6Aj@�e4A���j2

�2�2
10e

2A
�

1

4
�Tmm�T

�
� �loc�T3�

loc
3

�
: (2.13)

The left-hand side of (2.13) vanishes when integrated
over the manifold, and positive definiteness therefore re-
quires vanishing of the individual terms on the right. This
implies

� � e4A (2.14)

and that the flux G�3� is imaginary self-dual (ISD):

	6G�3� � iG�3�: (2.15)

Note that on a Calabi-Yau manifold, the flux is automati-
cally primitive,

J ^G�3� � 0: (2.16)

For a primitive flux the condition (2.15) has a solution for
each choice of Kahler moduli. However, this condition
then fixes [1] the complex structure moduli z� and the
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dilation �, or, in the F-theory context, the complex struc-
ture moduli of X, which include the D7-brane positions.
Vanishing of the last term in (2.13) implies saturation of the
pseudo-BPS condition (2.6) for the sources. Finally, given
this data, the five form and warp factor are determined by
solving the equation

�~r2�e�4A� �
Gmnp

�Gfmnp
12Im�

� 2�2
10T3 ~�loc

3 ; (2.17)

on the background geometry. For a collection of D3
charges of strength Ni at point yi, the source becomes

~� loc
3 �

X
i

Ni
1���
~g
p 	6�y� yi� (2.18)

(where the context here and elsewhere should make it clear
that ~g � ~g6); notice that O3 planes give the negative con-
tribution necessary for (2.17) to be consistent.

We close this review with a word about approximations.
The equations we write are valid only to leading order in �0

and beyond this receive corrections. At the same time, we
include sources (fluxes, branes) whose contributions to the
geometry are strictly speaking suppressed by a power of �0

relative to the leading geometry. We wish to do this as some
of the physically interesting effects—such as warping of
the metric—only contribute at this order in �0. The justi-
fication is that fluxes and brane charges may be large
(though apparently not parametrically) in the compactifi-
cations of [1]. Thus there is good motivation for keeping
such effects that are only suppressed by a power ofK�0, for
a typical large flux quantum K, while ignoring effects of
order �0.
III. PERTURBATIONS OF FLUX
COMPACTIFICATIONS—KINEMATICS

To begin an analysis of dynamics of flux compactifica-
tions, we begin by discussing massless or light perturba-
tions of these configurations. The analogous discussion for
traditional Calabi-Yau compactifications is a straightfor-
ward exercise in cohomology and dimensional reduction.

While analysis of perturbations of a general warped
compactification has additional complications due to the
warping, the study of the perturbations of the solutions of
[1] is significantly simplified by the relation to the under-
lying Calabi-Yau manifold. In this section we examine
these perturbations more carefully. We begin by discussing
the light perturbations present in these solutions; in addi-
tion to four-dimensional gravity, one finds a rich spectrum
of scalars and vectors. Given the particular importance of
stabilizing the moduli, and their possible role in cosmol-
ogy, we will particularly focus on the scalar spectrum, and
investigate that first for static perturbations in the case of
vanishing three-form flux then in the presence of three-
form flux.
-4
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A. The light spectrum

The light fluctuation spectrum of the IIB compactifica-
tions of [1] is largely inherited from the light fluctuation
spectrum of the underlying Calabi-Yau orientifold, or
F-theory compactification. Therefore we begin with a dis-
cussion of that spectrum. We will focus on the orientifold
case; the F-theory case is largely a straightforward
generalization.

Covering space.—First recall that the Calabi-Yau mani-
fold is in general endowed with a holomorphic �3; 0� form
�. The other nontrivial cohomology is represented by h2;1

forms �� of type �2; 1�, and h1;1 forms !i of type �1; 1�,
together with their duals. All of these forms may be taken
to be harmonic. The resulting four-dimensional supersym-
metry multiplets are as follows.

The RR axion C�0��x� and the ten-dimensional dilaton
��x� give the complex field ��x�, as in (2.2). Likewise,
B�2��x� and C�2��x� dualize into two pseudoscalar axions
that can be thought of as components of a single N � 1
superfield. These axions and � together give the bosonic
components of an N � 2 multiplet that may be thought of
either as a hypermultiplet or as a double-tensor multiplet
[26–28].

Deformations of the complex structure give rise to scalar
fields z��x�, also in N � 1 chiral multiplets. At the N � 2
level, these combine with vectors V���x� from perturbations

C�4� � V��x� ^ �� (3.1)

(self-duality halves the number of components) of the four-
form potential to give bosonic components of h2;1 N � 2
vector multiplets.

Deformations of the Kahler structure give rise to scalar
fields ri�x�. These combine with scalars ai�x� arising from
perturbations

C�4� � ai�x� 	6 !i �Di
�2��x� ^!i (3.2)

of the four-form potential to give bosonic components of
N � 1 scalar superfields, which we denote by complex
fields �i. (Self-duality fixes the Di

�2� in terms of the ai.)
Likewise, deformations of the two-form potentials of the
form

B�2� � bi�x�!i; C�2� � ci�x�!i (3.3)

give the components �bi; ci� of N � 1 scalar superfields.
These combine with the �i to give the bosonic components
of h1;1 N � 2 hypermultiplets.

Next, there is a deformation

C�4� � V ^� (3.4)

of the four-form potential that corresponds to a vector
V��x�; this combines with g���x� to give theN � 2 gravity
multiplet.

Orientifold-projected spectrum.—As described in [29],
the orientifold projection breaks theN � 2 supersymmetry
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to N � 1 and eliminates some of the N � 2 states. The
cohomology breaks into eigenspaces under the holomor-
phic involution 
 (which here we consider to be of the type
that induces O3 and O7 planes),


H�p;q�� � �H�p;q�� (3.5)

with corresponding dimensions hp;q� . The remaining N � 1
supermultiplets are the gravitational multiplet, h2;1

� vector
multiplets, and h2;1

� � h
1;1
� � h

1;1
� � 1 chiral multiplets

with bosonic fields z�, �i, �bi; ci�, and �, respectively.2

Finally, the positions of mobile space-filling D3 branes (or
D7 branes in the F-theory case) correspond to massless
moduli, and are described by N � 1 chiral multiplets.

A critical aspect of the warped IIB compactifications of
[1] is the presence of three-form flux, that is expectation
values for Fmnp�y� and Hmnp�y�. The resulting four-
dimensional action for the perturbations with such flux
backgrounds has recently been systematically studied, to
leading order in the large-volume expansion, in [29].
Working at this order amounts to neglecting the effects
of the warping induced by the presence of D3 branes and
fluxes, as we will explain in more detail. Since the effects
of the warping are important for various phenomena (in
particular lowering mass scales), part of the goal of this
paper is to begin to go beyond the no-warping
approximation.

B. Moduli space: G3 � 0

We next turn to a description of moduli in the warped
case but with G3 � 0. With three-form flux turned off, the
moduli of the underlying Calabi-Yau orientifold compac-
tification and the value of the axidilaton �, together with
the brane positions (or more generally moduli of the
F-theory compactification X) determine the moduli of
the GKP solutions, which in this case reduce to the solu-
tions of Chan, Paul, and Verlinde [31,32]. This follows
directly from the construction: once one specifies �, a
given point in Calabi-Yau moduli space and the brane
configurations, a corresponding warped compactification
follows automatically by solving the equations of the
previous section.

Specifically, consider a perturbation of the underlying
Calabi Yau

~g mn ! ~gmn � 	~gmn: (3.6)

As discussed above, the general 	~gmn corresponds to an
element ofH�1;1� orH�2;1� of the Calabi Yau, the Kahler and
complex structure deformations, respectively. All of these
perturbations except for the universal Kahler modulus can
be made traceless by an appropriate choice of basis. We
describe the traceless perturbations in a single framework,
-5
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and shall treat the universal Kahler modulus separately. For
vanishing three-form flux, fluctuations of � decouple.

Traceless metric deformations; brane locations.—For a
traceless deformation of the Calabi-Yau metric in the
absence of three-form flux, the equation determining the
warp factor (2.17) also implies a change in the warp factor
	e�4A, given by solving

~r 2�	e�4A� � �~rm�	~gmn@ne
�4A� (3.7)

which can be done explicitly in terms of the scalar Green
function. As a result, the corresponding small variation in
the solution takes the form

ds2
10 � �e

2A � 	e2A�dx2
4 � �e

�2A � 	e�2A�

� �~gmn � 	~gmn�dy
mdyn; (3.8)

~F m���
 � @m�e
4A � 	e4A�	���
; (3.9)

~Fmnopq � ��e
�8A � 	e�8A�

���
~g

p
	mnopqr�~g

rs � 	~grs�

� @s�e4A � 	e4A�; (3.10)

where all variations of A are determined from the solution
to (3.7).

Likewise, a variation in the positions of the branes also
leads to a variation in the warp factor,

~r 2�	e�4A� � �2�2
10T3	~�loc

3 (3.11)

and corresponding variation in the ten-dimensional metric
and five-form flux.

Universal Kahler deformation.—The universal Kahler
modulus, which in a nonwarped compactification corre-
sponds to an overall scaling of the compact metric, gives
rise to an additional subtlety. Note that conditions (a)–(c)
of Sec. II are invariant under

~g mn ! �~gmn: (3.12)

Under such a scaling (2.17) requires that

e2A ! �e2A: (3.13)

Thus the solution transforms to

ds2
10 � �e2A�y����dx

�dx� � e�2A�y�~gmndy
mdyn; (3.14)

~Fm���
 � �2@me
4A	���
; (3.15)

~F mnopq � �e
�8A

���
~g

p
	mnopqr@

~re4A: (3.16)

The scaling of the underlying CY is precisely canceled by
that of the warp factor and the internal manifold remains
unchanged. The scaling instead changes the volume of the
four large dimensions. This could be compensated by an
overall Weyl rescaling, but we find it expedient to identify
the Kahler modulus via a different (but related) procedure.
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Note also that a simple scaling of the internal metric
�gmn � e�2A~gmn�

gmn ! �gmn (3.17)

is not a zero mode. Such a scaling can be thought of as a
scaling of the underlying CY without any change in the
warp factor, and this violates (2.17). The situation here is
analogous to IIB string theory on AdS5 � S5; the radius of
the five sphere and AdS are not moduli of the solution.
Their scale is set by the D3 brane charge.

To isolate the mode corresponding to the universal
Kahler modulus, note that the equation determining the
warp factor (2.17) only determines e�4A up to a constant
shift. This means we have a one parameter family of
solutions given by

ds2
10 � �e

�4A0�y� � c��1=2���dx�dx�

� �e�4A0�y� � c��1=2 ~g0
mndy

mdyn (3.18)

~F m���
 � @m�e
�4A0�y� � c��1	���
; (3.19)

~Fmnopq � ��e
�4A0�y� � c�2

���
~g

p
	mnopqr@

~r�e�4A0�y� � c��1;

(3.20)

where we have chosen a fiducial metric ~g0
mn which we can

take to have unit volume, and e�4A0�y� is a particular
solution to (2.17) which we assume asymptotes to O�1�
in regions away from sources of D3 charge. Near singular
sources, e�4A diverges. For example, in the vicinity of a
point x0 where N D3 branes are located, the warp factor in
(3.18) behaves as

e�4A  c�
4�02N

jx� x0j
4 (3.21)

in the local flat coordinates x.
Changing c changes the volume of the internal manifold,

so it naturally plays the role of the universal Kahler modu-
lus. Note that the c dependence of the solution is known
exactly. For locations far away from the sources, e�4A

approaches a constant and the perturbation behaves like
an overall scaling of the manifold. In particular, if one
excises neighborhoods of such points and finds a large
remaining volume over which the variation is small,

��e�4A�

c
� 1 (3.22)

then we can cleanly identify this region as the ‘‘bulk,’’
distinct from the AdS throats in the vicinity of the removed
points. For points close to the sources, e4A is small and the
dependence on c is suppressed, in keeping with the fact
that the size of these regions is totally determined by the
local D3 charge.

The large-volume limit is obtained by c! 1. In this
limit, the volume of the compact space behaves as
-6



3In the orientifold case, note that in accord with the discussion
of Sec. III A we restrict attention to cycles with odd intrinsic
parity on the covering Calabi-Yau.
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V � c3=2V0 (3.23)

in terms of the fiducial volume V0, from which we see that,
for large c, this parameter is related to the radius of the
space by

c� R4: (3.24)

As we have already noted, a 4D Minkowski solution
exists for each value of the complex, Kahler, and D3
position moduli. This means that the four-dimensional
effective potential vanishes for these modes. We will see
this directly in Sec. V.

C. Frames

While the parametrization (3.18), (3.19), and (3.20)
transparently reveals the origin of the universal Kahler
modulus, we often work in other frames differing by a
rescaling (3.12) and (3.13). Note that the metric gmn—and
hence the volume of the compact space—are frame
independent.

Ten-dimensional Einstein and string frames.—The ac-
tion (2.1) is given in ten-dimensional Einstein frame.
However, note that the four-dimensional part of the metric
(3.18) does not asymptote to the usual flat metric as c!
1. We can normalize it so that it does by taking rescaling
parameter

�E �
���
c
p

(3.25)

so that

e�4AE � 1�
e�4A0

c
; ~gEmn � c1=2 ~g0

mn: (3.26)

Also, recall that the relation to ten-dimensional string
frame is given by

gEMN � e��=2gSMN: (3.27)

Four-dimensional Einstein frame.—The four-
dimensional Einstein frame, which is defined to be the
frame in which the four-dimensional Planck mass is con-
stant, is most appropriate for four-dimensional analysis and
its treatment via a four-dimensional superspace formalism.
The conversion factor between the four- and ten-
dimensional Planck masses is given by the warped volume

VW �
Z
d6y

���
~g

p
e�4A: (3.28)

Notice that the warped volume transforms under (3.12) and
(3.13) as

VW ! �VW: (3.29)

Einstein frame is thus defined so that the warped volume is
a modulus-independent constant, which we might, for
example, set to
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V0 �
Z
d6y

�����
~g0

q
: (3.30)

Then Einstein frame is reached from (3.18) through a
scaling (3.12) and (3.13) with

�E � V0=
�
cV0 �

Z
d6y

�����
~g0

q
e�4A0

�
: (3.31)
D. Moduli space: G3 � 0

We now consider the moduli of solutions with three-
form flux turned on. Let A�, B�, � � 1; . . . ; h2;1 be a
symplectic basis of three cycles,3 with intersection num-
bers

A� \ B�
0
� 	�

0

� ; A� \ A�0 � B� \ B�
0
� 0: (3.32)

We allow general three-form fluxes, satisfying the quanti-
zation conditionsZ

A�
F�3� � �2�2�0M�

e ;
Z
B�
F�3� � ��2�2�0Mm�;

Z
A�
H�3� � �2�

2�0K�
e ;

Z
B�
H�3� � ��2�

2�0Km�;

(3.33)

with integer ‘‘electric’’ and ‘‘magnetic’’ fluxes M�
e ;Mm�,

K�
e ; Km�.
Before turning on the flux, the solutions of the preceding

subsection have moduli corresponding to the Kahler and
complex structure moduli for the underlying Calabi-Yau
metric ~gmn, the string dilaton, the positions of the D3
branes, and the positions of the D7 branes. Turning on
the flux then fixes many of these: in the Calabi-Yau ori-
entifold case the h2;1 � 1 complex structure and axidilaton
moduli are fixed, leaving as free parameters the Kahler
moduli and the D3 positions. In the more general F-theory
case, D7-brane positions are also in general fixed.

