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String solutions in Chern-Simons-Higgs model coupled to an axion
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We study a d � 2� 1 dimensional Chern-Simons gauge theory coupled to a Higgs scalar and an axion
field, finding the form of the potential that allows the existence of self-dual equations and the
corresponding Bogomolny bound for the energy of static configurations. We show that the same
conditions allow for the N � 2 supersymmetric extension of the model, reobtaining the BPS equations
from the supersymmetry requirement. Explicit electrically charged vortexlike solutions to these equations
are presented.
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I. INTRODUCTION

There has been recently a revival in the interest on
Abrikosov-Nielsen-Olesen flux tubes in connection with
supergravity models and the realization of cosmic super-
strings. Indeed, although such cosmic size superstrings
were originally excluded in the context of perturbative
string theory [1], it became clear recently that the question
should be revisited as the relevance of branes and new
kinds of extended objects was understood (see [2] and
references therein). In order to understand the nature and
structure of such stringy cosmic strings, the embedding of
BPS objects in supersymmetry and supergravity models
has become an active area of research so that the properties
of BPS solitons, their connections with the supersymmetry
algebra and their cosmological applications have been
discussed by many authors [3–16].

Having in mind the study of BPS solitons in a string
theory context, it is natural to consider models where an
axion field is included. In particular, an N � 1 globally
supersymmetric model in d � 3� 1 dimensions consist-
ing of an axion superfield S coupled toW�W�, withW� the
chiral superfield strength, was analyzed in [12] and finite
energy cosmic string solutions were constructed. Also, the
impact of axions on dynamics of a d � 3� 1 Yang-Mills
theory supporting non-Abelian strings has been analyzed
in [16].

It is the purpose of this work to consider similar issues in
d � 2� 1 space-time dimensions for which a rich variety
of flux tube solutions exists already when the axion field is
absent. Indeed, at high temperatures, a relativistic four
dimensional quantum field theory becomes effectively
three dimensional. Finite temperature calculations are car-
ried out as usual by compactifying the (Euclidean) time
variable in the range 0 � � � � � 1=T. In the T ! 1
limit, the time integral drops out and one remains with an
action in d � 3 Euclidean space. Now, the explicit break-
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ing in parity and CP invariance induces a Chern-Simons
term in the gauge-field effective action. It emerges, for
example, in the presence of a nonzero fermionic number
density. In this context the Chern-Simons coefficient is
temperature dependent and proportional to�, the chemical
potential of the fermionic U(1) charge [17].

When gauge fields with dynamics governed by a Chern-
Simons action are coupled to charged scalars with an
appropriate sixth order symmetry breaking potential, the
model admits BPS equations with vortexlike solutions
carrying both magnetic flux and electric charge [18,19]
(see Ref. [20] for supergravity extension). It should be
stressed that in the absence of the Chern-Simons term,
electrically charged vortices with finite energy (per unit
length) do not exist [21]. Hence, the model we are inter-
ested in, could show novel aspects of charged string like
configurations when an axion is present, in particular with
respect to their application to cosmological problems.

The paper is organized as follows: we start by consid-
ering, in Sec. II a purely bosonic model with couplings and
potentials chosen so as to have a gauge invariant action
leading to nontrivial Bogomolny equations. These equa-
tions are the natural extension, when an axion field is
present, of those found in [18,19]. We present in Sec. III
the supersymmetric extension of the model and we estab-
lish the connection between supersymmetry and BPS equa-
tions when the axion field is included. Numerical solutions
of such first-order equations are presented in Sec. IV, where
we discuss, in particular, novelties in the vortex solutions
resulting from the presence of the axion field. A summary
and discussion of our results are presented in Sec. V.
II. AXION COUPLED TO A CHERN-SIMONS-
HIGGS SYSTEM

The coupling of an axion to a gauge field with dynamics
governed by a Chern-Simons action poses some problems
[22,23]. To discuss how can they be overcome, let us
consider the following (2� 1)-dimensional bosonic ac-
tion,
-1 © 2006 The American Physical Society
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S �
Z
d3x

