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Space-time propagation of neutrino wave packets at high temperature and density
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We study the space-time evolution of ‘‘flavor’’ neutrino wave packets at finite temperature and density
in the early Universe prior to big bang nucleosynthesis (BBN). We implement nonequilibrium field theory
methods and linear response to study the space-time evolution directly from the effective Dirac equation
in the medium. There is a rich hierarchy of time scales associated with transverse and longitudinal
dispersion and coherence. A phenomenon of ‘‘freezing of coherence’’ is a result of a competition between
longitudinal dispersion and the separation of wave packets of propagating modes in the medium. Near a
resonance the coherence and oscillation time scales are enhanced by a factor 1= sin2� compared to the
vacuum. Collisional relaxation via charged and neutral currents occurs on time scales much shorter than
the coherence time scale and for small vacuum mixing angle, shorter than the oscillation scale. Assuming
that the momentum spread of the initial wave packet is determined by the large angle scattering mean free
path of charged leptons, we find that the transverse dispersion time scale is the shortest and is responsible
for a large suppression in both the survival and transition probabilities on time scales much shorter than
the Hubble time. For small mixing angle the oscillation time scale is longer than the collisional relaxation
scale. The method also yields the evolution of right-handed wave packets. Corrections to the oscillation
frequencies emerge from wave-packet structure as well as from the energy dependence of mixing angles
in the medium.
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I. INTRODUCTION

Neutrinos are the bridge between astrophysics, cosmol-
ogy, particle physics and nuclear physics [1–4]. In recent
years, there has been increasing experimental evidence that
confirm that neutrinos are massive and oscillate between
different flavors [5–9] providing the first indisputable hint
of new physics beyond the standard model.

Neutrino mixing and oscillations in extreme conditions
of high temperature and density play a fundamental role in
astrophysics and cosmology [10–16]. Resonant flavor mix-
ing due to Mikheyev-Smirnov-Wolfenstein (MSW) effect
can provide a concrete explanation to the solar neutrino
problem [17,18]. During big bang nucleosynthesis (BBN)
neutrino oscillations may result in corrections to the abun-
dance of electron neutrinos [10]. This in turn changes the
neutron-to-proton ratio, affecting the mass fraction of 4He
(see Ref. [10] and references therein). Neutrino oscillations
violate lepton number leading to the possibility that the
cosmological baryon asymmetry may originate in the lep-
ton sector [19–21].

Neutrino propagation in a cold medium has been first
studied by Wolfenstein [17] who included the refractive
index from electron neutrinos. Early studies focused on the
neutrino dispersion relations and damping rates at the
temperature limit relevant for stellar evolution or BBN
[22]. This work has been extended to include charged
leptons, neutrinos and nucleons in the thermal medium
[23]. The matter effects of neutrino oscillations in the early
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universe have been investigated in [10,22,24,25]. More
Recently, a nonequilibrium field-theoretical description
of neutrino oscillations in the early universe in the real-
time formulation has been reported in [26].

Kayser [27] first pointed out subtle but important caveats
in the vacuum oscillation formula obtained from the stan-
dard plane wave treatment, which result from assuming a
definite neutrino momentum for different mass eigenstates.
He showed that knowledge of momentum allows experi-
ments to distinguish different neutrino mass eigenstates,
essentially destroying the oscillation pattern. He then pro-
posed a wave-packet treatment of neutrino oscillations, in
which the neutrino momentum is spread out. Since then,
the wave-packet approach has been studied by many au-
thors in both quantum mechanical [1,2,28–32] and field-
theoretical [33–37] frameworks, including the study of
oscillations of neutrinos produced and detected in crystals
[38].

The quantum mechanical approach usually refers to the
intermediate wave-packet model in which each propagat-
ing mass eigenstate of neutrino is associated with a wave
packet [29]. This model eliminates some of the problems in
the plane wave treatment although several conceptual
questions remaining unsettled [28]. See [37] and references
therein for detailed descriptions of these issues. A field-
theoretical approach is the external wave-packet model
[33] in which the oscillating neutrino is represented by
an internal line of a Feynman diagram, while the source
and the detector are, respectively, described by in-coming
and out-going wave packets. A recent review [37] presents
the different approaches, summarizes their advantages and
caveats and includes the dispersion of wave packets in the
study.
-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.73.125014


C. M. HO AND D. BOYANOVSKY PHYSICAL REVIEW D 73, 125014 (2006)
An important physical consequence of the wave-packet
description of neutrino evolution is the concept of the
coherence length beyond which neutrino oscillations van-
ish. A ‘‘flavor neutrino’’ wave packet is a linear superpo-
sition of wave packets of mass eigenstates. The different
mass states entail a difference in the group velocity and an
eventual separation of the wave packets associated with
mass eigenstates. This separation results in a progressive
loss of coherence as overlaps between the wave packets
dimishes. See for example [31] for an early explanation. In
an actual source-detector experimental setup, the observa-
tion time is usually not measured and is commonly inte-
grated out in a wave-packet treatment [31]. This leads to a
localization term in the vacuum oscillation formula, which
states that neutrino oscillations are suppressed if the spatial
uncertainty is much larger than the oscillation length [31].

The coherence of neutrino oscillations in matter has
been studied within a geometrical representation in [30],
but the medium oscillation formula was not derived. While
most of the studies focus on reproducing the standard
vacuum oscillation formula, a consistent study of neutrino
mixing and propagation in a medium in real time has not
yet emerged.

While in the vacuum the space-time propagation can be
studied in the wave-packet approach by focusing on the
space-time evolution of initially prepared single particle
‘‘flavor states’’, the study of the space-time evolution in a
medium at finite temperature and density requires a density
matrix description.

To the best of our knowledge, a full finite temperature
field-theoretical treatment of the space-time propagation of
neutrino wave packets in a medium including medium
corrections and dispersion dynamics has not yet been
offered. We consider this study an important aspect of
the program to study the nonequilibrium evolution of
neutrinos in the early Universe. Detailed studies have
shown that neutrino oscillations and self-synchronization
lead to flavor equilibration before BBN [39–43], begin-
ning at a temperature of T � 30 MeV with complete flavor
equilibration among all flavors at T � 2 MeV [41]. If
neutrinos are produced in the form of spatially localized
wave packets rather than extended plane waves before
BBN, the two mass eigenstates separate progressively
during propagation due to the small difference in group
velocities. A significant amount of neutrino oscillations,
which are crucial for ‘‘flavor equalization’’ requires that
the two mass eigenstates overlap appreciably throughout
their propagation, namely, the coherence time scale should
be sufficiently large to ensure that ‘‘flavor equilibration’’
through oscillations is effective. Therefore, it is important
to pursue a full field-theoretical study of neutrino wave-
packet propagation in the medium directly in real time to
determine the relevant time scales for coherence to be
maintained and to identify the processes that contribute
to its loss.
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A. The main goals of this article

In this article we study the space-time evolution of
neutrino wave packets in extreme environments at high
temperature and density, conditions that prevail in the early
Universe or during supernovae explosions. Our goals are
the following:

(i) to provide a consistent and systematic nonequilib-
rium field-theoretical formulation to study the space-
time evolution of initially prepared neutrino wave
packets at finite temperature and density. This goal
requires a treatment of the space-time evolution in
terms of the density matrix, which goes beyond the
usual treatment in terms of single particle states. To
achieve this goal we implement a recently developed
method [26] to study nonequilibrium aspects of neu-
trino propagation in a medium as an initial value
problem in linear response. This method yields the
effective Dirac equation of motion for the expecta-
tion value of the neutrino field induced by an external
source. The effective Dirac equation in the medium
includes self-energy contributions from charged and
neutral currents up to one loop.

(ii) To assess the different time scales associated with
wave-packet dispersion, coherence and oscillations
including the medium effects, in particular, near
possible resonances in the in-medium mixing an-
gles. This is achieved by solving the effective Dirac
equation in the medium, which includes self-energy
corrections, as an initial value problem. The initial
wave packet configuration is ‘‘prepared’’ by an
external source term in linear response. This method
also allows to assess corrections from the energy
dependence of the mixing angles in the medium
upon the wave-packet dynamics.

(iii) The space-time evolution of the initially prepared
wave packet, including dispersive effects allows an
assessment of the competition between the progres-
sive loss of coherence in the wave-packet dynamics
by the separation of mass eigenstates, collisional
decoherence, and cosmological expansion. While
our study only includes the self-energy from
charged and neutral currents up to one-loop, the
final result allows us to include results available
in the literature [10,22,24,25] to understand the
effects of collisional decoherence and cosmologi-
cal expansion when there is a separation of time
scales.

