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Comparison of Boltzmann equations with quantum dynamics for scalar fields
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Boltzmann equations are often used to study the thermal evolution of particle reaction networks.
Prominent examples are the computation of the baryon asymmetry of the universe and the evolution of the
quark-gluon plasma after relativistic heavy ion collisions. However, Boltzmann equations are only a
classical approximation of the quantum thermalization process which is described by the so-called
Kadanoff-Baym equations. This raises the question how reliable Boltzmann equations are as approx-
imations to the full Kadanoff-Baym equations. Therefore, we present in this paper a detailed comparison
between the Kadanoff-Baym and Boltzmann equations in the framework of a scalar �4 quantum field
theory in 3� 1 space-time dimensions. The obtained numerical solutions reveal significant discrepancies
in the results predicted by both types of equations. Apart from quantitative discrepancies, on a qualitative
level the universality respected by the Kadanoff-Baym equations is severely restricted in the case of
Boltzmann equations. Furthermore, the Kadanoff-Baym equations strongly separate the time scales
between kinetic and chemical equilibration. This separation of time scales is absent for the Boltzmann
equation.
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I. INTRODUCTION

One of the most attractive frameworks to explain the
matter-antimatter asymmetry of the universe is the so-
called leptogenesis mechanism [1–3]. Here, lepton number
violating interactions in the early universe produce a
lepton asymmetry which is subsequently converted to the
observed baryon asymmetry by so-called sphaleron pro-
cesses. For the dynamical generation of the lepton asym-
metry it is necessary, that the universe was in a state out of
thermal equilibrium [4]. The standard means to deal with
this nonequilibrium situation are Boltzmann equations.
However, it is well-known that (classical) Boltzmann equa-
tions suffer from several shortcomings as compared to
their quantum mechanical generalizations, the so-called
Kadanoff-Baym equations. This motivates a comparison
of Boltzmann and Kadanoff-Baym equations in order to
assess the reliability of quantitative predictions of lepto-
genesis scenarios.

In addition to leptogenesis, there are various other sys-
tems which warrant a comparison between Boltzmann and
Kadanoff-Baym equations: In particular, a strong motiva-
tion is furnished by relativistic heavy ion collision experi-
ments which aim at testing the quark-gluon plasma. In
these experiments the quark-gluon plasma is produced in
a state far from equilibrium. Recently, however, experi-
ments claimed that the approach to thermal equilibrium
should happen very fast, and that the evolution of the
quark-gluon plasma could even be described by hydro-
dynamic equations [5–8], which arise as approximations
to Boltzmann equations. In this context it is important to
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note that different quantities effectively thermalize on
different time scales [9]. Thus, one might face the situation
that, although the full approach to thermal equilibrium
takes a very long time, certain quantities, which are suffi-
cient to describe the quark-gluon plasma with hydrody-
namic equations, approach equilibrium values on much
shorter time scales.

In order to derive Boltzmann equations from Kadanoff-
Baym equations,1 one has to employ several approxima-
tions, among them a first-order gradient expansion, a
Wigner transformation and a quasiparticle (or on-shell)
approximation [12–16]. However, it is known, that the
gradient expansion cannot be justified for early times.
Consequently, one might expect that Boltzmann equations
fail to describe the early-time evolution and that errors
accumulated for early times cannot be remedied at late
times. Of course, a Wigner transformation itself is not at all
an approximation, but in order to make it available, one has
to send the initial time to the remote past. Whereas
Boltzmann equations imply the assumption of molecular
chaos, meaning that two particles were uncorrelated before
their collision, Kadanoff-Baym equations take these mem-
ory effects into account. Numerical solutions of Kadanoff-
Baym equations revealed that this memory is lost gradu-
ally. Consequently, for late times it is indeed justifiable to
send the initial time to the remote past. However, for early
times this is certainly not the case. Furthermore, as a
consequence of the quasiparticle approximation, the con-
servation of momentum and energy prevents Boltzmann
equations from describing thermalization in 1� 1 space-
time dimensions. In contrast to this, it has been shown in
1The connection between Boltzmann equations and classical
field theory has been treated in Refs. [10,11].
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FIG. 1. Closed real-time path C. This time path was invented
by Schwinger [51] (see also [52,53]) and applied to nonequilib-
rium problems by Keldysh [54]. In order to avoid the doubling of
the degrees of freedom, we use the form presented in Ref. [13].
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the framework of a scalar �4 quantum field theory that this
is feasible with Kadanoff-Baym equations [17]. The reason
for this qualitative discrepancy is that Kadanoff-Baym
equations take off-shell effects into account [18], which
are neglected in Boltzmann equations. Of course, in 3� 1
dimensions both types of equations are capable of describ-
ing thermalization. In the case of leptogenesis, however,
the on-shell character of the Boltzmann equation leads to a
further inconsistency: All leptogenesis scenarios share the
fact that some heavy particles decay out of thermal equi-
librium into the particles which we observe in the universe
today. The spectral function of a particle that can decay
into other particles is given by a Breit-Wigner curve with a
nonvanishing width. By employing the quasiparticle ap-
proximation we reduce this decay width of the particles to
zero, i.e. a Boltzmann equation can only describe systems
consisting of stable, or at least very long-lived, particles.
After all, how does the on-shell character of the Boltzmann
equation affect the description of quantum fields out of
thermal equilibrium in 3� 1 dimensions?

