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I. INTRODUCTION

In view of the rapid experimental progress in the Casimir
force measurements and increasing interest in the field of
nanotechnology there is a growing demand for reliable
theoretical predictions. Beyond geometries allowing for
a separation of variables one was left so far basically
with the proximity force approximation for ideal reflecting
surfaces or with the pairwise summation for dilute dielec-
tric bodies. Also the basic formula for the interaction
of dielectric bodies, the Lifshitz formula, is known for
simple geometries only (for a review see [1]). There are a
number of approximate methods trying to overcome these
limitations. The oldest one is the semiclassical approach
(see, for example, the recent papers [2,3] and references
therein) which exists in several modifications including
the optical path approximation [4]. Another method is
the multiple reflection approximation which recently has
been reconsidered in the context of the Casimir effect [5].
New developments are the multiscattering approach of [6]
which was applied to the geometry of two spheres and
of a sphere in front of a plane and the calculation in [7]
for a cylinder and a plane using a path integral formulation
together with a trace formula. Significant progress had
been reached in the world line method [8] which is now
able to provide corrections to the small separation
behavior.

In the present paper we use the path integral approach
developed in [9,10] and apply it to the geometry of a sphere
and a cylinder in front of a plane for Dirichlet boundary
conditions. We rederive the formulas obtained in [6,7] in a
simpler way and calculate the first correction to the prox-
imity force theorem.

The paper is organized as follows. In the next section we
describe the method of [9,10] in detail. In the third section
we apply the method to the geometry of a sphere in front of
a plane. In the fourth section we discuss some other ge-
ometries. Conclusions are given in the final section.
Throughout the paper we put @ � c � 1
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II. FUNCTIONAL INTEGRATION AND
BOUNDARY CONDITIONS

A simple, but powerful method to introduce boundary
conditions into a quantum field theory is to use functional
delta functions. This method was introduced in [9] for the
calculation of the radiative corrections to the Casimir effect
for parallel plates in a covariant gauge. We present it here
in the simpler case for a scalar field theory with Dirichlet
boundary conditions. The basic idea of the method is to
restrict the space of fields over which the functional inte-
gration runs to such that fulfil the boundary conditions.
Technically this can be achieved by representing the gen-
erating functional of the Green’s functions as

 Z�J� �
Z
D�

Y
x2S

����x�� expf�Sg (1)

with an action

 S �
Z
dx
�
1

2
��x���@2 �m2���x� � J�x���x�

�
; (2)

where we included the term with the source J�x�. This is
the usual action for a scalar field with mass m. For sim-
plicity we write all formulas in the Euclidean formulation.

The functional Z�J�, (1), taken without the delta function
is the generating functional of the corresponding field
theory without boundary conditions. Obviously, in (1)
more complicated actions can be inserted, especially
such which include interactions. However, in connection
with the Casimir effect we restrict ourselves here to a free
field theory, i.e., to a quadratic action. Also we mention
that the initial space where the field � is defined does not
need to be flat or free of boundaries. The method to imple-
ment boundary conditions through functional delta func-
tions is completely general, at last on the formal level taken
in this section.

The next step in the method is the use of a Fourier
representation for the delta function,

 

Y
x2S

����x�� �
Z
Db exp

�
i
Z
S
dzb�z���f�z��

�
; (3)

where we described the surface S by a function f�z� such
-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.73.125018


M. BORDAG PHYSICAL REVIEW D 73, 125018 (2006)
that x � f�z� 2 S and the coordinates z are a suitable
parametrization of S. In fact, (3) is a functional integral
over a scalar field b�z� defined on the surface S. Using (3)
in the generating functional (1) we represent Z�J� in the
form

 Z�J� �
Z
D�Db exp��~S� (4)

with

 

~S �
1

2

Z
dx��x���@2 �m2���x�

� i
Z
dx
Z
S
dz��x�H�x; z�b�z� �

Z
dxJ�x���x�:

(5)

Here we introduced the new notation,

 H�x; z� � ��x� f�z��; (6)

projecting the argument x on the surface S. Obviously, ~S is
quadratic in the fields ��x� and b�z�, hence ~S can be
diagonalized,
 

~S �
1

2

Z
dx���x� ��0�x����@

2 �m2����x� ��0�x��

�
1

2

Z
S
dz
Z
S
dz0�b�z� � b0�z��K�z; z0��b�z� � b0�z��

�
1

2

Z
dx
Z
dyJ�x�SD�x; y�J�y�; (7)

with

 �0�x� �
Z
dx0D�x; x0�

�
i
Z
S
dzH�x0; z�b�z� � J�x0�

�
;

b0�z� � �i
Z
S
dz0

Z
dxdx0K�1�z; z0�H�x; z0�D�x; x0�J�x0�;

(8)

and

 K�z; z0� �
Z
dx
Z
dyH�x; z�D�x; y�H�y; z0�

� D�f�x�; f�y��: (9)

The function D�x; y� is the inverse of the kernel of the free
action,

 ��@2 �m2�D�x; y� � ��x� y�: (10)

It is just the usual propagator of the free field theory
defined by the action S, (2). Instead, the new quantity

 

SD�x; y� � D�x; y�

�
Z
S
dz
Z
S
dz0D�x; f�z��K�1�z; z0�D�f�z0�; y�;

(11)

which we introduced in (7), is the propagator of the given
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field theory with boundary conditions. Finally,K�1�z; z0� is
the inverse of K�z; z0� on the surface S,

 

Z
s
dz0K�z; z0�K�1�z0; z00� � ��z� z00�: (12)

This inversion and further operations like the trace or the
determinant with K�z; z0� are to be understood as done with
an operator K̂ whose integral kernel in a space of suitable
functions defined on the surface S is just K�z; z0�.

With Eq. (12) it is easy to check that SD�x; y�, (11), is
indeed the propagator which fulfills the boundary condi-
tions. First we remark that it is a propagator. Obviously
Eq. (10) is fulfilled for x =2 S. Inserted into Eq. (10), the
first term delivers the necessary delta function. The second
term delivers a delta function too which is, however, non-
vanishing for x 2 S only. This is not a problem because in
the presence of boundary conditions the equation has to be
fulfilled outside the boundary only. So it remains to check
that the boundary conditions are fulfilled. Put x on the
surface S, i.e., consider x 2 S. Then in the second term
we can apply (12) and we get zero as required by the
Dirichlet condition.

The calculation of the inverse on S of K is the main step
in the method. All steps before are merely a formal rewrit-
ing. The inversion of K on S, however, is equivalent to
solve the wave equation with boundary conditions and, in
this sense, not much progress is archived.

After rewriting the exponential in the form given by
Eq. (7), it is quadratic in the fields. The integrals are
Gaussian and after integration we represent Z�J�, (1), in
the form
 

Z�J� � C�det�@2 �m2����1=2��detK�z; z0����1=2�

� exp
�
�

1

2

Z
dx
Z
dyJ�x�SD�x; y�J�y�

�
; (13)

where C is a constant. In this formula the first determinant
comes from the integration over �. It is the usual one
appearing also without boundary condition. Of course, it
is independent on the boundary conditions. The second
determinant comes from the integration over b. It does
depend on the boundary conditions. The source term has
the standard form and it generates the usual Feynman rules
with the boundary dependent propagator SD�x; y� instead
of the usual one. In this way the field theory with boundary
conditions was constructed in [9].