(iv) We focus our study within the context of early
Universe cosmology, in particular, in the tempera-
ture regime just prior to BBN where there is a
possibility for resonant transitions [10,22,24–26].
Of particular interest are the medium modifications
of the dispersion relations, wave-packet dispersion,
oscillation and coherence time scales in this tem-
perature and energy regime.
-2
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(v) A bonus of this field-theoretical formulation is that
it also allows to obtain the space-time evolution of
right-handed neutrino wave packets. Although the
amplitude for such wave packets is suppressed by
M=k with M, k the typical mass and energy scale of
neutrinos in the medium, and may not be relevant
for neutrino processes in the early Universe, the
method systematically yields this information.

Since we study the propagation of neutrino wave packets
in a medium, aspects associated with the source-detector
measurement processes are not well-defined or relevant in
this case. Consequently, in contrast to most studies in the
literature, we do not integrate in time as is the case for a
description of experiments in the vacuum [31]. Therefore,
our study of propagation is both in space and time.
B. Main results

Our main results are the following:
(i) A systematic field-theoretical formulation of the

space-time dynamics of wave packets of massive
and mixed neutrinos in terms of the effective Dirac
equation including self-energy corrections. The
space-time evolution is approached as an initial
value problem via linear response with the full den-
sity matrix.

(ii) Wave-packet evolution features characteristic time
scales associated with transverse and longitudinal
dispersion. The ratio of these scales is given by the
enormous Lorentz dilation factor in the case of
relativistic neutrinos. Neither of these scales re-
ceives substantial medium corrections. The shortest
scale, associated with the transverse dispersion
dominates the suppression of both the survival and
transition probabilities. There is an interesting phe-
nomenon of ‘‘coherence freezing’’ which results
from the competition between longitudinal disper-
sion and the separation of the mass eigenstates. We
find that there are medium as well as wave-packet
modifications to the oscillation formula both for the
oscillation frequency as well as the survival and
transition probabilities.

(iii) There is a resonance for the mixing angle in the
medium just prior to BBN [10,22,24–26] at an
energy and temperature k� T � 3:6 MeV for large
mixing angle or k� T � 7 MeV for small mixing
angle. Both the coherence and the oscillation time
scales are enhanced by a factor 1= sin2� near the
resonance, where � is the vacuum mixing angle.
This suggests a substantial increase both in the
coherence and the oscillation scales for 1–3 mix-
ing, but not an appreciable modification for 1–2
mixing.

(iv) Assuming that the momentum spread of the initial
wave packet is determined by the large angle scat-
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tering mean free path of charged leptons [1], we
find that near the resonance the loss of coherence
via charged and neutral current elastic scattering is
faster than the loss of coherence by the separation
of the mass eigenstates and occurs on a time scale
much shorter than the Hubble time. However, the
decoherence time scale is many orders of magni-
tude larger than the time scale for transverse dis-
persion which ultimately determines the sup-
pression of the survival and transition probabilities.

C. Outline

This article is organized as follows. In Sec. II, we obtain
the effective Dirac equation of neutrino in a thermal me-
dium implementing the methods of nonequilibrium field
theory and linear response [26]. In this section we obtain
the in-medium dispersion relations and mixing angles. In
Sec. III, we develop the general formulation to study the
space-time propagation of neutrino wave packet. In this
section we discuss the different time scales associated with
dispersion, oscillations and coherence. In Sec. IV we com-
pare the different time scales with the Hubble and colli-
sional relaxation time scales and discuss the impact of the
different scales upon the space-time evolution of the neu-
trino wave packets, coherence, and oscillations. We present
our conclusions in Sec. V.
II. EFFECTIVE DIRAC EQUATION OF
NEUTRINOS IN A MEDIUM AND LINEAR

RESPONSE

The study of the evolution of neutrino wave packets in
the vacuum typically involves a description of the experi-
mental production and detection of these wave packets. We
study the space-time evolution of wave packets in a me-
dium as an initial value problem. This is achieved in linear
response by coupling an external source term which in-
duces an expectation value of the neutrino field in the
density matrix, after this source is switched off the expec-
tation value evolves in time. The propagation of this initial
state is described by the effective Dirac equation in the
medium, which includes the self-energy corrections. This
is the familiar linear response approach to studying the
evolution out of equilibrium in condensed matter systems.
The correct framework to implement this program is the
real-time formulation of field theory in terms of the closed-
time-path integral [44–46].

We restrict our study to the case of two Dirac flavor
neutrinos, while the formulation is general and can treat 1–
2 or 1–3 mixing on equal footing, for convenience we will
refer to electron and muon neutrino mixing. Neutrino
mixing and oscillations is implemented by adding to the
standard model a Dirac mass matrix Mab which is off-
diagonal in the flavor basis. For our discussion, the relevant
part of the Lagrangian is given by
-3
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L � L0
� �L0

W �L0
Z �LCC �LNC � ��a�a � ��a�a;

(2.1)

where L0
� is the free field neutrino Lagrangian density

L 0
� � ��a�i@6 �ab �Mab��b; (2.2)

where a, b are flavor indices. L0
W;Z are the free field vector

boson Lagrangian densities in the unitary gauge, namely

L 0
W � �

1
2�@�W

�
� � @�W�� ��@�W�� � @�W���

�M2
WW

�
�W

��; (2.3)

L 0
Z � �

1
4�@�Z� � @�Z���@

�Z� � @�Z�� � 1
2M

2
ZZ�Z

�;

(2.4)

and the charged and neutral current interaction Lagrangian
densities are given by

L CC �
g���
2
p � ��a�

�LlaW
�
� � �la�

�L�aW
�
� �; (2.5)

LNC �
g

2 cos�w
� ��a��L�aZ� � �fa���gVa � gAa�5�faZ��;

(2.6)

where �w is the Weinberg angle, L � �1� �5�=2 is the
left-handed chiral projection operator, and gV;A are the
vector and axial vector couplings for quarks and leptons.
The label l stands for leptons and f generically for the
fermion species with neutral current interactions. The ex-
ternal sources �a, ��a which couple to the neutrino fields
depend explicitly on space and time and induce an expec-
tation value whose time evolution is studied in linear
response.

For two Dirac flavor neutrinos, the mass matrix Mab is
parametrized by

M �
mee me�

me� m��

� �
: (2.7)

For the vacuum case, the elements mee, m��, and me�

are related to the vacuum mixing angle � and masses of the
propagating mass eigenstates M1 and M2 as follows:

mee � cos2�M1 � sin2�M2;

m�� � sin2�M1 � cos2�M2;

me� � ��M1 �M2� sin� cos�:

(2.8)

For later convenience and to establish contact with ob-
servable parameters we introduce the following quantities
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�M �
M1 �M2

2
; �M2 � M2

1 �M
2
2; (2.9)

The masses M1;2 can be conveniently written in terms of
these quantities as

Ma � �M
�

1� ��1�a�1 �M
2

4 �M2

�
; a � 1; 2: (2.10)

The current value for �M obtained by WMAP [47] and
the oscillation parameters from the combined fitting of the
solar and KamLAND data are [48] respectively:

�M 	 0:25 �eV�;

j�M2
12j 	 7:9
 10�5 �eV�2;

tan2�12 	 0:40:

(2.11)

For atmospheric neutrinos, analysis from
SuperKamiokande, CHOOZ, and atmospheric neutrino
data yield,

j�M2
13j 	 �1:3� 3:0� 
 10�3 �eV�2;

sin2�13 < 0:067�3��:
(2.12)

This implies that j�M2j= �M2 � 1, an almost degenerate
hierarchy of neutrino masses.

A. Linear response

The medium is described by an ensemble of states, and
the description is in terms of a density matrix. Therefore
the question of space-time evolution is more subtle, while
in the vacuum one can consider preparing an initial single
particle state and evolving it in time, such a consideration
is not available in a medium, and the question of time
evolution must be formulated differently, namely, in terms
of expectation values of the relevant operators in the den-
sity matrix.

