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Infrared analysis of propagators and vertices of Yang-Mills theory in Landau and Coulomb gauge
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The infrared behavior of gluon and ghost propagators, ghost-gluon vertex, and three-gluon vertex is
investigated for both the covariant Landau and the noncovariant Coulomb gauge. Assuming infrared ghost
dominance, we find a unique infrared exponent in the d = 4 Landau gauge, while in the d =3 + 1
Coulomb gauge we find two different infrared exponents. We also show that a finite dressing of the ghost-
gluon vertex has no influence on the infrared exponents. Finally, we determine the infrared behavior of the
three-gluon vertex analytically and calculate it numerically at the symmetric point in the Coulomb gauge.
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I. INTRODUCTION

In recent years there have been extensive nonperturba-
tive studies of continuum Yang-Mills theory using Dyson-
Schwinger equations in covariant Landau gauge (see
Refs. [1,2]) and in the canonical quantization approach in
the Coulomb gauge (see Ref. [3]). In the latter, Gaussian
types of wave functionals have been used for a variational
solution of the Yang-Mills Schrodinger equation for the
vacuum [4—6]. Minimization of the vacuum energy density
gives rise to Dyson-Schwinger equations, which are very
similar to the ones arising in the functional integral ap-
proach in covariant Landau gauge. Some of the relevant
Green functions also have been calculated on the lattice in
Landau gauge in Refs. [7-9] and in the Coulomb gauge in
Ref. [10]. The Green functions obtained by solving the
Dyson-Schwinger equations to one-loop order are qualita-
tively very similar to the ones obtained in the lattice
calculations, at least in the case of the Landau gauge.

In the present paper we are interested in the infrared
limit of the basic propagators and vertices arising in the
canonical quantization approach of Yang-Mills theory in
the Coulomb gauge. With an appropriate choice of the
vacuum wave functional, the corresponding generating
functional of the Green functions is structurally very simi-
lar to the one of the functional integral approach to Yang-
Mills theory in Landau gauge, differing only in the number
of relevant dimensions and in the precise form of the
action. In both cases the infrared limit of the generating
functional is governed by the ghost sector, which (up to the
number of dimensions) is the same in both gauges.
Therefore, we can treat both approaches simultaneously.
Throughout the paper, Landau gauge will refer to the path
integral quantization approach whereas Coulomb gauge
will refer to the canonical quantization approach.

Previously, the infrared limit of the gluon and ghost
propagators in Landau and Coulomb gauges were inves-
tigated in Refs. [11,12] and in Ref. [4], respectively. In
Ref. [11] two different solutions for the infrared exponents
in Landau gauge were found, while in Ref. [4], using the
angular approximation, only one solution for the infrared
exponents was found (in the canonical approach) in the
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Coulomb gauge. We also note that in Ref. [13] the infrared
behavior of the ghost-gluon vertex in the Landau gauge has
been studied.

In this paper we perform a thorough infrared analysis of
the ghost and gluon propagators as well as of the ghost-
gluon and three-gluon vertices for both Landau and
Coulomb gauge without resorting to the angular approxi-
mation. We discuss the validity of the previously known
solutions for the infrared exponents of the propagators. The
role of the ghost-gluon vertex in loop integrals is inves-
tigated and certain infrared limits of this vertex are explic-
itly calculated. Analytically, the infrared behavior of the
three-gluon vertex is determined at the symmetric point
and for one vanishing external momentum. Numerically,
we calculate the three-gluon vertex in the Coulomb gauge
at the symmetric point over the whole momentum range.
Given the Green functions in the infrared, we can confirm
the self-consistency of these solutions. Also, the infrared
fixed point of the running coupling for both the Coulomb
and Landau gauge is calculated from the infrared behavior
of the Green functions considered.

The paper is organized as follows: In Sec. II we present
the infrared form of the generating functional of the Green
function in Coulomb and Landau gauges. In Sec. III we
perform the infrared analysis of the various Green func-
tions: the ghost and gluon propagators, the ghost-gluon
vertex, and finally the three-gluon vertex. Here, we also
discuss the running coupling constant in the infrared. A
short summary and our conclusions are given in Sec. IV.
Some mathematical details of our infrared analysis of the
Green functions are presented in the appendices.

II. THE GENERATING FUNCTIONAL FOR THE
INFRARED

The generating functional of the Green functions of
Euclidean Yang-Mills theory defined by a Lagrangian
density Ly is given by

7] = N? ] @Aj[A]exp[— f dx Ly (x)

+ | d*xje(x)AL () |, (D
J }
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where the functional integration is over gauge fields, which
are restricted by a gauge condition and J[A] denotes the
corresponding Faddeev-Popov determinant. A common
and for perturbation theory convenient gauge is the cova-
riant Landau gauge

9-A=0, )

in which the Faddeev-Popov determinant is given by
J[A] = det(—d - D[A]). 3)

Here, D[A] = 0 + gA denotes the covariant derivative in
the adjoint representation of the gauge group, i.e. A%® =
A° £l with f9b¢ being the structure constants.

The generating functional (1) in the Landau gauge (2) is
also the starting point for the derivation of the coupled set
of Dyson-Schwinger equations, which to one-loop level
have been extensively investigated in recent years. For a
review see Ref. [1].

The Faddeev-Popov determinant represents the Jacobian
of the transformation to the (curvilinear) transverse ‘‘co-
ordinates” A<, satisfying the gauge condition (2). The
appearance of J[A] turns out to have crucial physical
consequences. In order to pick a single gauge field out of
the gauge orbit AV = éUDUT, U € SU(N,), it is neces-
sary to choose configurations from within the (first) Gribov
region () or more precisely from the so-called fundamental
modular region, which is a compact subset of the Gribov
region and free of gauge copies.

In the canonical quantization approach to Yang-Mills
theory, one uses the Weyl gauge Ay = 0 to avoid the
problems arising from a vanishing of the canonical mo-
mentum conjugate to Ay. Furthermore, Gauss’s law, which
here is a constraint on the wave functional to guarantee
gauge invariance, is conveniently resolved in the Coulomb
gauge defined by Eq. (2) for A; = 0 [3]. The Yang-Mills
Schrodinger equation in the Coulomb gauge has been
variationally solved in Refs. [4,5] with the following ansatz
for the vacuum wave functional

W,[A] = NTA)
xewl =3 [FlohWot a0 | @

where w(x, y) is a variational kernel and A is a real pa-
rameter. The choice A > 0 seems to be appropriate since it
enhances field configurations near the Gribov horizon
where J[A] = 0. It turned out that in one-loop approxima-
tion to the Dyson-Schwinger equations arising from the
minimization of the energy density, the resulting infrared
behavior is independent of the value of A. Instead, it is the
occurrence of the Faddeev-Popov determinant in the
Hamiltonian that is crucial to the Dyson-Schwinger equa-
tion [5]. In order to investigate general features common to
both the Coulomb and the Landau gauge, we now intro-
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duce a generating functional that facilitates the evaluation
of expectation values of field operators in the Coulomb
gauge':

7O = (v exp[ [ d3xjf<x>A?<x>}|«v>
- N2 / DAT'M[A]

Xexp|:— ] FxL(x) + j d3xj;?(x)A§’(x):|, 5)
where
L(x) = [ /AT (x) o (x, ')A (). ©)

Setting A = 0 without loss of generality, as mentioned
above, a reinterpretation of the Faddeev-Popov determi-
nant by means of Grassmann valued ghost fields becomes
feasible and one can subsequently use common Dyson-
Schwinger techniques to derive the equations for the Green
functions.