When applying Boltzmann equations to the description
of leptogenesis, the standard technique to construct the
collision integrals—before employing further approxima-
tions—is to take the usual bosonic and fermionic statistical
gain and loss terms multiplied with the S-matrix element
for the respective reaction [19,20]. These S-matrix ele-
ments are computed in vacuum, and one may wonder of
which significance they are for a statistical quantum me-
chanical system.

All these shortcomings of Boltzmann equations lead to
the conclusion that one should perform a detailed compari-
son between Boltzmann and Kadanoff-Baym equations
[13,21–23], such that one can explicitly see how large
the quantum mechanical corrections are. Because of the
complexity of the problem, we restrict ourselves for the
moment to a �4 quantum field theory in 3� 1 space-time
dimensions. Of course, in this framework one can neither
describe the phenomenon of leptogenesis nor thermaliza-
tion after a heavy ion collision. Nevertheless, it may well
serve as starting point for further research, and certainly
permits to present a detailed comparison between
Boltzmann and Kadanoff-Baym equations, which may
point to interesting phenomena to be investigated in more
realistic theories.

In general, when studying systems out of thermal equi-
librium by means of Kadanoff-Baym equations, it is cru-
cial to start from a �-derivable approximation, since these
approximations ensure the conservation of energy and
global charges [24–26]. The 2PI effective action furnishes
such a �-derivable approximation [27–29] and has proven
to be an efficient and reliable tool for the description of
out-of-equilibrium quantum fields in numerous previous
treatments [17,30–34]. In this work, we start from the 2PI
effective action truncated at three-loop order. The
Kadanoff-Baym equations can be obtained by requiring
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that the 2PI effective action be stationary with respect to
variations of the full connected two-point function [17,18].
In order to derive the corresponding Boltzmann equation,
subsequently one has to employ a gradient expansion,
a Wigner transformation, the Kadanoff-Baym ansatz
and the quasiparticle approximation [12–16]. While the
Boltzmann equation describes the time evolution of the
particle number distribution, the Kadanoff-Baym equa-
tions describe the evolution of the full quantum mechanical
two-point function of the system. However, one can define
an effective particle number distribution which is given by
the full propagator and its time derivatives evaluated at
equal times [17,31]. Finally, we solve the Boltzmann and
the Kadanoff-Baym equations numerically for spatially
homogeneous and isotropic systems in 3� 1 dimensions
and compare their predictions on the evolution of these
systems for various initial conditions.

II. 2PI EFFECTIVE ACTION

In this work we consider a real scalar quantum field,
whose dynamics is determined by the Lagrangian density

L � �
1

2
�@����@��� �

1

2
m2
B�2 �

�
4!

�4:

The minus sign of the kinetic term indicates that we use the
metric where the time-time component is negative. As we
will compute the evolution of the two-point Green’s func-
tion for a nonequilibrium many body system, already the
classical action has to be defined on the closed Schwinger-
Keldysh real-time contour, shown in Fig. 1. The free
inverse propagator can then be read off the free part of
the classical action

I0 � �
1

2

Z
C
d4x

Z
C
d4y��x�G�1

0 �x; y���y�;

where

G�1
0 �x; y� � �@x�@y� �m

2
B��C�x� y�: (1)

We consider a system without symmetry breaking, i.e.
h��x�i � 0. In this case the full connected Schwinger-
Keldysh propagator is given by

G�x; y� � hTCf��x���y�gi:

Accordingly, for Gaussian initial conditions the 2PI effec-
tive action can be parameterized in the form [17,27–29]
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FIG. 2. Two- and three-loop contribution to �2�G�. The lines
represent the full connected Schwinger-Keldysh propagator.

FIG. 3. One- and two-loop contribution to the proper self-
energy �. Again, internal lines represent the full connected
Schwinger-Keldysh propagator. The tadpole represents the local
part which causes a mass shift only. The setting-sun diagram
represents the nonlocal part and leads to thermalization.
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��G� �
i
2

trClogC�G
�1� �

1

2
trC�G

�1
0 G� � �2�G� � const:

i�2�G� is the sum of all two-particle irreducible vacuum
diagrams, where internal lines represent the full connected
propagator G�x; y�. Of course, for an interacting theory we
cannot compute �2�G� completely, and we have to rely on
approximations. In this work we apply the loop expansion
of the 2PI effective action up to three-loop order. The
diagrams contributing to �2�G� in this approximation are
shown in Fig. 2. We find [18]:

�2�G� � �
�
8

Z
C
d4x�G�x; x�G�x; x�� �

i�2

48

�
Z
C
d4x

Z
C
d4y�G�x; y�G�x; y�G�y; x�G�y; x��:
2From the definition of the spectral function we see that it is
antisymmetric in the sense that G%�x; y� � �G%�y; x�.
Furthermore, the canonical equal-time commutation relations
give �G%�x; y��x0�y0 � 0 and �@y0G%�x; y��x0�y0 � ��3�x� y�.