The last step in the method, which was done in [10], is to
consider the free energy

 F � �
1

T
lnZ�0�; (14)

where T is the total time which is the logarithm of the
generating functional at zero source term. In [10] this was
done for a theory with finite temperature, but of course we
can use it at zero temperature too. In this way we get for the
boundary dependent part of the Casimir energy
-2
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 ECasimir � �
1

T
ln�detK�z; z0����1=2� �

1

2T
tr lnK: (15)

The trace in this formula is to be taken in the space of
functions on the boundary surface S and K is the operator
in this space, whose integral kernel is the function K�z; z0�,
defined in Eq. (9). In this way the Casimir energy is
represented by an expression on the surface S. The con-
tribution of the free space, which contains the highest
ultraviolet divergences, had been dropped in (15).

Let us mention that the evaluation of the trace in (15) is a
problem of the same difficulty as the inversion of K or the
solution of the wave equation with boundary condition, and
again, so far we have only a formal rewriting of the original
problem.

III. A SPHERE AND A CYLINDER IN FRONT OF A
PLANE

In this section we apply the general formula (15) for the
Casimir energy to the geometry of a sphere and of a
cylinder in front of a plane. We start with the remark that
the derivation in the preceding section is valid also if the
initial space is not the full R4 but only a half of it with z �
a and if the field ��x� satisfies Dirichlet (or other) bound-
ary conditions on the plane z � a: �jz�a � 0. In that case,
for the propagator D�x; x0�, (10), which has to fulfill
Dirichlet boundary conditions at z � a we take

 D�x; x0� ! DD�x; x0� � D�x� x0� �D�~x� x0�; (16)

where ~x � �x; y; 2a� z; t� is the coordinate reflected on
the plane z � a and

 D�x� x0� �
Z d4k

�2��4
e�k�x�x

0�

k2 �m2 (17)

is the free space propagator. Here m is the mass of the field
� but in the following we restrict ourselves to massless
fields.

In the next step we use the stationarity of the problem
and turn to the Fourier transform in the time coordinate,
x4 ! !. In this way the Casimir energy (15) can be
represented as

 E �
1

2�

Z 1
0
d! tr lnK! (18)

with (cf. (9))

 K!�z; z
0� � DD;!�f�z�; f�z

0�� (19)

and

 DD;!�x; x0� � D!�x� x0� �D!�~x� x0�: (20)

as well as the free space propagator after Fourier transform
in the time direction,

 D!�x� x0� �
Z d3k

�2��3
e�k�x�x

0�

!2 � k2 : (21)
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In (18) the trace is now only over the surface S and we used
the symmetry of K! under !! �!. We note that the
function K!, (19) is even in !! �!. We take this into
account in all integration over ! below.

Now let us consider a sphere of radius R centered in the
origin so that the distance from its center to the plane is a.
In terms of spherical coordinates �r; �; ’� it is described by
constant r and the angles provide a parametrization of S,
z � ��;’�. A basis of functions in this space are the
spherical harmonics j l;mi � Yl;m��;��. Now we calcu-
late the trace in (18) in this basis, i.e., we represent the
energy by

 E �
1

2�

Z 1
0
d! trl;m lnKlm;l0m0 ; (22)

with
 

Klm;l0m0 � hl; m j DD�x; x0� j l; mi

�
Z
d�x sin�xd’x

Z
d�x0 sin�x0d’x0Yl;m��x; ’x�

�DD�x; x0�Y�l0m0 ��x0 ; ’x0 �;

and rx � rx0 � R. Now the trace is over the indices of the
infinite dimensional matrix lnKlm;l0m0 . An equivalent rep-
resentation is in terms of the determinant of this matrix,

 tr lnKlm;l0m0 � ln det�Klm;l0m0 �: (23)

Next we use the well-known explicit expansion of the free
space propagator,

 D!�x� x0� �
X
l;m

Yl;m��x; ’x�dl�r; r0�Y�l0m0 ��x0 ; ’x0 �; (24)

with

 dl�r; r
0� �

1������
rr0
p jl�!r<�h

�1�
l �!r>�; (25)

where jl�z� and h�1�l �z� are the spherical Bessel functions to
represent K in the form

 Kl;l0 � �l;l0dl�R;R� � hlm j D!�~x� x
0� j l0mi; (26)

where because of the azimuthal symmetry we could in-
troduce

 Klm;l0m0 � �m;m0Kl;l0 : (27)

The last step is to separate a distance independent contri-
bution by writing

 lnKl;l0 � ln��l;l0dl�R;R�� � ln
�
�l;l0 �

1

dl�R;R�
hlm

j D!�~x� x
0� j l0mi

�
: (28)

The distance a enters this expression only trough ~x in the
second term in the right-hand side whereas the first is
independent of a. In fact, it is this term which contains
-3
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the surface divergences which are still present in the
Casimir energy given by Eq. (22). But dropping it we
come to

 E �
1

2�

Z 1
0
d! trl;m ln��l;l0 � Al;l0 �; (29)

where we introduced the notation

 Al;l0 �
1

dl�R;R�
hlm j D!�~x� x0� j l0mi: (30)

The energy E, (29), is the ultraviolet finite, distance de-
pendent part of the Casimir energy which be means of F �
� @

@a E is alone responsible for the force.
The representation (29) is still to some extend symbolic.

In fact, a precise formula is

 E �
1

2�

Z 1
0
d!

X1
m��1

ln det��l;l0 � Al;l0 �; (31)

where (�l;l0 � Al;l0) is a infinite dimensional matrix with l,
l0 	 jmj.

Another way to represent the trace in an explicit formula
is to expand the logarithm,

 E �
1

2�

Z 1
0
d!

X1
s�0

�1

s� 1

�
X1

m��1

X1
l�jmj

X1
l1�jmj

. . .
X1
ls�jmj

Al;l1Al1;l2 . . .Als;l; (32)

whereby the convergence of the sum over s is assumed.
Let us mention that the representations (31) and (32) of

the Casimir energy are exact. Their basic merit is that they
are free of ultraviolet divergences. Hence they can be used
also for direct numerical approximation. Examples of that
are given in [6,7].

A further simplification appears because the matrix
elements Al;l0 can be written explicitly in terms of modified
Bessel functions and 3j-symbols. In fact, the formula

 Al;l0 �
����
�
2

r �����������������������������������
�2l� 1��2l0 � 1�

2a!

s
��1�l�l

0 Il0��1=2��!R�

Kl��1=2��!R�



Xl�l0

l00�jl�l0j

��i�l
00
�2l00 � 1�Kl00��1=2��2a!�

�
l00 l l0

0 0 0

� �
l00 l l0

0 �m m

� �
(33)

holds. Its derivation is given in Appendix A.
Similar formulas as for the sphere can be written for a

cylinder in front of a plane. For comparison we consider
besides the �3� 1�-dimensional also the �2�
1�-dimensional case, i.e., a circle in a front of a line on a
plane. We denote the energies by Ecyl

�3�1� and Ecyl
�2�1�

correspondingly.
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We start from the formula (18) for the energy which for
Ecyl
�2�1� does not change,

 Ecyl
�2�1� �

1

2�

Z 1
0
d! tr lnK!: (34)

For (3� 1) dimensions using the translational invariance
along the axis of the cylinder it must be substituted by

 Ecyl
�3�1� �

1

2�

Z 1
0
d!

Z 1
�1

dkz
2�

tr lnK� (35)

with � �
�����������������
!2 � k2

z

q
where kz is the momentum parallel to

the axis of the cylinder. Obviously the integration over kz
can be done,

 Ecyl
�3�1� �

1

4�

Z 1
0
d!! tr lnK!; (36)

so that the difference is just the additional factor !=2 in
(36) as compared to (34). We note that Ecyl

�3�1� is the energy
per unit length of the cylinder.