�
�
8�
f�s� ImD�S ~F� � jD��j

2

� K00�s�jD�Sj2 �W��; S�
�
; (1)

where � and S � s� ia are complex fields, A� is a U(1)
gauge field, and ~F� is defined as

~F� � ��	
@	A
; (2)

W��;��; S; S�� is a potential term, f and K are arbitrary
functions of s, the real part of S, primes stand for @=@s, � is
a constant and � is a dimensionless parameter (which in the
4 dimensional case is related to the Fayet-Iliopoulos term
and the Planck mass). Finally, D� is the covariant deriva-
tive acting on the fields � and S according to

D�� � @��� ieA��; D�S � @�S� 2i�A�: (3)

As done in [12] for the 3� 1 model, we shall identify a in
(1) with the axion field and s with a dilaton field. Note that
because of the definition of the axion covariant derivative,
the Chern-Simons term appears in action (1) multiplied by
the factor f�s�,

S CS	A; s
 �
�
4

Z
d3xf�s���	
A�@	A
: (4)

The action (1) is invariant under the local transformation

S! S� 2i���x�; S� ! S� � 2i���x�;

�! eie��x��; �� ! ��e�ie��x�;

A� ! A� � @���x�:

(5)
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The time component of the gauge-field equation of
motion is the Chern-Simons version of the Gauss law
and can be used to solve for A0 giving

A0 �
�B

2�e2j�j2 � 4�2K00�
; (6)
where

B � f�s�Fxy � �ij
�
Ai �

1

2�
@ia

�
@jf�s�: (7)
The energy can be found from the energy-momentum
tensor obtained by varying the action with respect to the
metric,

�S �
1

2

Z
d3x

���
g
p
T�	�g�	: (8)
Integration of the time-time component T00 gives

E �
Z
d2x

�
jDi�j

2 � K00jDiSj
2 �W��; S�

�
�2B2

4�e2j�j2 � 4�2K00�

�
: (9)
After some work, this expression can be written in the form
E�
Z
d2x

�
jDx�� iDy�j2�K00jDxS� iDySj2�

�2

4�e2j�j2�4�2K00�

�
B�
�e2j�j2�4�2K00�

�2f�s�=2
�e�j�j2�j�0j

2��4�K0�
�

2

�W�
1

��f�s��2
�e2j�j2�4�2K00��e�j�j2�j�0j

2��4�K0�2��e�j�j2�j�0j
2��4�K0��ij

�
Ai�

1

2�
@ia

�

�@j logf�s��ej�0j
2Fxy

�
: (10)
We thus see that the first three terms in Eq. (10) have been
accommodated as perfect squares. This, together with an
appropriate choice of the potential W so as to cancel the
fourth and fifth terms, would lead to a Bogomolny bound
for the energy given by the magnetic flux � appearing in
the last term,

� �
Z
d2xFxy (11)

or

� � 2�n (12)

for gauge fields with topological number n 2 Z. There is
however the sixth term in (10) with no definite sign pre-
venting the obtention of a bound. Only if we put f�s� � 1,
which corresponds to a normal Chern-Simons action for
the gauge field [see Eq. (4)], this term vanishes. In that case
one does have a bound,

E 
 �ej�0j
2� � 2�ej�0j

2jnj; (13)

whenever the potential is chosen as

W �
1

�2 �e
2j�j2 � 4�2K00��e�j�j2 � j�0j

2� � 4�K0�2:

(14)

The bound is saturated by fields obeying the self-duality
equations

Dx� � �iDy�; DxS � �iDyS;

�2Fxy � �2�e2j�j2 � 4�2K00��e�j�j2 � j�0j
2� � 4�K0�;

(15)
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where the upper (lower) sign corresponds to positive (nega-
tive) values of �.