The conditions fixing the moduli can be thought of as
follows. Choose a general point in the Kahler and complex
structure moduli spaces. Given the cohomology classes of
the fluxes (3.33), we may choose unique harmonic repre-
sentatives of these classes. Note that the harmonicity con-
dition in general depends on both the choice of complex
structure and Kahler class, so the vacuum value of the
three-form field G3 varies with both. Moduli are fixed by
the ISD condition (2.15), which implies

G�1;2� � G�3;0� � 0: (3.34)

Since the Hodge dual on three forms varies with the non-
universal Kahler moduli, one might be concerned that the
ISD condition or equivalently (3.34) also varies, requiring
-7
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the fixed values of the complex structure moduli and
axidilaton to vary with Kahler structure. However, one
can show (see Appendix A) that while the vacuum value
ofG3 varies with Kahler structure, its type remains �2; 1� �
�0; 3� so it remains ISD under variations of the Kahler
moduli. Thus the remaining flat directions correspond to
Kahler deformations.

Static perturbations are given by the formulas of the
preceding section, together with the corresponding varia-
tions in G3. For given Kahler and complex moduli, the
latter are of course uniquely given by specifying their
cohomology classes as in (3.33), together with the harmon-
icity condition.

In Sec. V we will discuss derivation of the potential for
these moduli. For the moment, we recall that for flux
satisfying the ISD condition, this potential vanishes, as
described in [1,6]. Thus a vacuum moduli space parame-
trized by the Kahler moduli and D3 positions remains. As
discussed in [1,6], this potential should arise from a
Gukov-Vafa-Witten superpotential [11–13]

W �
Z

� ^G: (3.35)

Note that since the superpotential is independent of change
of cohomology representative,

G! G� dA; (3.36)

the superpotential only depends on the complex structure
moduli.

As a function of the universal Kahler parameter c, the
metric is given by (3.18). In the case where there are no
explicit D3 branes, the infrared end(s) of this geometry is a
smooth geometry approximately given by [33], and in
particular e�4A is no longer singular. This generates a finite
hierarchy between the UV and IR ends of the compact
space, parametrized by

�c� e�4A0�y�
IR �1=2

�c� e�4A0�y�
UV �1=2

: (3.37)

For values of c of the order of e�4A0�y�
IR the hierarchy

generated by fluxes is lost. The solutions of GKP with
warped throats are expected to be dual to the N � 1 non-
conformal dual gauge theory of Klebanov and Strassler
coupled to massless bulk fields of the compactification.
From the perspective of the gauge theory, the IR scale has
the interpretation of being the scale of confinement.
IV. PERTURBATIONS OF FLUX
COMPACTIFICATIONS—DYNAMICS

One important goal is to better understand the relation
between four-dimensional perturbations and ten-
dimensional solutions of the equations of motion, and
consequently between the ten-dimensional action and the
four-dimensional action. An analysis of perturbative solu-
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tions of the ten-dimensional equations of motion is pre-
sented in Appendix A. In this section we give a summary of
the rather lengthy analysis and some of its consequences.

A. Spacetime-dependent fluctuations

We find that there are new subtleties in promoting the
constant perturbations described in the preceding section to
spacetime-dependent perturbations.

Part of the subtlety is already illustrated at the level of a
conventional Kaluza-Klein compactification. For example,
consider compactification on a Calabi-Yau manifold with
ten-dimensional metric

ds2
10 � ���dx�dx� � gCYmndymdyn: (4.1)

At zero momentum, the volume-changing perturbation can
be parametrized in terms of a small constant u:

ds2
10 � ���dx�dx� � �1� u�gCYmndymdyn: (4.2)

To give spacetime dependence one would like to promote

u! u�x� (4.3)

with @�@�u�x� � 0. The perturbed ten-dimensional metric
should solve the equations of motion at the linearized level.
The perturbation which achieves this is a combination of
(4.3) together with a spacetime-dependent rescaling of the
four-dimensional metric,

ds2
10 � �1� 3u�x�����dx�dx�

� �1� u�x��gCYmndymdyn: (4.4)

The extra term is necessary to solve the ���� Einstein’s
equation; in the limit of constant u it reduces to the
perturbation (4.2) combined with a rescaling of the four-
dimensional metric bringing the metric to Einstein frame.

Compensators and variations.—The presence of extra
terms in the spacetime-dependent perturbations extends
beyond that noted above, and in general means that there
can be metric and field perturbations proportional to de-
rivatives of u�x�. These vanish for a static perturbation, but
must be present in order for a general perturbation to
satisfy the full ten-dimensional equations. Terms of this
form have occurred previously in studies of dimensional
reduction and were called compensators in [34].

In the case of perturbations of the GKP solutions, the
static perturbations are given by (3.8), (3.9), and (3.10) for
traceless perturbations or brane motion, or by the infini-
tesimal version of (3.18), (3.19), and (3.20) for the univer-
sal Kahler perturbation. The general form of the dynamic
perturbations we must consider is given in Eqs. (A3) and
(A4). For the metric, in addition to making the constant
perturbation in (3.8) time dependent, we must also include
compensator terms of the form

	cds2 � 2@�@�uI�x�e2AKI�y�dx�dx�

� 2e2ABIm�y�@�u
I�x�dx�dym: (4.5)
-8
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While the compensators BI and KI can in principle be
gauged away, in general this imposes on ~gmn a nontrivial
gauge, distinct from an a priori choice such as

~r m	~gmn � 0: (4.6)

Likewise, compensator terms for the three- and five-form
field potentials must be included; these take the form

	c�C2 � �B2� � duI ^ TI;

	cC4 � duI ^ S�3�I � 	4du
I ^ SI � u

I�x�w�4�I

�DI
�2� ^ w

�2�
I ; (4.7)

where the compensators TI, SI, S
�3�
I are forms on the

internal manifold, and we have also included the perturba-
tions necessary to describe axions, with internal forms w�2�I
and w�4�I and four-dimensional form DI

�2�.
The compensators are determined by the equations of

motion, but finding explicit solutions for them is in general
a nontrivial challenge. Ab initio one expects these to be
needed in order to deduce the form of the four-dimensional
effective action from the higher-dimensional action.

First example: spacetime-dependent universal Kahler
deformation.—The subtleties of compensators appear
even at the level of the universal Kahler deformation, or
‘‘volume modulus.’’ This is worked out in Appendix A,
with the result that a perturbation of the form

	~gmn � �u�x�~gmn (4.8)

produces a variation

	e�4A � 2u�x�e�4A � u�x�

R
d6y

���
~g
p
e�4AR

d6y
���
~g
p (4.9)

and nontrivial compensator K solving

~r 2K � e�4A �

R
d6y

���
~g
p
e�4AR

d6y
���
~g
p : (4.10)

Second example—traceless deformations, G3 � 0.—
The traceless deformations correspond to complex struc-
ture or nonuniversal Kahler variations of the underlying
Calabi-Yau manifold. In the case of vanishing three-form
flux, these are massless perturbations. The ten-dimensional
form of these perturbations are also studied in Appendix A.
If we begin with the gauge (4.6), we find that there must in
general be nonvanishing compensators KI, BI, and SI. The
equations determining these are discussed in Appendix A.
G3 � 0.—As we have discussed, nonvanishing three-

form flux lifts the complex structure deformations. The
corresponding ten-dimensional perturbations have both
compensators, and as shown in the appendix, nonzero
excitation of Kaluza-Klein modes. The Kahler deforma-
tions remain massless (see Appendix A 7) and also have
corresponding ten-dimensional solutions with nonzero
compensators.
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B. Effective actions—perturbative level

One important goal is to derive the four-dimensional
effective action for perturbations of warped compactifica-
tions. In the case of the IIB compactifications of [1], the
light spectrum was discussed in the preceding section. The
general action for the light spectrum is expected to be
rather complicated, with various subtleties arising from
the warping; a version of it for IIB orientifolds, valid to
leading order in the large-volume approximation, and thus
neglecting effects of warping, was given by Grimm and
Louis in [29]. In the present paper, we are primarily
interested in the action for scalar modes, and their coupling
to gravity, but now including effects of warping. In this
section we discuss terms arising from the classical action
(2.1); we save discussion of nonperturbative effects and
brane motion for later sections.

As we have discussed, in the scalar sector the light
modes consist of the dilaton field, ��x�, the Kahler defor-
mations �i�x�, the complex deformations z��x�, and the D3
brane positions �a�x�. Before introducing three-form flux,
all of these are massless.

We first clarify the regime of validity of such a four-
dimensional effective action. This requires understanding
the systematics of the Kaluza-Klein expansion. While de-
tails of this for general moduli perturbations are given in
Appendix A, essential features can be inferred from dy-
namics of a massless scalar in ten dimensions,

�10� � 0: (4.11)

In the metric (3.18), this equation takes the form

e�2A�4� � �e2A ~r2�: (4.12)

Thus for a Kaluza-Klein mode concentrated in a region
with a given warp factor, the mass squared is of order

m2
KK;0 � e

4A (4.13)

in the frame of (3.18), and

m2
KK �

e4A

VW
(4.14)

in four-dimensional Einstein frame. At large c, this gives
Einstein-frame mass

mKK � Z=c (4.15)

where Z is the redshift factor

Z2 �
1

1� e�4A0

c

(4.16)

whose relevance was emphasized in [6]. For a Kaluza-
Klein (KK) mode concentrated in the bulk, Z� 1, but a
KK mode supported in a strongly warped region can
experience a significant lowering of its mass. Thus the
four-dimensional effective theory is strictly valid only in
the range
-9
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E�
Zmin

c
(4.17)

determined by the most-redshifted Kaluza-Klein mode.
Beyond this energy, one needs to account for Kaluza-
Klein dynamics. In Einstein frame, the mass given to the
complex structure moduli by three-form flux is of order

m2
flux �

N

c3 (4.18)

(see Appendix A) where N is a measure of the total three-
brane charge. Thus, for large enough c we see that there is
an energy regime in which moduli are fixed and Kaluza-
Klein modes are not relevant.

It is clearly important to understand the four-
dimensional effective action at scales below (4.17); this
action, and its extension by nonperturbative and other
effects, governs the shape and dynamics of the low-energy
foothills of the landscape.

The analysis of dynamic perturbations of the fields in
principle provides information about this action. In par-
ticular, one would expect the four-dimensional effective
action to arise from the IIB action evaluated on a ten-
dimensional perturbation. Unfortunately, there is a subtlety
arising from the ambiguities in prescribing an off-shell
action for the five form F5. In addition, at this point our
analysis has been explicitly carried out only up to terms of
order O�N=c� due to the unknown form of the compensa-
tors and Kaluza-Klein excitations. So far, all that we are
able to explicitly compute in this approach is the mass
matrix for perturbations up to corrections of this size.

Reference [6] performed checks indicating that warping
does not modify the Gukov-Vafa-Witten superpotential
(3.35), but does modify the Kahler potential and metric.
It was suggested that the kinetic action for metric defor-
mations takes the form

Skin �
1

2�2
4

Z
d4x

����������
�~g4

p �
�3

@� ��@��

j�� ��j2

�
1

VW
@�T

I@�TJ
Z
d6y

�����
~g6

p
e�4A	I~gmn	J~gmn

�
(4.19)

where � is the universal Kahler modulus, TI denote the
fields corresponding to the complex structure and nonun-
iversal Kahler moduli, and 	I~gmn are the corresponding
normalized metric variations. In principle, analysis of the
perturbative dynamics should provide a direct check of
these statements and, in particular, give us the Kahler
potential, but in practice we are unable to perform this at
present. (The authors hope to return via an alternate ap-
proach in subsequent work.) The direct perturbative analy-
sis of the appendix only provides a check on these formulas
to order N=c and thus does not check the form of the
warping contribution in (4.19). Nonetheless, it is important
to note both that there can in general be corrections of this
126003
size to the Kahler potential and thus the potential for
moduli, and that the presence of these corrections is not
necessarily inconsistent with the expression (4.19).

Despite the present limitations on determining the ki-
netic part of the four-dimensional effective action, a related
approach, to which we now turn, allows us to gain sub-
stantial useful information about the potential, and via the
discussion of [6], also lends credence to warping correc-
tions of the form (4.19).
V. POTENTIALS ON THE LANDSCAPE

A. Potentials in warped compactifications

Determining the potential on the landscape of string
vacua is clearly a crucial enterprise as it bears on the
possibility of finding a phenomenologically realistic vac-
uum and the question of how our region of the Universe
evolves into this vacuum. As discussed above, computing
the full four-dimensional effective action in the case where
warping is relevant can be nontrivial. Nonetheless, we here
outline a prescription to determine a useful formula for the
potential for a general warped compactification.

Moreover, prior to discovery of nontrivial warped com-
pactifications such as those of [1], and the subsequent
arguments for the existence of the metastable de Sitter
vacua of [2], general no-go theorems were proven
[18,19] (with extensions in [35]) for both of these possi-
bilities. In seeking a more complete understanding of the
landscape, it is worthwhile to understand better how such
no-go theorems are evaded, which may give guidance
towards other solutions.

Suppose that we are seeking the potential due to some
space-filling branes, fluxes, and other effects that do not
explicitly break the (local) four-dimensional Poincaré
symmetries; these could include such effects as the non-
perturbative effects of [2], or �0 corrections. In general
there will be cosmological solutions to Einstein’s equations
corresponding to moduli rolling in this potential, and these
solutions will be spatially homogeneous in three dimen-
sions. The general ten-dimensional solution of this kind
can be put in the form

ds2 � e2A�y;t���dt2 � a2�t�ds2
3�

� 2e2A�y;t��m��y; t�dymdx�

� e�2A�y;t�~gmn�y; t�dymdyn; (5.1)

where � has only a t component,

�m� � ��mt�y; t�; 0; 0; 0�: (5.2)

Note that a�t� could also be eliminated through redefinition
of the time coordinate, but we keep this light mode mani-
fest for contact with usual cosmology. For these solutions,
the ten-dimensional stress tensor has a special form: if we
neglect velocity terms (i.e. derivatives with respect to the
-10
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noncompact coordinates), we find

T�� � �	
�
� U10�y; t�; Tmn � Tmn �y; t�: (5.3)

The form of the Einstein equation for (5.1) can be
inferred from Eq. (A14) of the appendix, with the result

G�
� � e2A

�
�2~r2A� 4�frA�2 � 1

2
~R6

�
	�� � e�2A ~G�

�

�
e2A�����

~g6

p �~r� ~r� � 	
�
� ~���e�4A

�����
~g6

p
�

� e2A�	�� ~r� � 	�� ~r��~rm�m� �O�v2; �2; �v�

� �2
10T

�
� ; (5.4)

where v denotes a general velocity. Here we have not made
explicit terms proportional to (powers of) velocities, or
terms beyond linear order in �.

The potential U is identified through its role in the four-
dimensional Einstein equations, with the constraint equa-
tion, in particular, taking the form

~G t
t � ��

2
4U� �velocities�2: (5.5)

This means thatU can be read off from the tt component of
the Einstein equations (5.4), by dropping all velocity terms
(note that second time derivative terms cancel). The result
is

e2A
�
�2~r2A� 4�frA�2 � 1

2
~R6

�
� e�2A�2

4U

� ��2
10U10 �O��2�: (5.6)

For small potentials/velocities we can drop the O��2� since
it is Kaluza-Klein suppressed. This equation manifestly
depends on y, though U must be y independent. It is to
be thought of as an equation determining the warp factor.

From Eq. (5.6) we can find a useful expression for the
potential, by multiplying by e�2A and integrating over the
compact manifold,

�2
4U �

1

VW

Z
d6y

���
~g

p �
�2

10e
�2AU10 � 4�frA�2

�
1

2
~R6 � e

�2AO��2�

�
; (5.7)

where the warped volume is defined in (3.28). To correctly
determine the potential this expression should be evaluated
in Einstein frame, which we recall is the frame where VW is
independent of the moduli. An expression valid in an
arbitrary frame then follows from a transformation of the
form (3.12) and (3.13). This gives our formula for the
potential in a general warped compactification,

�2
4U �

VEW
V2
W

Z
d6y

���
~g

p �
�2

10e
�2AU10 � 4�frA�2

�
1

2
~R6 � e�2AO��2�

�
: (5.8)
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Since VEW is moduli independent, a convenient choice of
units is to set it to unity.