Next we have to consider the function K! in two dimen-
sions. A basis of functions on a circle is simply jmi �
expfim’g=

�������
2�
p

and the free space propagator has the
decomposition

 D�2�1�
! �x� x0� �

X
m

j mid�2�1�
m �r; r0�hm0 j (37)

with

 d�2�1�
m �r; r0� � Im�!r<�Km�!r>�: (38)

In this way we obtain in place of (26)

 Km;m0 � �m;m0d
�2�1�
m �R;R� � hm j D�2�1�

! �~x� x0� j m0i;

(39)

where D�2�1�
! �~x� x0� is the same as (21) in a dimension

lower by one,

 D�2�1�
! �x� x0� �

Z d2k

�2��2
e�k�x�x

0�

!2 � k2 ; (40)

and ~x � �x; 2a� y� is the reflected coordinate in the
�x; y�-plane.

Separating again the distance independent contribution
we represent the energy in the form

 Ecyl
�3�1� �

1

4�

Z 1
0
d!!

X
m

ln��m;m0 � Am;m0 �; (41)

with

 Am;m0 �
1

d�2�1�
m �r; r�

hm j D�2�1�
! �~x� x0� j m0i: (42)

In the �2� 1�-dimensional case we have the same formula
except for the factor ! dropped,
-4
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 Ecyl
�2�1� �

1

2�

Z 1
0
d!

X
m

ln��m;m0 � Am;m0 �: (43)

Like in the case of a sphere, the matrix elements Am;m0
can be calculated explicitly (see Appendix A) and ex-
pressed in terms of Bessel functions,

 Am;m0 �
1

Km�!r�
Km�m0 �2!a�Im�!r�; (44)

a formula which coincides with the corresponding ones in
[6,7].
IV. CYLINDER AT SMALL SEPARATION FROM A
PLANE

In this section we consider a cylinder at small separation
from a plane. We start with Dirichlet boundary conditions.
Here we consider first the case of (3� 1) dimensions, i.e.,
the usual space. Then we reduce the dimension by one, i.e.,
we consider the �2� 1�-dimensional case which is a circle
in front of a line on a plane. Finally, we consider the case of
Neumann boundary conditions. Since in the cylindrical
case the polarizations of the electromagnetic field separate
into TM modes fulfilling Dirichlet boundary conditions
and TE modes fulfilling Neumann boundary conditions
this gives at once the result for the electromagnetic field.

A. Dirichlet case

Starting point is the formula (41). We rescale !! !=r
so that the energy is now given by

 Ecyl
�3�1� �

1

4�r2

Z 1
0
d!! tr ln��m;m0 � Am;m0 �!��; (45)

where Am;m0 is now given by

 Am;m0 �!� �
1

Km�!�
Km�m0 �2!�1� ���Im0 �!�; (46)

with

 � �
L
R
; (47)

where L � a� R is the separation between the cylinder
and the plane and we are interested in the small distance
behavior, i.e., in �! 0.

To start with, we expand the logarithm in Eq. (45).
Below, this turns out to be justified because in the orders
in � we are interested in, this series converges. The energy
is now given by

 Ecyl
�3�1� �

�1

4�R2

X1
s�1

1

s� 1

Z 1
0
d!!

X
m

X
n1

. . .
X
ns

M (48)

with
125018
 

M � Am;m�n1
�!�Am�n1;m�n2

�!� . . .Am�ns�1;m�ns�!�

� Am�ns;m�!�: (49)

In (48) the summations over m and the ni’s run over the
integers.

Now the small distance behavior of the energy comes
from the region in the integration resp. sums of large all,!,
m and the ni’s. We use the uniform asymptotic expansion
of the Bessel functions and substitute the sums by integrals.
Further we use the symmetry underm! �m and obtain in
the sense of an asymptotic expansion

 Ecyl
�3�1� �

�1

2�R2

X1
s�1

1

s� 1

�
Z 1

0
d!!

Z 1
0
dm

Z 1
�1

dn1 . . .
Z 1
�1

dnsM;

(50)

where for the Am;m0 �!� in M still Eq. (46) holds, however,
with the Bessel functions replaced by their well known
uniform asymptotic expansions which are displayed in
Appendix B. From the expressions in the exponential
factors in

 Am;m0 � e
�~�; (51)

which combine into

 ~� � �m�m0��
�
2!�1� ��
m�m0

�
�m�

�
!
m

�
�m0�

�
!
m0

�
;

(52)

(see Eqs. (46) and (B1)), it follows that for small � the
dominating contribution into (50) comes from !�m�
1=�, ni � 1=

���
�
p

. Hence we substitute

 ! �
t
��������������
1� �2
p

�
; m �

t�
�
; ni ! ni

�����
4t
�

s
; (53)

where the factor
�����
4t
p

was introduced for later convenience.
With these substitutions the energy becomes

 Ecyl
�3�1� �

���3

2�R2

X1
s�0

1

s� 1

�
Z 1

0

dt
t
t3
Z 1

0
d�
Z 1
�1

dn1 . . .
Z 1
�1

dns

�
4t
�

�
s=2

M:

(54)

Now we change the notations for the Am;m0 �!�,

 Am�n;m�n0 �!� ! Aas
n;n0 (55)

indicating the dependence on the variables n and n0. Using
the asymptotic expansions of the Bessel functions entering
by means of Eq. (46), we obtain the expansion
-5
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 Aas
n;n0 �

��������
�

4�t

r
e��

as
�1�

���
�
p
a�1=2�
n;n0 �t; �� � �a

�1�
n;n0 �t; �� � . . .�;

(56)

with

 �as � 2t� �n� n0�2: (57)

Details including the explicit form of the functions
a�1=2�
n;n0 �t; �� and a�1�n;n0 �t; �� are shown in Appendix B.
Next we insert (56) for the Am;m0 �!� into M in (49) and

after a re-expansion we obtain

 

M �

�
�

4�t

�
�s�1=2�

e�2�s�1�t��1

�
1�

���
�
p Xs

i�0

a�1=2�
ni;ni�1

�t; ��

� �
� X

0�i<j�s

a�1=2�
ni;ni�1

�t; ��a�1=2�
nj;nj�1

�t; ��

�
Xs
i�0

a�1�ni;ni�1
�t; ��

�
� . . .

�
; (58)

with

 �1 �
Xs
i�0

�ni � ni�1�
2: (59)

Here, in order to include all contributions into the sum
signs, we have to put n0 � ns�1 � 0 formally.

The above formulas allow us to represent the energy E,
Eq. (54), in the form

 Ecyl
�3�1� �

�1

2�L2

����
R
L

s X1
s�0

1

s� 1

Z 1
0

dt
t
t5=2e�2�s�1�t�������

4�
p

�
Z 1

0
d�

Z 1
�1

dn1����
�
p . . .

Z 1
�1

dns����
�
p Mas; (60)

with

 M as � e��1

�
1�

���
�
p Xs

i�0

a�1=2�
ni;ni�1

�t; ��

� �
� X

0�i<j�s

a�1=2�
ni;ni�1

�t; ��a�1=2�
nj;nj�1

�t; ��

�
Xs
i�0

a�1�ni;ni�1
�t; ��

�
� . . .

�
: (61)

In this representation it is possible to carry out the integra-
tions over � and over t and we obtain
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Ecyl
�3�1� �

�1

2�L2

����
R
L

s X1
s�0

1

s� 1

Z 1
�1

dn1����
�
p . . .