As it is well known, the presence of a Chern-Simons
term forces a relation between magnetic flux and electric
charge [24]. This makes the Chern-Simons vortices both
magnetically and electrically charged. To see this phe-
nomenon in the present case let us write the gauge-field
equation of motion, for the case f�s� � 1 in the form

�
2
"���F�� � J� (16)

with J� � ��; ~J� the conserved matter current and � the
electric charge density,

J� � �2�e2j�j2 � 4K00�2�A� � ie��@��� ���@���

� 4�@�a: (17)

We then see that Eq. (6) can be rewritten in the form

� � ��B (18)

so that the usual relation between electric charge Q �R
�d2x and magnetic flux in Chern-Simons theories holds,

Q � ���: (19)

Note that both the Higgs scalar and the axion contribute to
the electric charge.
III. SUPERSYMMETRIC EXTENSION

The SUSYextension of the Chern-Simons-Higgs system
with a sixth order symmetry breaking potential was ana-
lyzed in [25]. Let us study now the case in which the axion
field is also present.

Consider the following d � 3 action, written in terms of
superfields as

SSUSY � �
1

2

Z
d3xd2


�
�
4�
F��� �y� Im�~ra��Wa

�H��y;���ra��yra�� Ks�s��;�y�j~ra�j2

� 2V��y;�;�;�y�
�
: (20)

The index a takes the values 1, 2 and �a, �, and � are
spinor, complex scalar and axionic superfields. Also

ra� � �Da � ie�a��; ~ra� � Da�� 2i��a;

Da �
�
�
a
� i����ab


b@�;

where � � 0, 1, 2.
The lowest component of �a, �, and � are, respectively,

the gauge field, the Higgs field and S � s� ia with a the
axion field. Concerning F, H, K, and V, they are func-
tionals of superfields to be fixed later. Subindices in these
functionals indicate derivatives, thus Ks�s � @S@S�K �
@�@ ��Kj
�0 and so on. These functionals should be chosen
so that the supersymmetric action (20) is invariant under
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the supergauge transformations,

�! eie��; �a!�a�Da�; �!�a�2�� (21)

for any real scalar superfield �. Written in the Wess-
Zumino gauge, i.e.,

�aj
�0 � Da�aj
�0 � 0;

the spinor superfield �a is given by

�a�x; 
� � i
b����baA��x� � 2
2�a�x�;

where ��x� is a Majorana spinor, the photino. Then, the
spinor field strength, defined as

Wa �
1
2D

bDa�b

takes, in terms of component fields, the form

Wa�x; 
� � �a�x� �
1
2

b����	�baF�	 � i


2����ba@��b�x�

and satisfies the Bianchi identity,

DaWa � 0:

The complex scalar superfield is defined as

��x; 
� � ��x� � 
a a�x� � 
2F�x�;

where � stands for the Higgs complex scalar field,  a is a
Dirac bispinor, the Higgsino, and F is a complex auxiliary
field. Finally, the superfield � which contains the axion S
as its lowest component, � � S� 
��� � 


2J can be
reduced to a complex scalar field � by exponentiation,

� � e�:

The supersymmetric transformations (21) take �a out from
the Wess-Zumino gauge. One can however implement a
composition of SUSY and gauge transformations such that
the Wess-Zumino gauge remains valid. To do that, the new
SUSY transformation for scalar and spinorial superfields
are, respectively,

�WZ
� �a � i�bQb�a �Da

~K;

�WZ
� � � i�bQb�� i ~K�; �WZ

� � � i�bQb�� i ~K;

(22)

where Qa � i@a � 
b����ba@�, �a is a Majorana spinor
and the real scalar superfield ~K is defined as

~K � i
a����ab�bA� � 
2�a�a:

Let us restrict the action (20) to the case in which

F��� �y� � H��y;�� � 1: (23)

Then, written in components, the action takes the simple
form

S SUSY � SB � SF (24)

with the pure bosonic action given by
-3
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S B �
Z
d3x