From Egs. (1) and (5) it is evident that apart from
approximations, the expectation values in Landau and
Coulomb gauge follow from the same generating func-
tionals by merely swapping the dimension (either d = 3
or d = 4) and the respective actions. The infrared behavior
in the Coulomb gauge, in particular, is well described by a
stochastic type of vacuum, as argued in [5,15]. That is,
setting W[A] = 1 will yield the correct infrared behavior
since it is dominated by the Faddeev-Popov determinant,
i.e. by the curvature in orbit space. This circumstance,
called “ghost dominance,” corresponds to setting A = 0
and £ = 0 in Eq. (5). In the Landau gauge, ghost domi-
nance was found as well [2,12], i.e. setting Ly = 0 will
not affect the solution in the infrared. One is led to the
conclusion that the infrared behavior of the solutions of
Dyson-Schwinger equations are the same in Coulomb and
Landau gauge, if we consider d = 3 and d = 4, respec-
tively. Therefore, calculating moments of the following
generating functional that solely involves the Faddeev-
Popov determinant,’

"The integration of the path integral should be restricted to the
fundamental modular region A C () which is free of gauge
copies. However, integrating over ) will yield the same expec-
tation values [14]. Integration over () is understood in the
following.

*Integrating in a compact region such as () ensures conver-
gence of the path integral [15].
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707, o, 5] = N [ DA f Dlce]
X exp[fd"x(—ED[A] cdc+jA
+5'-c+5-0')} @)

one recovers the correct expectation values of spatial com-
ponents of field operators in the Coulomb gauge by setting
d =3 and also the correct expectation values of field
operators in the Landau gauge by choosing d = 4, as far
as the infrared is concerned.

III. INFRARED ANALYSIS OF GREEN FUNCTIONS

The truncated set of Dyson-Schwinger equations (DSEs)
that govern the Green functions of the theory defined by
Eq. (7) can be solved analytically in the infrared limit. To
do so, we make the ansatz that the propagators obey power
laws in the infrared and determine the values of the ex-
ponents. The investigation of the vertex functions, in par-
ticular, the ghost-gluon and the three-gluon vertex then
follows by investigating the corresponding Dyson-
Schwinger equations.

In the following it will be sensible to study Dyson-
Schwinger equations in d-dimensional Euclidean space-
time. One may then specify to the Green functions of the
Yang-Mills vacuum in the Landau gauge by setting d = 4,
or the Landau gauge high-temperature phase for d = 3
[16]. In the Coulomb gauge, one can derive Dyson-
Schwinger equations for equal-time Green functions which
corresponds to the choice d = 3.

A. Propagators

In Refs. [11,12], a solution for the infrared behavior of
the propagators was previously obtained. We briefly review
here the derivation of these results and critically analyze
the approximations made. On the basis of our analysis we
will have to discard one of the solutions found in Ref. [11].

The crucial dynamical properties of Yang-Mills theory
are accessible via the computation of its two-point Green
functions, i.e. the ghost propagator,

D)= [ tete o = gt S

8§ P
®)

as well as the gluon propagator,
Dil,(p) = f dx(A% (x)AL(y)ye P ()

Z
= 0%, (PDAp) = 67, 2R )

These expectation values as well as the set of DSEs that
entangles them with higher n-point Green functions can be
derived from the generating functional, see e.g. [1,4]. Part
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of the information about the infrared behavior of the ghost
and the gluon propagator can be extracted from the ghost
DSE. Using the bare ghost-gluon vertex,” it reads

G (p) = ; N, [ d€(1 — (@ - PRIDHODGE — p),

(10)

with € = % where the integral is represented by the self-
energy diagram shown in Fig. 1. This integral bears an
ultraviolet divergence for both three and four dimensions,
due to the ultraviolet behavior of the propagators. It can be
conveniently subtracted by making use of the horizon
condition [17],

}Jig(l)G_l(p) =0, (1)
to find the finite expression
G '(p)=G(p)—G(0)
—gN, j € 7(0)(1 ~ (£ pPID(6) — Do (€ — p)).
(12)

Aiming at the behavior of G(p) for p — 0, it is instructive
to assume that below some intermediate momentum scale
¢, the propagator dressing functions obey

G(p) = G(p) = —2
(p7)%e (13)
. A
Z(p)—= 2" (p) = —5—. p<&
(p*)

As done in Refs. [11,12], the integral in Eq. (12) can be
analytically evaluated if we naively replace the propaga-
tors in the integrand by the power laws given by Eq. (13),
even though the integration is over all space. This proce-
dure is referred to as ““infrared integral approximation”
from now on. It leads to the following representation of the
integral Eq. (12) in the infrared

(p?)ee = (pHld=D/2~ac-azABIN (g, ay)
+ Og(p?), (14)

where [I; is a dimensionless number calculated in
Appendix A, see Eq. (A14), and ®; is the error to account
for the infrared integral approximation. Neglecting this
error, one obtains the “‘sum rule”

FIG. 1. The (complete) Dyson-Schwinger equation for the
ghost propagator, denoted by a dashed line with a full blob.
The curly line represents a connected gluon propagator and the
vertex with an empty blob is a proper ghost-gluon vertex.
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integration
space

FIG. 2. Sketch of the integration space of (12) for p <¢.
Inside the full circles, the propagators are given by their infrared
behavior. Adding and subtracting the infrared power laws out-
side the circles makes it possible to evaluate the integrals
analytically.

d—4
az+2aG =T, (15)

along with
AB’N_I;(k) = 1. (16)

The infrared ghost exponent « := a can then be found
by plugging Eq. (16) into the gluon DSE, as will be done
below.

Before that, however, let us make an estimate for ®; in
order to understand which values of « are at all consistent
with the sum rule (15), and when it is reasonable to make
use of the infrared integral approximation. What happens
when employing the replacements (13) can be visualized
by Fig. 2. For any generic self-energy type integral,

= f dEDO)D(C — p), a7

the integration space can be divided into regions where the
factors in the integrand yield the infrared power law and
ones where they do not.* Here, inside of a d-dimensional
sphere of radius ¢ around the origin, one has D({) =
DU)(¢), and inside a sphere displaced by p, one finds
D( — p) = DU(¢ — p). The crucial point is that it is
only inside of these spheres, where the integrand may
become nonanalytic, i.e. the ghost propagator has a pole
at vanishing momentum, due to the horizon condition. As
long as p < ¢, we can always find a third sphere in the
intersection of the two others, see Fig. 2, inside of which all
possible poles of the integrand lie. If we then add and

?A discussion of a more general form of the vertex will follow
further below.