In equilibrium the neutrino field cannot have an expec-
tation value in the density matrix. The usual method in
many body theory to study the nonequilibrium evolution of
single quasiparticle states is the method of linear response:
an external source is coupled to the field which develops an
expectation value in the density matrix induced by the
source. The expectation value of this field obeys the equa-
tion of motion with medium corrections. Upon switching
off the external source, the expectation value evolves in
time as a solution of the effective equations of motion in
the medium. For a detailed description of this method in
nonequilibrium quantum field theory see Refs. [26,45,46].
The external sources �a in the Lagrangian density (2.1)
induce an expectation value of the neutrino field

 a � h�ai � Tr�̂�a; (2.13)

where �̂ is the full density matrix of the medium. In linear
response this expectation value is linear in the external
source and obeys the effective Dirac equation of motion
-4
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in the medium [46]. It is most conveniently written in terms
of the spatial Fourier transforms of the fields, sources and
self-energies  a� ~k; t�, �a� ~k; t�, �� ~k; t� t0� respectively.1

The one-loop self-energies with neutral and charged cur-
rent contributions had been obtained in refs. [22,25,26],
and the effective Dirac equation in the medium up to one
loop has been obtained in the real-time formulation in
Ref. [26]. It is given by��
i�0 @

@t
� ~� � ~k

�
�ab �Mab ��tad

abL
�
 b� ~k; t�

�
Z t

�1
dt0�ab� ~k; t� t0�L b� ~k; t0� � ��a� ~k; t�; (2.14)

where L is the projector on left-handed states, �tad
abL is the

(local) tadpole contribution from the neutral currents and
�ab� ~k; t� t0� is the spatial Fourier transform of the (re-
tarded) self-energy which includes both neutral and
charged current interactions, and whose spectral represen-
tation is given by

�� ~k; t� t0� � i
Z 1
�1

dk0

	
Im�� ~k; k0�e�ik0�t�t0�;

�� ~k; k0� � �W� ~k; k0� ��Z� ~k; k0�;
(2.15)

where we have separated the charged and neutral current
contributions, respectively.

The external source term � allows to ‘‘prepare’’ a de-
termined initial state, leading to the time evolution of  as
an initial value problem. This approach is implemented as
follows. Consider switching on the source adiabatically
from t � �1 up to t � 0 and switching it off at t � 0,

�a� ~k; t� � �a� ~k; 0�e
t���t�; 
! 0�: (2.16)

It is straightforward to confirm that for t < 0 the solution of
the Dirac Eq. (2.14) is given by

 a� ~k; t < 0� �  a� ~k; 0�e
t: (2.17)

Inserting this ansatz into the Eq. (2.14) yields a linear
relation which determines the initial value  a� ~k; 0� from
�a� ~k; 0�, or equivalently, for a given initial value  � ~k; 0�
allows to determine the adiabatic source that yields this
initial value problem. The evolution for t > 0 is determined
by the following effective (retarded) Dirac equation,��

i�0 @
@t
� ~� � ~k

�
�ab �Mab � �tad

abL
�
 b� ~k; t�

�
Z t

0
dt0�ab� ~k; t� t0�L b� ~k; t0�

� � a� ~k; 0�
Z 1
�1

dk0

	
Im�� ~k; k0�

k0
e�ik0t: (2.18)
1We have kept the same functions to avoid cluttering the
notation, but the label ~k makes it clear that these are the spatial
Fourier transforms.
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This equation can be solved by Laplace transform.
Introduce the Laplace transforms

~ b� ~k; s� �
Z 1

0
e�st b� ~k; t�;

~�� ~k; s� �
Z 1

0
e�st�� ~k; t� �

Z 1
�1

dk0

	
Im�� ~k; k0�

k0 � is
;

(2.19)

where we have used Eq. (2.15) to obtain the Laplace trans-
form of the self-energy. At this stage it is convenient to
establish contact with the more familiar description of the
Dirac equation in the frequency representation (Fourier
transform in time) by introducing the time Fourier trans-
form of the retarded self-energy,

�� ~k;!� �
Z dk0

	
Im�� ~k; k0�

k0 �!� i

; (2.20)

related via analyticity to the Laplace transform, namely

~�� ~k; s� � �� ~k;! � is� i
�: (2.21)

In terms of Laplace transforms the equation of motion
becomes the following algebraic equation

Dab� ~k; s� ~ b� ~k; s� � i
�
�0�ab�

1

is
�~�ab� ~k; s�� ~�ab� ~k;0��L

�

 b� ~k;0�; (2.22)

whereD� ~k; s�  D� ~k;! � is� i
� is the analytic continu-
ation of the Dirac operator in frequency and momentum
space

Dab� ~k;!� � ���0!� ~� � ~k��ab �Mab ��tad
abL

� �ab� ~k;!�L�: (2.23)

The full space-time evolution of an initial state is deter-
mined by

 a� ~x; t� �
Z
d3kei ~k� ~x

Z
�

ds
2	i

D�1
ab �

~k; s��i�0� b� ~k; 0�e
st;

(2.24)

where � is the Bromwich contour in the complex s plane
running parallel to the imaginary axis to the right of all the
singularities of the function ~ � ~k; s� and closing on a large
semicircle to the left. We have simplified the expression for
the Eq. (2.24) by discarding a perturbatively small correc-
tion to the amplitude of O�GF�, given by the self-energy
corrections on the right hand side of Eq. (2.22). Therefore
the space-time evolution is completely determined by the
singularities of the function ~ � ~k; s� in the complex s-plane.
Up to one-loop order and for temperatures well below the
mass of the vector bosons, the only singularities are simple
poles along the imaginary axis, corresponding to the dis-
persion relations of the propagating modes in the medium.
In this temperature range absorptive processes emerge at
the two loop level, consequently these are of O�G2

F� and
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are neglected in the one-loop analysis presented here. The
integral along the Bromwich contour in the complex
s-plane can now be writtenZ

�

ds
2	i

D�1
ab �

~k; s��i�0� b� ~k; 0�est

�
Z 1
�1

d!
2	

D�1
ab �

~k;!��i�0� b� ~k; 0�e�i!t; (2.25)

where the frequency integral is performed along a line
parallel to but slightly below the real ! axis closing
counterclockwise in the upper half plane.

The one-loop contributions to the self-energy for !, k,
T � MW were obtained in Ref. [22,25,26] and found to be
of the form [26]

�tad
ab � �ab� ~k;!� � �0A�!� � ~� � k̂B�k�; (2.26)

where A�!� and B�k� are 2
 2 diagonal matrices in the
neutrino flavor basis.2 To lowest order in k=MW ; !=MW
these matrices are found to be [10,22,25,26]

A�!� �
Ae�!� 0

0 A��!�

 !
;

B�k� �
Be�k� 0

0 B��k�

 !
:

(2.27)

Imposing charge neutrality, the results of Ref. [26] (see
also [10,22,24,25]) are summarized in the following re-
gimes: high temperature and density, relevant during the
early Universe or low temperature and high density, rele-
vant for cold dense matter in supernovae, neutron stars or
the sun

(i) me � T � m�

In this regime we consider the following degrees of
freedom �, e, and p, n in nuclear statistical equilib-
rium. The matrix elements are given by

Ae�!� �
GFn����

2
p

�
�Le �

7	4

60��3�
!T

M2
W

�2

� cos2�w�
�
; (2.28)

A��!� �
GFn����

2
p

�
�L� �

7	4

60��3�
!T

M2
W

cos2�w

�
;

(2.29)

Be�k� � �
GFn����

2
p

7	4

180��3�
kT

M2
W

�2� cos2�w�;

(2.30)
2The equivalence with the notation of Ref. [22] is (see Eq. (2)
in Ref. [22]): aNR � B�k�=k; bNR � A�!� �!B�k�=k.
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B��k� � �
GFn����

2
p

7	4

180��3�
kT

M2
W

cos2�w; (2.31)

where in terms of the asymmetries Lf with f � �, e,
p, n

�Le � �
1
2L�e � L�� � 3Le � Ln;

�L� � �
1
2L�� � L�e � Ln:

(2.32)

(ii) me, m� � T � MW

In this regime the relevant degrees of freedom are
the lightest deconfined quarks u, d and leptons

Ae�!� �
GFn����

2
p

� g�Le�
7	4

60��3�
!T

M2
W

�2� cos2�w�
�
;

(2.33)

A��!� �
GFn����

2
p

�
�gL��

7	4

60��3�
!T

M2
W

�2� cos2�w�
�
;

(2.34)

Be�k� � �
GFn����

2
p

7	4

180��3�
kT

M2
W

�
2� cos2�w

�
60

7	2

�
me

T

�
2
�
; (2.35)

B��k� � �
GFn����

2
p

7	4

180��3�
kT

M2
W

�
2� cos2�w

�
60

7	2

�m�

T

�
2
�
; (2.36)

where

�fLe � �
1
2L�e � L�� � 3Le

� �1� 4sin2�w��2Le � L��

� �1� 8sin2�w�Lu � 2Ld; (2.37)

�gL� � �
1
2L�� � L�e � 3L�

� �1� 4sin2�w��2Le � L��

� �1� 8sin2�w�Lu � 2Ld: (2.38)

(iii) Cold dense matter with e, �, �, p, n:

Ae � �
GFN e���

2
p ; A� � �

GFN ����
2
p ;

Be;� � 0;

(2.39)

�N e � �
1
2N �e �N �� � 3N e �N n;

(2.40)
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�N � � �
1
2N �� �N �e �N n: (2.41)

(iv) Cold dense matter with quarks and leptons:

Ae � �
GF���

2
p ~N e; A� � �

GF���
2
p ~N �;

Be;� � 0;

(2.42)

�gN e � �
1
2N �e �N �� � 3N e

� �1� 4sin2�w��2N e �N ��

� �1� 8sin2�w�N u � 2N d; (2.43)

�gN � � �
1
2N �� �N �e � 3N �

� �1� 4sin2�w��2N e �N ��

� �1� 8sin2�w�N u � 2N d; (2.44)

where n� � 2��3�T3=	2 is the photon density, and

Lf �
N f

n�
;

N f � 2
Z d3p

�2	�3
�Nf�p� � N �f�p��;

(2.45)

N f are the particle-antiparticle asymmetry
densities.