3In contrast to the spectral function, the statistical propagator
is symmetric in the sense that GF�x; y� � GF�y; x�.
III. KADANOFF-BAYM EQUATIONS

The equation of motion for the full propagator reads
[27,28]

���G�
�G�y; x�

� 0:

It is equivalent to the Schwinger-Dyson equation

G�1�x; y� � iG�1
0 �x; y� ���x; y�; (2)

where the proper self-energy is given by

��x; y� � 2i
��2�G�
�G�y; x�

� �
i�
2
�C�x� y�G�x; x�

�
�2

6
G�x; y�G�x; y�G�y; x�: (3)

After we have inserted the free inverse propagator given in
Eq. (1), we convolute the Schwinger-Dyson Eq. (2) with G
from the right:
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i��@x�@x� �m
2
B�G�x; y� � �C�x� y�

�
Z
C
d4z��x; z�G�z; y�: (4)

Next, we define the spectral function2

G%�x; y� � ih���x�;��y���i;

and the statistical propagator3

GF�x; y� �
1
2h���x�;��y���i;

such that we can write the full propagator as

G�x; y� � GF�x; y� �
i
2

signC�x0 � y0�G%�x; y�: (5)

Note that for real scalar quantum fields both the statistical
propagator and the spectral function are real-valued func-
tions [17]. The spectral function describes the particle
spectrum of our theory. From its Wigner transform we
can obtain the thermal mass and the decay width of the
particles in our system. On the other hand we will define an
effective particle number density given by the statistical
propagator and its time derivatives evaluated at equal
times. From Eq. (3) (and Fig. 3) we see that the self-energy
contains a local and a nonlocal part:

��x; y� � �i�C�x� y��
�local��x� ���nonlocal��x; y�:

The local part of the self-energy only causes a mass shift,
which can be included in an effective mass:

M2�x� � m2
B ���local��x� � m2

B �
�
2
GF�x; x�: (6)

After inserting Eq. (5) into Eq. (3), we can decompose the
nonlocal part of the self-energy in exactly the same way as
-3



4The retarded propagator GR�x; y� � ��x0 � y0�G%�x; y� and
self-energy, as well as the corresponding advanced quantities,
have to be introduced in order to remove the upper boundaries of
the memory integrals. As a result the complete system of
quantum kinetic equations includes six equations: one equation
for GF, G%, GR, �F, �% and �R, respectively.
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we did for the propagator:

��nonlocal��x; y� � �F�x; y� �
i
2

signC�x
0 � y0��%�x; y�:

We find

�F�x; y� � �
�2

6
�GF�x; y�GF�x; y�GF�x; y�

�
3

4
G%�x; y�G%�x; y�GF�x; y��

and

�%�x; y� � �
�2

6
�3GF�x; y�GF�x; y�G%�x; y�

�
1

4
G%�x; y�G%�x; y�G%�x; y��:

When we insert all these definitions into Eq. (4), we ob-
serve that it splits into two complementary real-valued
evolution equations for the statistical propagator and the
spectral function, respectively [17]. These are the so-called
Kadanoff-Baym equations:

��@x�@x� �M
2�x��GF�x; y� �

Z y0

0
d4z�F�x; z�G%�z; y�

�
Z x0

0
d4z�%�x; z�GF�z; y�;

(7)

and

��@x�@x� �M
2�x��G%�x; y� � �

Z x0

y0
d4z�%�x; z�G%�z; y�:

(8)

For a spatially homogeneous system, one can Fourier trans-
form these equations with respect to the spatial relative
coordinate. Furthermore, in an isotropic system the propa-
gator will depend only on the modulus of the momentum.
As explained in more detail in Refs. [17,31], one can define
effective kinetic energy and particle number densities
!�t;p� and n�t;p� which are given by

!2�t;p� �

 
@x0@y0GF�x

0; y0;p�

GF�x
0; y0;p�

!
x0�y0�t

; (9)

and

n�t;p� � !�t;p�GF�t; t;p� �
1

2
: (10)

However, we stress that the Kadanoff-Baym equations are
self-consistent evolution equations for the full propagator
of our system, and that one has to follow the evolution of
the two-point function throughout the whole x0-y0-plane
(of course, constrained to the part with x0 	 0 and y0 	 0).
One can then follow the evolution of the effective particle
number density along the bisecting line of this plane.
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We would like to emphasize that the only approximation
involved in the numerical solution of the Kadanoff-Baym
equations is the loop expansion of the 2PI effective action.
In the next section we will describe the approximations
which are necessary to derive a Boltzmann equation from
the Kadanoff-Baym equation for the statistical propagator
(7).
IV. BOLTZMANN EQUATIONS

It is well known how Boltzmann equations can be ob-
tained as an approximation of the Kadanoff-Baym equa-
tions [12,13,16]. In this section we briefly review the
standard derivation: One has to employ a Wigner trans-
formation, a gradient expansion, the Kadanoff-Baym an-
satz and the quasiparticle approximation.

First, we subtract the Hermitian adjoint of Eq. (7) from
Eq. (7) and reparametrize the propagator and the self-
energy by center and relative coordinates

G�u; v� � ~G
�
u� v

2
; u� v

�
:

Next, we define X � x�y
2 and s � x� y, and observe on

the left hand side of the difference equation that

�@x�@x� � @y�@y� � �2@X�@s�

is automatically of first order in @X. Furthermore, we
Taylor expand the effective masses on the left hand side
as well as the propagators and self-energies on the right-
hand side to first order in @X around X. After that, we
Fourier transform the difference equation with respect to s.
The Wigner transformed statistical propagator and spectral
function are given by

~GF�X; k� �
Z
d4s exp��iks� ~GF�X; s�;

and

~G%�X; k� � �i
Z
d4s exp��iks� ~G%�X; s�:

The factor of �i in the Wigner transform of the spectral
function makes ~G%�X; k� again a real-valued function.
However, in order to be able to really perform the
Fourier transformation, we have to send the initial time
to �1. At least for large x0 and y0 this can be justified by
taking into account that correlations between earlier and
later times are suppressed exponentially, as one can see in
Fig. 4. The result of all these transformations is a quantum
kinetic equation for the statistical propagator4 [14–16,35–
-4
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FIG. 5. The equal-time propagator as a function of time for
three different initial conditions (cf. Fig. 6). The system shows
rapid oscillations which die out after moderate times and are
followed by a smooth drifting regime.