*The following arguments can be applied as well to non-
perturbative one-loop integrals of higher n-point functions.
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subtract DU (€)DU)(€ — p) outside the third sphere, it
becomes possible to represent the original integral / by a
sum of integrals. Asymptotically, as p — 0 and all three
spheres intersect, this sum reads

= f d4€D ()D€ — p)
(<¢

+ f €D ()W (¢ — p)
(=¢

+ f d“¢D ()D€ — p)
(=¢

- f dH€DN(O)DI (€ — p)
t=¢

and we can define the first term plus the third term to be
I, = fdd{ZD(i’)(f)D(i’)(f — p) = I — @, the infrared inte-
gral approximation of /. I is an integral which regards the
integrand factors as the infrared power laws (13) over all
space and ‘‘captures’ any singularities of the original
integrand. The error of the approximation, ® = [ — [,
integrates analytic functions and we can therefore expand
it into a power series,

O(p?) = > a,(p?)",

n=0

p—0, (18)

which is finite at p = 0. The integral [, on the other hand,
diverges as p — 0 for those values of the infrared expo-
nents where I, exists. This can be understood from the
convergence criteria for two-point integrals given in
Appendix A. @ is then negligible for p — 0 and one can
set I = I. On the contrary, if p < £ is not satisfied, the
term @ does have a substantial contribution, as can be seen,
e.g., in numerical calculations in Sec. III C.

Returning to the ghost DSE (12), we note that the
renormalization plays an important role for the error @
of the infrared integral approximation. Within the subtrac-
tion of the UV divergence the term with n = 0 cancels in a
power series such as (18). We therefore find ®;(p?) =
O(p?) and infer that we can neglect this term for p — 0 in
the sum ®;(p?) + (p?)© of Eq. (14) as long as

O0<k=ag<l (19)

The lower bound is due to the horizon condition (11). On
condition of the above relation, the sum rule (15) is sat-
isfied. For values of x with k = 1, the power series @
does have to be taken into account, and one arrives at a sum
rule different from (15). However, those values are dis-
carded since they do not allow for Fourier transformation
of the propagators.

Turning our attention to the gluon propagator DSE, we
note that since the Faddeev-Popov determinant J[A]
dominates the infrared, only the ghost loop has to be in-
cluded. This has been found in the Landau gauge [2,12] as
well as in the Coulomb gauge [4] for the equal-time gluon
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QBQY = e Qo
.’/

N

FIG. 3. The (truncated) Dyson-Schwinger equation for the
gluon propagator. In the infrared, other terms are negligible.

propagator. After contracting the gluon DSE with the
transverse projector and taking the trace, we find [11]

Z7(p) = N o [ e — G 0

X Dg(€)Dg (€ — p); (20)

see Fig. 3. Employing the infrared integral approximation
for the above expression might introduce a spurious ultra-
violet divergence, depending on the value of «. Of course,
this divergence has to cancel with the error ®, of the
approximation, since a choice of the infrared behavior of
the integrand will not affect the ultraviolet. Hence, there is
no lower bound on « other than the horizon condition. The
upper bound given by Eq. (19) guarantees convergence of
the integral in the infrared. We then find

(p?)e7 = (pP=D/2"2KAB2N 1, (k) + P, (p?),
p—0, 21D

where I,(k) is given in Appendix A, Eq. (A15). The error
@, is completely negligible since it approaches a finite
constant in the infrared limit whereas the other terms
diverge. This can be understood by noting «ay =
(d —4)/2 — 2k <0 for k> 0. Thus, for p — 0, Eq. (21)
reproduces the sum rule (15) and gives

AB*N_ I,(k) = 1. (22)
Along with Eq. (16), this leads to
I6(k) = I5(k), (23)

the conditional equation for . For d = 4, the Landau
gauge case, only one unique solution lies in the range given
by Eq. (19), k¥ = 0.595 [11,12]. The solution k") = 1,
claimed in [11], could not be confirmed.’ In the case d =
3, applicable for the Coulomb gauge, we find two solu-

tions, \” = 0.398 and «' = 1/2, in complete agreement

with [11]. Only one of them, K(ZC), is found using the

angular approximation [4]. Numerical calculations in [4]
approximately approach the other value K(IC). However, an

improvement of the numerical methods shows that K(2C) is
also a stable solution [18]. The latter would result in a

>The reason is that %=lim,(_,l%| dea #limy_ 4 X
(lim,(ﬁlfég';))= 1. Furthermore, for k = 1 the term ® is not

negligible in Eq. (14).
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Coulomb potential that rises strictly linearly. Which one of
the solutions is energetically favored is therefore an inter-
esting issue that is yet to be investigated.

B. Ghost-gluon vertex

The infrared behavior of the ghost-gluon vertex in the
Landau gauge of SU(N,.) Yang-Mills theory for both d = 4
and d = 3 was investigated in Dyson-Schwinger studies
[13,19] and in lattice calculations for SU(2) and d = 4
[8,9]. It was found that its nonrenormalization which holds
to all orders of perturbation theory [20], remains valid in
the nonperturbative regime. An appropriate question to ask
is, to what extent does a finite dressing of the ghost-gluon
vertex influence the numerical solution for the infrared
exponent k of the propagators?

Leaving aside the color structure which is assumed to be
that of the bare vertex, i.e. f**°, we denote the proper
reduced ghost-gluon vertex by I, (k; g, p) where k is the
outgoing gluon, ¢ the outgoing ghost and p the incoming
ghost momentum. Following Ref. [12], a quite general
ansatz for the ghost-gluon vertex is®

. kNl f g \mi [ p\ti
I, (kg p) = lngZC,(;) (;) <;> , (24)

where the constraint /; + m; + n; = 0, Vi, guarantees the
independence of the renormalization scale o, i.e. nonre-
normalization of the vertex. It is readily shown [12] that the
sum rule (15) is not affected by a dressing of the ghost-
gluon vertex such as (24), since it turns into

—4
ay + 2(1G = dT + Z(l’ + m; + I’ll‘). (25)

Further investigations in [12] showed that the value for «,
determined by Eq. (23), only slightly depends on the values
of {li’ m;, I’li}.

Since neither the DSE studies [13,19] nor the lattice
calculations [8,9] show any infrared divergences, the dress-
ing function of the ghost-gluon vertex must be some finite
function. To investigate the consequences of a finite dress-
ing function of the ghost-gluon vertex, let us assume, for
simplicity, that it is given by a finite constant,

T.(kiq. p) = CTY(q). (26)

where I‘E?) (q) = igq, is the bare ghost-gluon vertex. Then,
the infrared analysis of the propagators can be performed
in the same way as above. The ghost self-energy and the
ghost loop are both multiplied by the constant C. In
Eq. (23), this constant appears on both sides to one power
and thus trivially cancels. Therefore, a constant dressing of

6Generally, there is another component along the gluon mo-
mentum which, however, has no contribution when contracted
with a gluon propagator. Therefore, it can be discarded.
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the ghost-gluon vertex is completely irrelevant for the
infrared behavior of the propagators.