B. Dispersion relations and mixing angles
in the medium

The simple poles of the integrand in (2.25) are the
solutions of the homogeneous Dirac equation

��0!1� ~� � k̂k1�M� ��0A�!� � ~� � k̂B�k��L�


  �!; k� � 0; (2.46)

where 1 is the 2
 2 identity matrix in the flavor basis in
which the field  �!; k� is given by

 �!; k� �
�e�!; k�
���!; k�

� �
; (2.47)

with �e�!; k� and ���!; k� each being a 4-component
Dirac spinor.

It turns out to be most convenient to work in the chiral
basis in which the left-handed and right-handed compo-
nents of the Dirac doublets are written as [26]

 L �
X
h��1

0
v�h� � ’�h�

� �
;  R �

X
h��1

v�h� � ��h�

0

 !
;

(2.48)

where the two component Weyl spinors v�h� are the
eigenstates of the helicity operator ~� � k̂ with eigenvalues
h � �1.
125014
To the leading order in GF, the left-handed flavor dou-
blet

’�h��!; k� � ��h�e �!; k�
��h�� �!; k�

 !
; (2.49)

obeys the following effective Dirac equation [26]

��!2 � k2�1� �!� hk��A� hB� �M2�’�h��!; k� � 0;

(2.50)

while the right-handed doublet is determined by the rela-
tion [26]

��h��!; k� � �
�!� hk�

!2 � k2 M’�h��!; k�: (2.51)

The propagating modes in the medium are found by
diagonalization of the above effective Dirac equation.
This can be done by performing a unitary transformation
’�h��!; k� � U�h�m �h��!; k� where

U�h�m �
cos��h�m sin��h�m

� sin��h�m cos��h�m

 !
;

�h��!; k� �
��h�1 �!; k�

��h�2 �!; k�

0@ 1A; (2.52)

and a similar transformation for the right-handed doublet
��h��!; k�, with the medium mixing angle ��h�m depending
on h, k, and !. Upon diagonalization, the eigenvalue
equation is given by [26]�
!2 � k2 �

1

2
Sh�!; k� �

1

2
�M2

1 �M
2
2�

�
1

2
�M2�h�!; k�

1 0

0 �1

 !�
�h��!; k� � 0; (2.53)

where Sh�!; k�, �h�!; k�, and �h�!; k� are, respectively,
given by

Sh�!; k� � �!� hk��Ae�!� � A��!� � hBe�k�

� hB��k��; (2.54)

�h�!; k� � �!� hk��Ae�!� � A��!� � hBe�k�

� hB��k��; (2.55)

�h�!; k� �
��

cos2��
�h�!; k�

�M2

�
2
� sin22�

�
1=2
: (2.56)
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This requires the matrix elements in U�h�m to be of the
following form

sin2��h�m �!; k� �
sin2�

�h�!; k�
;

cos2��h�m �!; k� �
cos2�� �h�!;k�

�M2

�h�!; k�
:

(2.57)

A resonance is available whenever�
cos2��

�h�!; k�

�M2

�
	 0 (2.58)

in which case sin2��h�m �!; k� 	 1; cos2��h�m �!; k� 	 0.
The solutions of Eq. (2.53) yield the dispersion relations

!�k� of the ‘‘exact’’ quasiparticle states in the medium and
correspond to the ‘‘exact poles’’ of the Dirac propagator.
The dispersion relations !�h�a �k; �� for the propagating
modes in the medium are found in perturbation theory
consistently up to O�GF� by writing [26]

!�h�a �k;�����Ea�k���!
�h�
a �k;���; a�1;2; ���;

(2.59)

where Ea�k� �
������������������
k2 �M2

a

p
, and �!�h�a �k; �� are found to be

�!�h�a �k; �� � �
1

4Ea�k�
fSh��Ea�k�; k�

� ��1�a�M2��h��Ea�k�; k� � 1�g: (2.60)

For relativistic neutrinos with k� Ma the dispersion
relations!a�k�; a � 1, 2 for the different cases are given to
leading order in GF by

(i) Positive energy, negative helicity neutrinos, � � �1,
h � �1:

!a�k� � k�
M2
a

2k
�

1

4k
�S��k; k�

� ��1�a�M2����k; k� � 1��: (2.61)

(ii) Positive energy, positive helicity neutrinos, � �
�1, h � �1:

!a�k� � k�
M2
a

2k
�

1

4k
�S��k; k�

� ��1�a�M2����k; k� � 1��;

!� hk 	
�M2

2k
;

(2.62)

where we have neglected corrections of order
�M2= �M2.

(iii) Negative energy, negative helicity neutrinos, � �
�1, h � �1:
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!a�k� � �k�
M2
a

2k
�

1

4k
�S���k; k�

� ��1�a�M2�����k; k� � 1��;

!� hk 	
�M2

2k
;

(2.63)

where we have again neglected corrections of order
�M2= �M2.

(iv) Negative energy, positive helicity neutrinos, � �
�1, h � �1:

!a�k� � �k�
M2
a

2k
�

1

4k
�S���k; k�

� ��1�a�M2�����k; k� � 1��: (2.64)

In the above expressions the �� are given by Eq. (2.56).
The vacuum and medium oscillation time scales are,

respectively, defined as

Tvac �
2	

E1 � E2
; Tmed �

2	

!�h�1 �k; �� �!
�h�
2 �k; ��

;

(2.65)

In the relativistic case when k� Ma, we find

Tvac 	
4	k

�M2 ; Tmed 	
4	k

�M2�h��k; k�
; (2.66)

leading to the relation

Tmed

Tvac
�

sin2��h�m �!; k�
sin2�

: (2.67)
III. SPACE-TIME PROPAGATION OF A NEUTRINO
WAVE PACKET

We now have all the ingredients necessary to study the
space-time evolution of a initial wave packet by carrying
out the integrals in Eq. (2.24). For this purpose it is con-
venient to write  � ~k; 0� �  R� ~k; 0� �  L� ~k; 0� and expand
the right and left-handed components in the helicity basis
as in Eq. (2.48), namely

 L� ~k; 0� �
X
h��1

0
v�h� � ’�h�� ~k; 0�

� �
;

 R� ~k; 0� �
X
h��1

v�h� � ��h�� ~k; 0�
0

 !
;

(3.1)

where

’�h�� ~k; 0� �
��h�eL � ~k; 0�
��h��L� ~k; 0�

 !
; ��h�� ~k; 0� �

��h�eR� ~k; 0�
��h��R� ~k; 0�

 !
:

(3.2)

The general initial value problem requires to furnish
initial conditions for the four components above.
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However, an inhomogeneous neutrino state is produced by
a weak interaction vertex, which produces left-handed
neutrinos, suggesting to set ��h�eR� ~k; 0� � 0; ��h��R� ~k; 0� � 0.
Without loss of generality let us consider an initial state
describing an inhomogeneous wave packet of electron
neutrinos of arbitrary helicity, thus ��h�eL � ~k; 0� � 0;
��h��L� ~k; 0� � 0.

In the cases of interest neutrinos are relativistic with
typical momenta k� �M. Following the real-time analysis
described in detail in Ref. [26] in the relativistic case we
find

’�h�� ~k; t� �
1

2
��h�eL � ~k; 0�

�
1� C�h��h
�S�h��h

 !
e�i!

�h�
1 �k;�h�t

�
1� C�h��h
S�h��h

 !
e�i!

�h�
2 �k;�h�t �O

� �M2

k2

��
;

(3.3)

��h�� ~k; t� �
1

2
��h�eL � ~k; 0�

�
h �M
2k

��
1� C�h��h
�S�h��h

 !
e�i!

�h�
1 �k;�h�t

�
1� C�h��h
S�h��h

 !
e�i!

�h�
2 �k;�h�t

�
1� cos2�
� sin2�

� �
e�i!

�h�
1 �k;h�t

�
1� cos2�

sin2�

� �
e�i!

