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We study the electron-positron system in a strong, constant, and homogeneous magnetic field using the
differential Bethe-Salpeter equation in the ladder approximation. We derive the fully relativistic two-
dimensional form that the four-dimensional Bethe-Salpeter equation takes in the limit of an asymptoti-
cally strong magnetic field. A maximum value for the magnetic field is determined, which provides the
full compensation of the positronium rest mass by the binding energy in the maximum symmetry state and
the vanishing of the energy gap separating the electron-positron system from the vacuum. The compen-
sation becomes possible owing to the falling-to-the-center phenomenon that occurs in a strong magnetic
field because of the dimensional reduction. The solution to the Bethe-Salpeter equation corresponding to
the vanishing energy momentum of the electron-positron system is obtained.
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I. INTRODUCTION

It is well known that the structure of atoms (positronium
included) is drastically modified by a magnetic field B if
the field strength B � jBj exceeds the characteristic
atomic value Ba � m2e3c=@3 ’ 2:35� 109 G [1,2], where
m is the electron mass and e the absolute value of its
charge. In a strong magnetic field (B� Ba) the usual
perturbative treatment of the magnetic effects (such as
Zeeman splitting of atomic energy levels) is not applicable,
and, instead, the Coulomb forces act as a perturbation to
the magnetic forces. For positronium in such a field the
characteristic size of the electron and positron wave func-
tion across B is the Larmour radius

 LB � �eB�
�1=2 � a0�Ba=B�

1=2 (1)

that decreases with an increase of the field strength. Here
a0 is the Bohr radius, a0 � ��m��1, � � 1=137.
Henceforth, we set @ � c � 1 and refer to the Heaviside-
Lorentz system of units, where the fine structure constant is
� � e2=4�.

The properties of positronium in a strong magnetic field
(B� Ba) are interesting for astrophysics because such
fields are observed now for several kinds of astronomical
compact objects (pulsars, powerful x-ray sources, soft
gamma-ray repeaters, etc.). Besides, some of these objects
are the sources of electron-positron pairs produced in their
vicinities by various mechanisms [3]. At least part of these
pairs may be bound. For instance, at the surface of radio
pulsars identified with rotation-powered neutron stars the
field strength is in the range from �109 G to �1014 G [4].
A common point of all available models of pulsars is that
electron-positron pairs dominate in the magnetosphere

plasma [5]. These are formed by the single-photon produc-
tion process in a strong magnetic field, �� B!
e� � e� � B. If the field strength is higher than �4�
1012 G the pairs created are mainly bound [6]. Much more
intense magnetic fields have been conjectured to be in-
volved in several astrophysical phenomena. For instance,
superconductive cosmic strings, if they exist, may have
magnetic fields up to �1047–1048 G in their vicinities [7].
Electron-positron pairs may be produced near such strings
[8].

In magnetic fields larger than Ba, the Coulomb force
becomes more efficient in binding the positronium because
the charged constituents are confined to the lowest Landau
level and hence to a narrow region stretching along the
magnetic field (LB 	 a0). Notwithstanding this effect, the
binding energy of positronium �E is still very small as
compared with the rest mass, �E	 2m, even for the fields
as high as Schwinger’s critical value B0 � m2=e ’ 4:4�
1013 G, i.e., the positronium remains an internally non-
relativistic system. The binding energy of the ground state,
as calculated nonrelativistically,

 �E ’
m�2

4

�
ln
B
B0

�
2
; (2)

increases with an increase of B, and the relativistic effects,
for extremely large fields, should be expected to become
essential. The unrestricted growth of the binding energy (2)
with the magnetic field is a manifestation of the fact that
the Coulomb attraction force becomes supercritical in the
one-dimensional Schrödinger equation, to which the non-
relativistic problem is reduced in the high-field limit [1],
and the falling-to-the-center phenomenon occurs in the
limit B � 1.

Relativistic properties of positronium in a strong mag-
netic field were studied based on the Bethe-Salpeter equa-
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tion [9,10]. The nontrivial energy dependence upon the
transverse (pseudo)momentum component of the center of
mass was found in [10,11]. Although the Bethe-Salpeter
equation is fully relativistic, it was used within the custom-
ary ‘‘equal-time’’ approximation that disregards the retar-
dation effects, so that the relative motion of the electron
and positron is treated in a nonrelativistic way. In this way,
the behavior (2) was reproduced for the ground state [9–
11]. A completely relativistic solution for positronium in a
strong magnetic field remains unknown. In this paper we
study the positronium in an asymptotically strong magnetic
field with not only its center-of-mass motion, but also the
relative motion of the electron and positron inside it con-
sidered relativistically. We find a solution for the positro-
nium wave function that belongs to the spectral point
where all the components of the total 4-
(pseudo)momentum, total energy included, are zero.
Correspondingly, we point out the value of the magnetic
field that causes the deepening of the positronium energy
level sufficient to compensate for its whole rest mass 2m.
The vanishing of the energy gap between the electron and
positron makes us refer to this field as maximum within
quantum electrodynamics. Recently, a brief account of the
maximum magnetic field has been given [12].

The above-mentioned deepening of the level becomes
possible due to the falling-to-the-center phenomenon in-
herent in the two-dimensional Bethe-Salpeter equation that
describes the positronium atom in the infinite magnetic
field limit. Namely, the (most symmetrical) solution of this
equation satisfies a Schrödinger-like equation with respect
to the spacelike two-interval swith the equivalent potential
possessing the singular attractiveness ��=s2 near s � 0.
The parameter equivalent to the energy of the standard
Schrödinger equation has its eigenvalue spectrum un-
bounded from below, the probability being concentrated
near the origin s � 0. This phenomenon is known in
quantum mechanics as ‘‘falling to the center’’ [13], and
in our problem it is responsible for the fact that the zero
energy point of the positronium may belong to the spec-
trum, provided the magnetic field is sufficiently large. The
origin of the falling to the center is in the ultraviolet
singularity of the photon propagator carrying the interac-
tion between the charged particles. The falling to the
center, referred to as positronium collapse, occurs for every
positive value of the fine structure constant [14].

In Sec. II we derive the fully relativistic—in two-
dimensional Minkowski space-time—form that the differ-
ential Bethe-Salpeter equation in the ladder approximation
takes for the positronium when the magnetic field tends to
infinity. In Sec. III the maximum symmetry ultrarelativistic
solution is found for the equation derived in Sec. II that
corresponds to the vanishing total energy momentum of the
positronium. The effects of the mass radiative corrections
and of the vacuum polarization are also considered. In the
concluding section, the results are summarized.

II. TWO-DIMENSIONAL BETHE-SALPETER
EQUATION FOR POSITRONIUM IN AN

ASYMPTOTICALLY STRONG MAGNETIC FIELD

The view is widely accepted [1] that charged particles in
a strong constant magnetic field are confined to the lowest
Landau level and behave effectively as if they possessed
only one spatial degree of freedom—the one along the
magnetic field. Moreover, a conjecture exists [15] that the
Feynman rules in the high magnetic field limit may be
directly served by two-dimensional (one space�
one time) form of electron propagators. As applied to the
Bethe-Salpeter equation, the dimensional reduction in a
strong magnetic field was considered in [9,10]. In these
references the well-known simultaneous approximation to
the Bethe-Salpeter equation taken in the integral form was
exploited, appropriate for nonrelativistic treatment of the
relative motion of the two charged particles. In the next
section we shall be interested in the ultrarelativistic regime.
For this reason we reject using this approximation.
Besides, we find it convenient to deal only with the differ-
ential form of the Bethe-Salpeter equation.

The electron-positron bound state is described by the
Bethe-Salpeter amplitude (wave function) ��;��xe; xp� sub-
ject to the fully relativistic equation (see e.g. [16]), which
in the ladder approximation in a magnetic field may be
written as
 


i@̂e �m� eÂ�xe����
i@̂
p �m� eÂ�xp���� ����x

e; xp�

� �i8��Dij�xe � xp�
�i���
�j��� ����x
e; xp�: (3)

Here xe, xp are the electron and positron 4-coordinates,
Dij�xe � xp� is the photon propagator, and the spinor in-
dices �;�;�; � � 1; 2; 3; 4 are explicitly written. The met-
ric in the Minkowski space is diag gij � �1;�1;�1;�1�,
i; j � 0; 1; 2; 3. The derivatives

 @̂ � @j�j � @0�0 � @k�k � �0
@
@x0
� �k

@
@xk

;

k � 1; 2; 3;

(4)

act on xe or xp as indicated by the superscripts, and Â �
A0�0 � Ak�k.

We consider the ladder approximation, with the photon
propagator taken in the Feynman gauge. With other gauges
this approximation corresponds to summation of diagrams
other than the ladder ones—in agreement with the well-
known fact that the ladder approximation is not gauge
invariant.