The question that arises is if a nonconstant dressing of
the ghost-gluon vertex might result in a change for the
determining Eq. (23) of «. The investigations in [13]
showed that after one iteration step of the ghost-gluon
vertex DSE, the vertex remains approximately bare over
the whole momentum range, i.e. C = 1. Also, the results in
[13] confirmed the well-known fact [20] that for vanishing
incoming ghost momentum p, the ghost-vertex becomes
bare in the Landau gauge.” It is essential for the proof given
in Ref. [20] that the gluon propagator is strictly transverse.
It has been argued that the same holds true for the Coulomb
gauge [21], where the gluon propagator is transverse as
well. If we discard the irrelevant component of the vertex
along the gluon momentum &, I',, also becomes bare for
vanishing outgoing ghost momentum ¢ [12,19], i.e.

: . 5 . _ 10
ggg)l“ﬂ(k,q, p) ggg)l“ﬂ(k,q, p)=TJ(@. @7

However, the infrared limits of the ghost and gluon mo-
menta are generally not interchangeable.8 In particular,
zero gluon momentum yields a dressing that is different
from one, although quite close to it, as we will see. The
following relation shall redefine C:

CT(g) = lim(liml, (k; ¢, p)) # lim(lim[, (k; g, p))

=TI'(g)

Does C # 1 or a nonconstant C affect Eq. (23)? To see
this, it is not necessary to get involved in a numerical
calculation but we can argue qualitatively instead.
Consider any loop integral that involves the ghost-gluon
vertex. Wherever it may appear in the loop diagram, the
ghost-gluon vertex is always attached to ghost propagators.
The integrand will be strongly enhanced for those loop
momenta where the ghost propagator diverges, i.e. for p —
0. Since the gluon propagator, on the other hand, is finite

q—0. (28)

"This agrees with the corresponding Slavnov-Taylor identity
in the Landau gauge.

8In this context, one might note that the infrared limit of any
tensor integral is nontrivial. Given an integral

I,UvIMZmll«M ({p(l)}) = j-dd}ee,ulel—’«z e fMMf(& {p(i)}):

we can construct a tensor basis from the external scales {p®} and
Lorentz invariant tensors. According to the Passarino-Veltman
formalism, the above integral can then be expanded in this basis,
which is nothing but solving a set of linear equations for the
expansion coefficients in this basis. If one sets up a tensor
expansion for finite {p?} and then tries to perform the infrared
limit of a single external momentum, say p(k) — 0, the coeffi-
cient matrix becomes singular, and the tensor expansion is not
well defined. Instead, one can set p¥) = 0 from the beginning (if
the integral exists here) and construct the tensor basis spanning a
vector space which is of a lower dimension than originally. The
expansion coefficients are then well defined.
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for all momenta, any infrared singularities in the integrand
of the loop integral can actually be due to the ghost
propagator only. The ghost-gluon vertex does not introduce
any additional singularities, since its dressing function is
finite. For the value of the integral, the singularities in the
integrand will give the dominant contribution. The only
value of the dressing function of the ghost-gluon vertex
that is relevant to the integral is then the one where any of
the ghost momenta vanish. According to Eq. (27), the
vertex is bare in these limits. We can, therefore, infer that
in any loop integral the bare ghost-gluon vertex will yield
the correct result. This circumstance can thus be traced
back to the horizon condition and the transversality of the
gluon propagator.

Nevertheless, the constant C, defined by Eq. (28) is not
entirely meaningless since the introduction of a running
coupling, see Sec. III D below, makes use of it. One can
actually analytically calculate C by means of the DSE for
the ghost-gluon vertex [13], see Fig. 4,

T,k q p) =T () + TPk g, p) + T (ks , p).
(29)

Here, chz) is a graph with two full ghost and one full
gluon propagator in the loop,

N,
FELGGZ)(k; ap) = - fddel“g?)(—@Daﬁ@ - q)

XTglg —€;—p, —€ — k)Dg({ + k)
X T, (k; €, € + K)Dg(0), (30)

and FE?ZZ) has two gluon and one ghost propagator in the
loop, but involves a proper reduced three-gluon vertex

r

nvp>

N,
L. p) = =5 [aer@(@De(e — o
XTg(l + k;qg =€ p)Dg,(€ + k)
XT .,k €, —€ — k)D,,(£). (1)

/.LV/J(
Since I', (k; g, p) exists in the limit k — 0 [8,9,13], we
set k =0 in the integrands which greatly simplifies the
tensor structure of Eqs. (30) and (31). Furthermore, the
proper ghost-gluon vertices that appear in the loop inte-
grals are rendered bare, as discussed above. We then get

,,‘,

vl

FIG. 4. The (truncated) Dyson-Schwinger equation for the
ghost-gluon vertex.
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AN,
'%2)(0; g, q) = ig’C— ]dd”al)aﬂ(e ~@)qply
X D%(¢), (32)

and

N,
%90, ¢, q) = g f d"q,q5D 4, (€)Dg,({)
X Dt = T,y (0:6. 0. (33)

Naively, we would expect from ghost dominance in the
infrared that the contribution (33) is subdominant since it
incorporates only one and not two ghost propagators, like
(32). Using a bare three-gluon vertex, we can calculate
both integrals for ¢ — 0 in the infrared integral approxi-
mation and indeed find that (33) becomes negligible. The
dominant part of the two is then (32), and it gives (see
Appendix A)

. N,

tm T 0:0.9) = T (@)5°C [ d6Copa)tanlt ~g)
X DG(6)Dz(€ — q) (34)

(d—1) ['(d -2 + k)2

d(1+2k) TOIE — ©)*T(1 — 4+ 2k)
(35)

=TI (g)C

which agrees exactly with the results of numerical calcu-
lations of (29) in this limit [19]. Because of this agreement,
we infer that the error introduced by the infrared integral
approximation, employed for the calculation of (32) and
(33), vanishes.

If the dressed three-gluon vertex is included, see below,
the graph (33) has a substantial contribution to this limit of
the ghost-gluon vertex. The calculation is then somewhat
more involved, see Appendix A, but one can extract the
values for C in all cases at hand:

1.108 ford=4, «k=«") ~0.595
C=11.089 ford=3, «=«'"=0.398 (36)
1 ford=3, k=r"=1

It is quite remarkable that in the Coulomb gauge with the
solution K(2C) = 1/2, the two nontrivial graphs that appear
in the DSE for the ghost-gluon vertex show an exact mutual

cancellation in the infrared gluon limit,

lirr(l)(FLGGZ)(O; q,q) + Ffzz)(O; g, q) = 0. (37)
e

Therefore, the interchangeability of limits is recovered in
this case only and the ghost-gluon vertex becomes bare in
all infrared limits. Note also that the results (36) are
independent of N.. The color trace that occurs in the
loop diagrams of Eq. (29) yields a factor of N,./2, see
Egs. (30) and (31), but it cancels with the propagator
coefficient term AB?> = 1/(IgN.).
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C. Three-gluon vertex

As mentioned in Sec. II, it is only the Faddeev-Popov
determinant that influences the infrared behavior of Yang-
Mills theory. The solution obtained for the infrared expo-
nents of the propagators was found to be independent of the
three-gluon vertex, in particular, since it does not contrib-
ute to the ghost self-energy term or the ghost loop contri-
bution to the gluon self-energy. In the Coulomb gauge, we
have seen that any of the vacua W,[A] given by Eq. (4)
minimizes the energy with respect to A, evaluated to one-
loop order in the DSE (two-loop order in the diagrams for
the energy). The question is how the three-gluon vertex
changes in the infrared for different values of A without
resorting to the one-loop approximation.