There are other ways one might attempt to derive a
potential from the ten-dimensional Einstein equations.
For example, consider a solution where ~g�� is maximally
symmetric: de Sitter, Minkowski, or anti–de Sitter. The
Einstein’s equations for such a solution are (5.4) with
vanishing noncompact derivatives, and

Gm
n � e2A� ~Gm

n � 4�frA�2	mn � 8rnA~rmA� � 1
2	

m
n e�2A ~R�4�

� �2
10T

m
n : (5.9)

It is common to work with the trace-reversed ����
Einstein equation, whose trace gives

e�2A ~R�4� � 4e2A ~r2A �
�2

10

2
�T�� � Tmm�: (5.10)

This gives the four-dimensional curvature: multiplying by
e�2A and integrating over the compact space gives

~R �4� �
�2

10

2VW

Z
d6y

���
~g

p
e�2A�T�� � Tmm�: (5.11)

This expression was useful in Maldacena and Nuñez’s
no-go theorem [19]. For both positive-tension space-filling
branes and fluxes with purely compact components, �T��
and Tmm are both positive. Thus (5.11) or related integrals of
(5.10) were used to prove the no-go theorem for both
nontrivial warped compactifications, and de Sitter vacua.
This theorem was evaded in [1] by the presence of negative
tension objects, O3 planes, or related sources in F theory.
One can explicitly check that both expressions (5.8) and
(5.11) vanish for those solutions.

As pointed out in [20], one might be tempted to define
the four-dimensional potential from (5.11) by �2

4U �
~R�4�=4. However, taken as a formula for the potential
away from a minimum, this gives a very disparate result
from (5.8). Specifically, notice that the terms in (5.8) are
typically positive definite, whereas those in (5.11) are
typically negative definite.

The reason for the discrepancy is that the difference
between Eqs. (5.7) and (5.11) comes from adding a mul-
tiple of the equation of motion for the internal metric. If the
potential is U, this equation takes the form U0 � 0 at an
extremum of the potential. However, if we move away
from such an extremum, for example, by adding a pertur-
bation of the solution or potential, the stationary solution
for the moduli is no longer correct—they are rolling—and
the equation for the internal metric also includes a kinetic
term for the moduli. One can see this in the perturbative
expression (A48) in the appendix. Since it neglects this
term, (5.11) does not extend to a good expression for the
potential away from an extremum. (Reference [20] pointed
out the relevance of such time dependence in the special
case of the radial modulus.)
-11
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produces corrections suppressed in the Kaluza-Klein expansion.
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B. Simple examples

In the case of a brane or flux perturbation, the expression
(5.8) indeed gives expected results. A space filling p brane
wrapped on a cycle � has ten-dimensional action

Sp � �Tp
Z
M4��

dVp�1 (5.12)

where dVp�1 is the induced volume element, and thus
stress tensor

T�� � �Tp	
�
� 	���: (5.13)

This gives a term in the potential of the form

	Up �
�2

10

V2
W

Tp
Z

�
dp�3z

��������
~gind

p
e�7�p�A; (5.14)

where ~gind is the induced world-volume metric. In addition
there will be corrections due to the shift in warping, found
by solving Eq. (5.6), and due to curvature. Likewise for
compact q flux, the ten-dimensional action

Sq � �
1

4�2
10

Z
d10x

�������
�g
p F2

q

q!
(5.15)

gives

T�� � �
1

4�2
10

	��
F2
q

q!
: (5.16)

This leads to a contribution

	Uq �
1

4V2
W

Z
d6y

�����
~g6

p
e�2A F

2
q

q!
; (5.17)

together with warping and curvature corrections. Note that
these expressions are positive, as expected.

We can also check that our potential (5.8) gives familiar
dynamics for the radial dilaton, as described, for example,
in [36,37], and can also improve understanding of the
relation to the alternate expression (5.11). Consider the
simpler case where we perturb an unwarped background
by a stress tensor due to branes, fluxes, or other sources. We
start by parametrizing the metric as

ds2 � e�6D���dx
�dx� � e2Dg0

mndy
mdyn: (5.18)

Here D is the usual radion field which controls the volume
of the internal dimensions and g0

mn is a Calabi-Yau metric
of fixed volume. In this equation the four metric is appro-
priately scaled so as to keep the Plank mass fixed. Our goal
is to determine the evolution of D due to the sources.

Cast in terms of our standard notation this corresponds
to e2A � e�6D and ~gmn � e�4Dg0

mn. We assume that the
stress tensor takes the restricted form (5.3), and study the
dynamics with the entire potential treated as a perturbation.
For the present discussion we ignore all but the radial
dilaton modulus. The perturbation from the stress tensor
induces a spacetime-dependent change inD; to linear order
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we write D�x� � D� 	D�x; y� and

ds2 � e�6D�1� 6	D�x; y������ � 	~g���dx�dx�

� e2D�1� 2	D�x; y��g0
mndymdyn: (5.19)

We can easily check a metric of this form gives a solution
to the linearized Einstein equations in Appendix A.4 At
linear order the ���� equation becomes

6e�6D	�� ~r2	D� e6D ~G�
� � �2

10T
�
� ; (5.20)

which is an equation for 	D�x; y�. It integrates to give the
potential,

�U�D� � e�12D
Z
d6y

�����
g0

q 1

4
e6DT��: (5.21)

It can be shown that this gives potentials agreeing with the
results in [36], for example, for branes (5.12) or fluxes
(5.15).

This potential drives D to roll. To check that we have
properly identified it, note that the linearized �mn� Einstein
equation, contracted with ~gmn and integrated over the
manifold, gives

�24�	D � �2
4

Z
d6y

�����
g0

q
e�6D�Tmm � 3T�� �: (5.22)

For a source Lagrangian of the form

�
Z
d10x

�����������
�g10
p

U10; (5.23)

with no velocity terms, we find

T�� � �U10	
�
� ; Tmm � �6U10 �

@U10

@D
(5.24)

and the �mn� equation becomes

24�	D � �2
4

@
@D

U�D�; (5.25)

confirming our identification of U�D�. From these equa-
tions we also explicitly see that (5.11) is not the correct
expression to identify as the potential, and differs from
(5.21) by a multiple of (5.25).

C. Potential for IIB GKP solutions

An even more nontrivial check on the expression (5.7)
comes through evaluating it for the flux compactifications
of [1]. This also gives us an expression useful for inves-
tigating the potential in cases with extra D3 or anti-D3
branes present. Here there are contributions to U10 from
both three- and five-form fluxes, and from local sources;
for the present discussion we assume that the axidilaton �
is constant, though the time-dependent generalization is
readily included.
-12
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The contributions to U10 from the five form can be read
from the discussion of Appendix A 3; here we work only to
linear order in the compensators S and K. Likewise we can
infer the contributions fromG3 and from local sources with
six-dimensional mass density function ��y�. This gives the
tt Einstein equation,

�2~r2A� 4�frA�2 � 1

2
~R6 � e�4A�2

4U�
1

4
e�8A�gr��2

�
1

2
�uI�SIm � KI@m��@

~m�

� �
1

24Im�
G3 � �G3e

�2A � �2
10e
�2A��y� �O�e�2A�2�;

(5.26)

where as before we set velocities to zero in the equation for
the potential.5 We also need the five-form equation, which
follows from Eq. (A36) in Appendix A, with local D3-
charge density �3:

~r � �e�4A ~r�� � e�8A ~re4A � ~r�� e�8A�uI ~re4A

� �SI � KI@�� � ~r � ��uIe�4A�SI � KI@���

�
i

12Im�
e4AG3 e�	 �G3 � 2�2

10e
�2AT3�3: (5.27)

Superposing these two equations gives an equation for the
quantity

a � �� e4A (5.28)

which takes the form

1

2
~r��e�4A ~ra��

1

4
e�8A�fra�2�1

2
e�8A ~rma � �SIm�KI@m��

��uI�
1

2
~rm��uIe�4A�SIm�KI@m����

1

2
~R6

��
e4A

24Im�
G3~�� �G3� i~	 �G3���2

10e
�2A�T3�3���

�e�4A�2
4U�O�e�2A�2�: (5.29)

As in (5.7), the integral of this expression gives the
potential (normalized for an arbitrary frame),

�2
4U �

1

V2
W

Z
d6y

���
~g

p �
�2

10e
�2A���y� � T3�3�

�
1

24Im�
e4A�G3~�� �G3 � i~	 �G3�� �

1

4
e�8A�f@a�2

�
1

2
~R6 �

1

2
e�8A�uI�SIm � KI@m��@

~ma

�O�e�2A�2�

�
: (5.30)

For the IIB flux compactifications of [1], mass sources and
5The surprising appearance of second derivatives arises from
our treatment of the five form; it can be eliminated using the five-
form equation of motion.
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D3 charge sources are equal,

� � T3�3 (5.31)

and the corresponding terms cancel. Moreover, in the GKP
solutions, a � ~R6 � 0, and 	G3 � iG3: the potential van-
ishes as expected. For complex structure/axidilaton pertur-
bations away from this solution, the last four terms of
(5.30) are subleading—O�N=c�—in the Kaluza-Klein ex-
pansion, and so the potential takes the form

�2
4UGKP �

1

V2
W

Z
d6y

���
~g

p �
e4A

24Im�
G�3 ~� �G�3

� KK corrections
�
; (5.32)

where

G�3 �
1
2�G3 � i 	G3�: (5.33)

This agrees with the expression in [6], and with that in [1]
in the limit where warping is neglected.

D. No-go results and their evasion: the slope-dominance
condition

We are now in a position to better understand the no-go
theorems for de Sitter space, and how they are evaded.
With the exception of internal curvature, typical sources
such as positive-tension branes or internal fluxes all con-
tribute positively to the potential (5.8). Moreover, any such
contribution vanishes as the internal volume diverges. This
follows from the very general argument of Ref. [36]: as we
see in (5.8), the four-dimensional potential is essentially
the ten-dimensional energy over V2

W , and no realistic dy-
namics can produce a ten-dimensional energy that over-
comes the falloff 1=V2

W . Thus each contribution gives a
term Ui with U0i < 0 in the supergravity regime where
calculations are reliable, so with only positive-energy
sources there can be no nontrivial minimum.

On the other hand, a source of negative �T�� will gen-
erally give a contribution likewise asymptoting to zero at
infinite volume, and thus contributes a term with U0i > 0.
Such terms thus play a key role in obtaining de Sitter vacua
(which will necessarily be at best metastable by the argu-
ments of [36]). Thus, a necessary condition for such dy-
namics to stabilize moduli at a finite volume is that there
must be a range of moduli over which such a positive
contribution to U0 dominates over the contributions of
the other terms—we refer to this as slope dominance.

VI. POTENTIALS FOR KAHLER DEFORMATIONS

As found in [1], complex structure moduli become
massive from the presence of nontrivial three-form flux.
Deformations of the Kahler moduli remains massless to
leading order. However, as was emphasized in [1], these
deformations also have a potential when higher-order
terms in the �0 expansion are taken into account. One set
-13
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of such terms is the O��03� terms of [38]. In addition, in
[2], Kachru, Kallosh, Linde, and Trivedi argued that non-
perturbative effects can also generate a potential that they
argued dominates the dynamics for certain values of the
parameters. Finally, [2] also considered configurations
with explicit anti-D3 branes and thus supersymmetry
breaking, which they argued produce de Sitter vacua. We
next turn to a discussion of some of these effects in the
context of our expanded understanding of the perturbative
dynamics of deformations of IIB warped flux
compactifications.

A. Perturbed potential: generalities

A formula for the potential in warped IIB compactifica-
tions was given in (5.30), and shown to agree with the
results of [1,6] in the case where the sources were D3
branes. However, the formula is applicable to a wider class
of sources. Various effects—extra antibranes, nonpertur-
bative effects, and �0 corrections—lead to perturbations of
the mass density function ��y� that enters this equation. In
some cases—notably to analyze the proposed solutions of
[2]—all we need is the perturbation of the potential to
linear order in the change in ��y� away from the ‘‘BPS’’-
saturated expression. (An important exception to this is the
case where we introduce D3-D3 pairs and study inflation-
ary potentials, as in Sec. VII.)

At linear order in 	��� T3�3� (and leading order in the
Kaluza-Klein expansion), the formula for the change in the
potential is easily inferred. Equation (5.30) gives the linear
expression

�2
4	U �

�2
10

V2
W

Z
d6y

���
~g

p
e�2A	��� T3�3�: (6.1)

We consider this expression for the different perturbations
of [2], anti-D3 branes and Euclidean D3 brane/gaugino
condensation effects, in turn.

B. Potential from anti-D3 branes

We begin with the effect of adding an anti-D3 brane to a
GKP solution. Notice, however, that simply adding a D3 is
not consistent—the charge in the compact space will no
longer sum to zero. To maintain charge conservation, one
must add D3 branes and antibranes in pairs, or consider
changing the three-form fluxes M and/or K of [1] such that
the change in the D3 charge N � MK compensates the
charges of a stack of D3 branes. The former case leads to
mobile D3 branes and will be considered more closely in
Sec. VII. The latter case can be heuristically thought of as
the result of the inverse of the transition described in
[39,40] where anti-D3 charge and flux annihilates.

Either case produces a dipolar source for �3 and a
monopole source for ��y�. To linear order in the charge
�3 of the D3’s, the effect on the potential follows imme-
diately from (6.1). For example, for L D3 branes located at
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point �y0, this expression gives

�2
4	U � 2LT3

�2
10

V2
W

e4A� �y0�: (6.2)

Note that this interpolates between the 1=c2 dependence
described in [5], when the brane is in a highly warped
region, and the 1=c3 dependence of [2] if it is not.

C. Nonperturbative potentials

A full treatment of the dynamics of nonperturbative
effects should properly be carried out within the context
of the ten-dimensional theory; then in certain regimes these
will have a good four-dimensional effective description.
Here we outline aspects of such an analysis for effects due
to Euclidean D3 branes and gaugino condensation.

Euclidean D3 branes.—We begin with the case of
Euclidean D3 branes wrapping nontrivial four-cycles of
the compact manifold. These were argued in [41] to give
rise to a nonperturbative superpotential, which [2] then
used to fix Kahler moduli.

Since the four-dimensional effective theory has a limited
regime of validity, one would like to understand the ten-
dimensional description of these effects. While a complete
analysis presumably requires a nonperturbative under-
standing of string/M theory, one can nonetheless give an
approximate description.

The starting point is the observation that, whatever the
ultimate description of string theory is, the integral over
fluctuations about a spacetime of the form R4 �M6 (or the
generalization to a warped product) includes both configu-
rations of the supergravity (string) fields, and configura-
tions of branes. Thus, accounting for Euclidean branes, we
expect that string dynamics can be approximated by a path
integral of the form

Z �
Z

DgMNDBMND� � � � eiSIIB

X
n

1

n!

�

�Z
D�aDXiDAme�Sbrane�Xi;Am;�a�

�
n
: (6.3)

Here gMN , BMN , �; . . . are bulk supergravity fields, and
included in the ellipses should be fermionic and auxiliary
fields. The brane action is written in the Green-Schwarz
form; Xi and Am are the bosonic brane embedding coor-
dinates and gauge fields, and �a are the fermionic brane
embedding coordinates. The sum incorporates the effects
of an arbitrary number of brane instantons, and can be
performed to give

Z �
Z

DgMNDBMND� � � � eiSIIB�
R

DXD�DAe�Sbrane�X
i;Am;�a �

:

(6.4)

At this point, one can see how D3 instantons modify the
classical supergravity equations arising from the action
SIIB. In the dilute instanton approximation, the brane terms
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give an effective action

iSED3�gMN; BMN;�; � � �� �
Z

DXD�DAe�Sbrane�X
i;Am;�a�

(6.5)

for the supergravity fields where the brane functional in-
tegral is evaluated in the relevant supergravity background.
There will be corresponding corrections to the 10D equa-
tions of motion analyzed in Appendix A.