�
�
4
��	
A�F	
 � jD��j2 � Rj ~D�Sj2 � jV�j2 �

1

R
jVsj2

�
; (25)

while the fermionic one is given by

S F �
Z
d3x

�
i � ��D

$

� � iR ����@
$

���
1

2
Rs �s� ����2 �

1

2
	i ������Rs ~D�S� R�s

~D�S��
 � �  
�
e2

�
j�j2 � V� ��

�

� ���
�
4�2

�
R2 � Vs�s

�
� � �

�
2�e
�
�R� V ��s

�
� � ���

�
2�e
�
��R� V� �s

�
�
jRsj

2

4R
j ����j2 �

1

2
� � 

�
�V��

�
e2

�
��2

�
�

1

2
�  �

�
�V �� �� �

e2

�
�2

�
�

1

2
����

�
Rs
R
Vs � Vss �

4�2

�
R2

�
�

1

2
����

�
R�s

R
V�s � V�s �s �

4�2

�
R2

�

� � ��
�
2�e
�
��R� V�s

�
� � ��

�
2�e
�
�R� V �� �s

��
; (26)
where we have redefined R � Ks�s. Here we have taken into
account that

I �
Z
d3xd2
�Da��Wa

is a surface term which does not modify the equations of
motion

I �
Z
d3xd2
Da��Wa� �

Z
d3xD2Da��Wa�j
�0

� i
Z
d3x@abD

b��Wa�j
�0;

and can hence be neglected.
In order to extend the N � 1 supersymmetry to an N �

2 supersymmetry, we shall follow [25] and allow the trans-
formation parameter � to be complex, i.e., �� � �. Now,
this is the same as making an N � 1 SUSY transformation
followed by a U(1) fermion phase rotation. Thus, the new
transformation for fermions will be  a ! ei� a and  �a !
e�i� �a and the same is valid for �a and ��a. The new
SUSY transformations act then as rotations on the fermions
and one can then see that the only terms which do not
respect the extended SUSY invariance are those on the last
three lines in (26). Hence, in order to get an N � 2 super-
symmetric model we need

�V�� �
e2

�
��2 � 0;

2�e
�
��R� V�s � 0;

Rs
R
Vs � Vss �

4�2

�
R2 � 0;

2�e
�
�R� V �� �s � 0;

where V � V�u; v�, with u � ��� and v � S� S�. These
equations imply that

Vu � �
e
�
�eh�u� � 2�r�v��;

Vv � �
2�
�
�2�r�v� � eh�u��R�v�;

where
125007
d
dv
r�v� � R�v�;

d
du
h�u� � 1: (27)

We obviously have h � u� u0 � j�j2 � j�0j
2, and since

S� S� � 2s, then R � K00 and r � 2K0 where primes
stand for derivatives with respect to s. From (25) the
potential is

W � jV�j2 �
1

R
jVsj2

�
1

�2 �e
2j�j2 � 4�2K00�	e�j�j2 � j�0j

2� � 4�K0
2;

which is exactly what we obtained in (14).
In order to get the Bogomolny bound and the self-dual

equations one can analyze the supercharge algebra as in
[3]. Alternatively, one can directly consider the component
field SUSY transformations (��X � �a�aX),

�aA� � �i����ba�b; �a�b �
1
2��

��	�abF�	;

�a� � � a; �aS � ��a;

�a b � �abF� i����abD��;

�a�b � �abJ� i����ab ~D�S;

�aF � i����baD� b � 2�a�;

�aJ � i����ba@��b � 2�a;

(28)

and their complex conjugated (�Xy � ��a�aX
y) and re-

obtain Bogomolny Eqs. (15) just by putting all fermion
fields to zero in (28) and then ask the SUSY transforma-
tions for  a and �a to vanish once the auxiliary fields have
been written in terms of dynamical fields using their equa-
tions of motion. The first condition corresponds to a re-
striction to the bosonic sector, the second one implies that
physical states are supersymmetry invariant.

IV. VORTEX-LIKE SOLUTIONS

We present in this section some vortex solutions to the
BPS equations of motion. We choose for the Khäler po-
-4
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FIG. 1. Plot of the gauge field x��� and the dilaton y��� for n �
1 and m � 0 (solid line) and for n � 2 and m � 1 (dashed line).
In both cases � � 1 and k � 10.
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tential the form

K � �M2 log�S� S��: (29)

As in [12], we shall analyze separately two cases: first,
we consider the case in which the vortex is supported by
the Higgs field (‘‘�-strings’’ solutions), in the sense that at
infinity it behaves as in the ordinary Nielsen-Olesen vortex,
with its winding number linked to the magnetic flux. Then,
we shall consider the case in which the vortex is supported
by the s field, a solution that we shall call an ‘‘s-string.’’ In
this case it is the axion winding number which is related to
the magnetic flux.