Z 1
�1

dns����
�
p

� e��1

�
��5=2��������

4�
p

�2�s� 1��5=2

� �
� X

0�i<j�s

b�ni; ni�1; nj; nj�1�

�
Xs
i�0

d�ni; ni�1� � . . .
�
� . . .

�
; (62)

with

 b�ni; ni�1; nj; nj�1� �
Z 1

0

dt
t
t5=2e�2�s�1�t�������

4�
p

�
Z 1

0
d�a�1=2�

ni;ni�1
�t; ��a�1=2�

nj;nj�1
�t; ��;

(63)

and

 d�ni; ni�1� �
Z 1

0

dt
t
t5=2e�2�s�1�t�������

4�
p

Z 1

0
d�a�1�ni;ni�1

�t; ��:

(64)

The quite lengthy explicit formulas for b and d are shown
at the end of Appendix B, Eqs. (B14) and (B15). In Eq. (62)
we dropped the contribution proportional to

���
�
p

. It can be
seen that it contains only odd powers of the ni’s and
vanishes under the integration over the ni’s.

The next step is to perform the integrations over the ni’s
in Eq. (62). In the leading order in � this is quite simple. We
rewrite the quadratic form �1, Eq. (59), by noticing that
obviously the formula
 

n2
1 �

Xs�1

i�1

�ni � ni�1�
2 � n2

s

�
2

1

�
n1 �

2

1
n2

�
2
�

3

2

�
n2 �

3

2
n3

�
2
� . . .

�
s

s� 1

�
ns�1 �

s� 1

s
ns

�
2
�
s� 1

s
n2
s (65)

holds. It immediately delivers

 

Z 1
�1

dn1����
�
p . . .

Z 1
�1

dns����
�
p e��1 �

1������������
s� 1
p ; (66)

and we obtain the energy for a cylinder in front of a plane
in leading order in small separation,

 Ecyl PFT
�3�1� �

�1

2�L2

����
R
L

s X1
s�0

��5=2��������
4�
p

1

�s� 1�4

�
�1

2�L2

����
R
L

s
3	�4�

32
���
2
p � �

�3

1920
���
2
p

1

L2

����
R
L

s
; (67)

which coincides with the known result from applying the
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proximity force theorem. Note that in order to restore
dimensions it has to be multiplied with @ and c. Also
note that this is the energy per unit length of the cylinder.

Now we turn to the remaining terms in Eq. (62). Of
course, all integrations there over the ni’s are Gaussian. But
the combinatorics is somewhat involved so that we dele-
gate these calculations into Appendix C. The result is
enjoyable simple,
 Z 1
�1

dn1����
�
p . . .

Z 1
�1

dns����
�
p

� X
0�i<j�s

b�n1; ni�1; nj; nj�1�

�
Xs
i�0

d�ni; ni�1�

�
�

7

384
���
2
p

1

�1� s�3
: (68)

The remaining sum over s in (62) is the same as in the
leading order and finally for small distance L the energy
becomes

 Ecyl
�3�1� �

�1

2�L2

����
R
L

s
3	�4�

32
���
2
p

�
1�

7

36

L
R
�O

��
L
R

�
2
��
; (69)

a formula, which represents the first correction to the
proximity force theorem.

Using the method shown above it is easy to repeat the
calculation for (2� 1) dimensions. The first change is in
the substitution (53) where it is now meaningful not to use
the variable � but to define

 ! �
t sin’
�

; m �
t cos’
�

; ni ! ni

�����
4t
�

s
; (70)

with ’ 2 �0; �2. Next we mention the changed formula
(60)
 

Ecyl
�2�1� �

�1

2L

����
R
L

s X1
s�0

1

s� 1

Z 1
0

dt
t
t3=2e�2�s�1�t�������

4�
p

Z �=2

0

d’
�=2

�
Z 1
�1

dn1����
�
p . . .

Z 1
�1

dns����
�
p Mas; (71)

where besides the prefactor only the power of t changed
and the integration over � is changed for that over ’. The
remaining steps go in complete parallel to the �3�
1�-dimensional case and the result is

 Ecyl
�2�1� �

�1

2L

����
R
L

s
	�3�

8
���
2
p

�
1�

1

4

L
R
�O

��
L
R

�
2
��
: (72)
B. Neumann case

Let us consider the changes which come in for Neumann
boundary conditions first in the general formulas of Sec. II.
Basically it is sufficient to change in formula (6) the delta
function for its normal (to the surface S) derivative, H !
@nx��x� f�z��. As a consequence, the definition of
K�z; z0�, (9), changes for
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 K�z; z0� � @nx@nx0D�f�x�; f�x
0��; (73)

where the normal derivatives must be taken before putting
the argument onto the surface. The next changes is in
formula (16) because on the plane at z � a we have to
take Neumann conditions too. It amounts simply in a
different sign,

 D�x; x0� ! DN�x; x
0� � D�x� x0� �D�~x� x0�: (74)

As next changes we mention formula (38) where the Bessel
functions must be substituted by their derivatives,

 d�2�1�
m �r; r0� � I0m�!r<�K0m�!r>�: (75)

and Eq. (41) which looks now

 Ecyl;N
�3�1� �

1

4�

Z 1
0
d!!

X
m

ln��m;m0 � Am;m0 � (76)

with

 Am;m0 �
1

K0m�!R�
Km�m0 �2!a�I0m�!R� (77)

Now we trace the changes in the asymptotic expansion for
small separations. First we consider the asymptotic expan-
sion of Am;m0 , (77), using the asymptotic expansions of the
derivatives of the Bessel functions,

 f
I0m�mz�
K0m�mz�

g��
���1=2��������

2m
p

�1�z2�1=4

z
e�m��z��

�
1�

v1�t�
m
� . . .

�
(78)

with v1�t� � ��9t� 7t3�=24. The first observation is that
the minus sign in the expansion of K0m�mz� just compen-
sates the sign change in (76). The second remark is that in
the expansion of the factors in front of the exponential,
(B6) in the Dirichlet case, just n and n0 change their places
which does not affect the expression under the trace in
(76). The final remark is that the only change comes from
the Debye polynomial v1�t� which appears in two places
instead of u1�t�. The further calculation runs then in ex-
actly the same way as in the Dirichlet case, but the result is
different, namely, for the formula which corresponds to
(68) we obtain
 Z 1
�1

dn1����
�
p . . .

Z 1
�1

dns����
�
p

� X
0�i<j�s

b�n1; ni�1; nj; nj�1�

�
Xs
i�0

d�ni; ni�1�

�
�

7

384
���
2
p

1

�1� s�3
�

1

12
���
2
p
�s� 1�

;

(79)

i.e., we get a contribution which is the same as in the
Dirichlet case and an additional contribution. Inserted
into the energy this gives
-7
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 Ecyl;N
�3�1� �

�1

2�L2

����
R
L

s
3	�4�

32
���
2
p

�
1�

�
7

36
�

8

9

	�2�
	�4�

�
L
R
�O

��
L
R

�
2
��
;

(80)

a formula, which represents the first correction to the
proximity force theorem for Neumann boundary
conditions.