We refer, if needed, to the so-called spinor representa-
tion of the Dirac � matrices in the block form

 �0 �
0 I
I 0

� �
; �k �

0 �	k
	k 0

� �
; (5)

where I is the unit 2� 2 matrix and 	k are the Pauli
matrices:
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 	1 �
0 1
1 0

� �
; i	2 �

0 1
�1 0

� �
;

	3 �
1 0
0 �1

� �
:

(6)

The vector potential of the constant and homogeneous
magnetic field B, directed along axis 3 (B3 � B, B1;2 �
0), is chosen in the asymmetric gauge

 A1�x� � �Bx2; A0;2;3�x� � 0: (7)

With this choice, the translation invariance along the di-
rections 0, 1, 3 holds.

Solutions to Eq. (3) may be represented in the form

 ��xe; xp� � 
�xe
0 � x

p
0; x

e
3 � x

p
3; x

e
1;2; x

p
1;2�

� exp
�

i

2

P0�x

e
0 � x

p
0� � P3�x

e
3 � x

p
3��

�
;

(8)

where P0;3 are the center-of-mass 4-momentum compo-
nents of the longitudinal motion. Equation (8) expresses
the translation invariance along the longitudinal directions
(0,3). Denoting the differences xe

0 � x
p
0 � t and xe

3 � x
p
3 �

z, from Eqs. (3) and (8) we obtain

 

�
i@̂k �

P̂k
2
�m� i@̂e

? � e�1A1�xe
2�

�
��

�
�i@̂k �

P̂k
2
�m� i@̂p

? � e�1A1�x
p
2�

�
��


�t; z; xe;p

? ����

� �i8��Dij�t; z; x
e
1;2 � x

p
1;2�
�i���
�j��� 

�t; z; x

e;p
? ���� ; (9)

where x? � �x1; x2�, @̂? � �1
@
@x1
� �2

@
@x2

, @̂k �
@
@t �0 �

@
@z �3, and P̂k � P0�0 � P3�3.

A. Fourier-Ritus expansion in eigenfunctions of the
transverse motion

Let us expand the dependence of the solution of Eq. (9)
on the transverse degrees of freedom into the series over
the (complete set of) Ritus [17] matrix eigenfunctions
Eh�x2� (the superscript ‘‘e’’ or ‘‘p’’ indicates that the
corresponding function relates to the electron or positron,
respectively),

 



�t; z; xe;p
? ���� �

X
hehp

eipe
1x

e
1
Ee

he�xe
2��

�e

�

�
Ep
hp�xp

2��
�p

� e
ipp

1x
p
1 

hehp�t; z���e�p :

(10)

Here 
hehp�t; z� denote unknown functions that depend on
the differences of the longitudinal variables, while the
Ritus matrix functions eip1x1Eh�x2� depend on the individ-
ual coordinates xe;p

1;2 transverse to the field. The Ritus matrix
functions and the unknown functions 
hehp�t; z� are labeled
by two pairs he, hp of quantum numbers h � �k; p1�, each
pair relating to one out of the two particles in a magnetic
field. The Landau quantum number k takes all nonnegative
integral values, k � 0; 1; 2; 3; . . . , while p1 is the particle
momentum component along the transverse axis 1. Recall
that the potential A��x� (7) does not depend on x1, so that
p1 does conserve. This quantum number is connected [13]
with the orbital center coordinate ~x2 along axis 2, p1 �
�~x2eB.

Consider four eigen-bispinors 
Ee;p
h �x2��

�	;��
� of the op-

erator ��i@̂? � eÂ�2, labeled by 	 and �,

 ��i@̂? � eÂ�
2
��e

ip1x1
Ee;p
h �x2��

�	;��
�

� �2eBkeip1x1
Ee;p
h �x2��

�	;��
� : (11)

Here the upper and lower signs relate to the electron and
positron, respectively, while 	 � �1 and � � �1 are
eigenvalues of the operators

 �3 �
	3 0
0 	3

� �
; �i�5 �

�I 0
0 I

� �
; (12)

(diagonal in the spinor representation), to which the same
4-spinors are eigen-bispinors [18],

 � i�5E
�	;��
h � �E�	;��h ; �3E

�	;��
h � 	E�	;��h : (13)

Let us place these four bispinors, as columns of four rows
each, side by side to form a 4� 4 matrix and unite the
couple of indices �	;�� � � into one index �, � � 1, 2, 3,
4 according to the rule: ��1;�1� � 1, ��1;�1� � 2,
��1;�1� � 3, ��1;�1� � 4. With this convention, the
equality 
Eh�x2�

�	;��
� � Eh�x2�

�
� defines the Ritus matrix

function in the spinor representation. It can be dealt with as
a 4� 4 matrix, the united index � spanning a matrix space,
where the usual algebra of � matrices may act.
Correspondingly, in (10) the unknown function


hehp�t; z���e�p is a matrix in the same space, and contracts
with the Ritus matrix functions.

Following [17], the matrix functions in expansion (10)
can be written in the block form as diagonal matrices

 eip1x1Ee;p
h �x2� �

ae;p�h; x1;2� 0
0 ae;p�h; x1;2�

� �
;

ae;p�h; x1;2� �
ae;p
�1�h; x1;2� 0

0 ae;p
�1�h; x1;2�

� �
:

(14)

Here ae;p
	 �h; x1;2� are eigenfunctions of the two (for each

sign �) operators 
���i@?�� � eA��2  	eB� [we denote
�@?�� � @=@x�, � � 1, 2], labeled by the two values 	 �
1, �1,
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���i@?�� � eA��
2  	eB�ae;p

	 �h; x1;2�

� 2eBkae;p
	 �h; x1;2�; (15)

namely (we omit the subscript ‘‘1’’ of p1 in what follows),

 ae;p
	 �h; x1;2� � eipx1Uk����	�1�=2�

� ������
eB
p �

x2 �
p
eB

��
;

k � 0; 1; 2; . . . ;
(16)

with

 Un��� � exp
�
�
�2

2

�
�2nn!

����
�
p
��1=2Hn��� (17)

being the normalized Hermite functions [Hn��� are the
Hermite polynomials]. Equation (15) is the same as (11)
due to the relation

 �i@̂?  eÂ�2 � �
�i@?��  eA��2 � eB�3 (18)

and to (13). Simultaneously, the matrix functions (14) are
eigenfunctions to the operator�i@1 that commutes with �3

and �5 (12), and with �i@̂?  eÂ�2��. The corresponding
eigenvalue p1 does not, however, appear in the right-hand
side of (15) due to the well-known degeneracy of the
electron spectrum in a constant magnetic field.

The orthonormality relation for the Hermite functions

 

Z 1
�1

Un���Un0 ���d� � �nn0 (19)

implies the orthogonality of the Ritus matrix eigenfunc-
tions in the form

 

������
eB
p Z

E�h�x2�
�
�Eh0 �x2�

�0
�dx2 � �kk0���0 : (20)

As a matter of fact, the matrix functions Eh�x2� are real,
and we henceforth omit the complex conjugation sign ‘‘�.’’

The matrix functions eipx1Ee;p
h �x2�, (14), commute with

the longitudinal part �i@̂k � P̂k=2�m of the Dirac op-
erator in (9), owing to the commutativity property

 
Eh�x2�; �0;3�� � 0: (21)

They are, in a sense, matrix eigenfunctions of the trans-
verse part of the Dirac operator [17] [not only of its square
(11)],

 �i@̂?  eÂ�e
ipx1Ee;p

h �x2� � �
�����������
2eBk
p

eipx1Ee;p
h �x2��1: (22)

The Landau quantum number k appears here as a ‘‘univer-
sal eigenvalue’’ thanks to the mechanism, easy to trace,
according to which the differential operator in the left-hand
side of Eq. (22) acts as a lowering or rising operator on the
functions (17), whereas the matrix 	2, involved in �2,
interchanges the places that the functions Uk, Uk�1 occupy
in the columns. Contrary to relations that explicitly include
the variable 	, whose value is a number of a column,
relations (11), (21), and (22) and the first relation in (13)
retain their form if a representation of � matrices, other

than the spinor representation, is used, and the matrix
Eh�x2� may become nondiagonal.