FIG. 4. The modulus of the unequal-time propagator as func-
tion of time for fixed momentum mode p � 0. Correlations
between earlier and later times are exponentially damped.
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38]:

�2k�@X� � �@X�M
2�X��@k��

~GF�X; k�

� ~�%�X; k� ~GF�X; k� � ~�F�X; k� ~G%�X; k�

� f ~�F�X; k�; Re� ~GR�X; k��gPB

� fRe� ~�R�X; k��; ~GF�X; k�gPB; (11)

where the Poisson brackets are defined by

f~f�X; k�; ~g�X; k�gPB � �@X� ~f�X; k���@k� ~g�X; k��

� �@k�
~f�X; k���@X� ~g�X; k��: (12)

Employing the first-order Taylor expansion is clearly not
justifiable for early times when the equal-time propagator
is rapidly oscillating, cf. Fig. 5. But this is obvious, since
employing this gradient expansion is clearly motivated by
equilibrium considerations: In equilibrium the propagator
depends on the relative coordinates only. There is no
dependence on the center coordinates, and one may hope
that there are situations where the propagator depends only
moderately on the center coordinates. This is clearly the
case for late times when our system is sufficiently close to
equilibrium. However, as is shown in Fig. 5, already after
moderate times the rapid oscillations mentioned above,
have died out and are followed by a smooth drifting regime
[17]. In this drifting regime the second derivative with
respect to X should be negligible as compared to the
first-order derivative and a consistent Taylor expansion
can be justified even though the system may still be far
from equilibrium. However, it is crucial that the Taylor
expansion is performed consistently for two reasons: First,
this guarantees that the quantum kinetic equations satisfy
exactly the same conservation laws as the full Kadanoff-
Baym equations do [15]. Second, it has been shown that
125002
neglecting the Poisson brackets severely restricts the range
of validity of the quantum kinetic equations [38,39]. For
the intermediate and late-time regimes these quantum ki-
netic equations have the advantage that they do not include
any memory integrals. Being local in time, their numerical
solution requires much less computer memory as com-
pared to the Kadanoff-Baym equations and algorithms
using an adaptively controlled time-step size become avail-
able. Furthermore, the energy convolutions replacing
the memory integrals can be done quite efficiently using
a Fast Fourier Transform algorithm. In order to derive a
Boltzmann equation from the quantum kinetic Eq. (11),
first we have to discard the Poisson brackets, thereby
sacrificing the consistency of the gradient expansion.
After that, we employ the Kadanoff-Baym ansatz

~GF�X; k� � ~G%�X; k�

 
~n�X; k� �

1

2

!
; (13)

which also can be motivated by equilibrium considera-
tions. In fact, this is a generalization of the fluctuation-
dissipation theorem, which states that, for a system in
thermal equilibrium, the statistical propagator is propor-
tional to the spectral function. The fluctuation-dissipation
theorem can be recovered from Eq. (13) by discarding the
dependence on the center coordinate X and fixing ~n to be
the Bose-Einstein distribution function. The last approxi-
mation, which is necessary to arrive at the Boltzmann
equation, is the so-called quasiparticle (or on-shell) ap-
proximation:

~G%�X; k� �
�

E�X; k�
���k0 � E�X; k�� � ��k0 � E�X; k���;

(14)

where the quasiparticle energy is given by
-5
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E�X; k� �
�������������������
m2
th � k

2
q

:

Once more, we would like to stress that the exact time
evolution of the spectral function is determined by the
Kadanoff-Baym equations. It has been shown that the
spectral function can be parameterized by a Breit-Wigner
function with a nonvanishing width [18,23]. To reduce the
width of this Breit-Wigner curve to zero is certainly not a
controllable approximation and leads to significant quali-
tative discrepancies between the results produced by
Kadanoff-Baym and Boltzmann equations. In fact this
approximation can only be justified if our system consists
of stable, or at least very long-lived, quasiparticles, whose
mass is much larger than their decay width. We also would
like to note that a completely self-consistent determination
of the thermal mass in the framework of the Boltzmann
equation requires the solution of an integral equation for
E�X;k�, which would drastically increase the complexity
of our numerics. As none of our physical results depend on
the exact value of the thermal mass, for convenience, we
set mth to the equilibrium value of the thermal mass as
determined by the Kadanoff-Baym equations. Eventually,
we define the quasiparticle number density by

n�X; k� � ~n�X; k; E�X; k��:

After equating the positive energy components in Eq. (11)
we arrive at the Boltzmann equation. For a spatially homo-
geneous system there is no dependence on the spatial
center coordinates and the Boltzmann equation reads:5

@tn�t;k� �
�2�
48

Z d3p

�2��3
Z d3q

�2��3

�
Z
d3r

�
1

EkEpEqEr
��k� p� q� r�

� ��Ek � Ep � Eq � Er���1� nk�

� �1� np�nqnr � nknp�1� nq��1� nr��
�
:

(15)

For a spatially homogeneous and isotropic system we can
dramatically simplify the collision integral [40], which
allows us to reduce the complexity of our numerics sig-
nificantly. The details of this calculation are shown in the
appendix. The result is the following equation:6
5Here, we use the abbreviations Ek �
�������������������
m2
th � k

2
q

and nk �
n�t;k�.