�h�
2 �k;h�t �O

� �M
k

��
;

(3.4)

where ’�h�� ~k; t� and ��h�� ~k; t� are the flavor doublets corre-
sponding to the left-handed and right-handed neutrinos
with helicity h respectively. The upper component corre-
sponds to the electron neutrino ��h�e � ~k; t� while the lower
component corresponds to the muon neutrinos ��h�� � ~k; t�.
The factors C�h�� �k� and S�h�� �k� are defined as

C �h�� �k� � cos�2��h�m ��k��; S�h�� �k� � sin�2��h�m ��k��:

(3.5)

The suppression factor M=k in the right-handed compo-
nent (3.4) is of course a consequence of the chirality flip
transition from a mass term in the relativistic limit. For
relativistic neutrinos and more specifically for neutrinos in
the medium prior to BBN with k� T � few MeV the
right-handed component is negligible as expected.

The one-loop computation of the self-energy performed
above does not include absorptive processes such as colli-
sions of neutrinos with leptons (or hadrons) in the medium.
Such absorptive part will emerge in a two loops calculation
and is of O�G2

F�. While we have not calculated these
contributions it is clear from the analysis what it should
be expected: the frequencies !1;2�k� are the exact disper-
125014
sion relations of the single particle poles of the Dirac
propagator in the medium. At two loops the self-energy
will feature an imaginary part with support on the mass
shell of these single particle states. The imaginary part of
the self-energy evaluated at these single particle energies
yield the width of the single quasiparticle states �1�k�;
�2�k� and the oscillatory exponentials in the expressions
above are replaced as follows

e�i!a�k�t ! e��a�k�te�i!a�k�t; a � 1; 2: (3.6)

While our one-loop calculation does not include the
damping rates �a we will invoke results available in the
literature [10,22,24,25] to estimate the collisional relaxa-
tion time scales (see Sec. IV).

The corresponding fields for the left-handed and right-
handed component neutrinos in configuration space are
obtained by performing the spatial Fourier transform

’�h��~r; t� �
Z d3 ~k

�2	�3
’�h�� ~k; t�ei ~k�~r; (3.7)

��h��~r; t� �
Z d3 ~k

�2	�3
��h�� ~k; t�ei ~k�~r: (3.8)

For an arbitrary initial configuration these integrals must
be done numerically, but analytic progress can be made by
assuming an initial Gaussian profile, describing a wave
packet in momentum space centered at a given momentum,
~k0 with a width �. While the width could generally depend
on helicity we will consider the simpler case in which it is
the same for both helicities. Namely, we consider

��h�eL � ~k; 0� � ��h�eL �0�
�
	

�2

�
3=2

exp
�
�
� ~k� ~k0�

2

4�2

�
; (3.9)

where ��h�eL �0� is an arbitrary amplitude and assume that
wave packet is narrow in the sense that �� k0. In the
limit �! 0 the above wave packet becomes ��h�eL �0��

3� ~k�
~k0�. In the opposite limit of large � the wave packet
describes an inhomogeneous distribution spatially local-
ized within a distance 	 1=�. For a narrow wave packet
the momentum integral can be carried out by expanding the
integrand in a series expansion around k0 keeping up to
quadratic terms.

A. Integrals

The typical integrals are of the form

I� ~r; t� �
�
	

�2

�
3=2 Z d3k

�2	�3
A�k� exp

�
�
� ~k� ~k0�

2

4�2

� i ~k � ~r� i!�k�t
�
; (3.10)

where A stands for the factors (1� C); S in Eqs. (3.3) and
(3.4), and !�k� are the general dispersion relations ob-
tained above. The computation of these integrals is sim-
-9
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plified by noticing that for any function F�k� the expansion
around ~k0 up to quadratic order is given by

F�k� � F�k0� � F0�k0�k̂0 � �k� k0� �
1

2

�
F00�k0�P

k
ij�k̂0�

�
F0�k0�

k0
P?ij �k̂0�

�
�k� k0�i�k� k0�j � � � � ;

(3.11)

where

Pkij�k̂� � k̂ik̂j; P?ij �k̂� � �ij � k̂ik̂j: (3.12)

The result of the integration can be written more com-
pactly by introducing the following quantities

�2
k
�t� � �2

�1� i t�k�

�1� t2

�2
k

�
 �k�t�

�
1� i

t
�k

�
;

�2
?�t� � �2

�1� i t
�?
�

�1� t2

�2
?

�
 �?�t�

�
1� i

t
�?

�
;

(3.13)

where we have introduced the perpendicular and parallel
dispersion time scales given, respectively, by

�? �
k0

2�2vg
; �k �

1

2�2!00�k0�
� �2�?: (3.14)

It will be seen in detail below that these two time scales are
indeed associated with the spreading of the wave packet in
the transverse and longitudinal directions.

The group velocity vg and effective Lorentz factor3 �
are given by

~v g � !0�k0�k̂0; �2 �
vg

k0!00�k0�
: (3.15)

The transverse and longitudinal coordinates are

~X k�t� � k̂0� ~r � k̂0 � vgt�; ~X? � ~r� k̂0�~r � k̂0�;

(3.16)

and in terms of these variables we finally find

I� ~r; t� �
�
�k�t��

2
?�t�

�3

�
A�k0; ~r; t�ei� ~k0� ~r���~r;t�t�


 e���?�t�
~X2
?��k�t� ~X

2
k�t��; (3.17)

where the phase

�� ~r; t� � !�k0� �
�?�t�
�?

X2
? �

�k�t�
�k

X2
k
�t�; (3.18)
3For the usual dispersion relation !�k� �
������������������
k2 �M2
p

it is
straightforward to confirm that �2 � �1� v2

g�
�1.
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and

A �k0; ~r; t� �A�k0� � 2iA0�k0��2
k
�t�k̂0 � ~Xk�t�

�A00�k0��2
?�t��1� 2�2

?�t� ~X
2
?�

�
A0�k0�

k0
�2
k
�t��1� 2�2

k
�t� ~X2

k�t��: (3.19)

Neglecting the prefactor A�k0; ~r; t� we see that

jI� ~r; t�j2 /
��

1�
t2

�2
k

��
1�

t2

�2
?

�
2
�
��1=2�

e�2��?�t� ~X
2
?��k�t� ~X

2
k�t��

(3.20)

describes a wave packet moving in the direction parallel to
the momentum ~k0 with the group velocity vg and dispers-
ing both along the perpendicular and parallel directions.
The expressions for �?�t� and �k�t� given by Eq. (3.13)
clearly show that the dispersion time scales along the
parallel direction and transverse directions are given by
�k, �? respectively and �k displays the time dilation factor
�. The wave packet is localized in space within a distance
of order 1=

����������
��t�

p
/ 1=

����
�
p

in either direction. Small �
localizes the wave packet in momentum space while large
� the wave packet is spatially localized. For large � the
integrals must necessarily be performed numerically.

This discussion highlights that the derivative terms in the
prefactor A�k0; ~r; t�, which are a consequence of the
momentum dependence of the mixing angles correspond
to an expansion in the ratio �=k0. This can be understood
from the following argument: A� �1� C�, S, hence its
derivatives with respect to momentum are of the form
f�k��0 with f�k� being smooth and bounded functions of
O�1�, while � is at most of the form �0k� �1k2 in the
relativistic limit, [see Eq. (2.55)] therefore �0 	 �=k.
These derivatives multiply powers of �?;kX?;k, and the
exponential damping in I restricts these contributions to
the range j�?;kX?;kj 	 1. Therefore in the narrow packet
approximation �� k0 the higher order derivative terms
are suppressed by powers of �=k0 � 1. We have invoked
this narrow packet approximation to carry out the momen-
tum integral, therefore consistently with this approxima-
tion we will only keep the first derivative term, which is of
O��=k0� and neglect the higher order derivatives, which
are of higher order in this ratio. Namely in the analysis that
follows we approximate

jA�k0; ~r; t�j2 	 jA�k0�j
2

�
1� 4

A0�k0�

A�k0�
�k�t�k̂0

� ~Xk�t�
t
�k

�
: (3.21)

In this manner we consistently keep the lowest order
corrections arising from the momentum dependence of the
mixing angles in the medium.
-10
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We now have all the ingredients for our analysis of the
space-time evolution. The above general expressions for
the time evolution of initially prepared wave packets,
Eqs. (3.3) and (3.4) combined with the dispersion relations
obtained in Sec. II B provide a solution to the most general
case. We focus our discussion on the case of the early
Universe, in which the typical neutrino energies are
�MeV. With (active) neutrino masses in the range Ma �
eV and �M2 � 10�5 � 10�3 it is clear from the results
above that the amplitude of the right-handed component is
suppressed by a factor �M=k� 10�6 and the medium cor-
rections to the dispersion relations for positive energy
neutrinos with positive helicity and negative energy neu-
trinos with negative helicity are suppressed by a factor
�M2=k2 with respect to the opposite helicity assignement.