B. Equation for the Fourier-Ritus transform of the
Bethe-Salpeter amplitude

Now we are in a position to use expansion (10) in
Eq. (9). We left-multiply it by �2���2eBe�i �pexe

1Ee
�he�xe

2� �

e�i �ppxp
1Ep

�hp�x
p
2�, then integrate over d2xe

1;2d2xp
1;2. After using

(21) and (22), and exploiting the orthonormality relation
(20) for the summation over the quantum numbers he;p �
�ke;p; pe;p

1 �, the following expression is obtained for the left-
hand side of the Fourier-Ritus-transformed equation (9):
 �

i@̂k �
P̂k
2
�m� �1

�������������
2eBke
p �

��e

�

�
�i@̂k �

P̂k
2
�m� �1

�������������
2eBkp
p �

��p


hehp�t; z���e�p :

(23)

We omitted the bars over the quantum numbers.
Taking the expression

 

Dij�t; z; xe
1;2 � x

p
1;2� �

gij
i4�2 
t

2 � z2 � �xe
1 � x

p
1�

2

� �xe
2 � x

p
2�

2��1; (24)

for the photon propagator in the Feynman gauge, we may
write the right-hand side of the Ritus-transformed equation
(9) as
 

�

2�3

Z
dpedpp

X
kekp

gij
Z

Ee

�he�xe
2��iE

e
he�xe

2����e

� 
Ep�hp�x
p
2 ��jE

p
hp�xp

2����p 

hehp�t; z���e�p

�
ei�pe� �pe�x1ei�pp� �pp�x1eBd2xe

1;2d2xp1;2

z2 � �xe1 � x
p
1�

2 � �xe2 � x
p
2�

2 � t2
: (25)

Integrating explicitly the exponentials in (25) over the
variable X � �xe

1 � x
p
1�=2, we obtain the following expres-

sion:
 

�

�2

Z
dpdP1�� �P1 � P1�

X
kekp
gij

Z

Ee

�he�xe
2��iE

e
he�xe

2����e

� 
Ep�hp�x
p
2 ��jE

p
hp�xp

2����p 

hehp�t; z���e�p

�
exp�ix� �p� p��dx

z2 � x2 � �xe
2 � x

p
2�

2 � t2
eBdxe

2dxp
2; (26)

where the new integration variables x � xe
1 � x

p
1, P1 �

pe � pp, p � �pe � pp�=2 and the new definitions �P1 �
�pe � �pp, �p � � �pe � �pp�=2 have been introduced. The
pairs of quantum numbers in (26) are

 

�h e;p �

�
�ke;p;

�P1

2
� �p

�
; he;p �

�
ke;p;

P1

2
� p

�
: (27)

Hence the arguments of the functions (16) in (26) are
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������
eB
p �

xe
2 �

�P1 � 2 �p
2eB

�
;

������
eB
p �

xe
2 �

P1 � 2p
2eB

�
;

������
eB
p �

xp
2 �

�P1 � 2 �p
2eB

�
;

������
eB
p �

xp
2 �

P1 � 2p
2eB

�
;

(28)

successively as the functions Eh�x1;2� appear in (26) from
left to right. After fulfilling the integration over dP1 with
the use of the � function, let us introduce the new integra-
tion variable q � p� �p instead of p, and the integration
variables �xe

2 � xe
2 � �

�P1 � 2 �p�=2eB, �xp
2 � xp

2 � �
�P1 �

2p�=2eB instead of xe
2 and xp

2. Then (26) may be written as
 

�

�2

Z
dq
X
kekp
gij

Z

Ee

�he�xe
2��iE

e
he�xe

2����e

� 
Ep�hp�x
p
2 ��jE

p
hp�xp

2����p 

hehp�t; z���e�p

�
Z exp��ixq�dxeBd �xe

2d �xp2
z2 � x2 � � �xe

2 � �xp
2 �

�P1�q
eB �

2 � t2
: (29)

Now the pairs of quantum numbers in (29) are

 

�h e;p �

�
�ke;p;

�P1

2
� �p

�
; he;p �

�
ke;p;

�P1

2
� q� �p

�
:

(30)

Hence the arguments of the functions (16) in (29) from left
to right are

 

������
eB
p

�xe
2;

������
eB
p �

�xe
2�

q
eB

�
;

������
eB
p �

�xp
2�

q
eB

�
; �

������
eB
p

�xp
2�:

(31)

C. Adiabatic approximation

Our next goal is to pass to the large magnetic field
regime in the Bethe-Salpeter equation, with (23) as the
left-hand side and (29) as the right-hand side. Defining the
dimensionless integration variables w � x

������
eB
p

, q0 �
q=

������
eB
p

, �e;p � �xe;p
2

������
eB
p

one can write (29) in the form
 

�

�2

Z
dq0

X
kekp

gij
Z

Ee

�he�xe
2��iE

e
he�xe

2����e

� 
Ep
�hp�x

p
2��jE

p
hp�xp

2����p 

hehp�t; z���e�p

�
Z exp��iwq0�dwd�ed�p

z2 � w2

eB�
1
eB ��

e � �p � �x1�����
eB
p � q0�2 � t2

: (32)

The pairs of quantum numbers in (32) are

 

�h e;p �

�
�ke;p;

�P1

2
� �p

�
;

he;p �

�
ke;p;

�P1

2
� q0

������
eB
p

� �p
�
:

(33)

The arguments of the functions (16) in (32) from left to
right are

 �e; �e � q0; �p � q0; �p: (34)

When considering the large-field behavior, we admit for
completeness that the difference between the centers of
orbits along axis 2 ~xe

2 � ~xp
2 � ��

�P1=eB� may be kept
finite, in other words, that the transverse momentum �P1

may grow linearly with the field. We shall see that large
transverse momenta do not contradict dimensional reduc-
tion, but produce an extra regularization of the light-cone
singularity.

In the region, where the 2-interval �z2 � t2�1=2 essen-
tially exceeds the Larmour radius LB � �eB��1=2,

 z2 � t2 � L2
B; (35)

one may neglect the dependence on the integration varia-
bles w and later on �e;p in the denominator. Then, the
integration over w produces 2���q0�, which annihilates
the dependence on q in the arguments (31) of the
Hermite functions.

Let us depict the mechanism described in the previous
paragraph in more detail. The explicit integration over dw
in (32) yields
 Z exp��iwq0�dw

z2 � t2 � w2

eB�
A2

eB

�

������
eB
p

��������������������������
z2 � t2 � A2

eB

q �
�q0� exp

�
�q0

������������������������������������
eB�z2 � t2� � A2

q �

� ��q0� exp
�
q0

������������������������������������
eB�z2 � t2� � A2

q ��
; (36)

where

 A2 �

�
�e � �p �

�P1������
eB
p � q0

�
2

(37)

and �q0� is the step function,

 �q0� �

8><>:
1 when q0 > 0;
1
2 when q0 � 0;
0 when q0 < 0:

(38)

Because of the decreasing exponential in (17) the effective
integration range of the variables �e;p does not exceed unity
in the order of magnitude and hence �e;p can be neglected
as compared to �P1=

������
eB
p

in (37). Unless q0 is large it may be
neglected as compared to the same term in (37), too. Then
A2 � �P2

1=eB, and after (36) is substituted in (32) and
integrated over dq0 the contribution comes only from the
integration within the shrinking region jq0j< �eB
z2 �

t2 � �P2
1=�eB�

2���1=2. Then q0 can also be neglected in the
arguments (34). If, contrary to the previous assumption, we
admit that jq0j is of the order of �P1=

������
eB
p

�
������
eB
p

we see
that the exponentials in (36) quickly decrease with the
growth of the magnetic field as exp
�eB�z2 � t2��, and
therefore such values of jq0j do not contribute to the
integration. If we admit, lastly, that jq0j � j �P1=

������
eB
p
j, we

find that the contribution exp
�jq0j
����������������������������������������
eB�z2 � t2� � �q0�2

p
�

from the integration over such values is still smaller. Thus,
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we have justified the disregard of the dependence on q0 in
(37) and in (34), and also on �e;p in (37).

Now we can perform the integration over dq0 to obtain
the following expression for (32):
 

2���1

z2 �
P2

1

�eB�2 � t
2

X
kekp

gii
Z

Ee

�he�xe
2��iE

e
he�xe

2����e d�e

�
Z

Ep

�hp�x
p
2��iE

p
hp�xp

2����pd�p 

hehp�t; z���e�p : (39)

It remains yet to argue that the limit (39) is valid also when
the term �P1=eB is not kept. In this case we no longer can
disregard q0 inside A2 when q0 is less than or of the order of
unity. But we can disregard A2 as compared with eB�z2 �
t2� to make sure that the integration over dq0 is restricted to
the region close to zero jqj0 < 
eB�z2 � t2���1=2 and hence
set q0 � 0 in (34). The contribution of large q0 is small as
before.

Now that the arguments of the Hermite functions in (39)
are all the same, the integration over �e;p of the terms with
i � 0, 3 in (39) yields the Kronecker deltas �ke �ke�kp �kp due
to the orthonormality (19) of the Hermite functions thanks
to the commutativity (21) of the Ritus matrix functions
(14) with �0 and �3. On the contrary, �1, �2 do not
commute with (14). This implies the appearance of terms,
nondiagonal in Landau quantum numbers, like �ke; �ke�1 and
�kp; �kp�1, in (32), proportional to (i � 1, 2):
 

Ti�ke�1; �kp�1
�
X
kekp

Z

Ee

�he�xe
2��iE

e
he�xe

2����e d�e

�
Z

Ep

�hp�x
p
2��iE

p
hp�xp

2����pd�p 

hehp�t; z���e�p

�
X
kekp

0 ��i
�keke

�i
�keke 0

 !