We note that the mentioned compensation of the signs
ensures that the leading order contribution, i.e., the prox-
imity force theorem, gives the same answer for both types
of boundary conditions as expected. Less obvious is the
behavior of the Neumann contribution in what it has in
addition to the Dirichlet case (which equals the first term in
the right-hand side of Eq. (79)). This is the second term in
the right-hand side of Eq. (79), which results in a much less
convergent sum over s. In the (3� 1) dimensional case the
sum is still convergent, but in the (2� 1) dimensional case
not. Carrying out the corresponding calculation we obtain

 

1

32
���
2
p
�s� 1�2

�
1

4
���
2
p (81)

in place of the right-hand side of Eq. (79). Now the sum
over s is logarithmic divergent. In fact this implies that the
correction to the proximity force theorem in (2� 1) di-
mensions for Neumann boundary conditions is propor-
tional to L

R ln�L=R�.
Finally we collect the energies for Dirichlet and

Neumann boundary conditions together to the first correc-
tion to the proximity force theorem for the electromagnetic
fields,
 

Ecyl;electromgn:
�3�1� �

�1

2�L2

����
R
L

s
3	�4�

16
���
2
p

�

�
1�

�
7

36
�

4

9

	�2�
	�4�

�
L
R
�O

��
L
R

�
2
��

� �
1

L2

����
R
L

s
�3

960
���
2
p

�

�
1�

�
7

36
�

20

3�2

�
|��������{z��������}
��0:48103

L
R
�O

��
L
R

�
2
��
: (82)
V. SPHERE AND CYLINDER AT LARGE
SEPARATION FROM A PLANE

The limiting case of large separation between a sphere
and a cylinder and a plane is known and we display it here
for completeness. For a sphere the starting point is Eq. (32)
with Al;l0 given by Eq. (33). The main contribution comes
from small ! and small orbital momenta. We substitute

 !!
!
2a

(83)
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and expand Al;l0 for small R=a. simply by expanding the
two Bessel functions in (33) which depend on r. The
leading order is

 Al;l0 � �l;0�l0;0
R
2a
e�! � . . . : (84)

Inserted into E, (32), this gives immediately the large
distance limit

 E � �
r

8�a2

�
1�

3

4

R
a
�O

��
R
a

�
2
��
; (85)

where we included the first correction too (note a � L�
R). This result agrees with [6].

The corresponding procedure for a cylinder is similar.
We start from Eq. (43) or from Eq. (48) in dependence on
the dimension and with Am;m0 given by Eq. (44). Again, the
dominating contribution comes from small momenta. We
do the substitution (83) and expand Am;m0 . Here, however, a
peculiarity shows up because of the logarithmic behavior
of the Bessel function Km�!

r
2a� in the denominator for

m � 0. The expansion is

 Am;m0 �
�m;0�m0;0K0�!�
��� ln�!R=4a�

�O
��
R
a

�
2
�
; (86)

where � is Euler’s constant. Inserting into (32) and inte-
grating over ! we get

 Ecyl
�2�1� �

�
8a

1

ln�R=2a�

�
1�

2 ln2

ln�R=2a�

�O
��

1

ln�R=2a�

�
2
��
�O

��
R
a

�
2
�

(87)

and

 Ecyl
�3�1� �

1

8�a2

1

ln�R=2a�

�
1�

�2=12

�ln�R=2a��2

�O
��

1

ln�R=2a�

�
3
��
�O

��
R
a

�
2
�
: (88)

In the �3� 1�-dimensional case the next-to-leading order
is zero.

We note that the logarithmic behavior of the large dis-
tance limit is related to the corresponding behavior of the
Greens function in two dimensions. Because the logarith-
mic behavior is present in Ecyl

�2�1�, i.e., for a circle on a
plane, it seems unlikely that it is related to the length of the
cylinder as discussed for the three dimensional case in [7].

VI. CONCLUSIONS

In the foregoing sections we showed the derivation of
the expression for the Casimir energy in terms of the
determinant of the projection K�z; z0� of the free space
propagator on the boundary surface S which was known
from [9,10] and independently rederived and applied to the
calculation at large distance in [6,7] which can be consid-
ered as a significant progress because it opened the way for
-8
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direct numerical calculation of the Casimir force for non-
simple geometries. In the present paper we showed that
also the short distance behavior can be calculated by this
method and derived the first corrections to the force prox-
imity theorem including the electromagnetic case. In (3�
1) dimensions the corrections are power like, in (2� 1)
dimensions the corrections contain a logarithm for
Neumann conditions.

In general, corrections to the limiting behavior for both
large and small distances, can be calculated as expansion in
the corresponding small parameter. These expansions are
asymptotic ones. For the small distance behavior this is
clear from Sec. IV where we substituted the sums over the
orbital momenta of the photon propagator by the corre-
sponding integrals. Obviously, exponentially small contri-
butions are neglected in this way. For the long distance
expansion this follows from the denominators in the cor-
responding matrix elements, (33) and (44). Consider the
energy as a function of the expansion parameter � � r=2a
(after the rescaling (83)) in the complex plane of �.
Consider a movement of � encircling the origin. At some
time pole of the integrand will cross the path of the
integration over ! causing an additional contribution.
Hence, the energy as a function of � has a cut starting
from � � 0.

The new method for the Casimir force for nonsimple
geometry which so far gave the possibility to calculate the
large and the small distance behavior, has the potential in it
for the calculation of the Casimir force at all distances with
desired precision. Also, it obviously can be generalized to
much more boundary conditions than Dirichlet or
Neumann ones. In the present paper we considered primar-
ily Dirichlet conditions in order to keep the representation
as simple as possible. The generalizations to Neumann are
obvious, one has to change the sign in (16) and to add a
derivative toH�x; z�, Eq. (6) as done, for example, in [7]. In
the path integral approach this was considered from a more
general point of view in [11].

The short distance expansion in Sec. IV sheds light also
on the quasi classic, optical path and similar approxima-
tions. Indeed, the dominating contributions come solely
from large momentum, however in an expansion over the
number of reflections, like the expansion of the logarithm
in Sec. IV shows, all terms contribute. Therefore, in order
to get some approximation, say in the first order of the
small parameter, all reflections must be included.
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APPENDIX A

In this appendix we show the calculation of the matrix
elements (30) and (42) in Sec. III. We start with the
cylindrical case. Using (40) we represent the matrix ele-
ment in (42) in the form

 Wm;m0 � hm j D
�2�1�
! �~x� x0� j m0i

�
Z d2k

�2��2
e2iak2

!2 � k2 fm�
~k�f�m�k� (A1)

with

 fm�k� �
Z 2�

0

d’�������
2�
p e�im’�ikx: (A2)

Here we used ~x � �x1; 2a� x2� and defined ~k � �k1;�k2�

in order to rewrite k�~x� x0� � 2ak2 � ~kx� kx0. Using
polar coordinates in the k-plane, k1 � k sin’k, k2 �
k cos’k, and an integral representation

 

Z 2�

0

d’
2�

e�im’�iz sin’ � Jm�z� (A3)

of the Bessel function Jm�z� for the functions fm�k� enter-
ing (A1) we obtain

 Wm;m0 �
Z d2k

2�
e2iak2

!2 � k2 Jm�kr�Jm0 �kr�e
�i�m�m0�’k: (A4)

The formula (A3) can also be used for the integration over
the angle ’k,

 Wm;m0 �
Z 1

0

dkk

!2 � k2 Jm�kr�Jm0 �kr�Jm�m0 �2ka�: (A5)

The last integration can be done by extending it over the
whole k axis and closing the contour picking up the pole in
k � i!. With the relations Jm�z� �

1
2 �H

�1�
m �z� �H

�2�
m �z��,

H�1�m ��z� � ��1�m�1H�2�m �z�, Jm��z� � ��1�mJm�z� one
obtains

 Wm;m0 �
i�
2
Jm�i!r�Jm0 �i!r�H

�1�
m�m0 �2i!a�; (A6)

or in terms of the modified Bessel functions,

 Wm;m0 � Im�!r�Im0 �!r�Km�m0 �2!a�; (A7)

which after division by d�2�1�
m �r; r�, (38), gives (44).