6Now, k � jkj and nk � n�t; jkj�
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@tn�t; k� �
�2

96�4

Z 1
0
dp

Z 1
0
dq
�

��r2
0�
pqD�k; p; q; r0�

EkEpEq

� ��1� nk��1� np�nqnr0
� nknp�1� nq�

� �1� nr0
��

�
: (16)

The auxiliary functions r0 and D are obtained from very
simple expressions which are given in the appendix. In this
section we have shown that, using a gradient expansion and
a quasiparticle (or on-shell) approximation, one can derive
the Boltzmann equation from the Kadanoff-Baym equa-
tions. In this sense one can consider the Kadanoff-Baym
equations as quantum Boltzmann equations resumming the
gradient expansion up to infinite order and including off-
shell and memory effects. In the next section we are going
to explain how we solved the Boltzmann and the Kadanoff-
Baym equations numerically.
V. NUMERICAL IMPLEMENTATION

A. Kadanoff-Baym equations

For the numerical solution of the Kadanoff-Baym equa-
tions we follow exactly the lines of Refs. [17,41,42], i.e. for
the spatial coordinates we employ a standard discretization
on a three-dimensional lattice with lattice spacing as and
Ns lattice sites in each direction. Thus, the lattice momenta
are given by

p̂nj �
2

as
sin
��nj
Ns

�
;

where nj, j 2 f1; 2; 3g, enumerates the momentum modes
in the j-th dimension. As we consider a spatially homoge-
neous and isotropic system, for given times �x0; y0�we only
need to store the propagator for momentum modes with
Ns
2 	 n1 	 n2 	 n3 	 0. This saves us a factor of 48 in
memory usage. The discretization in time leads to a history
matrixH � f0; at; 2at; . . . ; �Nt � 1�atg2. Here at is the step
size and Nt is the number of times in each time dimension
for which we keep the propagator in memory in order to
compute the memory integrals. This history cut off can be
justified by the exponential damping of the unequal-time
propagator, cf. Fig. 4. Exploiting the symmetry of the
statistical propagator with respect to the interchange of
its time arguments, we only need to store the values of
the statistical propagator for x0 	 y0. In very much the
same way we can use the respective antisymmetry of the
spectral function. This saves us another factor of 2 in
memory usage. The convolutions arising in the computa-
tion of the setting-sun self-energies are most efficiently
computed using a Fast Fourier Transform algorithm for
real-valued even functions [43].

In order to set the scale for the simulations, we use the
renormalized vacuum mass mR. The corresponding bare
-6
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FIG. 6. Initial particle number densities against absolute mo-
menta. Shown are the three different initial conditions (IC)
discussed in the text, for which we numerically solved the
Boltzmann and the Kadanoff-Baym equations, respectively. All
initial conditions correspond to the same (conserved) average
energy density. Above that, the initial conditions IC1 and IC2
also correspond to the same initial average particle number
density.
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mass mB is obtained through a perturbative renormaliza-
tion at one-loop order of the self-energy (tadpole) [44]. We
solved the Kadanoff-Baym equations numerically on a
lattice with Nt � 500, Ns � 32, atmR � 0:06, asmR �
0:5 and � � 18. So far we performed our simulations on
a simple desktop PC with a Pentium4 processor and
2 GByte RAM. However, we would like to note that the
numerics can easily be parallelized.

B. Boltzmann equation

As we saw in the previous paragraph, in order to dis-
cretize the Kadanoff-Baym equations we can rely on the
well-defined scheme offered by standard lattice field the-
ory. Unfortunately, the energy conserving � function in
Eq. (15) prevents us from using these standard lattice
techniques for the Boltzmann equation. The reason is the
following: When integrating over an arbitrary momentum
mode in Eq. (15) one has to look for zeros of the argument
of the energy conserving � function with respect to this
particular momentum mode. These zeros might well fall
between two lattice sites. Hence, computing the collision
integral requires the use of interpolation techniques in
order to determine the particle number distribution for
these in-between lattice sites. These interpolation tech-
niques imply a continuity assumption for the particle num-
ber distribution which contradicts the strict lattice
discretization as offered by lattice field theory. Apart
from this principal obstacle, there is also a practical reason
which encourages us to use different discretization
schemes for both types of equations: The collision integral
in Eq. (15) is no convolution. Consequently, Fast Fourier
Transformation algorithms are not applicable, and its nu-
merical computation becomes rather expensive. In order to
reduce the complexity of our Boltzmann numerics we
exploited isotropy, which allowed us to simplify the
Boltzmann equation analytically and lead us to Eq. (16).
In the discretized version of the Boltzmann equation (16)
the momenta are of the form

pn �

������
12
p

asNs
n:

We use the same value for as as for the Kadanoff-Baym
equations. This ensures that the largest available momen-
tum is the same as for the Kadanoff-Baym equations. Of
course, Ns need not be the same as for the Kadanoff-Baym
equations, which just means that we approach the physi-
cally relevant infinite volume limit independently for both
types of equations.