�
0 ��i

�kpkp

�i
�kpkp 0

 !


hehp�t; z���e�p : (40)

Here xe;p
2 are expressed in terms of � through the chain of

the changes of variables made above starting from (25), so
that all the arguments of the Hermite functions have be-
come equal to �. Besides,

 he;p��ke;p; �pe;p�; �he;p�� �ke;p; �pe;p�; pe�pp�P1;

(41)

 �i
�kk
�
Z
a0� �h; x2�	ia

0�h; x2�d�; i � 1; 2; (42)

 

��1��kk
�
Z 0 a0�1�

�h; x2�a
0
�1�k; x2�

a0�1�
�h; x2�a

0
�1�h; x2� 0

 !
d�

�
0 � �k;k�1

� �k;k�1 0

 !
; (43)

 

��2��kk
� i

Z 0 �a0�1�
�h;x2�a

0
�1�k;x2�

a0�1�
�h;x2�a0�1�h;x2� 0

 !
d�

� i
0 ���k;k�1

��k;k�1 0

 !
: (44)

The prime over a indicates that the exponential exp�ipx1�
is dropped from the definitions (14) and (16). The non-
diagonal Kronecker deltas appeared, because a0�1�

�h; x2�
are multiplied by a01�h; x2� under the action of the 	1;2

blocks in �1;2 (5). In the final form, the matrices in (40) are

 

0 ��i
�kk

�i
�kk

0

 !
�

1

2
��1��� �k;k�1 � � �k;k�1�

� i�2��� �k;k�1 � � �k;k�1��; (45)

with the upper sign relating to i � 1 and the lower one to
i � 2. Now Eq. (9) acquires the following form:

 

�
i@̂k �

P̂k
2
�m� �1

�������������
2eBke
p �

��e

�
�i@̂k �

P̂k
2
�m� �1

�������������
2eBkp
p �

��p


hehp�t; z���e�p

�
2���1

z2 �
P2

1

�eB�2
� t2

� X
i�0;3

gii
�i���e
�i���p 

hehp�t; z���e�p �
X
i�1;2

T�i�ke�1;kp�1

�
: (46)

The bars over quantum numbers are omitted. This equation
is degenerate with respect to the difference of the electron
and positron momentum components p � �pe � pp�=2
across the magnetic field, but does depend on its transverse
center-of-mass momentum P1 � �p

e � pp�. This depen-
dence is present, however, only for sufficiently large trans-
verse momenta P1.

At the present step of adiabatic approximation, we have
come, for a high magnetic field, to the chain of Eq. (46), in
which the unknown function for a given pair of Landau

quantum numbers ke, kp is tangled with the same function
with the Landau quantum numbers both shifted by �1 (in
contrast to the general case of a moderate magnetic field,
where these numbers may be shifted by all positive and
negative integers). To be more precise, the chain consists of
two mutually disentangled subchains. The first one in-
cludes all functions with the Landau quantum numbers
ke, kp both even or both odd, and the second one includes
their even-odd and odd-even combinations. We discuss the
first subchain since it contains the lowest function with
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ke � kp � 0. Now we argue that there exists a solution to
the first subchain of Eq. (46), for which all functions

ke;pe

1;kp;pp
1
�t; z� vanish if at least one of the quantum num-

bers ke, kp is different from zero. Indeed, for ke � kp � 0
Eq. (46) then reduces to the closed set
 �

i@̂k �
P̂k
2
�m

�
��e

�

�
�i@̂k �

P̂k
2
�m

�
��p



0;pe
1;0;pp

1
�t; z���e�p

�
2���1

z2 �
P2

1

�eB�2
� t2

X
i�0;3

gii
�i���e

� 
�i���p 

0;pe
1;0;pp

1
�t; z���e�p ; pe

1 � p
p
1 � P1: (47)

In writing it, we have returned to the initial designation of
the electron and positron transverse momenta pe;p

1 . Denote
for simplicity 
kekp � 
ke;pe

1;kp;pp
1
�t; z�. If we consider

Eq. (46) with ke � kp � 1, we see that 
11 in the left-
hand side gets a nonzero contribution from the right-hand
side, proportional to
00, coming from Tike�1;kp�1, while the
other contributions—the ones from 
11, 
22, 
20, 
02 —
are vanishing according to the assumption. As the left-hand
side of Eq. (46) now contains a term, infinitely growing
with the magnetic field B, it can only be satisfied with the
function 
11, infinitely diminishing with B in the domain
(35) as

 



11��� � �
1

2eB
���1

z2 �
P2

1

�eB�2 � t
2

X
i�0;3

gii
�1�i���e

�
�1�i���p 

00��e�p : (48)

Thus, the assumption that all Bethe-Salpeter amplitudes
with nonzero Landau quantum numbers are zero in the
large-field limit is self-consistent. We state that a solution
to the closed set (47) for 
0;0 with all the other components

kekp , ke, kp � 0 equal to zero is a solution to the whole
chain (46).

The derivation given in this subsection realizes in a
formal way the known heuristic argumentation that, for a
high magnetic field, the spacing between Landau levels is
very large and hence the particles taken in the lowest
Landau state remain in it. Effectively, only the longitudinal
degree of freedom survives for large B, the space-time
reduction taking place. Equation (47) is a fully relativistic
two-dimensional set of equations with two space-time
arguments t and z and two gamma matrices �0 and �3

involved. It is covariant under the Lorentz boost along the
magnetic field—the two-dimensional remainder of the full
Lorentz group of the initial four-dimensional Minkowski
space. Since, unlike the previous works [9–11], neither the
famous equal-time Ansatz for the Bethe-Salpeter ampli-
tude [16], nor any other assumption that might imply a
nonrelativistic character of the internal motion inside the

positronium atom was made, the equation derived is valid
for arbitrarily strong binding. It will be analyzed for the
extreme relativistic case in the next section.

The two-dimensional equation (47) is valid in the space-
like domain (35). This domain of validity should cover the
region—call its size the Bohr length—where the wave
function, i.e. the solution of Eq. (47), is mostly concen-
trated. Otherwise, Eq. (47) would describe only a tail of the
wave function, and hence be of little use. In nonrelativistic
or semirelativistic consideration it is often accepted that
the wave function is concentrated within the region of the
size of the standard Bohr radius a0 � ��m��1 ’
0:5� 10�8 cm, characteristic of a positronium atom
placed in a small, if any, magnetic field. It is then estimated
that the corresponding analog of the asymptotic equation
(47) makes sense when a0 � LB, i.e. for the magnetic
fields much larger than Ba � �2m2=e ’ 2:35� 109 G.
This estimate, however, cannot be universal and may be
applicable, at the most, to the magnetic fields close to the
lower bound B ’ Ba where the value of the Bohr radius can
be borrowed from the theory without the magnetic field.
For larger fields the genuine Bohr length may be smaller
than Ba. Generally, the question of where the wave func-
tion is concentrated should be answered a posteriori by
inspecting a solution to Eq. (47). Therefore, one can estab-
lish how large the fields should be in order that the asymp-
totic equation (47) might be efficient, no sooner than its
solution is investigated. We shall come back to this point
when we deal with the ultrarelativistic situation.

Remember that the transverse total momentum compo-
nent of the positronium system is connected with the
separation between the centers of orbits of the electron
and positron in the transverse plane P1=�eB� � ~xe

2 � ~xp2 , so
that the ‘‘potential’’ factor in Eq. (47) may be expressed in
the following interesting form:

 

�

�xe
0 � x

p
0�

2 � �xe
3 � x

p
3�

2 � �~xe
2 � ~xp

2�
2 ; (49)

(cf. the corresponding form of the Coulomb potential in the
semirelativistic treatment of the Bethe-Salpeter equation in
[10,11]—the difference between the potentials in [10,11]
lies within the accuracy of the adiabatic approximation).
The appearance of P2

1 in the potential determines, in the
end, the energy spectrum dependence upon the (pseudo)-
momentum of the two-particle system across the magnetic
field, like in [10,11,19].

We shall need Eq. (47) in a more convenient form. First,
transcribe it as

 

�
i@̂
!

k �
P̂k
2
�m

�

0;pe

1;0;pp
1
�t; z�

�
�i@̂
 

k �
P̂k
2
�m

�
T

�
2���1

z2 �
P2

1

�eB�2 � t
2

X
i�0;3

gii�i 
0;pe
1;0;pp

1
�t; z��T

i : (50)

Here the superscript T denotes the transposition. With the
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help of the relation �T
i � �C

�1�iC, with C being the
charge conjugation matrix, C2 � 1, and the anticommuta-
tion relations 
�i; �5�� � 0, �2

5 � �1, we may write for a
new Bethe-Salpeter amplitude ��t; z�, defined as

 ��t; z� � 
0;pe
1;0;pp

1
�t; z�C�5; (51)

the equation

 

�
i@̂
!

k �
P̂k
2
�m

�
��t; z�

�
�i@̂
 

k �
P̂k
2
�m

�

�
2���1

z2 �
P2

1

�eB�2 � t
2

X
i�0;3

gii�i��t; z��i: (52)

The unknown function � here is a 4� 4 matrix, which
contains, as a matter of fact, only four independent com-
ponents. In order to correspondingly reduce the number of
equations in the set (52), one should note that the �-matrix
algebra in two-dimensional space-time should have only
four basic elements. In accordance with this fact, only the
matrices �0;3 are involved in (52), indeed. Together with
the matrix �0�3 and the unit matrix I they form the basis,
since �0;3 � �0�3 � �3;0, �2

0 � ��
2
3 � ��0�3�

2 � 1,

�0; �3�� � 
�0;3; �0�3�� � 0. Using this algebra and
the general representation for the solution

 � � aI � b�0 � c�3 � d�0�3; (53)

one readily obtains a closed set of four first-order differ-
ential equations for the four functions a, b, c, d of t and z.
The same set will be obtained, if one replaces in Eqs. (52)
and (53) the 4� 4 matrices by the Pauli matrices (6),
subject to the same algebraic relations, according to, for
instance, the rule �0 ) 	3, �3 ) i	2, �0�3 ) 	1. Then
Eq. (47) becomes a matrix equation,
 �

i@
!

t	3 � @
!

z	2 �
P0

2
	3 �

P3

2
i	2 �m

�
#�t; z�

�

�
�i@t
 
	3 � @z

 
	2 �

P0

2
	3 �

P3

2
i	2 �m

�

�
2���1

z2 �
P2

1

�eB�2
� t2


	3#�t; z�	3 � 	2#�t; z�	2� (54)

for a 2� 2 matrix #,

 # � aI � b	3 � ic	2 � d	1: (55)

Here I is the 2� 2 unit matrix, and four functions a, b, c, d
are the same as in (53).