The full three-gluon vertex is defined as

rabe (x, y, 2) = (WIAL ()AL (0AS()[P).  (38)

uvp

In the particular case of A = 1/2 it is found that
f DAAA,A e [44 =0 (39)

by symmetry. Hence, the three-gluon vertex vanishes for
12 [4]. Now consider the case A # 1 /2. In [5] it has been
found that the Faddeev-Popov determinant can be written
to one-loop order as

1T = exp| ~ [l s AL | 40)

with y being the curvature of the space of gauge orbits, i.e.
the ghost loop contribution to the gluon self-energy. In this
form, J merely modifies the inverse gluon propagator w
that occurs in Eq. (5) according to

w(x, x")— Qx, x') = ol x') = 2A = Dy(x, x'). (41)

The subsequent determination of {) by minimizing the
vacuum energy guarantees that () always is the same
function, regardless of the A chosen. In particular, ) =
w for A = 1/2. Therefore, all expectation values are the
same to one-loop order in the equation of motion, so the
three-gluon vertex vanishes for any A.

On the other hand, without the use of the one-loop
approximation, A # 1/2 will give a nonzero three-gluon
vertex, in contrast to Eq. (39), as will be shown. Thus, the
three-gluon vertex shows great sensitivity to the choice of
the vacuum wave functional ¢,, a behavior not exhibited to
one-loop order. Making the choice A =0 permits the
standard representation of the Faddeev-Popov determinant
by ghosts. In the following, the infrared behavior of the
three-gluon vertex for this case will be explored following
the treatment in [22].

The Dyson-Schwinger equation for the three-gluon ver-
tex is derived in Appendix B and depicted diagrammati-
cally in Fig. 5. Its complete form comprises a diagram with
the unknown two-ghost—two-gluon vertex which is trun-
cated here. The finite ghost-gluon vertex appears here in a
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loop integral and can therefore be set to its bare value
throughout, according to the discussion given below
Eq. (28) in the last subsection. Assuming tree-level color
structure for all of the correlation functions and Fourier
transforming the truncated DSE, one arrives at

L., (p1s P2 p3) = N, fdd{ZDG(k)DG(pS + k)Dg(k — ps)

X TQOTV (€ — p )TV + py) (42)
|
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where the outgoing momenta obey the conservation law

p1tpy+p3=0. (43)

The vertex given by Eq. (42) is projected onto the tensor
subspace spanned by the tensor components of the tree-
level vertex. Because of Bose symmetry, the coefficient
functions of these six components are all the same, but
their signs alternate as the vertex without the color struc-
ture is antisymmetric under gluon exchange. One finds

U(P1 P2 p3) = —i(p2) u8,,F(p3, p3, p3) + i(p3),.8,,F(p3 pt p3) + i(p1),8,.,F(p? p3 p3)

- i(p3)v8,u.pF(p%: p%’ p%) - l(pl)pa,u,vF(p%’ p%’ P%) + l(pZ)pa,u,vF(p%’ P%; p% .

(44)

Equating Eq. (42) with (44) and contracting with these six tensors, yields a set of six linear equations for F, the solution of

which reads

_NC
10(p7p3 — (py -
+ (P} + p1 - p)(2J, — 345+ Jg))

F(pi, p3. p3) =

where
Ji = (p; - O Jy 1= (py - )
J3 = (py - O)(py - ) Jy = p3? (46)
Jsi=(py- €  Jo:=(p1- p)*

The integral (45) depends only on the ghost propagator in
this truncation, and despite the infrared enhancement of the
latter it is convergent. The numerical calculation of the
form factor F at the symmetric point, where p? = p3 =
p3 =: p?, shows a strong infrared divergence, see Fig. 6.
For the ghost propagator we used the numerical results of
Ref. [4] where «k = 0.425 = «\*). A fit to the data in Fig. 6
yields an infrared power law such as F(p?) ~ (p?) =177, If
we employ the infrared integral approximation to calculate
the symmetric point analytically, a power law behavior can
be extracted as well. By momentum scaling of the integra-
tion variable in Eq. (45), € — A, one finds F(p?) ~
(p?)4/2=273x  Plugging in the value k = 0.425 obtained
numerically in [4] gives an infrared exponent of —1.775
which agrees (within errors) with the numerical result. This
shows that the infrared integral approximation becomes
exact as the external momenta vanish. Only in the ultra-
violet there is a deviation from the infrared power law

§ g
-2 /’ b\ + ./\ ’
SOOn 550,

FIG. 5. The (complete) DSE for the three-gluon vertex derived
from the generating functional given in Eq. (5).

3 d¢Ds(0)Dg(ps + €)Dg(€ — py)(p7 + py - p2)(—=2J5 — Jy4 + 3J5)
P2)°)

(45)

{
which can be clearly explained by the error of the approxi-
mation. At large momenta the vertex vanishes which com-
plies with asymptotic freedom since in this approximation
there is no tree-level vertex, due to Eq. (6).

The above results for the infrared behavior of the
Coulomb gauge three-gluon vertex can be generalized to
any value of « and any dimension d. Therefore, we can also
make statements about the Landau gauge. Noting that
d/2 -2 -3k = a; — ag, see Eq. (15), we find

1
AN
F(p*) (

S — 47
pZ)aG—aZ ( )

With the analytical results for « in Coulomb (d = 3) as
well as in Landau (d = 4) gauge, this yields

T T T T T T T T

1e+09 F

1e+06 F

1000 F

F(p.p".p N,

0.001F

1e-06 €

p/ o)

FIG. 6. Dressing function of the Coulomb gauge proper three-
gluon vertex at the symmetric point. The dashed curve shows in
contrast the perturbative case where the propagators in the loop
are bare, i.e. k = 0.
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s ford =3,k =k{" = 0398

(p
F(p*) = (plz)z for d = 3, k=0 =1

oyms ford=4, k=« = 0595
(48)

The Landau gauge result agrees exactly with Ref. [2].