A full and direct analysis of the ten-dimensional equa-
tions of motion, including these instanton effects, would
require inclusion of the auxiliary fields of type IIB super-
gravity, and, in particular, the dependence of Sbrane and thus
SED3 on these fields. Specifically, determination of the
potential induced by nonperturbative effects would follow
from finding the dependence of SED3 on the auxiliary
fields, and then integrating these fields out.

While we leave the details of such an analysis for future
work, we can see how (6.4) gives the superpotential of [41].
In many backgrounds of interest, there will be zero modes
of the brane fields �a. The integral over brane configura-
tions has the general structureZ

DXD�DAe�Sbrane�Xi;Am;�a� �
detnzmF
detnzmB

Z
d��e� �Sbrane ;

(6.6)

where the functional determinants arise from the nonzero
modes, �Sbrane is the action for the minimal-area configura-
tion of the brane, and the Grassman variables � parame-
trize the � zero modes in the given supergravity
background. The supersymmetry transformations on the
odd brane coordinates take the form [42–44]

	�a � �a (6.7)

where � is the parameter of the supersymmetry (SUSY)
transformation. From this, we see that upon reduction to a
four-dimensional supersymmetric theory, translations of
the zero modes � correspond to translations in the usual
four-dimensional superspace coordinates �. Thus, in cases
where there are two zero modes, expression (6.6) gives a
superpotential contribution to the four-dimensional theory,
of the form

W �
detnzmF
detnzmB

e�Sbrane : (6.8)

As argued in [41], on Calabi-Yau manifolds, the number
of zero modes is determined by the holomorphic Euler
character of the four-cycle in question. In the case where
this holomorphic Euler character is one, there are precisely
two zero modes and hence a superpotential. For higher
holomorphic Euler character, the leading order dynamics
leads to more zero modes, naı̈vely indicating that (6.6)
cannot give an F term. But in this case [45–47] showed
that the presence of a flux background lifts some zero
modes and can permit a superpotential; the criterion for
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this was given in terms of a topological index in [46]. More
detailed investigation of the dynamics of warped/flux back-
grounds could yield other effects that lift zero modes in
cases where the holomorphic Euler character is greater
than one.

Moreover, even with more that two zero modes, in the
case of a SUSY breaking background such as GKP where
the Gukov-Vafa-Witten superpotential (3.35) has nonvan-
ishing value W0, such nonperturbative effects can still
generate corrections to the potential, of order jW0j

2.
Holomorphicity of the superpotential (6.8) also indicates

how to identify holomorphic coordinates corresponding to
the Kahler moduli. Let Di represent one of the nontrivial
four-cycles of an underlying Calabi-Yau manifold. The
leading result in (6.8) arises from the classical minimal-
area brane configuration. To leading order in �0 the action
of the (Euclidean) brane wrapping this cycle takes the form

Sbrane � T3

Z
Di
d4z

��������
~gind

p
e�4A � i�3

Z
Di

~C4; (6.9)

where the integral is performed over the minimal-area
surface in the appropriate class and ~C4 is the sum of the
potential and the dual potential for F5. (On-shell, with
	F5 � F5, the expression simply reduces to the potential.)
Indeed, this motivates a definition of the complex coordi-
nates �i representing Kahler deformations: if Di corre-
spond to h1;1 independent four-cycles, we can define

�i � i
Z
Di
d4z

��������
~gind

p
e�4A �

Z
Di

~C4: (6.10)

Notice that this definition is independent of change of
frame (3.12) and (3.13).

Gaugino condensation on D7 stacks.—A similar analy-
sis exhibits the origin of the superpotential resulting [2]
from gaugino condensation on stacks of D7 branes. The
starting point is again (6.3), where now the brane action is
for D7’s, the brane configuration is classical rather than
Euclidean, and there is no instanton sum. For N D7’s, the
gauge group is SU�N�, and zero modes �;� of the fields
�a; Xi correspond to massless matter of the world-volume
theory. In the limit where we neglect massive fluctuations
of the D7 about the minimal-area cycle, the functional
integral

Z
D�aDXiDAmeiSD7�Xi;Am;�a�

�
detnzmF
detnzmB

Z
D�D�DAeiSD7 (6.11)

reduces to that of a low-energy supersymmetric SU�N�
gauge theory with matter fields �;�. Gaugino condensa-
tion is then described directly in four-dimensional terms.
The superpotential’s dependence on the size modulus then
arises from the form of the effective coupling of the four-
dimensional theory,
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1

g2
YM
�

2
R
d4z

��������
~gind

p
e�4A

gs
; (6.12)

and corresponding dependence on C4 likewise arises
through the topological coupling

R
C4 ^ F ^ F.

Form of potential.—Based on work of [41], Ref. [2]
argues that the potential that would arise from a calculation
along the above lines can be thought of as arising from a
superpotential that supplements (3.35) with nonperturba-
tive effects,

W �
Z

� ^G�
X
k

Akeiak�k � W0 �WNP; (6.13)

where we take k to parametrize four-cycles corresponding
to elements of H1;1. In the simplest case of one Kahler
modulus the resulting potential takes the form

�2
4UNP � eK� (6.14)

where K is the full Kahler potential and where we define

� � ��� �����@�WNPW0 � h:c:� � �@�WNPWNP � h:c:�

�
��� ���

3
@�WNP@�WNP�; (6.15)

with straightforward generalization to more Kahler mod-
uli. Thus, if we were able to calculate the contribution to
the stress tensor from the nonperturbative effects, by com-
paring with (5.8) we expect it to have the form

�2
10

V2
W

Z
d6y

���
~g

p
e�2A�T�� � � �eK�	�� ; (6.16)

where the piece linear (quadratic) in WNP should come
from a one- (two-) instanton effect in our ten-dimensional
analysis.

D. De Sitter solutions

Now we consider the setup of [2], with both anti-D3
branes and nonperturbative effects. If we work to linear
order in both these effects, (6.1) makes it clear that we can
find the potential by adding (6.2) and (6.14),

�2
4UKKLT;1 � �2

4UNP � 2LT3
�2

10

V2
W

e4A� �y0�: (6.17)

Beyond linear order in LT3 and � this formula receives
corrections.

From these expressions we can see explicitly how these
configurations evade the no-go results for de Sitter solu-
tions, which we outlined in Sec. V D. The one-instanton
contribution in (6.15) has a phase that arises from the axion
partner to �. Minimum energy is thus attained when this
axion adjusts itself so that its phase combined with that of
W0 makes this contribution real and negative, as assumed
in [2]. Consequently for some values of the parameters, the
potential can produce a minimum at positive vacuum
energy.
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VII. HIGHER CORRECTIONS AND REGIMES OF
VALIDITY

This section will describe corrections to our effective
action formulas, and their relevance to the KKLT approach
to finding de Sitter vacua. While we focus on the IIB
compactifications of [1], many of our statements here as
in the rest of the paper generalize.

To summarize the results of the preceding sections, the
scalar (moduli) perturbations of the solutions of [1] are
governed by a four-dimensional effective action. This can
be derived by study of the ten-dimensional form of the
perturbations. The kinetic terms are expected to take a
form such as (4.19), although a precise check of the warp-
ing corrections there has not yet been made. The G3 flux-
induced potential, which comes from our very general
formula (5.8), takes the form (5.32). This gives masses
with sizes (4.18) to the complex structure moduli. At
supergravity level, the Kahler moduli remain massless.

A. Corrections—sources and magnitudes

As was pointed out in [1], higher-order corrections will
lift the Kahler flat directions; [2] provided an explicit
example of this. Let us begin by enumerating the various
corrections and their magnitudes.
�0 corrections.—The expansion parameters for string

corrections are of the form

�0RS; �0p2
S; (7.1)

where the subscript S denotes string-frame quantities.
Converting to four-dimensional Einstein units, we find
small expansion parameters

�0e��=2�2A ~R6; �0e��=2�2AVW ~p2
4: (7.2)

The arguments of [38] indicate that curvature corrections
begin only at third order in �0.

Warping corrections.—Much previous analysis of the
solutions of [1,2] has neglected warping. Our results allow
us to make generic statements about the size of corrections
due to warping. The magnitude of the corrections depends
on the location of the ten-dimensional phenomenon being
studied, relative to the warped regions. This is particularly
clear, for example, from the potential formula (5.8). At
large c, corrections due to warping are of order

	U
U
�

R
d6y

���
~g
p e�4A0

c U10R
d6y

���
~g
p
U10

: (7.3)

Consider, for example, the warping produced by a stack of
N D3 branes. For a ten-dimensional phenomenon with U10

relatively uniformly distributed with respect to the metric
~gmn, (7.3) gives

	U
U
�
N
c

Z 1

0
r5dr

1

r4 �
N
c
: (7.4)

This size differs from �0 corrections (7.2) by the expected
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power of gsN, corresponding to the AdS radius of the
region close to the D3 branes. Thus, for situations with
large D3 charge, it can make sense to keep warping cor-
rections while neglecting other �0 corrections. A similar
estimate of the magnitude of warped corrections applies to
the kinetic terms (4.19), in cases where the metric pertur-
bations are not concentrated in highly warped regions.

For phenomena concentrated in highly warped regions,
the corrections can be more substantial. A classic example
is the potential due to an anti-D3 brane, (6.2), which
depends directly on the warp factor at the brane. An
extreme case is to place such a brane near a stack of D3
branes—it will sink to the bottom of the throat, and its
energy will vanish. Likewise, corrections to other terms in
the action can also be large in cases where the correspond-
ing expressions are concentrated in regions of large
warping.

Kaluza-Klein corrections.—The Kaluza-Klein expan-
sion was briefly discussed in Sec. IV B, where it was found
that the Kaluza-Klein expansion parameter is of the form

e�4AVW ~p2
4 (7.5)

for a phenomenon characterized by four-dimensional
Einstein-frame momentum ~p4. Note that the�2 corrections
in our general potential formula (5.8) are also suppressed in
this expansion. Neglecting warping, the expansion parame-
ter is of order c2 ~p2

4, but in the case where Kaluza-Klein
modes are excited in regions of large warping the expan-
sion breaks down at much lower energies.

String loop expansion.—String loop corrections are sup-
pressed by powers of gs. There can also be string non-
perturbative effects, from D instantons and Euclidean D
branes. If Va;S represents the string-frame volume of the
cycle Ca wrapped by the brane, the expansion parameter
governing the contribution of such effects takes the form

e��Va;S=gs�: (7.6)
6There also could be nonperturbative contributions from, e.g.,
other Euclidean branes.
B. KKLT models

It is particularly important to understand the role of such
corrections in attempts such as that of KKLT [2] to con-
struct phenomenologically realistic de Sitter vacua. The
original analysis of [2] argued for the neglect of �0 correc-
tions, warping corrections, Kaluza-Klein corrections, and
string loop corrections, but kept one class of nonperturba-
tive corrections in gs, due to either Euclidean D3 branes or
gaugino condensation on D7 stacks.

Beginning with the solutions of [1], we know that warp-
ing corrections and Kaluza-Klein corrections cannot lift
the Kahler directions since, as we have reviewed, they
correspond to flat directions of the full ten-dimensional
theory. On the other hand, �0 corrections, gs corrections,
and nonperturbative corrections are expected to generically
give a potential in these directions [1].
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The leading �0 corrections were studied in [38]. There it
was argued that these corrections shift the Kahler structure
part of the Kahler potential,

K��; ��� � �2 lnV ! �2 ln
�
V �

1

2

�

g3=2
s

�
; (7.7)

where � is given in terms of the Euler character � of the
compact manifold as

� � �
�
2
��3�: (7.8)

These corrections then lead to a nonzero potential for the
universal Kahler modulus, of the form

�2
4U�0 � eK	KjW0j

2 � eKjW0j
2 �

j�� ��j3=2g3=2
s

: (7.9)

Our discussion of how to evade no-go theorems, in
Sec. V D, tells us that we must find a contribution to the
potential that is negative and gives dominant contribution
to the slope in some region of moduli space. Reference [2]
invokes the contributions from Euclidean D3 branes, or
gaugino condensation on D7 branes, with superpotentials
of the form WNP in (6.13), and giving a potential of the
form (6.14). Recall that this term is minimized when the
axion in � adjusts its phase such that the one-instanton
contribution proportional to W0 is real and negative. Thus
this is a natural candidate for the mechanism needed to
achieve a de Sitter vacuum.

The resulting potential (with KKLT’s added D3 brane)
consists of (6.17), together with �0 corrections, as well as
corrections to this potential from Kaluza-Klein modes and
warping.6 The latter two do not lift the flat directions by
themselves, but we expect they could generically give
corrections of order O�Nc� to nonzero terms in the potential,
or, in cases of dynamics in strongly warped regions, even
larger corrections. (We are also informed of explicit cal-
culations [48] of open-string loop corrections at order
	K � gsN=c.)

Let us examine the slope-dominance condition from our
no-go discussion. After the axion partner to � has adjusted,
and then taking � � i
, we have a one-instanton potential
(in the simplest one-modulus case)

�2
4U1 � �4eK
ajAW0je�a
 / �

ajAW0j


2 e�a
: (7.10)

Thus the corresponding slope is

�2
4U
0 � 4aeKjAW0je

�a
�2� a
�: (7.11)

Validity of the instanton expansion requires

a
> 1: (7.12)

From (7.2), we find validity of the �0 expansion requires
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�
1

gs
; (7.13)

and recall that validity of the string loop expansion requires
gs � 1. For the slope (7.11) to dominate over that of the �0

corrections (7.9), we find the condition

jAjae�a
�2� a
� *
jW0j�

g3=2
s 
5=2

; (7.14)

or

jAj�a
�2�
gs�
3=2e�a
 * jW0j: (7.15)

This gives us a fine-tuning condition for W0. For example,
for EuclideanD3 branes, a � 2. Moreover, (7.13) and for
example gs � 1=10 then gives the extreme tuning condi-
tion

10�24 � jW0j: (7.16)

KKLT found more success with gaugino condensation with
large gauge groups, where a � 2=N. This weakens the
tuning condition (7.15) considerably, but still requires
moderate fine-tuning of W0. For example, even N � 60,
so that a � 0:1, still requires jW0j � 1.

If a D3 is added as in KKLT, the condition for slope
dominance of the instanton contribution over the D3 po-
tential (6.2) is

T3e4A� �y0� & gsjW0Aja�a
�e�a
: (7.17)

In light of the fine-tuning for jW0j and (7.13), this implies
that the warping at the D3 location must be significant.

While in the present constructions, these are the only
obvious places that large warping is important, in general
large warping should be relevant to moduli potentials in
any context when the effects generating the potentials are
concentrated in regions of large warping; in this case it
lowers the energy scales of the corresponding phenome-
non. In particular, large warping can lead to the breakdown
of four-dimensional analysis at the redshifted energy scale
in (4.17), much lower than the naı̈ve scale E� 1=R4. Note
that even in the context of [2] this possibility could be
relevant and further restrict the regime of validity of the
KKLT solutions, given the localization of the deformation
controlling the conifold to the region at the bottom of a
warped throat (see the next subsection).

As a final comment on these constructions, we note that
other nonperturbative corrections due to Euclidean branes
could contribute to the potential once supersymmetry is
broken. For example, in the IIB context, these include D
instantons, Euclidean D strings wrapping two cycles, and
even five branes wrapping the entire compact manifold.
However, since the latter two break the supersymmetries of
the original compactification, their contributions are ex-
pected to be suppressed by fermion zero modes. They
could contribute to the potential once supersymmetry is
broken, but one would expect the contributions to be sup-
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pressed by the square of the gravitino mass�jW0j. Taking
into account dependence on the size of cycles, this suggests
potential contributions due to Euclidean p branes of the
general form

Up � jW0j
2e��a=gs��gs

���
�
p
��p�1�=2

: (7.18)

The smallness of jW0j suggests that these should be sup-
pressed, but such contributions should be further investi-
gated. Contributions of D instantons have been discussed
in [49].