Now we turn to the spherical case and consider the
matrix elements in (30). Using (21) we represent them in
the form

 Dl;l0 � hlm j D!�x� ~x� j l0mi

�
Z d3k

�2��3
e�2iak3

!2 � k2 f
�
lm�k�fl0m�~k� (A8)

with ~k � �k1; k2;�k3� and
-9



M. BORDAG PHYSICAL REVIEW D 73, 125018 (2006)

 

flm�k� � e�ikx j lmi�
R
�
0 d� sin�

R
2�
0 d’e�ikxYlm��; ’�

� 4���i�ljl�kr�Ylm��k; ’k�; (A9)

whereby in the last line the decomposition of a plane wave
into spherical waves,

 eikz � 4�
X
lm

iljl�kr�Y�lm��z; ’z�Ylm��k; ’k�; (A10)

was used. Here, jl�z� are the spherical Bessel functions.
Writing the integration over k in spherical coordinates and
using again (A10) an integral over a product of three
hypergeometric functions appears which can be written
in terms of 3j-symbols,

 

Z �

0
d�sin�

Z 2�

0
d’Ylm��;’�Yl0m0 ��;’�Yl00m00 ��;’�

�

��������������������������������������������������
�2l�1��2l0 �1��2l00 �1�

4�

s
l l0 l00

0 0 0

� �
l l0 l00

m m0 m00

� �
(A11)

and we arrive at
 

Dl;l0 �
2

�

���������������������������������
�2l�1��2l0 �1�

p Z 1
0

dkk2

!2�k2 jl�kr�jl0 �kr�



Xl�l0

l00�jl�l0j

il�l
0�l00 �2l00 �1�jl00 �2ak�

�
l00 l l0

0 0 0

 !
l00 l l0

0 �m m

 !
: (A12)

Using jl�z� �
1
2 �h

�1�
l �z� � h

�2�
l �z��, the integration can be

extended to the whole k axis and closed picking up the pole
in k � i!. The result can be inserted into (30) and we
obtain
 

Al;l0 �
���������������������������������
�2l�1��2l0 �1�

p jl0 �ir!�

h�1�l �ir!�



Xl�l0
l00�jl�l0j

il�l
0�l00 �2l00 �1�

�h�1�l00 �2ia!�
l00 l l0

0 0 0

 !
l00 l l0

0 �m m

 !
(A13)

which coincides with the corresponding formula in [6].
Passing now to the modified Bessel functions and dividing
by dl�r; r�, (25), we obtain just formula (33).
APPENDIX B

In this appendix we calculate the uniform asymptotic
expansion of Am;m0 �!�, Eq. (46), using (B1) and obtain
Aas
m;m0 , Eq. (56), and the coefficients a�1=2�

n;n0 �t; �� and

a�1�n;n0 �t; �� therein.
We remind the uniform asymptotic expansion of the

Bessel functions,
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�
Im�mz�
Km�mz�

�
�
���1=2��������

2m
p

exp��m��z��

�1� z2�1=4

�
1�

u1�t�
m
� . . .

�
(B1)

with ��z� �
��������������
1� z2

p
� ln�z=�1�

��������������
1� z2

p
�� and u1�t� �

�3t� 5t3�=24 with t � 1=
��������������
1� z2

p
, the first of the Debye

polynomials. Since we intend to calculate the first next-to-
leading order only the restriction to u1�t� is sufficient.

We start with the exponential factor and do the substi-
tution (53) there. Up to order � we get
 

~� � 2t� �n� n0�2 �
���
�
t

r
��2t� �n� n0�2��n� n0�

� �
�
��2 �

1� �2

t
�n� n0�2

�
1� 3�2

12t2
��n� n0�4 � 6�n2 � n02�2�

�
: (B2)

The expansion of the exponential is

 e�~� � e��0�1�
���
�
p
��1=2�
n;n0 � ��

�1�
n;n0 �O��

2�� (B3)

with

 ��1=2�
n;n0 � �

1��
t
p ��2t� �n� n0�2��n� n0�: (B4)

and
 

��1�n;n0 � �t�
2 � �1� �2��n� n0�2 �

1� 3�2

12t
�n� n0�2

� �7n2 � 10nn0 � 7n02�: (B5)

Next we consider the factors in front of the exponential in
Aas
n;n0 . From (46) and (B1) they collect into

 Cm;m0 �
1�������
2�
p

�
m
m0

1

m�m0

�
1=2
�
1� z2

1

1� z2
2

1

1� z2
3

�
1=4

(B6)

with z1 � !=m, z2 � !=m0 and z1 � 2!�1� ��=�m�
m0�. Here, again, we do the substitution (53) and the
expansion for small � gives

 Cm;m0 ! cm;m0 �
��������
�

4�t

r
�1�

���
�
p
c�1=2�
n;n � �c

�1�
n;n0 � . . .�

(B7)

with

 c�1=2�
n;n0 �

�

2
��
t
p �n� 3n0� (B8)

and
 

c�1�n;n0 �
�1� �2

2
�

1

8t
�6n2 � 4nn0 � 10n02

� ��11n2 � 2nn0 � 29n02��2�: (B9)
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We note hat these contributions are not symmetric under
n$ n0.

Finally we have to consider the contributions from the
Debye polynomials. To the given order we note

 D �
1� u1�t1�

m � . . .

1� u1�t2�
m0 � . . .

�
1�

u1�t3�
m�m0

� . . .
�

(B10)

with ti �
��������������
1� z2

i

q
. Doing here the substitution (53) we

obtain
125018
 D! 1� �d�1� � . . . (B11)

with

 d�1� �
3� 5�2

16t
: (B12)

Taking (B3), (B7), and (B11) together and reexpanding
again we obtain finally for a�1=2�

n;n0 �t; �� and a�1�n;n0 �t; �� in
Eq. (56)
 

a�1=2�
n;n0 �t; �� �

�n� 3n0 � 2�n� n0��n2 � 2n0n� n02 � 2t���

2
��
t
p ;

a�1�n;n0 �t; �� �
�n� 3n0��n� n0��n2 � 2n0n� n02 � 2t��2

2t
�

3� 5�2

16t
�

1

8t
��6� 11�2�n2 � 2n0��2 � 2�n� 4t��2 � 1�

� n02�29�2 � 10� �
1

12t
��7�3�2 � 1�n4 � 4n0�3�2 � 1�n3 � 6��3�2 � 1�n02 � 2t��2 � 1��n2

� 4nn0��3�2 � 1�n02 � 6t��2 � 1�� � 6�n� n0�2�n2 � 2n0n� n02 � 2t�2�2 � 12t2�2 � 12n02t��2 � 1�

� 7n04�3�2 � 1�: (B13)

At the end of this appendix we display the explicit forms of the functions b, (63), and d, (64), introduced in Eq. (62):

 

b�x; y; z;w� �
1

384
���
2
p
�s� 1�7=2

�4�s� 1��4�s� 1�x3� 4�s� 1�yx2� 2��2�s� 1�y2� s� 2�x� y�4�s� 1�y2

� 6�s� 1� � 6��w3� 4�s� 1���4�s� 1�x3� 4�s� 1�yx2� �4�s� 1�y2� 2�s� 1� � 6�x

� y��4�s� 1�y2� 6�s� 1� � 6��zw2� ��4�s� 1��2�s� 1��2z2� 3� � 6�x3

� 4�s� 1�y�2�s� 1��2z2� 3� � 6�x2 � �4�2y2� 1��2z2� 3��s� 1�2 � 24�y2� z2 � 1��s� 1� � 60�x