The two-dimensional Bethe-Salpeter equation obtained
in the limit of a very strong magnetic field may be extended
to include an external electric field, parallel to the magnetic
field and not supposed to be strong, E	 B (see [20]). The
presence of this electric field does not create an obstacle to
the dimensional reduction. The corresponding generalized
equation may be useful for considering an ionization of

atoms and decay of positronium in a strong magnetic field
under the action of an electric field.

III. ULTRARELATIVISTIC REGIME IN A
MAGNETIC FIELD

In the ultrarelativistic limit, where the positronium mass
is completely compensated for by the mass defect, P0 � 0,
for the positronium at rest along the direction of the
magnetic field P3 � 0, the most general relativistic-
covariant form of the solution (53) is

 � � I�� @̂k�2 � �0�3�3: (56)

The point is that �0�3 is invariant under the Lorentz
rotations in the plane �t; z�. Substituting this into (52)
with P0 � P3 � 0 we get a separate equation for the
singlet component of (56),

 ���2 �m2���t; z� �
4���1��t; z�

z2 �
P2

1

�eB�2 � t
2

(57)

and the set of equations
 

��2 �m
2��3�t; z� � �

4���1�3�t; z�

z2 �
P2

1

�eB�2
� t2

;

���2 �m
2�@t�2 � 2mi@z�3 � 0;

���2 �m
2�@z�2 � 2mi@t�3 � 0

(58)

for the other two components. Here �2 � �@2=@t2 �
@2=@z2 is the Laplace operator in two dimensions. Note
the ‘‘tachyonic’’ sign in front of it in the first equation (58).

Let us differentiate the second equation in (58) over z
and the third one over t and subtract the results from each
other. In this way we get that �2�3 � 0. This, however,
contradicts the first equation in (58) if �3 � 0. Therefore,
only �3 � 0 is possible. Then, the last two equations in
(58) are satisfied, provided that ���2 �m2��2 � 0. We
shall concentrate on Eq. (57) in what follows.

The longitudinal momentum along x1, or the distance
between the orbital centers along x2, plays the role of the
effective photon mass and a singular potential regularizer
in Eq. (57). The ground state corresponds to the zero value
of the transverse total momentum P1 � 0. In this case
Eq. (57) for the Ritus transform of the Bethe-Salpeter
amplitude finally becomes

 ���2 �m
2���t; z� �

4���t; z�

��z2 � t2�
: (59)

We consider now the consequences of the fall-down-onto-
the-center phenomenon [13] inherent to Eq. (59), formally
valid for an infinite magnetic field, and the alterations
introduced by its finiteness.
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A. Fall-down onto the center in the Bethe-Salpeter
amplitude for a strong magnetic field

In the most symmetrical case, when the wave function
��x� � ��s� does not depend on the hyperbolic angle� in
the spacelike region of the two-dimensional Minkowski

space, t � s sinh�, z � s cosh�, s �
���������������
z2 � t2

p
, Eq. (59)

becomes the Bessel differential equation

 �
d2�

ds2 �
1

s
d�

ds
�m2� �

4�

�s2 �: (60)

It follows from the derivation procedure in Sec. II that this
equation is valid within the interval

 

1������
eB
p 	 s0 � s � 1; (61)

where the lower bound s0 depends on the external mag-
netic field—it should be larger than the Larmour radius
LB � �eB��1=2 and tend to zero together with it, as the
magnetic field tends to infinity. The stronger the field, the
closer to the origin s � 0 the interval of validity of this
equation extends. If the magnetic field is not sufficiently
strong, the lower bound s0 falls beyond the region where
the solution is mostly concentrated and the limiting form of
the Bethe-Salpeter equation becomes inefficient, since it
only relates to the asymptotic (large s) region, while the
rest of the s axis is served by a more complicated initial
Bethe-Salpeter equation, not reducible to the two-
dimensional form there. This is how the strength of the
magnetic field participates—note that the coefficients of
Eq. (60) do not contain it.

Solutions of (60) behave near the singular point s � 0
like s	, where

 	 � �2

���������
�
�
�

r
: (62)

The fall-down onto the center [13] occurs if �> �cr � 0,
i.e., for arbitrary small attraction, the genuine value � �
1=137 included. This differs crucially from the case of zero
magnetic field where �cr � �=8 [14]. This difference is a
purely geometrical consequence [20] of the dimensional
reduction of the Minkowski space from (1,3) to (1,1).

In discussing the physical consequences of the falling to
the center, we appeal to the approach recently developed
by one of the present authors as applied to the Schrödinger
equation with singular potential [21] and to the Dirac
equation in the supercritical Coulomb field [22]. Within
this approach the singular center looks like a black hole.
The solutions of the differential equation that oscillate near
the singularity point are treated as free particles emitted
and absorbed by the singularity. This treatment becomes
natural after the differential equation is written as the
generalized eigenvalue problem with respect to the cou-
pling constant. Its solutions make a (rigged) Hilbert space
and are subject to orthonormality relations with a singular

measure. This singularity makes it possible for the oscil-
lating solutions to be normalized to � functions, as free
particle wave functions should be. The nontrivial, singular
measure that appears in the definition of the scalar product
of quantum states in the Hilbert space of quantum mechan-
ics introduces the geometry of a black hole of nongravita-
tional origin and the idea of horizon. The deviation from
the standard quantum theory manifests itself in this ap-
proach only when particles are so close to one another that
the mutual Coulomb field they are subjected to falls be-
yond the range, where the standard theory may be referred
to as firmly established [22].

Following this theory we shall be using s0 as the lower
edge of the normalization box [21,22]. For doing this, it is
necessary that s0 be much smaller than the electron
Compton length, s0 	 m�1 ’ 3:9� 10�11 cm, the only
dimensional parameter in Eq. (60). In this case the asymp-
totic regime of small distances is achieved and the region
s < s0 beyond the normalization volume is left behind the
event horizon and may not affect the problem. In this way
the interval where the two-dimensional equations (47),
(52), (57), and (59) and hence (60) are not valid and the
space-time for charged particles remains four dimensional
is excluded.

Alternatively, we might treat s0 as the cutoff parameter.
In this case we have had to extend Eq. (60) continuously to
the region 0 � s � s0, simultaneously replacing the sin-
gularity s�2 in it by a model function of s, nonsingular or
less singular in the origin, say, a constant s�2

0 . In this
approach the results are dependent on the choice of the
model function which is intended to substitute for the lack
of a treatable equation in that region. Besides, the limit
s0 ! 0 does not exist. The latter fact implies that the
approach should become invalid for sufficiently small s0,
i.e., large B. Nevertheless, we shall also test the conse-
quences of this approach later in this section to make sure
that in our special problem the result is essentially
unaffected.

B. Maximum magnetic field

With the substitution ��s� � ��s�=
���
s
p

Eq. (60) acquires
the standard form of a Schrödinger equation,

 �
d2��s�

ds2 �
�4 �

��
1
4

s2 ��s� �m2��s� � 0: (63)

Equation (63) is valid in the interval

 s0 � s � 1; s0 � LB � �eB��1=2: (64)

Treating the applicability boundary s0 of this equation as
the lower edge of the normalization box, as discussed
above, s0 	 m�1, we impose the standing-wave boundary
condition,

 ��s0� � 0; (65)

on the solution of (63)
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 ��s� �
���
s
p

K��ms�; � � i2
����������
�=�

p
’ 0:096i (66)

which decreases as s! 1. It behaves near the singular
point s � 0 as

 

�
s
2

�
1�� 1

��1� ��
�

�
s
2

�
1�� 1

��1� ��
: (67)

Here the Euler � functions appear. Starting with a certain
small value of the argument ms, the McDonald function
with imaginary index K��ms� (66) oscillates, as s! 0,
passing the zero value an infinite amount of times.
Therefore, if s0 is sufficiently small the standing-wave
boundary condition (65), prescribed by the theory of
Refs. [21,22], can be definitely satisfied. Keeping to the
genuine value of the coupling constant � � 1=137 (� �
0:096i) one may ask, what is the largest possible value smax

0

of s0, for which the boundary problem (63) and (65) can be
solved? By demanding, in accordance with the validity
condition (61) of Eqs. (60) and (63), that the value of
smax

0 should exceed the Larmour radius,

 smax
0 � �eB��1=2 or B�

1

e�smax
0 �2

; (68)

one establishes how large the magnetic field should be in
order that the boundary problem might have a solution, in
other words, that the point P0 � P � 0 might belong to the
spectrum of bound states of the Bethe-Salpeter equation in
its initial form (3).