C. Statistics on the landscape

Another place where one should consider warping is in
the statistical arguments about string vacua [50–54]. These
arguments are based on a particular form for the super and
Kahler potentials. While we do not believe that the Gukov-
Vafa-Witten superpotential is modified by warping, the
Kahler potential does appear to be. An important part of
the arguments of [50–54] is the independence of the
Kahler potential on the fluxes. However, (4.19) suggests
Kahler potential modifications of the form

K�z; �z� � � log
�
�i

Z
e�4A� ^ ��

�
; (7.19)

although, as we have emphasized, there could be more
complicated dependence on the warping as well. Such
expressions depend on the flux through the warping.
While typically one would expect the flux corrections to
be small at large radius—of relative order N=c—there
could be exceptions. Notably, consider the deformation of
the conifold studied in [1]. Corresponding to (7.19), the
metric for complex structure deformations would take a
form

G � �� �
Z
e�4A�� ^ ��� (7.20)

where �� form a basis for the (2,1) forms. In particular, as
has been found in explicit studies of conifold geometry
[55,56], the (2,1) form corresponding to the conifold
modulus is concentrated in the vicinity of the shrinking
cycle, where the warp factor becomes large. While a
precise statement requires more careful study of the struc-
ture of the metric G� �� in the context of compact geometry,
this suggests enhanced dependence on the warping, and
thus the fluxes (as well as flux-dependent suppression of
the mass-scale associated to the conifold modulus z). So it
appears that warping could modify landscape statistics
arguments in regions with strong warping.
VIII. DYNAMICS OF MOBILE BRANES

Another important application for an understanding of
the dynamics of warped compactifications is the case of
mobile branes. The idea that the modulus corresponding to
a moving brane could serve as the inflaton field has been
-18
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widely investigated since [57] (for a review see [58]), but
the idea typically experiences difficulties with known in-
terbrane potentials, primarily a failure of slow roll.
References [5] suggested that warping could lower inter-
brane potentials and allow slow roll, but found that this
naı̈ve hope was difficult to realize due to contributions to
the slow-roll parameter � � U00=U from the stabilization
mechanism. At the same time, this raised a puzzle about
the correct definition of the holomorphic parameters cor-
responding to Kahler moduli in the presence of moving
branes, and their coupling to D7 brane gauge excitations
(the ‘‘rho problem,’’ see Refs [21,22]). A possible resolu-
tion was presented, in a special case, after a lengthy
analysis by Berg, Haack, and Körs in [15] (see also [59]).

In this section we will investigate this complex of ideas
using our deeper understanding of the origin of the poten-
tial on the landscape. In particular, our formula (5.8) allows
us to give a systematic approach to computing interbrane
potentials. This gives a more generic understanding of the
origin of the problem with slow roll. It also gives a clear
resolution of the rho problem and the question of moduli
coupling to D7 gauge theories.

A. Kinetic terms for D3 branes

The dynamics of space-filling D3 branes provides prom-
ising candidates for the inflaton field. In this section and the
subsequent one we obtain the kinetic and potential terms
associated with this dynamics by using the DBI action

S � �T3

Z
d4��� det�g����1=2 ��3

Z
~C4 (8.1)

Here �� are coordinates on the world volume of the brane
and g�� the pullback of the ten-dimensional metric on the
brane, and ~C4 includes the dual potential to C4.

For space-filling branes, the world-volume coordinates
can be taken to same as those describing the noncompact
directions and the brane motion in the compact directions
can be parametrized as

ym � ym0 � y
m�x�: (8.2)

Working in a general frame, this gives the pullback metric
g�� as

g�� � e2A��� � e�2A~gmn@�ym@�yn: (8.3)

The kinetic terms can then be obtained from the first term
in (8.1) and are given by

�
1

2
T3

Z
d4x~gmn@�ym@�yn: (8.4)

The frame relevant to the four-dimensional dynamics is the
Einstein frame, where the warped volume is set to a
constant, say V0. An expression which reproduces this
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answer but can be evaluated in any frame is

�
1

2
T3
V0

VW

Z
d4x~gmn@�y

m@�yn: (8.5)

B. Potentials for brane motion

The structure of the potential for mobile branes is of
particular interest, since brane positions have been widely
explored as candidates for inflatons, for example, in the
work of [5] and subsequent developments.

For our basic setup, we assume that we start with a GKP
solution, and then add some balanced brane and antibrane
charge. The simplest way to do this is to add one or more
antibranes, and an equal number of branes. Alternately, the
charge of some of the antibranes can be balanced by
changing the ISD fluxes (as discussed in Sec. VI B). For
concreteness we focus on the case of brane-antibrane pairs,
with straightforward generalization to the case of shifted
fluxes.

Adding a brane-antibrane pair at positions y0 and �y0

shifts the sources �3 and � as follows:

	�3 �
	6�y� y0����

g
p �

	6�y� �y0����
g
p ; (8.6)

	� � T3
	6�y� y0����

g
p � T3

	6�y� �y0����
g
p : (8.7)

For more pairs we simply superpose such shifts.
Equation (5.30) for the potential of the GKP solutions
was derived with enough generality to incorporate such
sources. The presence of the D3 explicitly breaks super-
symmetry and leads to a nonzero potential. If we are
interested in the potential for D3 motion, we must then
evaluate U to quadratic order in the perturbation given by
(8.6) and (8.7).

Both a and�� T3�3 are linear in these sources, and we
drop higher-order terms in the Kaluza-Klein expansion,
which are suppressed by N=c. Thus, to quadratic order in
the mobile brane tensions, the potential is

�2
4UP��k; y0; �y0� � 2

�2
10T3e

4A� �y0�

V2
W

� 2
�2

10T3	e
4A� �y0�

V2
W

�
1

V2
W

Z
d6y

���
~g

p �
1

4
e�8A�fra�2�

� 4�2
10T3

	VW
VW

e4A� �y0�

V2
W

; (8.8)

where in this expression VW and A are the unperturbed
values. The first term is the cosmological constant contri-
bution due to the antibrane, and the second includes the
interbrane potential, which can be small for large warping,
as well as self-energy of the D3. The third term gives a
compensating self-energy correction, and the last term
leads to a shift in the potential for y0 that is proportional
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to the original potential. To evaluate these terms we solve
for a and 	e�4A to linear order.

The quantity a is determined by (5.29), which, again to
linear order in a and leading order in the KK expansion,
becomes

~r � �e�4A ~ra� � 2�2
10e
�2A�T3�3 ��� � 2e�4A�2

4	U:

(8.9)

This simplifies in the metric g to

r2a � 2�2
10e

4A�T3�3 ��� � 2e2A�2
4	U: (8.10)

The consistency condition from the integral of this expres-
sion fixes 	U, which is the linear (first) term in (8.8). The
quantity a can thus be found in terms of the Green function
for the Laplacian (with convenient background charge
term),

r2
yG�y; y

0� �
	6�y� y0����

g
p �

1

V
: (8.11)

The linear order a is thus

a�y� �
Z
d6y0

���
g
p
G�y; y0��2�2

10e
4A�T3�3 ���

� 2e2A�2
4	U�: (8.12)

Next, 	e�4A can be found from the five-form equation,
(5.27). Eliminating � by (5.28) and using the a Eq. (5.29),
we find

	e�4A � �
Z
d6y0

���
~g

p
~G�y; y0�

� �2�2
10	 ~�� e�4A ~re�4A � ~ra� 2�2

4e
�8A	U�;

(8.13)

where the quantities ~G, and ~� are computed using the
metric ~g.

To summarize, these equations tell us that the source for
a is the D3 density, the source for e�4A is the mass density,
and likewise the source for � is the D3 charge density.
Substituting (8.12) and (8.13) into (8.8) and using

	VW �
Z
d6y

���
~g

p
	e�4A (8.14)

gives an explicit formula for the potential, as a function of
the position of the branes.

Slow roll?—As expected, the potential is (locally) mini-
mized when the D3 sits at the bottom of a Klebanov-
Strassler throat in the warped compactification. To stabilize
the Kahler moduli, we include the nonperturbative poten-
tial (6.14) generated from (6.13),

U � UP �
1

�2
4

�eK�� 	�eK���; (8.15)

where � was defined in Eq. (6.15). Consistent with our
other formulas, we expect that eK / 1=V2

W in this formula.
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In (8.8), the potential for the motion of the mobile D3
comes from the second and last terms—these are the
only terms that depend on y0. The second term gives the
interbrane potential; the redshift from e4A means that this
can give a slow-roll parameter

� �
U00

U
(8.16)

that is small. However, the last term in Eq. (8.8) together
with the y0 dependent terms in 	�eK�� also contribute to
�. The following argument indicates that this contribution
is proportional to the cosmological constant Umin.

To understand the dependence on y0, note that a good
definition of holomorphic coordinates is the (complexified)
warped volume of the minimal four-cycles, Eq. (6.10), as
these are precisely the variables occurring in the nonper-
turbative superpotential (6.13). An alternative way to mo-
tivate this is to recall from Sec. III that we have identified
the imaginary part of the universal Kahler modulus as the
constant part of e�4A, but such a definition depends on the
decomposition into a constant part and the background
e�4A0 . The full e�4A is the geometrically defined quantity,
and since it depends on the compact coordinates, it must be
integrated to define a quantity that can be identified as a
modulus. For the nonperturbative superpotential, the rele-
vant integral is then that over a four-cycle.

The presence of the D3�D3 source shifts the warp
factor and hence the definition of the holomorphic coor-
dinates by a nonholomorphic piece that depends on y0.
That is, the good holomorphic coordinates for the new
problem—with mobile branes—are related to the original
holomorphic coordinates �0;i by

�i � �0;i � i
Z
Di
d4z

��������
~gind

p
	e�4A: (8.17)

(The shift from ~C4 is typically subleading.) The depen-
dence of this shift on y0 follows from the first term in
(8.13), and thus takes the form

	�i � �2i�2
10T3

Z
Di
d4z

��������
~gind

p
~G�z; y0�: (8.18)

The warped volume also experiences an explicit shift
	VW from (8.13) and (8.14). In order to correctly minimize
the potential, we write the warped volume in terms of the
new �i:

VW � V0
W��i � 	�i�y0�� � 	VW

 V0
W��i� � 	�i�y0�@�iV

0
W � 	VW: (8.19)

The explicit dependence 	VW on y0 is weak—for ex-
ample, it clearly vanishes on the torus T6. The combined
potential (8.15) now fixes the new coordinate �i and the
warped volume picks up the y0 dependent piece from the
Kahler modulus dependence in (8.19). This dependence is
generically O�1� since (8.18) is computed in terms of
unwarped quantities, and from (8.8) and (8.15) we see
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that this shift generically makes an O�1� contribution to �
proportional to Umin.

In short, the potential essentially fixes the holomorphic
Kahler moduli �i, but at fixed �i it depends on the D3
positions not only through the interbrane potential, but also
through VW .

A first check on this argument immediately follows.
Recall that in the coincident limit of a D3 brane with a
D7 brane, the gauge coupling should vanish [60]. We see
this behavior quite explicitly in (8.18), as in a small neigh-
borhood the Green function behaves as

~G�z; y0� �
1

�z� y0�
4 (8.20)

and its integral diverges when y0 touches a D7 brane
wrapped on the cycle Di. The identification (6.12) thus
implies vanishing coupling constant.

Different forms of this argument were made in
[5,15,61,62]. The relationship of our argument to those
can be better understood by investigating the resolution
of what has been called the ‘‘rho problem.’’

C. The rho problem and Kahler potential

The approach of [5] led to a puzzle [21,22] known as the
rho problem. The Kahler potential proposed in [6] that
correctly reproduces no-scale structure and the kinetic
terms for mobile branes takes the form

K��; ��;�; ��� � �3 ln��i��� ��� � k��; ���� (8.21)

where � are fields corresponding to brane positions y0.
Comparison with known brane kinetic terms suggested that
the relation between the holomorphic Kahler modulus and
the volume is given by identifying the volume with the
argument of the log:

�i��� ��� � V2=3 � k��; ���: (8.22)

But then the relation g2
YM / V

2=3 for the gauge coupling in
the D7-brane action Tr�F2� suggests that the gauge cou-
pling is not the real part of a holomorphic function, in
contradiction to SUSY.

This question appears cleanly resolved in our approach.
In our definition of holomorphic coordinates (6.10), the
gauge coupling (6.12) is manifestly the real part of a
holomorphic function, and with the identification

K � �3 lnVW; (8.23)

Equation (8.19) also explains the presence of the shift term
in the argument of (8.22).

However, a small puzzle remains. Consider a simple
example where the compact space is a product of three
tori, T2

1 � T
2
2 � T

2
3 (or some orbifold thereof). Then the

shift in the �i that corresponds to Di � T2
1 � T

2
2 , given by

(8.18), only depends on the coordinates of the D3 brane
along T2

3 , that is it only depends on the coordinates per-
pendicular to the four-cycle. Equation (8.19) then does not
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obviously give the expected form for k��; ��� in (8.21).
Indeed, while it was not emphasized in [15], the correc-
tions found there, for example, in the case of K3� T2 had
precisely this property. (This serves as another check on
our analysis; indeed, our calculation can apparently be
thought of as a closed-string dual to the open-string loop
calculation done in [15].)

While this looks promising for generating a flat direction
in the potential, arising from the corresponding shift sym-
metry as in [63,64], at the same time this does not appear to
give a result of the form (8.22).

An apparent resolution of this puzzle arises from the
formula (8.19), which gives a sum of terms corresponding
to each of the four-cycles. The democracy among the
cycles should give an expression that depends on all com-
ponents of the D3 position; this is exactly what happens on
the torus. Indeed, one can see a possible origin for such a
statement in a more general geometry, at least in the large-
volume limit. Parametrize the Kahler class of the under-
lying metric ~g in terms of elements of H2�M;R� as ~J �P
it
iJi, so that for two-cycles Di dual to the four-cycles Di,

Z
Di

J � ti: (8.24)

In the unwarped limit, the four-cycle moduli �i are related
to the ti by

�i � @ti ~V: (8.25)

At large c we find

VW � c
Z

~J3 �
Z
e�4A0 ~J3 �

c
3
�iti

�
1�O

�
N
c

��
:

(8.26)

Accounting for dependence of the warp factor on the
coordinate of the D3 gives the shift (8.18); we might
anticipate that likewise two-cycle coordinates could be
defined in terms of the actual metric,

ti � i
Z
Di

d2z
���������
~gind

p
e�2A �

Z
Di

C2 (8.27)

although we do not expect these to be naturally holomor-
phic for the supersymmetry corresponding to D3 branes.
These likewise would thus receive a y0 dependent shift

ti � ti0 � i
Z
Di

d2z
��������
~gind

p
	e�2A: (8.28)

The induced dependence on the distance to the cycle Di
would introduce complementary dependence to the dis-
tance to the dual cycle Di resulting from (8.18). This
apparently resolves the puzzle, but for the same reason,
we expect shift symmetries that would generate flat direc-
tions in the potential to be generically lifted.
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IX. CONCLUSION

This work has improved the systematic understanding of
warped compactifications, which we have seen develop a
possibly central relevance in the phenomenology and cos-
mology of string theory. While our systematic treatment of
time-dependent solutions is only at the linearized level, we
have been able to address many questions, and, in particu-
lar, have provided a very general formula for the potential
that extends beyond the linear approximation. This paper
has also clarified multiple issues in proper description of
moduli of the flux compactifications of [1], and in under-
standing their lift to ten-dimensional dynamics. Beyond
that, it has begun a careful investigation of other effects,
including nonperturbative effects, in the ten-dimensional
warped context. Such analysis is critical to understanding
in what cases vacua with positive cosmological constant
arise, and ultimately will be important to the better under-
standing of the phenomenology and statistics of such so-
lutions. It is also important for investigating possible
origins of inflation. There are many open questions that
remain in the physics of warped compactifications, but this
paper should make some of them more accessible and thus
bring us a step closer to a full understanding of their rich
dynamics.
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APPENDIX A: LINEARIZED SPACETIME-
DEPENDENT PERTURBATIONS OF WARPED

COMPACTIFICATIONS

In this appendix we will derive the linearized equations
of motion for fluctuations about warped compactifications,
with particular focus on the IIB case of [1]. We begin by
studying the general form of the perturbations. We then
write the equations of motion, and finally explain how they
are solved.