Another interesting kinematic point is the one where one
of the gluon momenta, say p,, is set to zero while the others
remain finite. Trying to calculate this point from Eq. (44)
by setting p; = 0, the projections onto the tensor compo-
nents fail as the determinant of the coefficient matrix that
defines the tensor expansion vanishes in this case. It is
advisory to impose p; = 0 in the DSE (42),

T,,,0. p,—p) = —ig*N, f U6, (€~ p). L,
X D2(0ODG(€ — p). (49)

One can then realize that this integral exists. It can be
expanded into a tensor basis constructed by the only scale
p and Lorentz invariant tensors, i.e. {p,0,, P,6,u
P06} However, the only component that survives the
transverse projections of the gluon propagators attached to
the legs of I',,,,, with finite momenta, is obviously p,d,,.
Thus, we can write

) 1
F,MVp(O’ P, _P) = _lg3Ncpy,5mePat,3’y(p)

x f €4, 00, DE(ODG(E — p) + ...
(50)

where the ellipsis represents irrelevant tensor components
which shall be discarded henceforth. Using the infrared
integral approximation, we find a finite expression, see I3
in Appendix A, which makes the three-gluon vertex

I3

F,uvp(o’ b, _P) = _iBBNcp,uBVp W;

p—0.
(5D

The error can be ignored due to the infrared enhancement
of (51).

In view of the strong infrared divergence of the three-
gluon vertex, one has to check for ghost dominance in the
propagator DSEs, which simply states that one is to count
the infrared exponents of the propagators in the loop [15].
However, the vertex functions have to be taken into ac-
count, too [2]. The infrared power law of the three-gluon
vertex (47) expresses that the vertex dressing replaces the
infrared exponent of a gluon by that of a ghost propagator,
for any dimension d. The infrared hierarchy of terms in the
gluon DSE remains untouched, since even with the dress-
ing of three-gluon vertex, terms involving it remain sub-
leading in the infrared. For example, the gluon loop, which
has an infrared exponent of d/2 — 2 — 2a, with a bare

PHYSICAL REVIEW D 73, 125019 (2006)

three-gluon vertex, attains an infrared power law with the
exponent d/2 —2 — a; — ag if the vertex is dressed.
Clearly, this term is still subleading with respect to the
ghost loop which bears an infrared exponent of d/2 — 2 —
2CYG.

D. Infrared fixed point of the running coupling

A renormalization group invariant that qualifies as a
nonperturbative running coupling can be extracted from
the ghost-gluon vertex and is given by [8]

Zy(p1) Z3(p?)
N2 .
Zi(p?)

Here, ay = g3/4m is the bare coupling constant and

Zé/ 2(p?), Z;/ %(p?) are the gluon and ghost field renormal-
ization functions, respectively. According to the definition
of the renormalization function Z 1(p?) of the ghost-gluon
vertex in [8], we find that Z; '(0) = C, with C given by
Eq. (36).” In the Landau gauge (d = 4) this leads to an
infrared fixed point a, = a(0),

AB?C? 8.915
a(CL) =— =~ C?
47 ) N,

a(p®) = ag (52)

~10.94
k=) N, '

(33)

Up to the vertex correction C?, this value was found in [12].
Although the result (53) holds for both Landau and the
interpolating gauges [21], the Coulomb gauge limit reveals
an infrared fixed point different from it, even if C = 1. By
definition [21] one gets

© _ 4AB2C?
ay = ——/——

37 54

k=x(O

With the values for the integral I;(k) at d = 3 for the

solution K(lc) = (.398, and the vertex correction C? =
1.187, this yields

1421

11.99
CY(CC)|K (O C? o (55)
K:K] C

c

For the other Coulomb gauge solution, where K(2C) =1/2
and the vertex correction vanishes, we find
16w 16.76

©
e 3N, N,

|K:K(2C) = (56)
Among the interpolating gauges, the running coupling
appears to have an infrared fixed point that changes dis-
continuously in the Coulomb gauge limit.

A second possibility for a definition of a running cou-
pling is given by the instantaneous Coulomb potential
which is singular in the infrared [15]. These two choices

°Note that we have used the definition of C in Eq. (28). With
the infrared limits not being interchangeable generally, an alter-
native renormalization prescription of the ghost-gluon vertex
would give C = 1.
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clearly disagree on the description of long-range interac-
tions. It is known that the Coulomb string tension is an
upper bound for the string tension extracted from the
Wilson loop [23].

IV. SUMMARY AND CONCLUSIONS

We have studied the infrared limit of the ghost and gluon
propagators as well as of the ghost-gluon and three-gluon
vertices to one-loop order in both Coulomb and Landau
gauge assuming ghost (loop) dominance in the infrared.
From the Dyson-Schwinger equations we have found that
there is a unique infrared exponent in the Landau gauge,
while there are two different exponents in the Coulomb
gauge corresponding presumably to different minima of
the energy density. It would be interesting to determine
which one corresponds to the absolute minimum of the
energy density. In the Coulomb gauge for one of the
infrared exponents we found an exact cancellation between
the two-loop diagrams of the DSE for the ghost-gluon
vertex. This vertex is infrared finite in both Landau and
Coulomb gauge. We have also shown that a finite dressing
of the ghost-gluon vertex does not modify the infrared
exponents. The three-gluon vertex was found to be infrared
divergent with approximately the same infrared exponent
in Coulomb and Landau gauges. Furthermore, the infrared
divergence of the three-gluon vertex does not spoil the
infrared dominance of the ghost loops over the gluon loops.
We also calculated the three-gluon vertex numerically in
Coulomb gauge over the whole momentum range for the
symmetric point. The numerical result reproduces the in-
frared behavior found analytically. For one vanishing gluon
momentum, we determined the three-gluon vertex for any
dimension. Furthermore, the three-gluon vertex turned out
to be quite sensitive to the specific form of the Yang-Mills
vacuum wave functional, and therefore a lattice calculation
of this quantity would be of great interest. Finally, we also
have calculated the infrared fixed point of the running
coupling and found a larger value in Coulomb gauge
than in Landau gauge.

ACKNOWLEDGMENTS

Part of this work was supported by DFG-Re856/6-1 and
the Europiisches Graduiertenkolleg. We are grateful to
Claus Feuchter, Christian S. Fischer, and Peter Watson
for valuable discussions.

1 T(d/2 - a)T(d/2— BT (a+ B—d/2)

PHYSICAL REVIEW D 73, 125019 (2006)
APPENDIX A: TWO-POINT INTEGRALS

Here we sketch the derivation of the integrals necessary
to calculate the Feynman graphs in the infrared integral
approximation. The two-point integrals,

dE( - g

Ene )= gy @FERMEN.

(AD)

which are encountered in the calculations can be shown to
be homogeneous functions of the momentum ¢q. By a
scaling of the integration variable, € — Af, one readily
finds that since the two-point integral can only depend on
the scale, it should obey =,,(a, 8) ~ (¢%)¢ and the expo-

nent of the power law can be determined to be
k=d/2—a—-B+m (A2)

After applying the usual trick of introducing Feynman
parameters,

1 Ldxdys(x by — )t
cecy _L TYOETY TV GC, + yCy) P
1
X — (A3)
B(a, B)

where B(a, B) is the Euler beta function, we can shift the
integration variable, € — € — yq. The integrand then de-
pends on €2 only and we can integrate it out. For m = 0, 1,
2, 3 we need the following standard integrals:

I'(n —d/2) /1\n—d/2
&) e

di¢ _ 1
J @57~ G

dee, e, 1 1
(2 + Ay 27 (4g)d2

I'(n —d/2) /1\n—d/2
I'(n) <A> '

(AS)

Integrals with an odd number of vectors € in the numerator

vanish by symmetry. For our purposes, we have A = xyg?.