� y��4�2y2� 3��2z2� 3��s� 1�2� 24�y2 � z2� 3��s� 1� � 60��w� z�8�s� 1��2sz2� 2z2� s� 2�x3

� 8�s� 1�y�2sz2� 2z2 � s� 2�x2� ��4�2y2� 1��2z2� 1��s� 1�2� 24�y2� z2� 1��s� 1� � 60�x

� y�4�2y2� 3��2z2� 1��s� 1�2� 24�y2� z2� 1��s� 1� � 60��; (B14)

 

d�x; y� �
1

384
���
2
p
�s� 1�7=2

�8�s� 1�2x6� 16�s� 1�2yx5� 8�s� 1���s� 1�y2 � s� 2�x4� 32�s� 1�2y�y2� 1�x3

� 2�4�s� 1�2y4� 8�s� 1��s� 4�y2 � �4� 7s�s� 4�x2� 4y��4�s� 1�2y4� 8�s� 1�2y2� s�5s� 16� � 4�x

� 8�s� 1�2y6� 24�s� 1��s� 2�y4� �40� 2�s� 4�s�y2 � 4�s� 1�s� 7: (B15)
APPENDIX C

In this appendix we calculate the integrals over the ni’s
in Eq. (62). As mentioned in the text all these integrations
are Gaussian and we are left with the corresponding
combinatorics.

We note that a number of these integrations can be
carried out independently of the functions
b�ni; ni�1; nj; nj�1� and d�ni; ni�1� entering (62). In the
following we divide the whole expression into a number
of pieces and in each we first perform these integrations.
The remaining ones, one to four in number, depend on the
details of these functions. They have been performed
machined.

We start with the part involving d�ni; ni�1�, (64), in (62).
It is easier because it contains only one sum. First we
separate the first and the last contributions to this sum,

 

Xs
i�0

d�ni; ni�1� � d�0; n1� � d�ns; 0� �
Xs�1

i�1

d�ni; ni�1�:

(C1)

Renaming the ni’s by numbering them in the reverse order
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in the first term in the right-hand side we have

 S1 �
Z 1
�1

dn1����
�
p . . .

Z 1
�1

dns����
�
p �d�0; n1� � d�ns; 0��e

��1

�
Z 1
�1

dn1����
�
p . . .

Z 1
�1

dns����
�
p �d�0; ns� � d�ns; 0��e��1 :

(C2)

Now we apply formula (65). However, in order to avoid
confusion with the notations we rewrite it,

 

m2
1 �

Xs�1

i�1

�mi �mi�1�
2 �m2

u

�
2

1

�
m1 �

2

1
m2

�
2
�

3

2

�
m2 �

3

2
m3

�
2
� . . .

�
u

u� 1

�
mu�1 �

u� 1

u
mu

�
2
�
u� 1

u
m2
u: (C3)

With u � s� 1, m1 � n1; . . . ; mu � ns�1 the first (s� 1)
integrations can be carried out, one by one. The first is that
over n1, which must be shifted, n1 ! n1 �

2
1 n2 and gives

just �12�
1=2 ����

�
p

. The second integrations needs the shift n2 !

n2 �
3
2n3 and gives �23�

1=2 ����
�
p

and so on. The shifts of the
variables which do not enter the functions d (and, below, b)
are obvious and we do not mention them in the following.
Finally, renaming ns � x we obtain

 S1 �
1������������
s� 1
p

Z 1
�1

dx����
�
p �d�0; x� � d�x; 0��

� exp
�
�
s� 1

s
x2

�
: (C4)

The last integration was carried out machined (like the
similar ones below) and the result reads

 

S1 �
1

12
���
2
p
�s� 1�2

�
3

8
���
2
p
�s� 1�3

�
37

64
���
2
p
�s� 1�4

�
1

4
���
2
p
�s� 1�5

: (C5)

Next we calculate the contribution from the sum over i
in (C1). To this end we represent �1 in the form

 

�1 � n2
1 � �n1 � n2�

2 � . . .� �ni�1 � ni�
2 � n2

i � n
2
i

� �ni � ni�1�
2 � n2

i�1 � n
2
i�1 � �ni�1 � ni�2�

2

� . . .� n2
s (C6)

and apply (C3) to n1; . . . ; ni with u � i and m1 �
n1; . . . ; mu � ni and to ni�1; . . . ; ns with u � s� i and
m1 � ns; . . . ; mu � ni�1 so that it takes the form
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�1 �
2

1

�
n1 �

1

2
n2

�
2
� . . .�

i
i� 1

�
ni�1 �

i� 1

i
ni

�
2

�
2

1

�
ns �

s� 1

2
n2

�
2
� . . .

�
s� i

s� i� 1

�
ni�2 �

s� i� 1

s� i
ni�1

�
2

�
s� i� 1

s� i
n2
i�1 �

i� 1

i

�
ni �

i
i� 1

ni�1

�
2

�
s� 1

�i� 1��s� i�
n2
i�1: (C7)

With this formula the integrations over n1; . . . ; ni and over
ni�1; . . . ; ns can be done and renaming ni � x and ni�1 �
y we obtain

 S2 �
Z 1
�1

dn1����
�
p . . .

Z 1
�1

dns����
�
p

Xs�1

i�1

d�ni; ni�1�e
��1

�
Xs�1

i�1

1����������������
i�s� i�

p Z 1
�1

dx����
�
p

Z 1
�1

dy����
�
p d�x; y�


 exp
�
�
i� 1

i

�
x�

i
i� 1

y
�

2
�

s� 1

�i� 1��s� i�
y2

�
:

(C8)

The last two integrations and the sum over i give
 

S2 � �
1

16
���
2
p
�s� 1�2

�
127

384
���
2
p
�s� 1�3

�
103

192
���
2
p
�s� 1�4

�
1

4
���
2
p
�s� 1�5

: (C9)

Taken together the expressions simplify to some extend,

 S1 � S2 �
1

48
���
2
p
�s� 1�2

�
17

384
���
2
p
�s� 1�3

�
1

24
���
2
p
�s� 1�4

: (C10)

Now we calculate the contributions of the double sum in
(62). Again we separate the first and the last terms,
 

S3 �
Z 1
�1

dn1����
�
p . . .

Z 1
�1

dns����
�
p

X
0�i<j�s

b�ni; ni�1; nj; nj�1�

�
Z 1
�1

dn1����
�
p . . .

Z 1
�1

dns����
�
p �b�0; n1; ns; 0�

�
X

0<j<s

b�0; n1; nj; nj�1� �
X

0<i<s

b�ni; ni�1; ns; 0�

�
X

0<i<j<s

b�ni; ni�1; nj; nj�1��

� S3;1 � S3;2 � S3;3 � S3;4: (C11)

For S3;1 we rewrite �1 in the form
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�1 � n2
1 � �n2 � n1�

2 � �n2 � n1 � �n3 � n1��
2 � . . .

� �ns�1 � n1 � �ns � n1��
2 � �ns � n1�

2

� �ns � n1�
2 � n2

s (C12)

and apply (C3) with u � s� 1, m1 � n2 � n1; . . . ; mu �
ns � n1,
 

�1 �
2

1

�
n2 � n1 �

1

2
�n3 � n1�

�
2
� . . .