Therefore in what follows we focus our discussion to the
125014
case of left-handed negative helicity neutrinos (and posi-
tive helicity antineutrinos).

B. Space-time evolution and oscillations

We now focus on describing the evolution of negative
helicity neutrinos or positive helicity antineutrinos.

The initial state considered above corresponds to a wave
packet of electron neutrinos at t � 0 but no muon neutri-
nos. The lower component of the flavor spinor in Eq. (3.3)
and (3.7) describes the wave packet of the muon neutrino at
any arbitrary time. We begin by studying the transition
probability from an initial electron neutrino wave packet of
negative helicity to a muon neutrino wave packet.

Using the results obtained in the previous section for the
integrals in the narrow packet approximation we find the
transition probability
P e!��~r; t� � j�
�h�
�L� ~r; t�j

2

�
1

4
j��h�eL � ~k; 0�j

2jS�k0�j
2

�
1� 4

S0�k0�

S�k0�
��k�t�k̂0 � ~Xk�t�

t
��k

�
�jI1�~r; t�j

2 � jI2� ~r; t�j
2

� 2jI1� ~r; t�jjI2� ~r; t�j cos���1�~r; t� ��2� ~r; t��t��; (3.22)

where S � sin�2��h�m ��k�� and I1;2� ~r; t�; �1;2 correspond to the integrals and phases given by Eq. (3.17) and (3.18) with the
frequencies !1;2�k� for negative helicity given by Eqs. (2.61). In the expression above we have taken a common prefactor
by neglecting the differences between the group velocities and the masses, taking vg � 1, and ��k, ��k correspond to �k, �k
with a mass �M. We focus our attention on the interference term which is the space-time manifestation of the oscillation
phenomenon and features the oscillatory cosine function. The amplitude of the oscillation, jI1� ~r; t�I2� ~r; t�j describes the
product of two wavepackets of the form given by Eq. (3.20).

It is convenient to write the product jI1I2j in the following form

jI1�~r; t�I2�~r; t�j 	
��

1�
t2

�2
k

��
1�

t2

�2
?

�
2
�
��1=2�

e���?;1�t���?;2�t�� ~X
2
?e��CM�t� ~X

2
CM�t�e��R�t�X2

R�t�; (3.23)
where we have introduced the center of mass (CM) and
relative (R) variables

~XCM � k̂0� ~r � k̂0 � vCM�t�t�;

vCM�t� �
�k1�t�vg1 ��k2�t�vg2

�k1�t� ��k2�t�
;

(3.24)

~X R � ~Xk1 � ~Xk2 � �� ~vg1 � ~vg2�t; (3.25)

�CM � �k1 ��k2; �R �
�k1�k2

�k1 ��k2
: (3.26)

The integral (3.23) describes the product of two gaussian
wave packets spreading in the transverse and longitudinal
directions and separating in the longitudinal direction be-
cause of the difference in group velocities, made explicit
by the term �R�t�X2

R�t�.
The first two terms in Eq. (3.22) describe the incoherent

sum of the probabilities associated with separated wave
packets of propagating mode eigenstates, in the third,
interference term, the product jI1jjI2j is the overlap be-
tween these two wave packets that are slowly separating
because of different group velocities. As discussed above a
two loop calculation of the self-energies will lead to a
quasiparticle width and a damping rate �a for the individ-
ual quasiparticle modes of frequency !a�k�, the discussion
leading up to Eq. (3.6) suggests that the integrals

jIa�~r; t�j ! e��a�k�tjIa�~r; t�j: (3.27)
1. Coherence and ‘‘freeze-out’’

Since ~XR � � ~vg2 � ~vg1�t does not depend on position,
the overlap between the separating wave packets becomes
vanishingly small for t� tcoh where the coherence time
scale tcoh is defined by

�R�tcoh�� ~vg2 � ~vg1�
2t2coh � 1: (3.28)
-11
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Before we engage in an analysis of the different cases, it
is important to recognize that there are several dimension-
less small ratios: (i) �=k0 � 1 describes narrow wave
packets, this approximation was implemented in the cal-
culation of the integrals, (ii) �M=k� 1 in the relativistic
limit with k�MeV for example in the early Universe near
the epoch of BBN or for supernovae, (iii) �M2= �M2 � 1
describes a nearly degenerate hierarchy of neutrino masses.
Since in the relativistic limit v1g � v2g � �M

2=k2 we can
neglect the difference in the masses in �k and write �k1 �
�k2 � ��k where the masses are replaced by the mean mass
�M given by Eq. (2.9), and similarly for �?. Therefore to

leading order in small quantities we can replace �R above
by ��k=2 leading to

�CM�t� � 2 ��k�t� �
2�2

1� t2

��2
k

; vCM �
1

2
�vg1 � vg2�;

(3.29)

where ��k is given by Eq. (3.14) for �M, and

1

2
��k�t�X

2
R�t� �

� ttc
�2

1� � t��k�
2 ; (3.30)

where we have introduced the time scale

tc �

���
2
p

�jvg2 � vg1j
: (3.31)

The coherence time scale is the solution of the equation

�tcoh

tc
�2

1� �tcoh

��2
k

�2
� 1: (3.32)

The expression (3.30) reveals a remarkable feature: for
t� ��k the overlap between the separating wave packets
saturates to a time independent value

1

2
��k�t�X

2
R�t� !

�
��k
tc

�
2
: (3.33)

This effect has been recognized in Ref. [37] and results
from the longitudinal dispersion catching up with the
separation of the wave packets. This phenomenon is rele-
vant only in the case when tc > ��k in which case the
overlap of the separating wave packets ‘‘freezes’’ and the
packets maintain coherence for the remainder of their
evolution. There are two distinct possibilities:

tc � ��k : �a�; (3.34)

tc � ��k : �b�: (3.35)

In case (a) we can approximate

1

2
��k�t�X

2
R�t� 	

�
t
tc

�
2
; (3.36)
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since during the time interval in which the separating
packets maintain coherence t� tc � ��k and in this case
the relevant coherence time scale is tc.

In case (b) the ‘‘freeze-out’’ of coherence results and the
long time limit of the overlap between the wave packets in
the longitudinal direction remains large and determined by
Eq. (3.33).

However, while this ‘‘freezing of coherence’’ phenome-
non in the longitudinal direction ensues in this regime, by
the time when the coherence freezes t� ��k the wave
packet has spread dramatically in the transverse direction.
This is because of the enormous Lorentz time dilation
factor in the longitudinal direction which ensures that t�
��k � �? [see Eq. (3.14)]. The large spreading in the
transverse direction entails a large suppression of the tran-
sition probability

P e!��~r; t� ��k� /
�
�?
��k

�
2
�

1

�4 �

� �M
k0

�
4
: (3.37)

For �M� eV and k0 �MeV the above ratio is negligible.
Therefore while the phenomenon of freezing of coherence
is remarkable and fundamentally interesting, it may not
lead to important consequences because the transition
probability is strongly suppressed in this regime.
Therefore in the time scale during which the transition
probability is non-negligible, namely t� ��k the overlap
integral can be simplified to

e��1=2� ��k�t�X2
R�t� 	 e��t=tc�

2
: (3.38)
2. Effective oscillation frequency

Another aspect of the interference term is the effective
time dependent oscillation frequency �1� ~r; t� ��2�~r; t�
where the �a are given by Eq. (3.18) for the frequencies
!a�k� of the propagating modes. The spatio-temporal de-
pendence of this effective phase is a consequence of the
dispersion of the inhomogeneous configurations, encoded
in the functions � and results in a drift of the oscillation
frequency, a result that confirms a similar finding in the
vacuum case in ref. [49]. Because of the exponential fall
off of the amplitudes the maximum value of the drift
contribution is achieved for �?;aX2

? � 1; �k;aX2
k;a�t� �

1, namely, in front and back of the center of the wave
packets, both in the transverse and the longitudinal direc-
tions. Furthermore, because of the Lorentz dilation factor,
�k � �? for relativistic neutrinos. Therefore we can ap-
proximate the effective oscillation frequencies as

�1 ��2 �!1�k� �!2�k� �
2�2

k0
�vg;1 � vg;2�: (3.39)

The dispersion relations and mixing angles obtained
above along with the results (3.3) and (3.4), yield the
complete space-time evolution for wave packets with ini-
tial conditions corresponding to an electron neutrino.
-12
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Rather than studying the general case, we focus on three
different situations which summarize the most general
cases, (i) �h=�M2 � 1 corresponding to the case of vac-
uum oscillations, (ii) �h=�M2 � cos2� corresponding to a
resonance in the medium, and (iii) �h=�M2 � 1 corre-
sponding to the case a hot and or dense medium in which
oscillations are suppressed.