The Feynman integrals can be straightforwardly computed
using the identity

f dxdyS(x +y — DxelyE T = B(a, B)  (A6)
0

for the beta function. One then finds the results

B S G T —a-p 1 A7
_ 1 Td2-a+ DI/2-BT(a+ B —d/2) .
=1 B) = i M@ (BITd—a— B+ 1) ()eer (A%
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1 T(d)2—a+2)Td/2— BT (a+p— d/2)
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= _ 2\d/2—a—pB+2
=B m T Trid-a- g2 ¢
11 I'd/2—a+1DI'(d/2-B+ D' (a+ B—d/2 — 1)(q2)d/2_a_ﬁ+2’ (A9)
2 (4r)d? IMNa)I'(BI'(d—a—-B+2)
Z,(a B) = 1 Td/2-a+3)(d/2—-B)1(a+ B—d/2) (22— B+3
=3 (477)4/2 MNa)'(B)I'd—a—B+3)
3.1 I'd/2—a+2)I'd/2-B+ 1D (a+B—d/2—-1) ()83 (A10)
2 (4)d? INa)'(B)I'd—a—B+2)
[
The above formulas are valid for those values of «, B8, m IPRT Sy g d ) »
only for which the integrals converge. At £ = ¢, a pole is Ig(x) = (p*) <”2<§ — 261 K>/p
integrable as long as 8 <d/2. On the other hand, the d
infrared convergence at £ = 0 depends on m: - EO(E —2k—1,1+ K>>
reg.
+ 45(d — 1) T¢ - k)I(=x)T( + k)
< d/2+ m/2 for even m (A1) _ (d/2+1/2 2d d2 . (Al4)
d/2+m/2+1/2 for odd m. (477) F'E =201 +4+ «)

One can relate this inequality to the requirement that the
arguments of the first gamma functions in the numerators
of (A7)-(A10) be positive. The ultraviolet convergence is
contained in the third gamma function of the numerators.
For convergence, the relation

d/2+ m/2 for even m
athp= {d/z +m/2-1/2 foroddm D1
has to be satisfied. Obviously, odd values of m, compared
to even values, work ““in favor” of convergence both in the
infrared and in the ultraviolet, due to the angular integra-
tion. It is worthwhile examining two-point integrals that do
not converge. By making the usual replacement

Cog=Xe+@—(—-qP (A13.)
in any of the convergent integrals =,, with m > 0, one can
express these in terms of a sum of £, integrals but gen-
erally encounters both IR and UV divergences. Curiously,
if we use the regular result (A7) for the divergent E,
integrals anyhow, the sum will yield the correct result given
by the direct formulas (A8), (A9), or (A10), as can be
checked. This indicates that divergent two-point integrals
can be written as a regular part given by the formulas
calculated here, plus the divergence which may cancel
with another integral of the same kind.

This circumstance is of great use for the ghost DSE,
where the subtraction of G~1(0) removes the UV diver-
gence and we can calculate I;(x) in Eq. (14) by

The same result was found in [11] where subtractions of
divergences were circumvented.

The integral that occurs in the gluon DSE (20) is essen-
tially I,(k) defined by Eq. (21) and can be calculated to
give

109 = () 2 Byl 1+ %)
- B+ & 1+ x)/p?

1 TE- kT -4+ 20)
" 2(4m)2 T(d - 26)L(1 + k)?

(A15)

Note that although both integrals in (A15) have an infrared
divergence at £ = ¢, the sum is regular for those values of
k in (19), as can be seen by shifting £ — € — g. In the
ultraviolet, (A15) only converges as long as k> d/4 —
1/2. However, such a divergence will necessarily cancel
with the error @, as discussed in Sec. Il A. Regardless,
the solutions for both the Coulomb and the Landau gauge
yield k> d/4 — 1/2.

For the calculation of the infrared limit of the ghost-
gluon vertex, we encounter the integral in (35). With

¢ (g7
€ —q? q*(—9q)?

Cap(@tapl — q) = (A16)

we find, using Eq. (22),
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. N
lim77(0; g, q) = T, () Cg* 5 A

—_ d
X (»:1(1 +2K,5_2K>
i =r <2+2K ;J—ZK)/qz)

117
=TO(pc= 2L Al7
@C5 7 (A7)
where
1 d—1
I, = (A18)

(4w d(1 +2K)T(d/2)

Plugging in the value (A15) for I,(k) leads directly to
Eq. (35).
J
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Before one can calculate Ffzz)(o; q, q), the three-gluon
vertex is needed. According to Egs. (50) and (51), we can
find the integral /5 to yield

I; = (pz)aGaZ(,_](l + 2k, 1+ k)
— E32+ 2k 1+ 1)/p?)
1 F(d 2K)F(d - kI'Q2 - %-i— 3k)
M4wwﬂa1—1) I'(d —3)C(1 + K2 + 2k)
(A19)

Using this expression for the three-gluon vertex in Eq. (33),
we find that

2
lim5(0: ,9) = ~igAB1q,, o f d'€ - (1 = (p - OPDHODG(E = p)(p?) (27
p

1 L14

g@a gHﬁwz—K1+Ky—:4W2—K+11+qu) r@(B 7 (A20)
where
1 d—1
I, = . A21
2 @4m)? (d - 26)(d/2 + 1) (A21)
Altogether, the infrared gluon limit of the ghost-gluon vertex, defined by Eq. (28) yields,
c=1+.ch_1bh
21, 21
d d or-f1
=2%qd—1mo(1+§>—KWE»FM—3MFG~4QN—@1(5+Kyu+amre+2m
d 3 d 2 d 2
- ﬁr(i - 2K> r<1 + 5 K) r(z - 3K)}/{(d ~ 1)(d - 26)T(d — 3K)T(—)T(1 + 24)
><<4H*F<14—§>F<g——x>r(—qor(%+-K>+uJEr(§-—2K>F(1+—§4—K>)} (A22)

As can be checked, this leads to the numerical values of C
given by Eq. (36) for the various solutions of «.