In the first case, in order to obtain �-string solutions we
make the ansatz [12]

�1 � f�r�ein
; S � s�r� � 2i�m
; A
 � n
v�r�
r
;

(30)

where n is the topological charge of the Higgs and m is the
topological charge of the axion.

It is convenient to work with dimensionless variables by
defining

� � �r; � �
e2�2

0

�
; x��� � v��=��;

y��� � e��1s��=��; z��� � ��1
0 f��=��:

(31)

With this convention the equations read

x0 � �
2�
jnj

�
z2 �

4�

y2

��
z2 � 1�

4�
y

�
; (32)

y0 � �
2

�
�jmj � jnjx�; (33)

z0 �
z
�
�1� x�jnj; (34)

where � � M2=�2
0. From the first two equations we can

integrate y��� in terms of z���, obtaining

y��� � 2�jnj � jmj� log�� 2 logz��� � k (35)

with k an arbitrary integration constant. Thus, we end with
a system of two first-order coupled differential equations
for x��� and z���.

The boundary conditions for Eqs. (32) and (34) can be
determined as follows. By Eq. (30), the function x��� must
vanish at the origin, so Eq. (34) implies that z��� also
vanishes at the origin as �jnj. Indeed, Eqs. (32) and (35)
imply that x� �2 for m � 0 and x� �2= log���2 for m �

0.
For large �, the function x tends to 1, thus z also tends to

1 unless jnj � jmj. In this last case, z! z0, where z0 is the
solution of the algebraic equation

z2
0 �

4�
k� 2 logz0

� 1: (36)
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To solve the differential equations we employ a relaxa-
tion method for boundary values problem. Such a method
determines the solution by starting with an initial guess and
improving it iteratively. We present in Fig. 1 some solution
profiles for the gauge field x��� and for the dilaton y���.

Already from ansatz (30) one can see that the magnetic
flux and electric charge are quantized according to

� �
2�
e
n; Q � �

2��
e

n: (37)

There is an interesting property, typical of Chern-Simons
vortices that also holds in our model: both the magnetic
field and the (radial) electric field are concentrated in rings
surrounding the zeroes of the Higgs field. We show this
behavior in Fig. 2.

We also solved the BPS equations when the field s tends
asymptotically to a constant (‘‘s-string’’ [12]). In this case
the magnetic charge is equal to the topological charge of
the axion field, so the appropriate ansatz is

� � f�r�ein
; S � s�r� � 2i�m
; A
 � m
v�r�
r
:

(38)

With this ansatz the BPS equations take the form

x0 � �
2�
jmj

�
z2 �

4�

y2

��
z2 � 1�

4�
y

�
; (39)

y0 � �
2

�
jmj�1� x�; (40)

z0 �
z
�
�jnj � jmjx�: (41)

Again, we can integrate y��� in terms of z���, obtaining

y��� � 2�jnj � jmj� log�� 2 logz��� � k: (42)

We see from this equation that for consistency, z��� �
�n�m for �! 1 in contrast with what happens for the
-5
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FIG. 2. Vortex magnetic and electric fields. The solid line
corresponds to n � 1 and m � 0 and the dashed line to n � 2,
m � 1. In both cases � � 1 and k � 10.
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�-string. Concerning the gauge-field boundary condition,
one has lim�!1x��� � 1. We present in Fig. 3 some profile
of the resulting s-string solutions.
2 4 6 8

0.2

0.4

0.6

0.8

1

1.2

FIG. 3. Profile of an s-string solution. The solid line corre-
sponds to the gauge field x���, the dot-dash line to the dilaton
y��� and the dashed line to the Higgs field z���. For this solution
n � 1, m � 2, � � 0:1, and k � 0:1.
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V. DISCUSSION