C. �h=�M
2 � 1: Vacuum oscillations

We study this case not only to compare to results avail-
able in the literature, but also to establish a ‘‘benchmark’’
to compare with the results with medium modifications.
Beuthe [37] has studied the propagation of neutrino wave
packets in the vacuum case including dispersion and in
Ref. [49] an effective frequency similar to (3.18) has been
found for wave packets propagating in the vacuum. In this
case for positive energy, negative helicity neutrinos with
a � 1, 2

!a�k0� � k0 �
M2
a

2k0
; vg;a � 1�

M2
a

2k2
0

;

!00a�k0� �
M2
a

k3
0

(3.40)

leading to the vacuum time scales

tc;v �
2
���
2
p
k2

0

�j�M2j
; (3.41)

�� k �
k3

0

2�2 �M2 : (3.42)

In the case when ��������k0

�
�M2

4 �M2

��������� 1 (3.43)

the vacuum coherence time is given by

tc;v � ��k

���������k0

4 �M2

�M2

��������� 2k2
0

�j�M2j
� ��k (3.44)

and the overlap between the separating wave packets van-
ishes well before the packets disperse appreciably along
the longitudinal direction. On the other hand, in the case
when ��������k0

�
�M2

4 �M2

��������� 1 (3.45)

the spreading of the wave packets catches up with the
separation and the overlap between them freezes when t 
tf;v � ��k � k3

0=2�2 �M2. With j�M2j=4 �M2 � 10�4 for so-
lar or�10�3 for atmospheric neutrinos the phenomenon of
‘‘freezing’’ of the overlap and the survival of coherence is
available for
125014
1�
k0

�
�

4 �M2

j�M2j
; (3.46)

which is well within the ‘‘narrow wave packet’’ regime.
However, as discussed above, when the coherence freezes
the transition probability has been strongly suppressed by
transverse dispersion. Therefore during the time scale dur-
ing which the transition probability is non-negligible we
can approximate the exponent in (3.23)

1

2
��k�t�X2

R�t� �
�
t
tc;v

�
2
: (3.47)

The effective oscillation frequency is given by Eq. (3.39)
which becomes

�1 ��2 �
�M2

2k

�
1�

2�2

k2
0

�
; (3.48)

while the corrections tend to diminish the oscillation fre-
quency, these are rather small in the narrow packet
approximation.

D. Medium effects: Near resonance

In Refs. [10,22,24–26] it was established that if the
lepton asymmetries are of the order of the baryon asym-
metry �� 10�9 there is the possibility of a resonance for
the temperature range me � T � m� for positive energy
negative helicity neutrinos with !�k� � k� �M2=2k; h �
�1 or positive energy positive helicity antineutrinos with
!�k� � �k� �M2=2k; h � 1 respectively. It is convenient
to introduce the following notation

L 9 � 109�Le �L��; (3.49)

�5 � 105

�
�M2

eV2

�
: (3.50)

If the lepton and neutrino asymmetries are of the same
order of the baryon asymmetry, then 0:2 & jL9j & 0:7 and
the fitting from solar and KamLAND data suggests j�5j 	
8. In this temperature regime we find [26] for positive
energy, negative helicity neutrinos

���k; k�

�M2
	

4

�5

�
0:1T
MeV

�
4 k
T

�
�L9 �

�
2T

MeV

�
2 k
T

�
(3.51)

and for positive energy positive helicity antineutrinos

����k; k�

�M2
	

4

�5

�
0:1T
MeV

�
4 k
T

�
L9 �

�
2T

MeV

�
2 k
T

�
: (3.52)

In the above expressions we have neglected terms of
order �M2

k2 . With k� T and in the temperature regime just
prior to BBN with T � few MeV the lepton asymmetry
contribution L is much smaller than the momentum de-
pendent contribution and will be neglected in the analysis
that follows, therefore we refer to �h��k; k� and Sh��k; k�
as ��k� and S�k� respectively since these are independent
-13
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of h, � in this regime. In this temperature regime we find
for both cases (negative helicity neutrinos and positive
helicity antineutrinos) the following simple expressions

��k� 	
56	2

45
���
2
p

GFk2T4

M2
W

; S�k� 	 ��k��1� cos2�w�:

(3.53)

A resonance is available when ��k0� � �M
2 cos2�,

which may occur in this temperature regime for k0 � T �
3:6 MeV [10,22,24–26] for large mixing angle (�12) or
k� T � 7 MeV for small mixing angle (�13). Near the
resonance the in-medium dispersion relations and group
velocities are given by

!a�k� 	 k�
M2
a

2k
�
�M2

4k
f�1� cos2�w� cos2�

� ��1�a�1�1� sin2��g; (3.54)

vg;a 	 1�
M2
a

2k2 �
�M2

4k2 f�1� cos2�w� cos2�

� ��1�a�1�1� sin2��g: (3.55)

Again we focus our discussion on the interference terms
in the transition probability (3.22), in particular, the me-
dium modifications to the oscillation frequencies and co-
herence time scales. To assess these we note the following
(primes stand for derivatives with respect to k):

��k�jres � sin2�; �0�k�jres � 0;

�00�k�jres �
4

k2

cos2�
sin2�

;
(3.56)

which when combined with Eq. (2.61) yield

!1�k� �!2�k� �
�M2

2k
sin2�;

vg;1 � vg;2 	 �
�M2

2k2 sin2�:
(3.57)

We also note that near the resonance

sin 02�m�k� / cos2�m 	 0; (3.58)

therefore the corrections arising from the energy depen-
dence of the mixing angle in the transition probability
(3.22) become vanishingly small. The transverse and lon-
gitudinal dispersion time scales are given by

�a? �
k0

2�2vg;a
;

�ak 	 ��k

�
1� ��1�a�1 �M

2

2 �M2

1� cos22�
sin2�

�
;

��k �
k3

0

2�2 �M2 :

(3.59)
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Therefore in the medium near the resonance, the argu-
ment of the exponential that measures the overlap between
the separating wave packets is given by

1

2
��k�t�X2

R�t� �
�
k0

�
�M2

4 �M2 sin2�
�

2 t2

��2
k
� t2

�
� ttc;m
�2

1� � t��k�
2 ;

(3.60)

where

tc;m �
2k2

0

�j�M2j sin2�
�

tc;v
sin2�

: (3.61)

The effective oscillation frequency (3.39) is given by

�1 ��2 �
�M2

2k
sin2�

�
1�

2�2

k2
0

�
; (3.62)

which when compared to the vacuum result (3.48) confirms
the relation between the vacuum and in-medium oscillation
time scales (2.67) since near the resonance sin2�m � 1.

We conclude that the main effects from the medium near
the resonance are an increase in the coherence and in the
oscillation time scale T � 2	=j�1 ��2j by a factor
1= sin2�. For solar neutrino mixing with sin2�12 � 0:9
the increase in these time scales is at best a 10% effect,
but it becomes much more pronounced in the case of
atmospheric neutrino mixing since sin2�13 � 1.

�h=�M
2 � 1 oscillation suppression by the medium

In the temperature or momentum regime for which
�h=�M

2 � 1 the expression for the in-medium mixing
angles (2.57) reveals that cos2�m ! �1. In this case the in-
medium mixing angle reaches �m ! 	=2 and the transi-
tion probability P e!� vanishes. Equation (3.3) shows that
in this case an electron neutrino wave packet of negative
helicity propagates as an eigenstate of the effective Dirac
Hamiltonian in the medium with a dispersion relation

!2�k� � vk�
M2

2

2k
;

v �
�

1�
14

45
���
2
p

GFT4

M2
W

�1� sign��M2� � cos2�w�
�
;

(3.63)

where we have used Eq. (3.53) for the case when the
momentum dependent contribution is much larger than
the asymmetries. The in-medium correction to the group
velocity being proportional to

GFT
4

M2
W

� 10�21

�
T

MeV

�
4

(3.64)

is negligible in the temperature regime in which the cal-
culation is reliable, namely, for T � MW .
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IV. TIME SCALES IN THE RESONANCE REGIME

There are several important time scales that impact on
the dynamics of wave packets in the medium as revealed
by the discussions above, but also there are two more
relevant time scales that are pertinent to a plasma in an
expanding Universe: the Hubble time scale tH � 1=H
which is the cooling time scale T�t�= _T�t� and the colli-
sional relaxation time scale trel � 1=� with � the weak
interaction collision rate. Neither tH nor trel has been input
explicitly in the calculations above which assumed a me-
dium in equilibrium and considered self-energy correc-
tions only up to O�GF�. The damping factor that leads to
the decoherence from neutral and charged current interac-
tions has been studied in detail in Refs. [10,22,24,25] and
we take this input from these references in order to com-
pare this time scale for damping and decoherence to the
time scales for the space-time evolution of the wave pack-
ets obtained above at the one-loop level.