One can use the asymptotic form of the McDonald
function near zero to see that the boundary condition
(65) is satisfied provided that

 

�
ms0

2

�
2�
�

��1� ��
���1� ��

(69)

or

 � ln
ms0

2
� i arg���� 1� � i�n; n � 0;�1;�2; . . .

(70)

Since j�j is small we may exploit the approximation ��1�
�� ’ 1� �CE, where CE � 0:577 is the Euler constant, to
get

 ln
�
ms0

2

�
� �

n
2

������
�3

�

s
� CE; n � 1; 2; . . . (71)

We have expelled the nonpositive integers n from here,
since they would lead to the roots forms0 of the order of or
larger than unity in contradiction to the adopted condition
s0 	 m�1. For such values, Eq. (67) is not valid. It may be
checked that there are no other zeros of the McDonald
function, apart from (71). The maximum value for s0 is
provided by n � 1. We finally get

 

ln
�
msmax

0

2

�
� �

1

2

������
�3

�

s
� CE or

smax
0 �

2

m
exp

�
�

1

2

������
�3

�

s
� CE

�
’ 10�14 1

m
: (72)

This is 14 orders of magnitude smaller than the Compton
length m�1 � 3:9� 10�11 cm and is about 10�25 cm.
Now, in accordance with (68), if the magnetic field exceeds
the maximum value of

 Bmax �
m2

4e
exp

�
�3=2����
�
p � 2CE

�
’ 1:6� 1028B0; (73)

the positronium ground state with the center-of-mass 4-
momentum equal to zero appears. Here B0 � m2=e ’
1:22� 1013 Heaviside-Lorentz units are the Schwinger
critical field, or B0 � m2c3=e@ ’ 4:4� 1013 G. The value
of Bmax is �1042 G, that is, a few orders of magnitude
smaller than the highest magnetic field in the vicinity of
superconductive cosmic strings [7]. Excited positronium
states with P1 � 0, n > 1 may also reach the spectral point
P0 � P3 � 0, but this occurs for magnetic fields, tens of
orders of magnitude larger than (73)—to be found in the
same way from (71) with n � 2; 3; . . . .

The ultrarelativistic state P� � 0 has the internal struc-
ture of what was called a confined state in [21,22], i.e. the
one whose wave function behaves as a standing-wave
combination of free particles incoming from behind the
lower edge of the normalization box and then totally
reflected back to this edge. It decreases as exp��ms� at
large distances like the wave function of a bound state. The
effective ‘‘Bohr radius,’’ i.e. the value of s that provides the
maximum to the wave function (66), is smax � 0:17 m�1

(this fact is established by numerical analysis). This is
certainly much less than the standard Bohr radius a0 �
��m��1. Taken at the level of 1/2 of its maximum value, the
wave function is concentrated within the limits
0:006 m�1 < s< 1:1 m�1. But the effective region occu-
pied by the confined state is still much closer to s � 0. The
point is that the probability density of the confined state is
the wave function squared weighted with the measure
s�2ds singular in the origin [21,22] and is hence concen-
trated near the edge of the normalization box s0 ’
10�25 cm, and not in the vicinity of the maximum of the
wave function. The electric fields at such distances inside
the positronium atom are about 1043 V=cm. Certainly,
there is no evidence that the standard quantum theory
should be valid under such conditions. This remark gives
us the freedom of applying the theory presented in
Refs. [21,22].

A relation like (73) between a fermion mass and the
magnetic field is present in [23]. There, however, a differ-
ent problem is studied and, correspondingly, a different
meaning is attributed to that relation: it expresses the mass
acquired dynamically by a primarily massless fermion in
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terms of the magnetic field applied to it. The mass genera-
tion is described by the homogeneous Bethe-Salpeter equa-
tion, whose solution is understood [23,24] as the wave
function of the Goldstone boson corresponding to the
spontaneous breaking of the chiral symmetry inherent in
the massless QED. It is claimed, moreover, that the result-
ing relation between the magnetic field and the acquired
mass is independent of the choice of the gauge for the
photon propagator. The equations of Ref. [23] may well be
exploited, formally, in our problem of the compensation of
the positronium rest mass by the mass defect in a magnetic
field, too, and the resulting expression may be used for
determining the corresponding magnetic field, provided
that the electron mass m is substituted for the acquired
mass mdyn of [23]. There is, however, an important dis-
crepancy in numerical coefficients in the characteristic
exponential between (73) and the corresponding formula
in [23]: the latter contains expf�3=2=�2��1=2g in place of
expf�3=2=�1=2 � 2CEg in (73) and its direct use would lead
to a more favorable estimate of the maximum value of the
magnetic field, 2:6� 1019B0, than (73). Although the basic
mechanisms, the dimensional reduction and falling to the
center, acting here and in [23], are essentially the same, the
procedures are very much different, and the origin of the
discrepancy remains unclear. Later, in [25], the authors
revised their relation in favor of a different approximation.
Supposedly, the revised relation may also be of use in the
problem of the maximum magnetic field dealt with here.

It is interesting to compare the value (73) with the
analogous value, obtained earlier by the present authors
(see p. 393 of Ref. [10]) by extrapolating the nonrelativistic
result for the positronium binding energy in a magnetic
field to the extreme relativistic region:

 Bmaxjnonrel �
�2m2

e
exp

�
2
���
2
p

�

�
’ 10164B0: (74)

Such is the magnetic field that makes the binding energy of
the ground state equal to �2m. (This is worth comparing
with the magnetic field, estimated [26] as �2 exp�2=��B0,
that makes the mass defect of the nonrelativistic hydrogen
atom comparable with the electron rest mass). We see that
the relativistically enhanced attraction has resulted in a
drastically lower value of the maximum magnetic field.
Note the difference in the character of the essential non-
analyticity with respect to the coupling constant: it is
exp��

����
�
p

=
����
�
p
� in (73) and exp�2

���
2
p
=�� in (74). Another

effect of relativistic enhancement is that within the semi-
relativistic treatment of the Bethe-Salpeter equation [9–
11], as well as within the one using the Schrödinger
equation [1], only the lowest level could acquire unlimited
negative energy with the growth of the magnetic field,
whereas according to (71) in our fully relativistic treatment
all excited levels with n > 1 are subjected to the falling to
the center and can reach, in turn, the point Pk � 0.

Let us see now how the result (73) is altered if the cutoff
procedure of Ref. [13] is used. Consider Eq. (63) in the
domain s0 < s<1, but replace it with another equation,

 �
d2�0�s�

ds2 �
4�
� �

1
4

s2
0

�0�s� �m2�0�s� � 0 (75)

in the domain 0< s< s0. The singular potential is re-
placed by a constant near the origin in (75). Demand, in
place of (65), that �0�0� � 0, 
�00�s0�=�0�s0�� �
��0�s0�=��s0��. Then, the result (73) should be multiplied
by the factor

 exp
�
�

2�������������
4�
� �

1
4

q
cot�4�� �

1
4� �

1
2

�
: (76)

This expression may be approximately taken at the value
� � 0. Thus, the result (73) is only modified by a factor of
exp��4=3� ’ 0:25. Generally, the estimate of the limiting
magnetic field (73) is practically nonsensitive to the way of
the cutoff, in other words, to any solution of the initial
equation inside the region 0< s< s0, where the magnetic
field does not dominate over the mutual attraction force
between the electron and positron. This fact takes place
because the term ��3=2=

����
�
p
� ’ 65, singular in �, is pre-

vailing in (73), the details of the behavior of the wave
function close to the origin s � 0 being unessential against
its background.

C. Radiative corrections

1. Vacuum polarization

We should answer the question of whether the effects of
vacuum polarization in a strong magnetic field may or may
not screen the interaction between the electron and posi-
tron in such a way as to prevent the falling to the center in
the positronium atom. It is clear a priori that, no matter
how strong the magnetic field is, the ultraviolet singularity
dominates over its influence in the photon propagator, if
the interval sufficiently close to the light cone is involved.
Therefore, there is a competition between the magnetic
field and this characteristic interval, which is, in our prob-
lem, the Larmour radius that itself depends on the magnetic
field. We have to consider the outcome of this competition.