1. Metric perturbations

Time-dependent perturbations and compensators.—We
begin with a general warped background metric of the form
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ds2 � e2A���dx�dx� � e�2A~gmndymdyn: (A1)

Time-independent perturbations of this metric arising from
moduli take the form

	A � uI	IA; 	~gmn � uI	I~gmn; (A2)

where uI denotes a general modulus parameter, and 	IA
and 	I~gmn are the corresponding changes in the warp factor
and metric. If we wish to generalize this to a spacetime-
dependent variation (or a linear combination thereof),
parametrized by uI�x�, we must consider a general pertur-
bation of the form

ds2 � �e2A � uI�x�	Ie
2A����dx

�dx�

� �e�2A~gmn � uI�x�	I�e�2A~gmn��dymdyn

� 2@�@�uI�x�e2AKI�y�dx�dx�

� 2e2ABIm�y�@�uI�x�dx�dym: (A3)

The first line follows from the static deformation (A2), but
for a spacetime-dependent perturbation the terms in the
second line are also allowed.

We can also consider tensor perturbations of the four-
dimensional metric,

ds2 ! ds2 � e2AfK�y�	Kg���x�dx�dx� (A4)

labeled by index K, which may include Kaluza-Klein
excitations with nontrivial compact dependence encoded
in fK�y�.

We refer to the quantities KI and BIm as compensators
for the metric. These may be eliminated by ten-
dimensional diffeomorphisms generated by vectors

�� � �KI�y�@�uI�x�; �m � e4A@ ~mKI�y�uI�x� (A5)

and

�m � �e4AB ~m
I u

I�x�; (A6)

respectively. However, note that these transformations also
induce a diffeomorphism on the internal six-dimensional
space, so that in the new coordinates, with vanishing
compensators, A and the six-dimensional metric have
changed by

	I~gmn ! 	I~gmn �L�I ~gmn; 	IA! 	IA�L�IA;

(A7)

where L�I is the Lie derivative with respect to the vector

�mI � e4A�@ ~mKI � B
~m
I �: (A8)

This means that if we fix a familiar gauge such as trans-
verse gauge

~r m	I~gmn � 0; (A9)

this does not necessarily agree with the gauge in which the
compensators vanish. Indeed, we will find that the equa-
tions of motion imply that either we can fix the gauge (A9)
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or we can fix a gauge where the compensators KI and BIm
vanish, but these two gauges are not in general mutually
compatible.

Curvature and Einstein tensor.—Metric fluctuations are
controlled by Einstein’s equations, for which we need the
components of the Ricci and Einstein tensors for the metric
perturbation (A3). Specifically, one can work out the
change of these tensors induced by the deformations
(A3) and (A4) about the metric (A1).

The components of the change in the Ricci tensor follow
from the general formula

	RMN � �
1
2r

PrP	gMN �
1
2rMrNg

PQ	gPQ

�rPr�M	gN�P: (A10)

The fully noncompact part takes the form

	R�� � �	
�
� �uI	I�e2A ~r2A� ��uIe�2A	IA�

� e�2A@�@�uI�4	IA�
1
2	I~g�

� e2A@�@�u
I ~rm�BIm � @mKI�

� e2A	�� �uI@ ~mA�BIm � @mKI�

� e�2AfK�y�	KR
�4��
� � 1

2e
2A�	Kg

�
�

~r2fK

� 	�� 	Kg
�
�@

~mA@mf
K�; (A11)

where 	KR
�4��
� denotes the four-dimensional Ricci tensor

resulting from ��� � 	Kg�� and indices are raised on 	Kg
and @�@�uI using ���. The remaining curvatures are

	R�m � e�2A@�uIf2@m	IA� 8@mA	IA�
1
2@m	I~g

� @mA	I~g� 2@~pA	I~gmp �
1
2
~rp	I~gmp

� 1
2
~rp�e4A�~rpBIm � ~rmBIp��

� 2�@mABIp � @pABIm�~r
pe4A

� 1
2e

8ABIm ~r2e�4A � e4A ~RnmBIng; (A12)

and

	Rmn � uI	I� ~R
m
n �

~r2A	mn � 8@nA@
~mA�

� e�2A�uI�	IA	
m
n �

1
2~gmk	I~gkn�

� 1
2e
�2A�uIf~rm�e4A�BIn� @nKI��

� ~rn�e4A�B ~m
I � @

~mKI�� �
1
2	

m
n @

~pe4A�BIp� @pKI�g

� 1
4	g

�
K�e

�2A�~rm�e4A@nfK� � ~rn�e4A ~@mfK�

� 1
2	

m
n

~@pe4A@pfK�: (A13)

From these, it is easy to deduce the perturbation in the
Einstein tensor:
126003
	G�
� � 	�� uI	Ife2A��2 ~r2A� 4�frA�2 � 1

2
~R�g

� e�2A�@�@�uI � 	
�
� �uI��4	IA�

1
2	I~g�

� �@�@�uI � 	
�
� �uI�e2A ~rp�BIp � @pKI�

� e�2AfK	KG
�4��
�

� 1
2�	Kg

�
� � 	

�
� 	Kg

�
��e

2A ~r2fK; (A14)

	G�
m�	R

�
m

�e�2A@�uIf2@m	IA�8@mA	IA�
1
2@m	I~g

�@mA	I~g�2@~pA	I~gmp�
1
2
~rp	I~gmp

� 1
2
~rp�e4A�~rpBIm� ~rmBIp��

�2�@mABIp�@pABIm�~r
pe4A

� 1
2e

8ABIm ~r2e�4A�e4A ~RnmBIng; (A15)

and

	Gm
n �u

I	Ife
2A� ~Gm

n �4�frA�2	mn �8rnA~rmA�g

� 1
2e
�2A�uI~gmk	I~gkn�	

m
n e
�2A�uI��2	IA

� 1
2	I~g���uI�12e

�2Af~rm�e4A�BIn�@nKI��

� ~rn�e
4A�B ~m

I �@
~mKI��g�	

m
n

~rp�e2A�BIp�@pKI���

� 1
2	Kg

�
�f�1

2e
�2A�~rm�e4A@nfK�� ~rn�e4A@ ~mfK��

�	mn ~rp�e2A@pfK�g�
1
2	

m
n fKe�2A	KR�4�: (A16)

These will be used in the perturbed Einstein equations in
Appendix A 5.

2. Perturbations of G3

In the warped compactifications of [1], fluctuations of
the metric also couple to fluctuations of the three- and five
form NS-NS and Ramond-Ramond fields. We first consider
the three-form case.

With

G3 � F3 � �H3 � dC2 � �dB2; (A17)

we find

	G3 � d	C2 � �d	B2 � 	�H3; (A18)

The general form for 	C2, 	B2 (without exciting ‘‘model
independent’’ axions) is then

	C2 � uI	IC2 � duI ^ TI;

	B2 � uI	IB2 � du
I ^ RI;

(A19)

where 	IC2, 	IB2 correspond to the static variations of the
potential and TI and RI are compensators for the three
forms. From this we find

	G3�d�uI�	IC2�dTI����d�uI�	IB2�dRI���	�H3:

(A20)
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The compensators TI, RI are determined by the three-form
equations of motion.

In order to write Einstein’s equations, we also need the
stress tensor for this perturbation. With stress tensor

TMN � �
2�������
�g
p

	S
	gMN

; (A21)

we find for the three form

T�3�NM �
1

8�2
10Im�

�
G3MPQ

�GNPQ
3 �GN

3PQ
�GPQ

3M

�
1

3
	NMG3 � �G3

�
: (A22)

In particular, the linearized �� component takes the form

	T�3��� � �
1

24�2
10

	�� 	
�

1

Im�
�G3 � �G3�

�
(A23)

and we will parametrize the mixed components as

	T�3��m �
e�2A

2�2
10

@�uIT�3�Im: (A24)
3. Perturbations of F5

Form of perturbation.—We next turn to perturbations of
the five form. This can be written in terms of a potential C4

as

F5 � dC4 � 	dC4 (A25)

The background four form is taken as in [1] as

C4 � ��y�d4x: (A26)

The general form of the perturbation is

	C4 � uI�x�	I�d
4x� duI ^ S�3�I � 	4du

I ^ SI

� uI�x�w�4�I �D
I
�2� ^ w

�2�
I : (A27)

Here the compensators SI, S
�3�
I are one and three forms with

components only in the compact directions. Likewise, w�2�I
and w�4�I are two and four forms with components only in
the compact directions, necessary to describe the axionic
excitations; DI

�2� is a two form with all components in the
noncompact directions, which is related to uI by the equa-
tions of motion. Using the metric (A3), this gives

	F5 � fuI�x��d�	I�� � e8A~	dw�4�I � ��uI�x�SIgd4x

�	4duI ^ dSI � duI ^ �dS
�3�
I �w

�4�
I � � u

I�x�dw�4�I

��uI�x�e�8A~	�SI �KId�� � uI	I�e�8A~	d��

� e�4AduI ^ ~	�dSI�BI ^ d�� � e�4A 	4 duI

^ ~	�dS�3�I �w
�4�
I � � �1�	�d�D

I
�2� ^w

�2�
I �: (A28)
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Equation of motion and solutions.—The equation of
motion for the five form is

dF5 �
G3 ^ �G3

��� �
� 2�2

10T3 	6 �
loc
3 : (A29)

Working about a background corresponding to one of the
solutions of [1], the linearized equations then take the form

d	F5 � 	
�
G3 ^ �G3

��� �

�
� 2�2

10T3	 	6 �loc
3 : (A30)

To simplify the discussion, we can set the axionic pieces
w�2�I and w�4�I to zero, consistent with the equations of
motion, and likewise the compensator S�3�I can be taken
to vanish. We then find from (A28)

d	F5��uI�x�d�	I�e�8A~	d���

��uI�x�d�e�8A~	�SI�KId���

�duI^fd�e�4A~	�dSI�BI^d���

�	I�e�8A~	d��g�d�uI�x�^�e�8A~	�SI�KId���:

(A31)

The source term in (A30) then follows from the three-
form perturbation (A20). This gives

	
�
G3 ^ �G3

��� �

�
� d�uI�x���5�I �; (A32)

where

��5�I � �	IC2 � dTI� ^H3 � F3 ^ �	IB2 � dRI� (A33)

is a five form on the internal manifold. Consider the case of
a massive perturbation (with obvious restriction to the
massless case), which corresponds to

�uI � m2
I u

I: (A34)

The five-form equation then reduces to

d�e�4A~	�dSI � BI ^ d��� �m2
I e
�8A~	�SI � KId��

� 	I�e
�8A~	d�� � ��5�I � 0: (A35)

(The local part is zero, since the branes continue to lie in
the noncompact directions, i.e. they are still pointlike on
the internal manifold.) For a given m2

I and metric compen-
sators BI, KI, which are determined by the Einstein equa-
tions, Eq. (A35) determines the five-form compensator SI
and the perturbation 	I�. A useful equation for determin-
ing 	I� in the limit when the compensators can be ne-
glected arises from the derivative of (A35), which gives

uI	I�~r
2�� 2e�4A ~rme4A ~rm��

��uIe8A ~rm�e�8A�SIm � KI@m���

� uI	I

�
ie8A Gmnp~	 �Gfmnp

12Im�
� 2�2

10e
2AT3�loc

3

�
: (A36)
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Energy-momentum tensor.—In preparation for solving
Einstein’s equations, we need the energy-momentum ten-
sor for the perturbation (A28); again, for the solutions of
interest, we neglect axionic excitations and set w�2�I �
w�4�I � S�3�I � 0. The perturbation in the energy-
momentum tensor is given by

	T�� � �	
�
�

1

4�2
10

fuI	I�e
�6A�gr��2� � 2e�6A�uISIm@

~m�

� 2�uIKIe�6A�gr��2g; (A37)

	T�m �
1

2�2
10

@�uIe�6A�@mSIp � @pSIm

� @m�BIp � @p�BIm�@
~p�; (A38)

and

	Tmn � �
1

2�2
10

uI	I

�
e�6A

�
@n�@

~m��
1

2
	mn �gr��2��

�
e�6A

2�2
10

�uI
�
SIn@

~m�� @n�S
~m
I � 	

m
n SIp@

~p�

� 2KI

�
@n�@

~m��
1

2
	mn �gr��2��: (A39)
4. Perturbations of �

Before introduction of three-form flux there are also
massless perturbations of the complex field �, defined in
(2.2); introduction of flux then makes these massive. The �
equation of motion follows from (2.1) and takes the form

rMr
M� �

@M�@
M�

iIm�
�

i
12
G3 � G3: (A40)

The linearization of this is

e�2A�uI	I�� e2AuI ~r2	I� � �
i
6
uI	I�e6AG�~�G��

(A41)

where G� are defined in Eq. (5.33). In the orientifold case
where the background � is constant, the linearized stress
tensor due to � vanishes.

5. Equations of motion for perturbations

We next outline the solution of the perturbed equations
of motion for light modes of the warped IIB compactifica-
tions of [1]. In addition to the three- and five-form equa-
tions discussed in Appendix A 2 and A 3 and the � equation
of Appendix A 4, these include the perturbed Einstein
equation

	GM
N � �2

10	T
M
N : (A42)

For general matter � coupled to gravity, the presence of a
zero mode corresponds to the existence of deformations
126003
	gMN � uI	IgMN�y�; 	� � uI	I��y�; (A43)

with constant uI, that satisfy the Einstein equations (A42).
For example, in the case of warped IIB compactifications
[32] without three-form flux, the complex structure and
Kahler deformations of the underlying Calabi-Yau, to-
gether with the corresponding deformations of F5, are
zero modes, as described in Sec. III. Turning on flux then
lifts the complex structure modes, as explained in [1].

Summary of equations of motion.—A spacetime-
dependent perturbation takes the more general form de-
scribed in the preceding subsections, with compensators
present, and solution of the equations of motion is con-
sequently more complicated. We begin by summarizing the
relevant equations we must solve.

The three-form perturbation is given by (A19). The
equation of motion for this perturbation, resulting from
varying the action (2.1), then determines the variation of
the potential, 	IA2, and the three-form compensator TI.
The five-form perturbation is given by (A27). For a per-
turbation with definite value of four-dimensional p2 �
�m2 (and axionic pieces set to zero), the five-form equa-
tion reduces to (A35) which determines the variation 	I�
and the compensator SI. The axidilaton perturbation 	I� is
determined to linear order by (A41).

The metric perturbation is given in (A3) and (A4). These
perturbations are fixed by Einstein’s equations. We con-
sider stress tensor perturbations due to perturbations of the
three and five forms, along with explicit sources such as
localized branes. The �m�� equation follows from the
Einstein tensor (A15), and the stress tensors (A24) and
(A38), together with a possible piece from other sources
such as branes:

�~rp�e4A�~rpBIm� ~rmBIp���e8ABIm ~r2e�4A�2e4A ~RnmBIn

�e4A�@m�	Ie�4A�� ~rp�e�4A	I~gmp��

�e2A@m�e�2A	I~g��e�4A�@mSIp�@pSIm�@
~p�

�T�3�Im�T
source
Im : �m�� (A44)

Here we have parametrized the source contribution by

Tsource�
m �

e�2A

2�2
10

@�uITsource
Im : (A45)

We can think of Eq. (A44) as determining the metric
compensators BI.