In the temperature regime 1 MeV � T � 100 MeV the
Hubble time scale is [50]

tH � 0:6
�
T

MeV

�
�2

s (4.1)

and the collisional rate is estimated to be [10,22,24,25]

�� 0:25G2
FT

5 � 0:25
 10�22

�
T

MeV

�
5

MeV

) trel � 1:6
�
T

MeV

�
�5

s: (4.2)

In order to determine the relevant time scales an estimate
of the momentum spread of the initial wave packet � is
needed. For example, for neutrinos in the LSND experi-
ment, the momentum spread of the stopped muon is esti-
mated to be about 0.01 MeV [35]. An estimate of the
momentum spread in the medium can be the inverse of
the mean free path of the charged lepton associated with
the neutrino [1]. This mean free path is determined by the
electromagnetic interaction, in particular, large angle scat-
tering, which can be simply estimated from one-photon
exchange to be �mf � ��2

emT�
�1. This estimate yields

�� �2
emT � 10�4

�
T

MeV

�
�MeV�: (4.3)

For neutrinos in the neutrinosphere of a core-collapse
supernovae, the estimate for � is also �10�2 MeV [1].
We will take a value �� 10�3 MeV in the middle of this
range as representative to obtain order of magnitude esti-
mates for the time scales, but it is straightforward to
modify the estimates if alternative values of � can be
reliably established.

We now consider the large mixing angle (LMA) case to
provide an estimate of the different time scales, but a
similar analysis holds for the case of small vacuum mixing
(SMA) by an appropriate change of k0; T. Taking k0 �
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T � 3:6 MeV, �� 10�3 MeV, j�M2j � 8
 10�5 �eV�2,
�M� 0:25 eV we obtain the following time scales near the

resonance region:
(i) Oscillation time scales:

Tvac �
4	k0

j�M2j
� 3:8
 10�4 s; Tmed �

Tvac

sin2�
;

(4.4)

(ii) Dispersion and coherence time scales:

�? �
k0

2�2 � 1:2
 10�15 s;

��k �
k3

0

2�2 �M2 � 0:25 s;
(4.5)

tc;v �
2k2

0

�j�M2j
� 0:21 s; tc;m �

tc;v
sin2�

; (4.6)

(iii) Expansion and collisional relaxation time scales:

tH � 4:6
 10�2 s; trel � 2:8
 10�3 s;

(4.7)

For small vacuum mixing angle (�13) the above results
are modified by taking k0 � T � 7 MeV.

In the resonance region the in-medium coherence time
scale is of the same order as the Hubble time (for LMA) or
much longer (for SMA) and there is a large temperature
variation during the coherence time scale. However, the
decoherence of the wave packets occurs on much shorter
time scales determined by the collisional relaxation scale
and the coherence time scale is not the relevant one in the
medium near the resonance.

Decreasing the momentum spread of the initial wave
packet � increases the dispersion and coherence time
scales, with the dispersion scales increasing faster. The
medium effects are manifest in an increase in the oscilla-
tion and the coherence time scales by a factor 1= sin2�.
This effect is more pronounced for 1–3 mixing because of
a much smaller mixing angle. It is clear from the compari-
son between the coherence time scale in the medium tc;m
and the relaxational (collisional) time scale trel that unless
� is substantially larger than the estimate above, by at least
1 order of magnitude in the case of 1–2 mixing, or even
more for 1–3 mixing, collisions via neutral and charge
currents is the main source of decoherence between the
separating wave packets near the resonance. However,
increasing � will decrease the transverse dispersion time
scale thus leading to greater suppression of the amplitude
of the wave packets through dispersion. Furthermore, for
large mixing angle sin2�� 1 the oscillation scale is
shorter than the collisional decoherence time scale via
the weak interactions trel, therefore allowing several oscil-
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lations before the wave packets decohere, and because the
oscillation scale is much smaller than the Hubble scale the
evolution is adiabatic over the scale trel. But for small
mixing angle the opposite situation results and the transi-
tion probability is suppressed by collisional decoherence,
furthermore for small enough mixing angle there is a
breakdown of adiabaticity. However, the strongest suppres-
sion of the survival P e!e as well as the transition P e!�

probabilities (equally) is the transverse dispersion of the
wave packets, on a time scale many orders of magnitude
shorter than the decoherence tc;m and the collisional trel

time scales. Unless �2 is within the same order of magni-
tude of j�M2j the transverse dispersion occurs on time
scales much faster than any of the other relevant time
scales and the amplitude of the wave packets is suppressed
well before any oscillations or decoherence by any other
process can occur. Clearly a better understanding of the
initial momentum spread is necessary for a full assessment
of the oscillation probability in the medium.

V. DISCUSSIONS AND CONCLUSIONS

In this article we implemented a nonequilibrium quan-
tum field theory method that allows to study the space-time
propagation of neutrino wave packets directly from the
effective Dirac equation in the medium. The space-time
evolution is studied as an initial value problem with the full
density matrix via linear response. The method systemati-
cally allows to obtain the space-time evolution of left and
right-handed neutrino wave packets.

A ‘‘flavor neutrino’’ wave packet evolves in time as a
linear superposition of wave packets of exact (quasi) par-
ticle states in the medium, described by the poles of the
Dirac propagator in the medium. These states propagate in
the medium with different group velocities and the slow
separation between these packets causes their overlap to
diminish leading to a loss of spatial and temporal coher-
ence. However, the time evolution of the packets also
features dispersion as a result of the momentum spread
of the wave packets [37].

The space-time dynamics feature a rich hierarchy of
time scales that depend on the initial momentum spread
of the wave packet: the transverse and longitudinal disper-
sion time scales �? � �k which are widely separated by
the enormous Lorentz time dilation factor 	 �k= �M�2 with
�M the average neutrino mass, and a coherence time scale
tc;m that determines when the overlap of the wave packets
becomes negligible. The dynamics also displays the phe-
nomenon of ‘‘freezing of coherence’’ which results from
the competition between the separation and spreading of
the wave packet along the direction of motion (longitudi-
nal). For time scales larger than �k the overlap of the wave
packets freezes, with a large overlap in the case when
tc;m � �k, which occurs for a wide range of parameters.

We have focused on studying the space-time propaga-
tion in the temperature and energy regime in which there is
125014
a resonance in the mixing angle in the medium, prior to
BBN [22,24–26]. Our main results are summarized as
follows:

(i) Both the coherence and oscillation time scales are
enhanced in the medium with respect to the vacuum
case by a factor 1= sin2� near the resonance, where �
is the vacuum mixing angle.

(ii) There are small corrections to the oscillation for-
mula from the wave-packet treatment, but these are
suppressed by two powers of the ratio of the mo-
mentum spread of the initial packet to the main
momentum.

(iii) There are also small corrections to the space-time
evolution from the energy dependence of the mix-
ing angle, but these are negligible near the reso-
nance region.

(iv) The spreading of the wave packet leads to the
phenomenon of ‘‘freezing of coherence’’ which
results from the competition between the longitu-
dinal dispersion and coherence time scales. This
phenomenon is a result of the longitudinal spread-
ing of the wave packets ‘‘catching up’’ with their
separation. Substantial coherence remains frozen
for tc;m � �k.

(v) We have compared the wide range of time scales
present in the early Universe when the resonance is
available for T � 3:6 MeV [10,22,24–26] for large
mixing angle. Assuming that the initial momentum
spread of the wave packet is determined by the large
angle scattering mean free path of charged leptons
in the medium [1], we find the following hierarchy
between the transverse dispersion �?, oscillation
Tmed, collisional relaxation trel, Hubble tH, in-
medium coherence tc;m and longitudinal dispersion
�k time scales respectively: for large vacuum mixing
angle sin2�� 1:

�? � Tmed < trel < tH � tc;m & �k (5.1)

and for small mixing angle sin2�� 1

�? � trel & Tmed < tH � tc;m & �k: (5.2)

The rapid transverse dispersion is responsible for the
main suppression of both the persistent and transi-
tion probabilities making the amplitudes extremely
small on scales much shorter than any of the other

scales. Only a momentum spread ��
�������������
j�Mj2

p
will

make the transverse dispersion time scale compa-
rable with the oscillation and relaxation ones.
Clearly a better assessment of the momentum spread
of wave packets in the medium is required to pro-
vide a more reliable estimate of the wave packet and
oscillation dynamics.
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