To include the effect of the vacuum polarization we
should use the photon propagator in a magnetic field,
whose influence is realized via the vacuum polarization
radiative corrections, instead of its free form (24) used
above. The photon propagator in a constant and homoge-
neous magnetic field has the following approximation-
independent structure [27–31]:

 Dij�x� �
1

�2��4
Z

exp�ikx�Dij�k�d4k; i; j � 0; 1; 2; 3;

(77)
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 Dij�k� �
X4

a�1

Da�k�
b�a�i b

�a�
j

�b�a��2
;

Da�k� �
�
�
k2 � �a�k��

�1; a � 1; 2; 3;
arbitrary; a � 4:

(78)

Here b�a� and �a are four eigenvectors and four eigenvalues
of the polarization operator �ij,

 �i
jb�a�j � �a�k�b

�a�
i : (79)

The eigenvectors are known in the final form:

 b�1�i � �F
2k�ik2 � ki�kF2k�; b�2�i � � ~Fk�i;

b�3�i � �Fk�i; b�4�i � ki;
(80)

where F, ~F, and F2 are the external electromagnetic field
tensor, its dual, and its tensor squared, respectively, con-
tracted with the photon 4-momentum k. On the contrary,
the eigenvalues �1;2;3�k� are generally unknown—subject
to approximate calculations—scalar functions of two
Lorentz-invariant combinations of the momentum and the
field, which, in the special frame, where the external
electromagnetic field is given by (7), are k2

0 � k
2
3 and k2

1 �

k2
2 � k2

?. The eigenvalue �4 is equal to zero as a trivial
consequence of the transversity �i

jkj � 0 of the polariza-
tion operator. The eigenvectors (80) with a � 1, 2, 3 are 4-
potentials of the three photon modes, while the dispersion
laws of the corresponding electromagnetic eigenwaves are
obtained by equalizing the denominators of Da�k� in (78)
with zero. In the special frame, the eigenvectors (80), up to
normalizations, are

 b�1�i � k2

0
k1

k2

0

0BBB@
1CCCA
i

� k2
?

k0

k1

k2

k3

0BBB@
1CCCA
i

;

b�2�i �

k3

0
0
k0

0BBB@
1CCCA
i

; b�3�i �

0
k2

�k1

0

0BBB@
1CCCA
i

:

(81)

When calculated [27,28] within the one-loop approxima-
tion of the Furry picture (i.e. using exact Dirac propagators
in the external magnetic field without radiative corrections)
these eigenvalues have the following asymptotic behavior
[29] (see also [28,30–32]) for large fields eB� m2, eB�
jk2

3 � k
2
0j:

 �1�k2
0 � k

2
3; k

2
?� � �

�k2

3�

�
ln
B
B0
� C� 1:21

�
; (82)

 �2�k
2
0 � k

2
3; k

2
?� �

�Bm2�k2
0 � k

2
3�

�B0
exp

�
�
k2
?

2m2

B0

B

�

�
Z 1

�1

�1� 
2�d


4m2 � �k2
0 � k

2
3��1� 


2�
;

(83)

 

�3�k
2
0 � k

2
3; k

2
?� � �

�k2

3�

�
ln
B
B0
� C

�
�

�
3�

0:21k2

?

� 1:21�k2
0 � k

2
3��: (84)

C � 0:577 is the Euler constant. Equations (82) and (84)
are accurate up to terms decreasing with B like �Bcr=B��
ln�B=Bcr� and faster. Equation (83) is accurate up to terms
logarithmically growing with B. In �1;3 we also took the
limit k2

? 	 �B=Bcr�m2, which is not the case for �2,
wherein the factor exp��k2

?B0=2m2B� is kept different
from unity. Although the components �1;2;3 contain the
growing logarithm � ln�B=B0�, the latter is yet small for
the values of the magnetic field of the order of Bmax (73).
This is not the case for the linearly growing part of (83).
The full asymptotic expansion of the polarization tensor
for large magnetic fields—however, in the static limit and
without spatial dispersion—is given in [33].

Let us inspect the contributions of the photon propagator
(78) into the equation that should appear in place of (47).
To match the diagonal form (24) corresponding to the
Feynman gauge, we fix the gauge arbitrariness by choosing

 D4�k� � �
k
2 � �1�k��

�1: (85)

In the isotropic case where no magnetic field is present, all
three nontrivial eigenvalues are the same, �a�k� � ��k�,
a � 1, 2, 3. Then, with the choice (85) in (78) the photon
propagator in this limit becomes diagonal,

 Dij�k� � �
1

k2 � ��k�

X4

a�1

b�a�i b
�a�
j

�b�a��2
� �

gij
k2 � ��k�

; (86)

since the eigenvectors (79) or (81) make an orthogonal
basis irrespective of whether the magnetic field is present
or not.

In spite of the presence [15,29] of a term, linearly
growing with the field in (83), the component D2 does
contribute in the limit of high fields into the right-hand side
of an equation to replace (57), because the ultraviolet
singularity at the distance of the Larmour radius from the
light cone dominates. To see this note that the right-hand
side of the analog of (47) should get the contribution from
D2:

 

1

�2��4
Z 
k3�0 � k0�3���e
k3�0 � k0�3���p

�k2
0 � k

2
3�

�
exp
i�kx��

k2 � �2

d4k: (87)
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After this is contracted with the unit matrix we get, for the
corresponding contribution into the right-hand side of the
equation to be written in place of Eq. (57), the expression

 �
1

�2��4
Z exp
i�kx��

k2 � �2

d4k: (88)

Once the Hermite functions (17) restrict x? in integrals like
(29) and (32) to the region inside the Larmour radius, the
region k2

? � L�2
B � m2B=B0 in the integral (88) is impor-

tant. There, however, k2 disappears due to the exponential
factor in (83) and we are left with the contribution, the
same as the one coming from the free photon propagator.
Moreover, as the light-cone singularity is formed exclu-
sively due to integration over near-infinite values of all four
photon momentum components, Eq. (88) behaves like
1=x2, the same as (24), near the light cone x2 � 0.

We need, however, to also estimate the contribution
immediately close to this singularity. To this end, let us
disregard the spatial dispersion of the dielectric constant in
the transverse plane, i.e. take �2 at the value k? � 0 in
(88). By doing so we essentially underestimate the contri-
bution of the mode-2 photon as a carrier of the electro-
magnetic interaction into the attraction force between the
electron and positron near the light cone, because we keep
the term linearly growing with the field in the denominator
for large k?, where it, in fact, disappears. This approxima-
tion does not affect the light-cone singularity, which re-
mains 1=x2, but makes the screening correction to the
singular part larger than it is. We shall see, nevertheless,
that, even within this approximation, with the screening
overestimated, the effect of the latter is small. Once our
working domain is restricted to the intervals z2 � t2 much
closer to the light cone than the Compton length, we may
confine ourselves to the condition jk2

0 � k
2
3j � m2 in the

integral (88). Then �2 (83) should be taken in (88) as

 �2 � �
2�Bm2

�B0
: (89)

Then (88) becomes the well-known expression for the free
propagator of a massive particle with the mass squared
M2 � ��2. To avoid a possible misunderstanding, we
emphasize that this mass should not be referred to as an
effective photon mass [34]. In the adiabatic approximation
of Sec. II C the dimensional reduction yields again the
prescription to disregard the dependence on x? in it by
setting x? � 0, x2 � �s2. Then the contribution from (88)
is

 

iM

4�2s
K1�Ms� ’

i

4�2s2

�
1�

s2M2

2

��������ln
Ms
2

��������
�
: (90)

Here K1 is the McDonald function of order 1, and we have
specified its asymptotic behavior near the point s2 � z2 �
t2 � �0. According to (72) near the lower edge of the
normalization volume and with the magnetic field (73) the
quantity sM � �2�=��1=2 is 0.068, and hence the second

term inside the brackets in (90) is only �7:8� 10�3.
Therefore the screening effect, although overestimated, is
still negligible, the contribution of D2 making one-half of
the full contribution of the free photon propagator consid-
ered above. The one half originates from the absence of the
factor 2 that appeared above when 
�i���e
�i���p in (47)
was later contracted with the unity I to lead to (57):P
i�0;3gii�i�i � 2. The other half comes from the contri-

bution of D1 and D4.
The quantity D3 contains only k? components that give

rise to 
ki�i���e
kj�j���p , i; j � 1; 2, in an equation to
appear in place of (32), and consequently contribute only
to the nondiagonal in the Landau quantum numbers part of
the Bethe-Salpeter equation like (40), that does not survive
the limit of a high magnetic field. On the contrary, the
contributions ofD1 and D4 do go to the diagonal part. This
occurs because these contain the components k0 and k3

carrying the matrices �0 and �3 that may lead to the term
diagonal in Landau quantum numbers, as explained when
passing from (39) to (46) and (47). It follows from (78),
(81), and (85) that the common contribution from D1 and
D4 in the (0,3) subspace is determined by the expression

 

�k2
?�

2kikj
�b�1��2

�
kikj
k2 �

kikj
k2

0 � k
2
3

; i; j � 0; 3: (91)

Then the counterpart of (87) reads

 �
1

�2��4
Z 
k0�0 � k3�3���e
k0�0 � k3�3���p

�k2
0 � k

2
3�

�
exp
i�kx��

k2 � �1

d4k; (92)

and the counterpart of (88) becomes [the spatial dispersion
across the magnetic field, i.e. the dependence of �2 upon
k2
?, being disregarded already in writing Eq. (82)]

 �
1

A�2��4
Z exp
i�kx��

k2 d4k �
1

Ai4�2x2 ; (93)

where

 A � 1�
�

3�

�
ln
B
B0
� C� 1:21

�
(94)

in view of (82). For the fields as large as B � Bmax (73) the
number A is very close to unity: A � 1� 0:04. (Its
difference from unity is the measure of the antiscreening
effect of the running coupling constant �=A for a large
magnetic field due to the lack of asymptotic freedom in
pure quantum electrodynamics).