A simplifying assumption for the source stress tensor is
that the�� andmn components take the form (5.3). This is
in general violated by velocities for the moduli (but only at
quadratic order), but will hold near an extremum of the
potential for the moduli. With this assumption, the equa-
tions simplify. We will also assume that the only nonzero
four-metric perturbation has fK unity and 	G�4��� / 	�� .
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This will be valid when the Kaluza-Klein modes of the
four-metric are not excited, and if we restrict to linear order
in perturbations.

With these assumptions the ���� Einstein equation has
two kinds of terms, proportional to @�@�u and ���, re-
spectively. From (A14) and (A37) we see that the coeffi-
cient of @�@�u gives the equation
126003
~r p�BIp � @pKI� � 	Ie�4A � 1
2e
�4A	I~g: ���1�

(A46)

We can think of this equation as determining the metric
compensators KI. Likewise, including the contribution of
(A23) and trace-reversing, we find from the coefficient of
���
uI	I

�
�

1

4
~r2e�4A � 4�frA�2e�4A �

1

4
e�12A�gr��2�� 1

4
e�8A	R�4� ��uIe�8A

�
�

1

4
~rm�e4A�BIm � @mKI�� �

1

8
	I~g

�
1

2
e�4A�SIm � KI@m��@

~m�
�
� uI	I

�
1

48Im�
e�6AG � �G�

�2
10

8
e�6A�T�� � Tmm�source

�
���2�; (A47)

which we can think of as an equation fixing 	IA.
Finally, the �mn� Einstein equation follows from (A16) and (A39):

uI	I

�
~Gmn � 4�frA�2 ~gmn � 8rmArnA�

1

2
e�8A

�
@m�@n��

1

2
~gmn�gr��2��� e�4A�uI

�
�

1

2
	I~gmn

� ~gmn

�
�2	IA�

1

2
	I~g

�
�

1

2
~rm�e

4A�BIn � @nKI�
�
�

1

2
~rn�e

4A�BIm � @mKI�� � ~gmne
2A ~rp�e2A�BIp � @pKI��

�
e�4A

2

�
SIn@m�� @n�SIm � ~gmnSIp@

~p�� 2KI

�
@m�@n��

1

2
~gmn�gr��2���� 1

2
~gmne�4A	R�4�

� �2
10�	T

�3�
mn � 	T loc

mn�: �mn�: (A48)
This equation determines 	~gmn.

6. Massless perturbations: G3 � 0

We begin by outlining the solution of these equations
before G3 flux is turned on. In this case, which corresponds
to perturbations of the Chan-Paul-Verlinde solutions [32],
we know we should find massless perturbations corre-
sponding to the complex structure moduli and Kahler
moduli.

The equations simplify considerably when G3 � �u �
0. Moreover, here 	G�4��� � 0, and the perturbation of �
decouples and is constant in y, as seen from Eq. (A41). In
this case, (A36) gives

	I�~r � �e�8A ~r��� � 	I�2�2
10e
�6AT3�loc3 �: (A49)

Dividing this by four, subtracting the result from the
Einstein equation (A47), and writing the result in terms
of the quantity

a � �� e4A (A50)

gives

~r 2a� e�4A�fra�2 � 0; (A51)

note that the terms from local sources cancel. The integral
of this over the compact manifold implies that a must be a
constant, which can be set to zero.
The Einstein equation (A47) then becomes

	I�~r
2e�4A� �

�2
10

2
	I�e�6A�T�� � Tmm�source�; (A52)

where here Tsource is due to D3 branes and O3 planes (or
more generally D7’s as in [1]). This determines 	e�4A in
terms of the metric and source variation. However, this
equation is unchanged if 	e�4A is shifted by a constant.
The constant is determined by the integral of the Einstein
equation (A46) over the compact manifold, which tells us
that

0 �
Z
d6y

���
~g

p �
	Ie�4A �

1

2
e�4A	I~g

�
� 	I

Z
d6y

���
~g

p
e�4A:

(A53)

Note that this is precisely the condition that the warped
volume given by (3.28) be unchanged by the perturbation.

The �mn� Einstein equation is then easily seen to be
solved as long as

	I ~Gmn � 0; (A54)

which is the equation for a zero mode and is satisfied for
complex structure and Kahler deformations of the metric.
Finally, the five-form equation (A35) together with the
�m�� component of Einstein’s equations, (A44), are then
coupled equations determining the compensators SI and
BI. Given the resulting BI, the Einstein equation (A46)
then determines the compensator KI.
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Notice, in particular, that these compensator equations
are not in general consistent with the usual transverse
gauge for deformations, (A9), together with vanishing of
the metric compensators,

KI � BI � 0: (A55)

In other words, transverse gauge (A9) and vanishing-
compensator gauge (A55) are in general distinct gauge
choices.

Spacetime-dependent universal Kahler perturbation.—
These points are illustrated in the case of the universal
Kahler deformation, where the equations simplify some-
what. Specifically, begin with the metric variation

	~gmn � �~gmn: (A56)

Then the warp-factor equation (A52) has solution

	e�4A � 2e�4A � k (A57)

for any constant k. The constant is fixed by (A53), which
implies

k �

R
d6y

���
~g
p
e�4AR

d6y
���
~g
p : (A58)

One can then easily see that Eqs. (A35) and (A44) are
satisfied with S � B � 0. Then (A46) gives

~r 2K � e�4A �

R
d6y

���
~g
p
e�4AR

d6y
���
~g
p : (A59)

This equation fixes the nonzero compensator K.
Spacetime-independent finite universal Kahler deforma-

tion.—One can easily check that these deformations inte-
grate to a finite form

ds2 � ��c��c� e�4A0��1=2���dx�dx�

�
���
c
p
�1� e�4A0=c�1=2g0

mndymdyn; (A60)

in terms of finite modulus parameter c, where g0 is a fixed
background Calabi-Yau metric, and e�4A0 is a solution of
(2.17) in that metric. The quantity ��c� in this equation is
precisely that defined in Eq. (3.31), which was used to
convert to Einstein frame.

Note that c! 1 is the infinite volume limit of the
compact space, and in this limit the metric (A60) becomes

ds2 !
1

c3=2
dx2

4 � c
1=2g0

mndymdyn: (A61)

Thus, in this limit, the Kahler modulus c and volume of the
compact space are related as

V ! c3=2V0: (A62)

Traceless metric perturbations.—The remaining zero
modes are the solutions of Eq. (A54) that are not propor-
tional to the metric. In terms of the background derivatives,
this equation takes the form
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�1
2
~rp ~rp	I~gmn �

1
2
~rm ~rn�~g

pq	I~gpq� �
1
2
~rp ~rm	I~gnp

� 1
2
~rp ~rn	I~gmp �

1
2L	I~gmn � 0; (A63)

where L denotes the Lichnerowicz Laplacian. This is
conveniently analyzed in the gauge

~r n	I~gmn �
1

2
~rm	I~g � 0: (A64)

For Ricci flat ~gmn, one can readily show that this gauge
choice is equivalent to transverse gauge (A9) and conse-
quently

~r m	I~g � 0: (A65)

Thus, in transverse gauge, the complex structure and non-
universal Kahler deformations can be taken to be traceless.

As argued above, � � e4A. Then the warp-factor
equation (A52) determines

	Ie
�4A � �I�y� � kI; (A66)

where k is a constant and � is written in terms of the Green
function ~G�y; y0� for the scalar Laplacian ~r2 [defined as in
(8.11)],

�I�y� �
Z
d6y0

���
~g

p
~G�y; y0�	I~gmn ~rm ~rne�4A: (A67)

Equation (A53) then gives kI,

	Ie
�4A � �I �

R
d6y

���
~g
p
�IR

d6y
���
~g
p : (A68)

The five-form equation (A35) then becomes

d�e�4A~	�dSI � BId��� � �	I�~	de
�4A�: (A69)

Moreover, in the transverse gauge (A9) the �m�� Einstein
equation (A44) can be written in the similar form

d�e4A~	dBI� � �e
4A	I�~	de

�4A� � e�4Ad� ^ ~	dSI:

(A70)

This is a coupled set of equations that must be solved for BI
and SI.

As an alternate to transverse gauge (A9), we may work
in BI � KI � 0 gauge. In this case the corresponding
equations become

d�e�4A~	�dSI�� � �	I�~	de
�4A� (A71)

and

~rp	I~gpm �rm	I~g � �e
4A~	f	I�~	de

�4A�g

� e�4A~	fd� ^ ~	dSIg: (A72)

To summarize, if we specify a traceless deformation of
the metric, 	I~gmn, the spacetime-dependent perturbation is
given by the metric (A3) and five-form (A27), with 	IA
given by (A68),� � e4A, and the compensatorsKI, BI, and
SI given by solving the Eqs. (A46), (A69), and (A70). We
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have not yet found a general prescription to solve these
compensator equations. However, we can get a feel for
properties of the compensators by solving these equations
in a special case.

Compensator estimates.—While we have not solved the
compensator equations in general, they can be solved in the
toy model of the metric of a stack of D3 branes restricted to
finite volume by placing these at the center of a ball of unit
radius in the background fiducial metric. This is a good
local model for the geometry in the vicinity of an AdS
throat. This case will, in particular, illustrate the depen-
dence of the compensators on the universal Kahler parame-
ter c, which is important in the next section where we
investigate massive perturbations.

Specifically, let ~gmn be the flat metric on the unit-radius
ball in six dimensions, and suppose that there are N D3
branes located at the center of the ball. In this case the warp
factor is given by

e�4A � c�
4N�02

r4 : (A73)

Next consider traceless perturbations in the metric; for
illustration, single out the x and y directions on the ball
and consider a perturbation 	~gxy, which we take to be a
constant for simplicity. We use spherical polar coordinates
r; �i; �, with i � 1; . . . ; 4, and 0 � �i � , 0 � �< 2,
such that the xy plane is parametrized by r; �, and the
metric is

ds2 � dr2 � r2�d�2
1 � sin2�1�d�

2
2 � sin2�2�� � �

� sin2�4d�2��: (A74)

In order to solve the compensator Eqs. (A69) and (A70),
we first compute the source term 	�~	de�4A�. The variation
in e�4A can be easily obtained from (A73) by computing
the change in the radial distance

	e�4A � �	~gxy sin� cos�
16N�02

r4

Y
i

sin2�i: (A75)

Combining this with the variation in the Hodge dual one
obtains

�	�~	de�4A��r��k�l�m � �	�~	de
�4A��r�k�l�m�n � 0 (A76)

and

�	�~	de�4A����1�2�3�4
� �	~gxy48N�02���5�

� sin�2��
Y
i

sin2�i (A77)

where ��5 denotes the volume element on the five sphere.
Note that this is independent of� in our coordinate system.

For the present case, one can argue using symmetries
that the only nonvanishing component of B and S must be
in the r� direction and their dependence on �i must be
trivial. Using such an ansatz (A69) yields
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�@����5e�4Ar3��dS��r � B�@r���

� ��5	~gxy sin�2��48N�02
Y
i

sin4�i; (A78)

while (A70) yields

�@����5r3�dB��r� � ��5	~gxy sin�2��48N�02

�
Y
i

sin4�i; (A79)

�@r���5e�4Ar3�dB��r� � ���5e�4A@r�r
3�dS��r:

(A80)

The compensator solutions are then

dS�r � 6	~gxy cos�2��
4N�02

e�4Ar3

Y
i

sin4�i; (A81)

B� � 0; (A82)

and

Br � 3	~gxy sin�2��
4N�02

r3

Y
i

sin4�i: (A83)

Note that the compensators are singular at r � 0. But these
singularities do not appear in the equations of motion as the
compensators are multiplied by a powers of e4A in the
equations of motion, making their contribution finite.

7. Perturbations with G3 � 0

We next consider warped compactifications with non-
vanishing three-form flux, which generically gives a mass
to the complex moduli [1]. The potential that does this is
believed to arise from the Gukov-Vafa-Witten superpoten-
tial, although this has not been rigorously derived. Study of
the linearized perturbation spectrum thus gives further
information on the problem of deriving the effective po-
tential both due to these fluxes and due to other effects.

Once the deformations receive a finite mass, their form
becomes even more complicated. For this reason, for such
massive deformations we can presently only give the so-
lutions in a perturbative expansion. The parameter govern-
ing this expansion is 1=c, where c is the finite parameter
governing a universal Kahler deformation, introduced in
(3.18). Recall from (3.24) that c� R4 where R is the
characteristic radius of the compact space. In the limit c!
1, the effects of warping vanish. Thus including warping
involves keeping subleading powers in the 1=c expansion.
The �0 expansion is also an expansion in 1=c, but we
justify keeping leading terms from warping since they
enter in the form N=c where N is a typical D3 charge,
which can be large.

Note that, of course, the size of c governs the validity of
the four-dimensional effective theory. For four-
dimensional energies E * 1=c

�����
�0
p

in the Einstein frame
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(A60) Kaluza-Klein modes become important.7 So our
perturbative expansion amounts to taking c� 1 but finite
and studying the physics at four-dimensional Einstein en-
ergies

E� 1=c
�����
�0
p

: (A84)

As we will show, the flux-induced masses are of order
N=c3=2

�����
�0
p

, so there is a sensible low-energy approxima-
tion where typical Kaluza-Klein effects are negligible but
flux-induced masses are not. Moreover, for certain physical
quantities, the nontrivial warping can be an important
effect.

However, we will find a subtlety in this analysis.
Specifically, if the manifold has significant warped regions,
then Kaluza-Klein modes concentrated in these regions
will have redshifted four-dimensional masses, as pointed
out in [6]. Consider specifically the solutions of [1]. These
have a bulk region where the warp factor is approximately
a constant, attached to an approximately AdS throat, which
is then terminated in a smooth geometry at finite warp
factor.

Indeed, in the immediate vicinity of the throat, the warp
factor is approximately of the form (A73). Thus the bulk,
mouth, and throat regions corresponds to

r4 �
4N
c

�02 bulk; r4 �
4N
c

�02 mouth;

4N�02e4A
min � r4 �

4N
c

�02 throat; (A85)

where as argued in [1], the bottom of the throat is deter-
mined in terms of flux quanta K;M as

e4A
min � e

�8K=3Mgs : (A86)

The role of these different regions in studying perturba-
tions will become clear in what follows.

Massive perturbations.—For this section we work in 4D
units where the background metric takes the form

ds2 � �e�4A0 � c��1=2���dx
�dx�

� �e�4A0 � c�1=2 ~gmndymdyn: (A87)

Recall that this differs from the 4D Einstein-frame metric
of (A60) by the change of 4D units (3.31) which has to be
performed on our estimates to obtained the canonical 4D
masses. We also set �0 � 1 for the rest of this appendix.

In this setup, compactifications of different volume are
obtained by changing c and ~gmn is taken to be a CY of unit
volume. We shall describe the massive perturbations in the
presence of flux in terms of eigenfunctions the
Lichnerowicz operator L on this CY, defined in Eq. (A63),
7The conventional treatment of Kaluza-Klein modes is done in
the string frame and the associated energy scale is 1

R ; conversion
to the Einstein frame gives an additional factor of 1

R3 .
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L	~gmn � �2	~gmn: (A88)

The spectrum starts from � � 0, corresponding to the zero
modes, and is followed by eigenvalues with spacing of the
order of unity corresponding to the KK modes. We empha-
size the fact that these eigenvalues do not depend on c.