In order to compute the collision integral we proceed as
follows: For fixed �k; p; q� we determine r0 (the exact
definition of r0 is given in the appendix), which of course
need not be one of the discretized momenta given above.
The function D�k; p; q; r0� can be evaluated for any value
of r0 (as one also can see in the appendix). To obtain the
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particle number density for an arbitrary r0 we use a cubic
spline interpolation [45]. Thus, for given �k; p; q� the in-
tegrand is known to any given accuracy and for given k we
can simply sum over p and q. In order to advance in time
we use a Runge-Kutta-Cash-Karp routine with adaptive
step-size control [45].

In order to set the scale for the simulations, again we use
the renormalized vacuum mass mR. Our simulations were
done with Ns � 500, asmR � 0:5 and � � 18.

VI. COMPARING BOLTZMANN VS.
KADANOFF-BAYM

We consider three different initial conditions which
correspond to the same average energy density. Above
that, the initial conditions IC1 and IC2 also correspond to
the same initial average particle number density. The cor-
responding initial particle number distributions are shown
in Fig. 6. These particle number distributions can immedi-
ately be fed into the numerics for the Boltzmann equation.
In order to obtain the initial conditions for the Kadanoff-
Baym equations, we follow Refs. [17,31]: The initial val-
ues for the spectral function are determined from the
canonical commutation relations. On the other hand, for
a given initial particle number density, the initial values for
the statistical propagator and its derivatives are determined
according to:

GF�x
0; y0;p�x0�y0�0 �

"
n�t;p� � 1

2

!�t;p�

#
t�0

; (17)

�@x0GF�x
0; y0;p��x0�y0�0 � 0; (18)
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FIG. 7. These plots show the time evolution of the particle number distributions for two different momentum modes and all initial
conditions (cf. Fig. 6) as determined by the Boltzmann and the Kadanoff-Baym equations, respectively. We see that the Kadanoff-
Baym equations respect full universality, whereas in the case of the Boltzmann equation only a restricted universality is maintained, cf.
Fig. 8.

8In Fig. 8 one can see that in the case of the Boltzmann
equation there is only one momentum mode for which the
late-time values of all particle number densities agree, namely,
the intersection point of the lines. However, we could easily have
chosen a fourth initial condition for which the late-time result
would intersect the lines in Fig. 8 in different points. Then there
would not be a single momentum mode for which the late-time
values of all particle number densities agreed.
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�@x0@y0GF�x0; y0;p��x0�y0�0 �

�
!�t;p�

�
n�t;p� �

1

2

��
t�0
;

(19)

where the initial effective energy density is given by

!�t � 0;p� �
�������������������
m2
R � p

2
q

:

Figures 7 and 8 show the evolution of the particle number
distributions for two momentum modes and the corre-
sponding equilibrium particle number distributions, re-
spectively, for all initial conditions. In the left plots we
can see, that the Kadanoff-Baym equations lead to a uni-
versal equilibrium particle number density. The left plot in
Fig. 7 shows that the particle number distributions may
evolve quite differently for early times.7 However, respect-
ing universality, for any given momentum mode all distri-
butions approach the same late-time value. This plot is
supplemented by the left plot in Fig. 8. There, one can
see that the various particle number densities, after equi-
librium has effectively been reached, indeed completely
agree. Hence, this plot proves that we could have shown
plots similar to the left one in Fig. 7 for all momentum
modes. In particular the predicted temperature, given by
the inverse slope of the line, is the same for all initial
conditions. In contrast to this, the right plots reveal that
the Boltzmann equation respects only a restricted univer-
sality. In general, e.g. for the initial conditions IC1 and IC3,
for any given momentum mode the particle number den-
sities will not approach the same late-time value. For both
momentum modes shown in Fig. 7 a considerable discrep-
7As we will see, the steep overshooting of the particle number
distribution leads to a quick kinetic equilibration, whereas the
rather long tail accounts for chemical equilibration.
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ancy is revealed. However, for the special case of the initial
conditions IC1 and IC2, which, as mentioned above, cor-
respond to the same initial average particle number density,
the late-time results do agree.8

The reason for the observed restriction of universality
can be extracted from Fig. 9. There we show the time
evolution of the total particle number per volume

Ntot�t� �
Z d3p

�2��3
n�t;p�:

In general the Kadanoff-Baym equations conserve the
average energy density9 and global charges [24–26].
However, as there is no conserved charge in our theory,
the total particle number need not be conserved. Indeed,
the Kadanoff-Baym equations include off-shell particle
creation and annihilation [18]. Consequently, the total
particle number may change, and in fact approaches a
universal equilibrium value. In contrast to this, due to the
quasiparticle (or on-shell) approximation particle number
changing processes are kinematically forbidden in the
Boltzmann equation. The Boltzmann equation only in-
Concerning our simulations, of course, this only holds up to
numerical errors. We have checked that our simulations conserve
the average energy density up to a numerical uncertainty of 0.2%
for the Kadanoff-Baym equations and the Boltzmann equation,
respectively.
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FIG. 8. Here, we plotted the equilibrium particle number distributions obtained for times when thermal equilibrium has effectively
been reached, against the corresponding thermal energy densities. The thermal mass is given by the zero mode of the effective kinetic
equilibrium energy density as determined by the Kadanoff-Baym equations: mth � !eq�p � 0�. For a given initial condition, the
temperature is given by the inverse slope of the line and the chemical potential is obtained from the y-axis intercept divided by ��.
Supplementing Fig. 7 we observe full (restricted) universality in the case of the Kadanoff-Baym (Boltzmann) equations. In particular,
the Kadanoff-Baym equations lead to a universal temperature T � 1:68mth and a universally vanishing chemical potential. In contrast
to this, the Boltzmann equation gives T � 1:52mth and � � 0:18mth for the initial conditions IC1 and IC2, and T � 1:32mth and
� � 0:68mth for IC3.
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cludes two-particle scattering, which leaves the total par-
ticle number constant. Of course, this additional constant
of motion severely restricts the evolution of the particle
number density. Therefore the Boltzmann equation cannot
lead to a universal quantum thermal equilibrium. Only
initial conditions for which the average energy density
and the total particle number agree from the very begin-
ning, lead to the same equilibrium results.
FIG. 9. Time evolution of the total particle number. As expected
particle creation and annihilation. As a result the total particle num
number is strictly conserved in the case of the Boltzmann equation
numerical errors (< 0:8%). The quantitative disagreement of the tota
discrepancies in the discretization schemes underlying our Boltzman
purposes of the present work.
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In a system allowing for creation and annihilation of
particles, the chemical potential of particles, whose total
number is not restricted by any conserved quantity, must
vanish in thermodynamical equilibrium. The chemical po-
tential predicted by the Kadanoff-Baym and Boltzmann
equations, respectively, is given by the y-axis intercept,
extracted from Fig. 8, divided by ��. Using a ruler the
reader might convince himself that the Kadanoff-Baym
from Ref. [18], the Kadanoff-Baym equations include off-shell
ber may change with time. In contrast to this the total particle
. Concerning our simulations, of course, this only holds up to

l particle numbers in both plots can be attributed to the substantial
n and Kadanoff-Baym numerics and are of no relevance for the
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FIG. 10. (Missing) separation of time scales. The particle number distribution is shown against the equilibrium energy density at
various times for initial condition IC3.
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equations indeed lead to a universally vanishing chemical
potential. In contrast to this, even without a ruler one can
see that the Boltzmann equation, in general, will lead to a
nonvanishing chemical potential.10

In this context, Fig. 10 exhibits further interesting re-
sults. In the upper left plot one can see that the Kadanoff-
Baym equations rapidly wash out our tsunami-type initial
condition IC3. In both plots on the left hand side the
double-dashed-dotted lines correspond to the particle num-
ber distribution at the same time tmR � 42:4. Thus, in the
lower left plot one obtains an approximate straight line
already after a relatively short period of time, indicating a
swift approach to kinetic equilibrium. Subsequently, this
straight line is tilted until it intersects the origin of our
coordinate system (full line), corresponding to a vanishing
10For the initial conditions considered in this work, the
Boltzmann equation predicted even a positive chemical poten-
tial. However, already on very general grounds, one can deduce
that the chemical potential of bosons has to be negative!
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chemical potential. However, this approach to full thermo-
dynamical (including chemical) equilibrium takes a con-
siderably longer time [9]. In this way, the left plots reveal
two distinct time scales: a rather fast kinetic equilibration,
and a very slow thermodynamical (including chemical)
equilibration. These two time scales can also be identified
in the left plot of Fig. 7 and in Fig. 5. The overshooting of
the particle number density for early times leads to the
kinetic equilibration. In fact, the double-dashed-dotted
lines correspond to the time, when the particle number
distribution (equal-time propagator) reaches its maximum
value in Fig. 7 (Fig. 5). Interestingly, although the initial
conditions IC1 and IC2 do not show this excessive over-
shooting, the corresponding particle number distributions
(equal-time propagators) approach each other on the same
time scale, from which on they show an almost identical
evolution. The following rather long tail, again indicates
that full thermalization takes place on much larger time
scales. The right plot in Fig. 7 shows that the steep initial
evolution, which is characteristic for the Kadanoff-Baym
-10
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equations, is absent in the case of the Boltzmann equa-
tion11 and that the Boltzmann equation leads only to a
gently inclined evolution of the particle number distribu-
tion. Accordingly, the plots on the right hand side of Fig. 10
show that it takes a considerably longer time for the
Boltzmann equation to reach kinetic equilibrium. As al-
ready mentioned above, in contrast to the Kadanoff-Baym
equations, the Boltzmann equation cannot describe the
process of chemical equilibration. Consequently, the sepa-
ration of time scales furnished by the Kadanoff-Baym
equations is absent in the Boltzmann case.
VII. CONCLUSIONS

Starting from the 2PI effective action for a scalar �4

quantum field theory we briefly reviewed the derivation of
the Kadanoff-Baym equations and the approximations
which are necessary to eventually arrive at a Boltzmann
equation. We solved both, the Kadanoff-Baym equations
and the Boltzmann equation, numerically for spatially
homogeneous and isotropic systems in 3� 1 dimensions
without any further approximations.

We have shown that the Kadanoff-Baym equations re-
spect universality: For systems with equal average energy
density the late-time behavior coincides independent of the
details of the initial conditions. In particular, independent
of the initial conditions the particle number densities,
temperatures and thermal masses predicted for times
when equilibrium has effectively been reached coincide.
The chemical potentials also coincide and vanish.
Furthermore, we observed that thermalization takes place
on two different time scales: a rather fast kinetic equilibra-
tion, and a very slow thermodynamical (including chemi-
cal) equilibration.