We conclude that the vacuum polarization does not
essentially affect the falling to the center or hence the
estimate of the maximum magnetic field. This contradicts
the prescription that � should be replaced by �=2 in the
expression for the latter. Such a prescription would result if
we applied the corresponding conclusion from Ref. [23] to
the problem under consideration. The point is that in
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Ref. [23] the contribution of D2 is completely disregarded
for the reason that the term (89), linearly growing with the
magnetic field, is in the denominator of D2. We saw above
that this cannot be done: D2 essentially contributes to the
falling-to-the-center asymptotic regime of s� 10�11m�1,
where the probability to find the system is concentrated.

Gathering the results of the present consideration to-
gether, we conclude that the effect of the vacuum polar-
ization leads, in the approximation where the spatial
dispersion in the orthogonal direction is neglected, to the
replacement of Eq. (47) by the following two-dimensional
Bethe-Salpeter equation for a high magnetic field limit
including effects of the vacuum polarization,

 
i@̂k
e �m���
i@̂k

p �m��� 
�0;pe
1;0;pp

1
�xe
k
; xp
k
����

�
�
�

�

i@̂k���
i@̂k���

A�2

1

z2 �
P2

1

�eB�2
� t2

�

�0i@z � �3i@t���
�0i@z � �3i@t���

�2

�
MK1�M�z2 �

P2
1

�eB�2
� t2�1=2�

�z2 �
P2

1

�eB�2 � t
2�1=2

�

�0;pe

1;0;pp
1
�xe
k
; xp
k
���� :

(95)

Here the action of the derivatives over t and z does not
extend beyond the braces, i@̂k � i�0@t � i�3@z, and �2 �
@2
z � @

2
t . Remember that t � xe

0 � x
p
0 and z � xe

3 � x
p
3. The

equation that follows from (95) for the singlet component
in place of (57) is

 ���2�m2���t;z��
2�
�

�
1

A�z2�
P2

1

�eB�2� t
2�

�
MK1�M�z

2�
P2

1

�eB�2
� t2�1=2�

�z2�
P2

1

�eB�2� t
2�1=2

�
��t;z�:

(96)

Finally, the Bessel equation (60) for the (1,1) rotation-
ally invariant solution now becomes

 �
d2�

ds2 �
1

s
d�

ds
�m2� �

2�
�s

�
1

s
�MK1�Ms�

�
�:

(97)

We neglected the difference of A from unity.

2. Mass corrections

Mass radiative corrections should be taken into account
by inserting the mass operator into the Dirac differential
operators in the left-hand sides of the Bethe-Salpeter equa-
tion (3) or (47). We shall estimate now whether this may
affect the above conclusions concerning the positronium
mass compensation by the mass defect.

In a strong magnetic field the one-loop calculation of the
electron mass operator leads to the so-called double-
logarithm mass correction growing with the field B as [35]

 ~m � m
�
1�

�
4�

ln2 B
B0

�
: (98)

For B ’ Bmax the corrected mass is ~m � 3:45m. This im-
plies that the mass annihilation due to the falling to the
center is opposed by the radiative corrections and requires
a field somewhat larger than (73). To determine its value,
substitute ~m (98) for m and LB � �eB��1=2 for s0 into
Eq. (71) with n � 1. The resulting equation for the maxi-
mum magnetic field, modified by the mass radiative cor-
rections, Bcorr,

 

�
1�

�
4�

ln2 Bcorr

B0

�
2
� 4

Bcorr

B0
exp

�
�

������
�3

�

s
� CE

�
; (99)

has the numerical solution Bcorr ’ 13Bmax.
When going beyond the one-loop approximation by

summing the rainbow diagrams, two different expressions
for ~m were obtained by different authors. Reference [36]
reports

 ~m � m exp
�
�

4�
ln2 B

B0

�
: (100)

The use of this formula gives rise to an increase of the
maximum value by 2 orders of magnitude, Bcorr � 3:5�
102Bmax, whereas the use of the result of Ref. [37],

 ~m �
m

cos�
������
2�

p
ln B
B0
�
; (101)

would leave the maximum value practically unchanged:
Bcorr � 1:5Bmax. Finally, if the vacuum polarization is
taken into account while summing the leading contribu-
tions to the large-field asymptotic behavior of the mass
operator, the following result [38],

 ~m �
m

1� �
2� �ln

�
�� CE� ln

B
B0

; (102)

is obtained, from where the double logarithm is absent due
to the effect of the term (89) in the photon propagator when
substituted into electron-photon loops. The use of (102)
would result in Bcorr � 3Bmax.

Anyway, we see that the mass correction, increasing the
maximum value Bmax by at the most 2 orders of magnitude,
is not essential, bearing in mind the huge values (73) of the
latter. Moreover, based on the most recent results concern-
ing the mass correction [38], we conclude that the latter do
not affect the value of the hypercritical field obtained above
(73) practically at all.

IV. SUMMARY AND DISCUSSION

In this paper we have considered the system of two
charged relativistic particles—especially the electron and
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positron—in interaction with each other, when placed in a
strong constant and homogeneous magnetic field B. The
Bethe-Salpeter equation in the ladder approximation in the
Feynman gauge is used without exploiting any nonrelativ-
istic assumption. We have derived the maximum two-
dimensional form of the Bethe-Salpeter equation, when
the magnetic field tends to infinity, with the help of expan-
sion over the complete set of Ritus matrix eigenfunctions
[17]. The latter accumulate the spatial and spinor depen-
dence on the transverse-to-the-field degree of freedom. The
Fourier-Ritus transform of the Bethe-Salpeter amplitude
obeys an infinite chain of coupled differential equations
that decouple in the limit of large B, so that we are left with
one closed equation for the amplitude component with the
Landau quantum numbers of the electron and positron both
equal to zero, while the components with other values of
Landau quantum numbers vanish in this limit. The result-
ing equation is a differential equation with respect to two
variables that are the differences of the particle coordi-
nates: along the time t � xe

0 � x
p
0 and along the magnetic

field z � xe
3 � x

p
3. It contains only two Dirac matrices, �0

and �3, and can be alternatively written using 2� 2 Pauli
matrices. By introducing different masses, the resulting
two-dimensional equation may be easily modified to also
cover the case of a one-electron atom in a strong magnetic
field and/or other pairs of charged particles.

It is worth noting that the two-dimensionality holds only
with respect to the degrees of freedom of charged particles,
while the photons remain four dimensional in the sense that
the singularity of the photon propagator is determined by
the inverse d’Alembertian operator in the four-
dimensional, and not two-dimensional, Minkowski space.
(Otherwise it would be weaker).

We have made sure that in the case under consideration
the critical value of the electromagnetic coupling constant
is zero, �cr � 0, i.e., the falling to the center caused by the
ultraviolet singularity of the photon propagator as a carrier
of the interaction is present already for its genuine value
� � 1=137, in contrast to the no-magnetic-field case,
where �cr > 1=137. If the magnetic field is large, but finite,
the dimensional reduction holds everywhere except a small
neighborhood of the singular point s � 0, wherein the
mutual interaction between the particles dominates over
their interaction with the magnetic field. The dimension-
ality of the space-time in this neighborhood remains to be
4, and its size is determined by the Larmour radius LB �

�eB��1=2, which is zero in the limit B � 1. The Larmour
radius supplies the singular problem with a regularizing
length. The larger the magnetic field, the smaller the
regularizing length, and the deeper the level.

We have found the maximum magnetic field that pro-
vides the full compensation of the positronium rest mass by
the binding energy, and the wave function of the corre-
sponding state as a solution to the Bethe-Salpeter equation.
This state is described in terms of the theory of the falling
to the center, developed in [21,22], as a ‘‘confined’’ state,
different from the usual bound state. The appeal to this
theory is necessitated by the fact that the falling to the
center draws the electron and positron so close together
that the mutual field is so large that the standard treatment
may become inadequate. The maximum value is estimated
to be unaffected by the radiative corrections modifying the
mass and polarization operators.

In spite of the huge value, expected to be present,
perhaps, only in superconducting cosmic strings [7], the
magnetic field magnitude obtained may be important for
setting the limits of applicability of QED or presenting the
maximum value of the magnetic field admissible within
pure QED. The point is that, at this field, the energy gap
separating the electron-positron system from the vacuum
disappears. If the maximum magnetic field is exceeded, the
restructuring of the vacuum should take place. The vacuum
restructuring is typical of other problems—with or without
the magnetic field—where the falling to the center takes
place: the supercharged nucleus [39,40] and a moderately
charged nucleus with a strong magnetic field [41]. This
issue is, in a preliminary way, discussed in the two adjacent
papers [20,42]. The formal mechanisms that realize the
magnetic field instability and may lead to prevention of its
further growth via the decay of the confined state found
here require a further study and will be considered
elsewhere.
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