APPENDIX B: THE DSE FOR THE THREE-GLUON
VERTEX

The Dyson-Schwinger equation is derived from the
generating functional Z of the theory,

2L, 7, o] = f D[Acé]exp[— f dix L

fa’dx(]“A“ + 5%+ ¢ 0"’)} (B1)

where L is given by

{
L(x)= ]ddx’A“#(x)w(x, x)AG (x')

- f dX'E(x)(—9 - DIAD® (x, ¥)cb (), (B2)

see Eq. (5), with A = 0.
To derive the DSE we observe that

0= [ DlceA]

> — (u)ei waA+fE(76'D[A])c+f(jA+6'c+Eo'), (B3)
M

as the integral can be turned into a surface integral over the
Gribov horizon where the Faddeev-Popov determinant
vanishes. We perform the derivative and replace emerging
fields by derivative operators with respect to their sources
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in order to recover the generating functional Z. It is replaced according to Z = ¢, thus introducing the generating

functional W[j, &, o] of the connected Green functions:

[—2 ] dxou, x)% + f dl[xx'] 6faR(x) (T0) (1 3, 2) o+ j;(u):|ew —0

Here we use

_8(=3-D[AD(. 2)

I0a(y:y, 7) = B5
w4y, 2) 5A% (x) (B5)
and
L
55 = derivative acts from the left;
o
SR (B6)
So derivative acts from the right.
o

The derivative in Eq. (B4) corresponds to a first gluon of
J

3w
8j5(w)8j5(v)8 jig, (x)

— Zfddxa)(u, X)

where J denotes all the sources collectively. After the
application of

]d%w—wyzﬁxax%=6%y—xx (BY)

we can identify the gluon propagator D;‘fv on the right-

hand side, cf. Eq. (37) in [4]. Introducing

Wabe (x,y, 7) = oW
w2 s ja (08 75()875() | =0’
5w

Webed(w, x, y, z) =

J:O’
(B10)

8j4(w)8jh(x)85¢(y)80(2)

provides as an intermediate result for the DSE for the
connected three-gluon Green function:

m%uxn=fﬂwmwﬂ@mmwwmum
X Wbl (x, v, w, v). (B11)

To derive a DSE for the proper three-gluon vertex we
decompose the connected Green functions into the proper
ones by using the generating functional I' of the proper
Green functions which is the functional Legendre trans-
form of W defined by

rmad:—wuaﬂ+fﬂmﬂwmw
+ 0%(x)c(x) + c%(x)o%(x)), (B12)

where the sources on the right side are chosen to fulfil

+ f dxx'J(T%) (u; x, x')
J=0

5L
557 () (B4)

{
the three-gluon vertex. For the other two gluons we per-
form two further derivatives,

o
- and -
8j5(v) 8j5(w)

(B7)

on Eq. (B4). Setting j = o0 = ¢ = 0in Eq. (B4) and in the
equations obtained after each of the derivatives in Eq. (B7)
yields the DSE for the connected one-, two-, and three-
point gluon Green functions, respectively. Plugging the
one- and two-point DSE into the three-point DSE we get

5'W =0, (BY)
8jsw)8jdw)8a*(x )60 (x) | j=0
114 oW
- = A%(x), = ¢%(x),
6j%(x © So“
74 (x) o’(x) (B13)
W gy
st <
Therefore, we derive the relations
ol -y o' )
ALy T sty T T
(B14)
o e
= (x),
8¢ (x) *
and the inversion relation

f p W 8T
i :
8j5(3)85(z) 6A%(2)8A(x)
RypRL G LE
8jo(y) 6A5(2)
which is the starting point for the decomposition. We apply

o
8j5(u)

5ab5MV5d(x - y)) (B15)

(B16)

to Eq. (B15), use the chain rule, and further apply
Egs. (B13)—(B15). With the definitions

52W
Dabv(xy y) = and
# 874 (x)8j5() | =0
P ey ) (100
w44 ()AL (1)SAS ) | =0

the decomposition of the connected three-gluon Green
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function reads

Wabe (x,y,2) = — /dd[uvw]f‘iif;

which simply means cutting off the external propagators.
This is different in the decomposition of the two-ghost—-
two-gluon vertex. The starting point is an inversion relation
similar to Eq. (B15) that also is derived from the Legendre
transformation:

[ 4z W 8r
85(x)80°(2) 8¢(2)8c"(y)
- [a220 220
6¢(z) 6a%(x)
To actually perform the decomposition, it is useful to view

the second derivatives as matrices where the color,
Lorentz, and coordinate indices are matrix indices and

= §%§4x — y).

(B19)

(, v, w)D%, (u, x)DSL (v, y) Dl (w, 2),
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(B18)

{
We use this in taking the derivative of Eq. (B20) with
respect to the gluon source:

Sjb(x)6ado

8w _[ 8T }1

_ 8T 8T -1
o6codc [ }

8jo(x)8edc| 8¢dc
(B22)

We apply Eqgs. (B13) and (B20) to this and take a further
derivative with respect to the gluon source. Together with
Egs. (B18) and (B22) and making frequent use of the
techniques just developed, we obtain the decomposition

of the connected two-gluon—two-ghost Green function.
With the definitions

the integration is the matrix multiplication. So we write D (x, y) := W
Eq. (B19) as G 85°(x)8ab(y) | j=0
32W 52F -1 l“abc(x y Z) = 53F B23
5o~ L3c3c) - (320 ) e 58 )6 @) | ey B2
4
From BQ(AA’l) = 0, where A is a matrix, we obtain [abed — 6'T
’ ) i ) e (SRS (D) | 1o
SA! L, 8A | "
Y (B21) o , o
ot ot and switching back to the index notation it reads
|
Webed(w, x, y, z) = f d[pgrstu)De! (s, ) D3 (x, DG (w, p)DE(y, Q)DE (r, )T (p, g, T (1, u, 5)
+ f d'[pqrstulDE(s, 2)D (v, DD (w, p)DYi(x, Q) Dy (w, T, (p, ¢, TS (u, 1, 5)
+ f d[pqrstulDE (s, 2) Dyl (w, )DL (x, p)DE(y, @)D (r, )T (p. g, TH (1, u, )
— fdd[stuv]ng(s, z)D% (x, DD S(w, u) DS (y, v)Fﬁﬁhe(u, Lv,s). (B24)

Plugging Eqgs. (B18) and (B24) into the DSE for the connected functions, Eq. (B11), and solving for the proper three-gluon
vertex yields the DSE for it. It contains, however, a term that seems to be one-particle reducible. This comes about as we
have not yet taken into account the DSE for the lower proper correlation functions. The two-gluon DSE is the equation
obtained after the first of the two derivatives in Eq. (B7). Treating it the same way as the three-gluon DSE till the point of
one-particle irreducibility gives

/dd[l’WleWz](F(,)i“)Cd(X; vy, v2)DE (v,, Wl)D‘g(Wz, v (y, wy, wy) = 0, (B25)

which actually is found to be a part of the improper diagram in the three-gluon DSE that consequently vanishes.
We have thus arrived at the Dyson-Schwinger equation for the three-gluon vertex:

abc — cde( . fd i h bif
F,u,hvp(x’ Vs Z) - _Zfdd[ulu2v1v2W1W2](F% )d (Z’ uj, MZ)Dé (W2) ul)DeGg(MZul)DhG (U2, Wl) : Fflll«g (x’ vy, UZ)FV f()” w1, WZ)

+ fdd[ul w010, J(T0)% (25 uy, Mz)D{;d(Uzy uy) D (uy, Ul)rzbvgf(x: Y, Uy, U3) (B26)
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