As discussed earlier, the fluctuation of the internal
Calabi-Yau, corresponding to a on-shell solution is deter-
mined by the Einstein equations (A44)–(A48). We shall
see that in order to satisfy the equations in the presence of
flux, is not consistent to excite just the zero modes: the
Kaluza-Klein modes also have to be excited.

Specifically, consider the (mn) Einstein equation (A48).
The universal Kahler deformation remains massless in the
presence of flux [1], so focus on traceless deformations of
the metric. Ignoring contributions from motion of localized
sources (which can be treated separately), the variation in
the source term on the right-hand side of the (mn) Einstein
equation follows from (A22):

	IT
�3�
mn �

1

8�2
10

	I

�
e4A

Im�

�
Gmpq

eGpq

n �Gnpq
eGpq

m

�
1

3
~gmnG �

eG��: (A89)

This expression vanishes for variations that leave the flux
imaginary self-dual or anti–self-dual, and we will further
discuss this zero-mode space shortly. But the I(A)SD con-
ditions generically fix the complex structure moduli, and so
small oscillations of them will be massive. For a small
variation about the I(A)SD point, we find

	IT
�3�
mn �

1

8�2
10

e4A	I

�
1

Im�

�
Gmpq

eGpq

n �Gnpq
eGpq

m

�
1

3
~gmnG �

eG�� (A90)

to be a nonvanishing source for the Einstein
equation (A48).

As in the massless case, the compensators BI, KI, and SI
are fixed by other equations of motion, and (A48) can be
thought of as an equation for 	~gmn. The perturbation has a
piece proportional to the massless solution with G3 � 0,
but also in general can have a Kaluza-Klein contribution.
Specifically, for a zero mode, the first line of (A48) van-
ishes, but without (A90) obeying special conditions we are
then not guaranteed that the left-hand side (lhs) of (A48)
has the correct structure to match this source. Indeed, we
see that it cannot in general match, since the functional
dependence from powers of e4A is different. Thus in gen-
eral the first line should not vanish, implying that Kaluza-
Klein modes are excited.

We therefore decompose the perturbation into a zero-
mode piece and a Kaluza-Klein piece,

	~gmn � 	0 ~gmn � 	KK~gmn; (A91)
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and likewise for the other fields A;� and compensators,
where the 	0 pieces are solutions of the G3 � 0 equations
of the preceding subsection.

Let us now consider the large c behavior of the various
terms in (A48). If the total three-brane charge carried by
the flux is N �MK [where M and K are individual flux
quanta as defined in (3.33)], the source term of (A90)
behaves as

	IT
�3�
mn �

N

Im��2
10c

: (A92)

This must balance the terms on the lhs of (A48). The
compensators can be estimated from the results of the
previous section. The relevant quantities are all of the
same magnitude:

S� e4AB� e4AK �
Ne4A

r3 : (A93)

Their dominant behavior is at the mouth, and so we find

S; e4AB; e4AK;
Ne4A

r3 & rmouth �

�
4N
c

�
1=4
: (A94)

The compensator contributions are thus suppressed at large
c.

The magnitude of the Kaluza-Klein excitations can then
be read off from (A48) as they are needed to compensate
for the other terms in the equation. For a perturbation with
four-dimensional momentum p, these source terms take
the form

	 ~Gmn ��e�4Ap2�	0 ~gmn � compensators� � 	T�3�mn:

(A95)

If warping is only moderate, we therefore see that the
source and hence the Kaluza-Klein perturbations are of
order

	KK~gmn � cp
2 �O

�
N
c

�
: (A96)

These are small if the momentum and flux-induced mass
are much less than the usual Kaluza-Klein mass. But for
large warping, the first term in (A95) can become large;
one way to understand this is that the Kaluza-Klein masses
can have large redshifts, as emphasized, for example, in
[6]. Thus the condition for the Kaluza-Klein perturbation
to be small becomes more stringent. Note that 	A and 	�
can also acquire Kaluza-Klein parts of comparable
magnitudes.

We can now read off the leading order flux-induced mass
matrix and the magnitude of corrections to it. We do this by
multiplying (A48) by 	0

J~gmn and integrating over the in-
ternal manifold. The KK modes are orthogonal to the zero
mode under the resulting metric. The compensator contri-
butions and KK contributions are subleading to the leading
answer, which is
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�
1

2

Z
d6y

���
~g

p
e�4A	0

I ~gmn	
0
J~gmn�uI

�
1

4

Z
d6y

���
~g

p
e4A	0

J~gmn	0
I

�
1

Im�

�
Gmpq

eGpq

n

�
1

6
~gmnG �

eG��: (A97)

Specifically, one can see from the above compensator
estimates that the integrated compensator corrections
from (A48) are of relative order N=c. This is also true
for the corrections from Kaluza-Klein modes in the case of
moderate warping. However, in the case of large warping,
there can be larger and even divergent corrections. For
example, these can arise from the term

�uI
Z
d6y

���
~g

p
e�4A	0

J~gmn	KKI ~gmn: (A98)

For a warp factor of the form (A73), Eq. (A95) implies a
divergent source for the Kaluza-Klein part of the perturba-
tion. Correspondingly, we can estimate divergent behavior

	KK~gmn �
Np2

r2 : (A99)

This leads corrections of fractional size

N2p2

c
lnrmin (A100)

for the contribution (A98), where rmin is a cutoff value of r
corresponding to the bottom of the throat. If the throat is
infinite, as in [32], this correction is truly divergent. For the
solutions of [1], the minimum is at a small r determined by
(A86). Correspondingly, we find a correction of relative
order

Np2

c

K2

gs
; (A101)

enhanced by K2=gs.
Equation (A97), then, gives us the flux-induced mass

matrix. The warp factor in these expressions takes the form
exhibited in (A87), and thus to leading order simply gives a
power of c. Subleading corrections from the warp factor in
(A97) are unfortunately also of order N=c, and thus cannot
be distinguished without knowing the KK and compensator
contributions. The flux-induced masses have magnitude

m2
G;0 �

N

c2 (A102)

in the units of Eq. (A87). Working in four-dimensional
Einstein units, we thus find that the masses have magnitude

m2
G �

N

c3 : (A103)

The Kaluza-Klein modes of the axidilaton � are also
excited, as seen from Eq. (A41). We can project out the
zero mode by multiplying that equation by e�2A and in-
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tegrating, with the result

Z
d6y

���
~g

p
e�4A	I��uI � �

i
6
uI
Z
d6y

���
~g

p
	I�e

4AG�~�G��

(A104)

giving the � block of the mass matrix. Note that to leading
order in the Kaluza-Klein expansion, 	I� is simply a
constant.

Kahler, super, and scalar potentials.—In order to inves-
tigate the structure of the landscape of string vacua, it
would be useful to have a derivation of the four-
dimensional effective action describing these fluctuations.
In principle one might have expected the effective action
describing the fluctuations uI�x� to be obtained by evaluat-
ing the quadratic action SIIB for a field configuration where
the fields uI�x� take on off-shell values, i.e. �u�x� �

m2u�x�, while all other fields are restricted to their on-shell
values. As we discussed in the previous section, on-shell
solutions involve compensators and Kaluza-Klein modes,
which would therefore contribute to the effective action.

Unfortunately there is a subtlety in carrying this proce-
dure out in the case of type IIB, due to the difficulty of
providing an off-shell action formulation for the self-dual
five form. Since contributions from the five form’s dynam-
ics are important, this appears to be an obstacle to evaluat-
ing the kinetic term in the effective action.

A heuristic prescription was given in [6], and it may
ultimately be possible to generalize and justify this. A
more systematic procedure was given in [65], and used in
[66] to obtain the effective action for a certain class of
fluctuations about the AdS5 � S5 background. This proce-
dure is well suited when the explicit form of the solutions is
known as in case of AdS5 � S5 but it is not clear how to
apply it for the present case. We therefore do not evaluate
the effective action explicitly but discuss certain features
that are apparent from the structure of the equations of
motion.

As emphasized above, effects of warping in (A97) enter
at the same N=c order as other neglected terms, and so
cannot be checked directly here. An effective action ne-
glecting effects of warping was given in [1], and a proposal
for modifications due to warping was given in [6].
Specifically, the superpotential there was the unmodified
Gukov-Vafa-Witten potential (3.35), and warping contri-
butions to the Kahler potential were suggested to produce a
kinetic action of the form (4.19). These certainly agree with
(A97) at leading order in N=c. Neglecting warping, the
kinetic term in (A97) is the expected form, and the term
proportional to u�x� is equal to

�
1

12
	I	J

Z
d6y

���
~g

p Gmnp
e�Gmnp

Im�
(A105)

which as in the appendix of [1] can be shown equal to
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�	I	J
Z G� ^ ~	G�

Im�
: (A106)

This is in keeping with the fact that the mass matrix should
be equal to the second derivative of the potential. It is
tempting to also trust the powers of e�4A in these expres-
sions, especially in light of the agreement between the
expression (5.32) and the potential derived in [6] from
the Kahler potential with warping corrections.

Despite this, for the same reason we cannot directly
check the warping dependence in the Kahler potential.
Indeed, the first nontrivial correction due to warping in
(4.19) is also of order O�Nc� and is associated with the factor
of e�4A in the kinetic terms of (A97). Supersymmetry
imposes strong constrains on the superpotential—and cal-
culations of the gravitino mass in [6] provide another check
on it—so we expect that the subleading corrections to the
scalar potential do indeed arise due to corrections in the
Kahler potential. But to check corrections to the Kahler
potential at this order, we need to check all O�Nc� correc-
tions. The corrections may take the form of explicit cor-
rections to the potential K or corrections to the definition of
holomorphic coordinates. It is likely that the latter correc-
tions are present as the excitations involve a Kaluza-Klein
part, and it is unlikely that the holomorphic coordinates are
completely defined by the zero-mode directions. The fact
that the holomorphic coordinates can depend on the warp
factor was also seen in Sec. VI C in case of Kahler moduli.

In summary, we have learned that there are corrections
to the Kahler potential of order O�Nc�, but we are not yet
able to directly calculate them. On the other hand, the
superpotential appears uncorrected by warping.

Moduli with G3 � 0.—Nonzero three-form flux there-
fore provides a potential for the complex structure defor-
mations. The remaining flat directions can be inferred from
the equation for the minimum of the potential. As dis-
cussed in the main text there is a h1;1 dimensional moduli
space which can be parametrized by the values of the
Kahler moduli �i.

A priori, zero-mode deformations could arise as a gen-
eral linear combination of the complex structure and
Kahler deformations, together with a variation of the dila-
ton,

��i; z�; �� ! ��0i; z0�; �0�

� ��i � 	�i; z� � 	z�; �� 	��: (A107)

Such a deformation will solve the �mn� Einstein
equation (A48) if 	IT

�3�
mn, given by (A90), vanishes. For

given flux quanta (3.33), this is satisfied by deformations
which leave the flux ISD.

We are therefore seeking the deformation space such
that G3, which is closed (we here consider only constant �)
remains ISD (2.15). Notice that such a closed ISD form is
automatically harmonic. Since the Hodge dual in the ISD
condition (2.15) changes under a change of Kahler struc-
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ture, one might be concerned that the ISD condition is no
longer satisfied for a pure Kahler deformation (A107) with
	z� � 	� � 0.

In order to show that pure Kahler deformations do leave
the ISD conditions unchanged, we begin by recalling some
properties of the basic harmonic forms on a Calabi-Yau
manifold.8 Given a complex structure, we can always find a
holomorphic �3; 0� form �, whose construction is indepen-
dent of a Kahler structure. Moreover, through the relation,
due to Kodaira (see [67]),

@�

@z�
� k��� ��; (A108)

where k� depends on z� but not on the coordinates of the
manifold, one can likewise define closed �2; 1� forms ��
without making reference to a Kahler structure. The hol-
omorphic form � is harmonic in any Kahler metric. The
forms �� are not necessarily harmonic, but the harmonic
representatives of the cohomology classes they specify can
be found by adding an exact piece. These harmonic forms,
which we denote ���, do depend on the choice of Kahler
moduli, and we have

��� � �� � d�
�
� (A109)

for some �i dependent two forms ��. Moreover, on a
Kahler manifold, the forms ��� are also �2; 1�.

Now begin with a configuration such that G3 is ISD, and
consider changing the Kahler moduli to �i0. In the new
Kahler structure, G3 is no longer necessarily ISD nor
harmonic. However, we can always find a harmonic form
G03 in the same cohomology class,

G03 � G3 � dA2: (A110)

To prove that G03 is also ISD, note that ��; ��� form a basis
for the harmonic ISD forms, and likewise their complex
conjugates a basis for imaginary anti–self-dual forms.
Thus, G03 will be ISD ifZ

�� ^G03 � 0; ��
0

� ^G03 � 0: (A111)

The first condition follows immediately from (A110) and
integration by parts, together with the statements that G3 is
ISD and � is closed. Moreover, from (A109) we see that

��
0

� � ��� � d��
�0
� � �

�
��: (A112)

Thus Z
��

0

� ^G03 �
Z
��� ^G3 (A113)

also likewise follows, and vanishes since G3 is ISD. So G03
is also ISD, demonstrating that changes of Kahler moduli
with fixed complex structure and dilaton � correspond to
8These properties then translate into corresponding statements
for an orientifold of the Calabi-Yau.
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the h1;1 flat directions. Note that this argument relies on the
underlying manifold being Kahler, in order to argue that
the ��� are of the correct type.
APPENDIX B: RELATION TO OTHER WORK

We have seen from our discussion that the derivation of
the Kahler and scalar potentials given in [1,6], while giving
the correct results to leading order, were somewhat heu-
ristic. In addition to these there has been considerable other
work in the literature devoted to studying such potentials,
and time-dependent warped solutions. The correct descrip-
tion of the dynamics of moduli has produced some con-
fusion, and we believe our work has now clarified some of
that confusion.

In particular, [20,68] raised objections to previous deri-
vations of the potential (5.32). In [20], one objection was
that the potential derived there was negative definite.
However, the definition leading to the objection was the
incorrect definition of the potential based on (5.11), not
(5.8). As we have explained, the expression based on (5.11)
only gives the correct answer in the case where one is at a
minimum of the potential so the moduli are static.
However, our more general expression (5.8) is suitable
away from a minimum, and gives a potential agreeing
with that found from the derivation in [6]. Reference [20]
argued that the problem originated in time dependence of
the radial modulus away from the minimum, and argued
that in the case of nontrivial warping there is no clear
derivation of the potential due to the excitation of all
Kaluza-Klein modes. While we have found that Kaluza-
Klein modes are excited by general spacetime-dependent
perturbations, we have also found that they are small in a
controlled approximation, and thus make only small cor-
rections to an otherwise unambiguous potential in the low-
energy effective theory. Our results do agree with the claim
of [20,68] that in a generic gauge actual solutions of the
equations of motion are not of the form of the ‘‘factorized
Ansatz.’’

Other works have investigated time-dependence of
warped configurations. For example, [69] considered
D3�D7 inflation models, and attempted to construct
solutions lifted up to ten dimensions. They recognized
that their metric Ansatz

ds2 � eA�y;t����dx
�dx� � eB�y;t�gmn�y�dy

mdyn; (B1)

was potentially over-restrictive. While it captures some of
the ten-dimensional dynamics of such configurations, our
analysis of the general linearized perturbation shows that
the metric for a ten-dimensional warped cosmology cannot
in general be put in this form.

Finally, [70] investigates the problem of deriving the
four-dimensional effective action from ten dimensions.
While expressions similar to our potential formula (5.30)
are found, the formalism of that paper is only applicable to
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deriving the potential at a stationary point and does not
yield a solution of the ten-dimensional equations for roll-
ing moduli. Thus the only known example where these
126003
results can be compared gives the value U � 0. Moreover,
this derivation is based on an incorrect parametrization of
the universal Kahler modulus, corresponding to (3.17).
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