We have been able to write first-order Bogomolny equa-
tions for the Chern-Simons-Higgs-axion system provided
the gauge-field dynamics is governed by a normal Chern-
Simons action and the potential takes the form (14), with
coupling constants satisfying the usual relation. As in the
3� 1 case discussed in [12], the first-order equation for the
scalar S containing the axion field has the same form as the
ordinary Bogomolny equation for the Higgs field. The
sixth order symmetry breaking potential (necessary to
accommodate the energy as a sum of perfect squares plus
a topological term) is modified due to the presence of the
axion. As it always happens when matter is coupled to a
Chern-Simons term, magnetic flux and electric charge turn
to be proportional [see Eq. (19)]. Were we considering non-
Abelian gauge fields, then the proportionality constant �
should be quantized, implying in turn quantization of both
electric charge and magnetic flux at the classical level.

The same constraints and results were found by con-
structing the SUSY extension of the purely bosonic model.
In this case we have seen that the conditions on the poten-
tial and coupling constants arise when extending super-
symmetry from N � 1 to N � 2 while the BPS equations
can be inferred by asking physical states to be annihilated
by SUSY generators.

The numerical solutions to the BPS equations presented
in Sec. IV show that the axionless string solutions found in
[18,19] are not much modified by the axion which, how-
ever, contributes to the electric charge of the string con-
figuration in a clear way. These explicit solutions could be
of relevance in the context of cosmic strings and, due to the
coupling to the axion and their electric charge, their dy-
namics could be very different from that usually consid-
ered. This, and the extension to the non-Abelian case
(where both the magnetic flux and the electric charge are
quantized) are issues that we hope to address in a future
work.

Finally, a natural question to ask is wether the incorpo-
ration of a Maxwell term in addition to the Chern-Simons
one, modify the soliton solutions. However is easy to see
that these two terms dominate in opposite regimes, the
Chern-Simons term in the IR and the Maxwell term in
the UV. In particular, the Maxwell term decouples from the
Chern-Simons-Higgs Lagrangian in the limit e2 ! 1.
Furthermore, analysis of numerical vortices in Chern-
Simons models with and without a Maxwell term show
no significant differences between the two cases.
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APPENDIX: CONVENTIONS

We use the following representation of the � matrices,

��0�ba � �
2�ba; ��1�ba � �i
3�ba; ��2�ba � �i
1�ba:

Thus,

���	 � g�	 � i��	
�
:

The ‘‘metric’’ in spinor space is given by

Cab � i�
2�ab �
0 1
�1 0

� �
� Cab; (A1)

So

CabCcd � �a
	c�

b
d
:

In particular,

 a � Cab b;  a �  bCba; 
2 � 1
2

a
a � 
2
1:

(A2)

We define the integration measure in the superspace
Z
d2

2 � �1:

Also, useful formulae are


a
b � �Cab
2; 
a
b � �Cac
2;


a
b � �ab

2 � �
b
a; A	aBb
 � �CabAcBc;

A	aBb
 � �CabAcBc;

The �matrices are real and symmetric when lowering their
indices, i.e.,

��0�ab � ��
0�caCcb � iIab�� i�ab�;

��1�ab � ��1�caCcb � i�
1�ab;

��2�ab � ��
2�caCcb � �i�


3�ab:
125007
Then, any vectorial representation can be written in terms
of the � matrices with spinorial indices, i.e.

Vab � ����abV�;

where, �ab are imaginary and symmetric 2� 2 matrices.
Also, we can define the space-time derivative in terms of
spinorial indices,

@ab � ����ab@�:

The spinorial derivative is define as

@a �
@
@
a

; @a � �
@
@
a

; (A3)

@ab �
@

@xab
; @ab � �

@

@xba
: (A4)

Then, the supersymmetric covariant derivative can be writ-
ten in terms of this notation as

Da � @a � i
b@ba:

Note that the derivatives @
@
a and @

@xab
do not raise and lower

indices in the same way as spinors,

@a � �@a
b�
@
@
b
� Cdb�@a
d�

@
@
b
� Cab

@
@
b
� Cba@b;

@ba �
@xcd
@xba

@
@xcd
� Ced

@xce

@xba
@
@xcd
� Cad

@

@xbd
� Cda@db

causing the appearance of a minus sign in the definitions of
@a and @ab in (A3) and (A4).
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