�
s� 1

s� 2

�
ns�1 � n1 �

s� 2

s� 1
�ns � n1�

�
2

�
s

s� 1

�
n1 �

1

s
ns

�
2
�
s� 1

s
n2
s : (C13)

After integration over n2; . . . ; ns�1 and renaming n1 � x
and ns � y we have

 S3;1 �
1������������
s� 1
p

Z 1
�1

dx����
�
p

Z 1
�1

dy����
�
p d�0; x; y; 0�


 exp
�
�

s
s� 1

�
x�

1

s
y
�

2
�
s� 1

s
y2

�
: (C14)

The last two integrations give

 S3;1 � �
s� 1

8
���
2
p
�s� 1�5

: (C15)

For S3;2 we rewrite �1 in the form
 

�1 � n2
1 � �n1 � n2�

2 � . . .� �ni�1 � ni�2 � n2
i � n

2
i

� �ni � ni�1�
2 � �ni�1 � ns�2 � �ni�1 � ns�2

� �ni�1 � ns � �ni�2 � ns��2 � . . .

� �ns�2 � ns � �ns�1 � ns��2 � �ns�1 � ns�2 � n2
s

(C16)

and apply (C3) to n1; . . . ; ni with u � i, m1 �
n1; . . . ; mu � ni and to ni�1 � ns; . . . ; ns�1 � ns with u �
s� i� 1 and m1 � ni�1 � ns; . . . ; mu � ns�1 � ns so
that �1 takes the form
 

�1 �
2

1

�
n1 �

1

2
n2

�
2
� . . .�

i
i� 1

�
ni�1 �

i� 1

i
ni

�
2

�
2

1

�
ns�1 � ns �

1

2
�ns�2 � ns�

�
2
� . . .

�
s� i� 1

s� i� 2

�
ni�2 � ns �

s� i� 2

s� i� 1
�ni�1 � ns�

�
2

�
i� 1

i

�
ni �

i
i� 1

ni�1

�
2
�

s
�s� i� 1��i� 1�

�

�
ni�1 �

i� 1

s
ns

�
2
�
s� 1

s
n2
s : (C17)

After integration over n1; . . . ; ni�1 and ni�1; . . . ; ns�1 and

CASIMIR EFFECT FOR A SPHERE AND A CYLINDER . . .
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renaming n1 � x, ni�1 � y and ns � z we have

 

S3;2 �
Xs�1

i�1

1������������������������
i�s� i� 1�

p Z 1
�1

dx����
�
p

Z 1
�1

dy����
�
p

�
Z 1
�1

dz����
�
p d�x; y; z;0� 
 exp

�
�
i� 1

i

�
x�

i
i� 1

y
�

2

�
s

�s� i� 1��i� 1�

�
y�

i� 1

s
z
�

2
�
s� 1

s
z2

�
:

(C18)

The last three integrations and the sum give

 S3;2 � �
s� 1

8
���
2
p
�s� 1�4

: (C19)

In the same way we calculate S3;3. Here we rewrite �1 in
the form

 

�1 � n2
1 � �n2 � n1�

2 � �n2 � n1 � �n3 � n1��
2 . . .

� �nj�1 � n1 � �nj � n1��
2 � �nj � n1�

2�

� �nj � n1�
2 � �nj � nj�1�

2 � n2
j�1 � n

2
j�1

� �nj�1 � nj�2��
2 � . . .� n2

s (C20)

and apply (C3) to n2; . . . ; nj�1 with u � j� 1,m1 � n2 �

n1; . . . ; mu � nj�1 � n1 and to nj�1; . . . ; ns with u � s�
j and m1 � ns; . . . ; mu � nj�1 so that �1 takes the form

 

�1 �
2

1

�
n2 � n1 �

1

2
�n3 � n1�

�
2
� . . .

�
j� 1

j� 2

�
nj�1 � n1 �

j� 2

j� 1
�nj � n1�

�
2

�
2

1

�
ns �

1

2
ns�1

�
2
� . . .

�
s� j

s� j� 1

�
nj�2 �

s� j� 1

s� j
nj�1

�
2

(C21)

After integration over n2; . . . ; nj�1 and over nj�2; . . . ; ns
and renaming n1 � x, nj � y and ns � z we have

 S3;2 �
Xs�1

j�1

1�����������������������������
�j� 1��s� j�

p Z 1
�1

dx����
�
p

Z 1
�1

dy����
�
p

�
Z 1
�1

dz����
�
p d�0; x; y; z� 
 exp

�
�
s� 1

is
x2

�
s

�s� j� 1��j� 1�

�
y�

s� j� 1

s
x
�

2

�
s� j� 1

s� j
z2

�
:

(C22)
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The last three integrations and the sum give

 S3;3 � �
�s� 1�2

8
���
2
p
�s� 1�4

: (C23)

The last step is S3;4, which in fact contains the double sum. Here we represent �1 in the form

 

�1� n2
1��n1�n2�

2� . . .��ni�1�ni�2�n2
i �n

2
i ��ni�ni�1�

2��ni�2�ni�1�
2��ni�2�ni�1��ni�3�ni�1��

2� . . .

��nj�1�ni�1��nj�ni�1��
2��nj�ni�1�

2��nj�ni�1�
2��nj�nj�1�

2�nj�1�n2
j�1��nj�1�nj�2��

2

� . . .�n2
s : (C24)

We apply (C3) 3 times, first, with u � i and m1 � n1; . . . ; mu � ni, second, with u � j� i� 1 and m1 � ni�2 �
ni�1; . . . ; mu � nj � ni�1, and, third, with u � s� j and m1 � ns; . . . ; mu � nj�1. So we write �1 in the form

 

�1 �
2

1

�
n1�

1

2
n2

�
2
� . . .�

i
i� 1

�
ni�1�

i� 1

i
ni

�
2
�

2

1

�
ni�2� ni�1�

1

2
�ni�3� ni�1�

�
2
� . . .

�
j� i� 1

j� i� 2

�
nj�1� ni�1�

j� i� 2

j� i� 1
�nj� ni�2

�
2
�

2

1

�
ns �

1

2
ns�1

�
2
� . . .�

s� j
s� j� 1

�
nj�2�

s� j� 1

s� j
nj�1

�
2

�
i� 1

i

�
ni�

i
i� 1

ni�1

�
2
�

j
�i� 1��j� i� 1�

�
ni�1�

i� 1

j
nj

�
2
�

s� 1

j�s� j� 1�
n2
j

�
s� j� 1

s� j

�
nj�1�

s� j
s� j� 1

nj

�
2
: (C25)

All integration except for four, whose variables we rename for ni � x, ni�1 � y, nj � z and nj�1 � w, can be done,
 

S3;4 �
X

0<i<j<s

1���������������������������������������
�j� i� 1��s� j�i

p Z 1
�1

dx����
�
p

Z 1
�1

dy����
�
p

Z 1
�1

dz����
�
p

Z 1
�1

dw����
�
p d�x; y; z; w� 
 exp

�
�
i� 1

i

�
x�

i
i� 1

y
�

2

�
j

�j� i� 1��i� 1�

�
y�

i� 1

j
z
�

2
�

s� 1

�s� j� 1�j
z2 �

s� j� 1

s� j

�
w�

s� j
s� j� 1

z
�

2
�
: (C26)
The last integrations give

 S3;4 � �
X

0<i<j<s

�2i� 1��4j� 3s� 1�

8
���
2
p
�s� 1�5

(C27)

and after the summations over i and j

 S3;4 �
�s� 2��s� 1��5s� 3�

48
���
2
p
�s� 1�5

: (C28)

Together we get for S3, (C11),
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 S3 � �
�s� 1�s

48
���
2
p
�s� 1�4

: (C29)

Collecting together all parts we obtain finally

 S1 � S2 � S3 �
7

384
���
2
p
�s� 1�3

; (C30)

which is the result quoted in Eq. (68).
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