In general Kadanoff-Baym and Boltzmann equations
conserve total energy as well as global charges. In the
special case of a real scalar �4 quantum field theory the
quasiparticle approximation implies that the Boltzmann
equation additionally conserves the total particle number.
This additional constant of motion severely restricts the
evolution of the system. As a result the Boltzmann equa-
tion cannot lead to a universal quantum thermal equilib-
rium. The Boltzmann equation respects only a restricted
universality: Only initial conditions for which the average
energy density and the total particle number agree from the
very beginning, lead to the same equilibrium results. In
particular, the Boltzmann equation cannot describe the
phenomenon of chemical equilibration and, in general,
will lead to a nonvanishing chemical potential. Because
of the lack of chemical equilibration, the separation of time
11One might be tempted to conclude that the evolution of the
particle number distribution is strictly monotonous in the
Boltzmann case. However, the small dip for the particle number
distribution IC2 in Fig. 7 shows that this is not necessarily the
case.
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scales, which we observed for the Kadanoff-Baym equa-
tions, is absent in the case of the Boltzmann equation.

Some of the approximations that lead from the
Kadanoff-Baym equations to the Boltzmann equation
(namely, the gradient expansion, neglecting the Poisson
brackets and the Kadanoff-Baym ansatz) are clearly moti-
vated by equilibrium considerations. Taking the observed
restriction of universality into account, we conclude that
one can safely apply the Boltzmann equation only to
systems which are sufficiently close to equilibrium.
Accordingly, for a system far from equilibrium the results
given by the Boltzmann equation should be treated with
care.

In the future it will be important to perform a similar
comparison between Boltzmann and Kadanoff-Baym
equations for Yukawa-type quantum field theories includ-
ing fermions and gauge fields. Also a treatment of
Kadanoff-Baym equations on an expanding space-time
should reveal interesting results. This would finally enable
one to attack the problem of leptogenesis. Independent of
the comparison between Boltzmann and Kadanoff-Baym
equations we are looking forward to learn to which extend
a full nonperturbative renormalization procedure [34,46–
50] affects the results quantitatively.
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APPENDIX: SIMPLIFYING THE BOLTZMANN
EQUATION

The simplification of the Boltzmann equation [40] relies
on the Fourier representation of the momentum conserva-
tion delta function:

�3�m� �
Z d3�

�2��3
exp��im��:

Using spherical coordinates, we find

m� � m��sin#m sin#� cos�’m � ’�� � cos#m cos#��:

Now, we consider just the integration over the solid angle.
As we integrate over the complete solid angle ��, it does
not matter in which directionm is pointing. The result will
always be the same:Z

d�� exp��im�� �
Z
d�� exp��im0��;

where we can choose m0 � �0; 0; m�, such that ’m �
#m � 0. Now, we can evaluate the integral quite easily:
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Z
d�� exp��im�� �

Z
d�� exp��im� cos#��

�
4�
m�

sin�m��: (A1)

After we have rewritten Eq. (15) using spherical coordi-
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nates and inserted the Fourier representation for the mo-
mentum conservation delta function, we can use Eq. (A1)
to perform the integrations over the solid angles. Here it is
crucial first to evaluate the integrals over �p, �q and �r,
and to do the integral over �� at last. We find:
@tn�t; k� �
�2

96�4

Z 1
0
dp

Z 1
0
dq

Z 1
0
dr
Z 1

0
d�
�
pqr

��Ek � Ep � Eq � Er�

EkEpEq

1

k�2

� sin�k�� sin�p�� sin�q�� sin�r����1� nk��1� np�nqnr � nknp�1� nq��1� nr��
�
;

There are only two more steps to make in order to arrive
at Eq. (16). First, we define the auxiliary function
D�k; p; q; r�:

D�k; p; q; r� �
Z 1

0
d�

1

k�2 sin�k�� sin�p�� sin�q�� sin�r��:

This can easily be evaluated using a computer algebra
program. For k > 0 this is

D�k; p; q; r� �
�

16k
�jk� p� q� rj � jk� p� q� rj

� jk� p� q� rj � jk� p� q� rj

� jk� p� q� rj � jk� p� q� rj

� jk� p� q� rj � jk� p� q� rj�;

and for k � 0 we obtain

D�0; p; q; r� �
�
8
�sign�p� q� r� � sign�p� q� r�

� sign�p� q� r� � sign�p� q� r��:
Second, we use the energy conservation � function to
evaluate the integral over r, using the well-known formula

��f�r�� �
X

fr0jf�r0��0g

��r� r0�

j�dfdr�r�r0
j
:

r0 is determined by the condition that the argument of the
energy conservation � function is zero:

Ek � Ep � Eq � Er0
� 0: (A2)

If this condition can be satisfied, r0 is given by

r0 � r0�t; k; p; q� �
�����������������������������������������������������
�Ek � Ep � Eq�

2 �M2�t�
q

:

If k, p and q are such that condition (A2) cannot be
satisfied, the above square root yields a purely imaginary
result and r2

0 < 0. Because of the � function the corre-
sponding term does not contribute to the collision integral.
After these final steps we end up exactly with Eq. (16).
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