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Noncommutative field theory from twisted Fock space
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We construct a quantum field theory in noncommutative space time by twisting the algebra of quantum
operators (especially, creation and annihilation operators) of the corresponding quantum field theory in
commutative space time. The twisted Fock space and S-matrix consistent with this algebra have been
constructed. The resultant S-matrix is consistent with that of Filk [Tomas Filk, Phys. Lett. B 376, 53
(1996).]. We find from this formulation that the spin-statistics relation is not violated in the canonical
noncommutative field theories.
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I. INTRODUCTION

There has been much interest in field theories [1–4] in
noncommutative space time where coordinates satisfy the
commutation relation,

�x�; x�� � i���; (1)

with ��� being an antisymmetric constant. By the Weyl-
Moyal correspondence [5], a field theory in noncommuta-
tive space time satisfying Eq. (1) is transformed to a field
theory in commutative space time in which product of two
space time functions is defined by the Moyal product,

�� �  ��x� � e�i=2����@x�@y���x� �  �y�jx�y: (2)

Because of the existence of noncommutativity parameter,
the theory is not Poincaré invariant. The properties such as
causality and unitarity are suggested to be violated in the
presence of space time noncommutativity (STNC) [6–10],
while they remain satisfied in the space-space noncommu-
tative (SSNC) case. There have been some attempts to cure
these problems [11–15]. Those arguments have assumed
that the state of particles is a representation of the Poincaré
group while a canonical noncommutative field theory has
symmetry of SO�1; 1� 	 SO�2� which is a subgroup of the
Poincaré group. Recently, Chaichian et al. [16], and Wess
[17] have proposed a framework of making quantum the-
ory in noncommutative space time invariant under the
twisted Poincaré-Hopf algebra UF �P � using the proper
twisting element F 2U�P � 
U�P �, where P is
Poincaré algebra and U�P � is its universal enveloping
algebra. In light of their work, field theory in noncommu-
tative space time can be regarded as field theory in com-
mutative space time with twisted coproduct of Poincaré-
generators. This justifies the use of the representation of
Poincaré group in studying the noncommutative quantum
field theory. There have been some attempts to apply this
address: bjgeon@yonsei.ac.kr
address: hckim@phya.yonsei.ac.kr
address: youngone@phya.yonsei.ac.kr
address: Shoutpeace@yonsei.ac.kr
address: jhyee@phya.yonsei.ac.kr

06=73(12)=125001(10) 125001
idea to the field theory with �-Poincaré symmetry [18],
conformal symmetry [19,20], super conformal symmetry
[21], Galilean symmetry [22], Galileo Schrödinger sym-
metry [23], translational symmetry of Rd [24], gauge sym-
metry [25,26] and diffeomorphic symmetry [27–29]. To
construct a consistent quantization formalism of field the-
ory we need also to twist the algebra of quantum field
operators consistently. There have been some studies on
this problem [30–32].

In this paper, we derive a twisted algebra of creation and
annihilation operators fa; ayg as a basis to construct the
twisted Lorentz invariant quantum field theory. We propose
a framework to construct a consistent quantum field theory
with this deformed algebra. Though we focus on the quan-
tization of scalar field theory in this article, we expect that
the main ideas of this article can be applied to other field
theories. In Sec. II, we introduce the way to twist Hopf
algebras and target algebras, and briefly review Chaichian
et al.’s work. In Sec. III, we introduce twisted algebra of
quantum operators, and we propose a framework to con-
struct twisted quantum field theory. We then apply the
formulation to construct the Fock space and S-matrix of
the scalar field theory in Sec. IV. Finally we discuss some
physical implications of the formulation in Sec. V.
II. TWISTED HOPF ALGEBRA OF POINCARÉ
GENERATORS

Let U�P � be a universal enveloping algebra of Poincaré
Lie algebra P and Y�� P�;M��� be its elements [16].
They satisfy Hopf algebra properties:

�Y � Y 
 1� 1 
 Y; ��Y� � 0; S�Y� � �Y;

(3)

where � is coproduct, � co-unit, and S antipode. The action
of Y on the algebra of function space A satisfies the
relation (hereafter we use Sweedler’s notation �Y �P
Y�1� 
 Y�2�)

Y��� �  � �
X
�Y�1���� � �Y�2�� �; (4)
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where �,  2A, the symbol � is a multiplication in the
algebra A, and the symbol � denotes the action of the
Poincaré generators on the algebra A of the complex
function space.

The representation of the action of Poincaré generators
�P�;M��� on the function space is given by

P����x� � �i@���x�;

M�����x� � �i�x�@� � x�@����x�:
(5)

If we have some ‘‘twisting element‘‘ F 2U�P � 
U�P �,
we can generate another Hopf algebra UF �P � by twisting
U�P �with F . This twisting element F must satisfy the so
called ‘‘2-cocycle and co-unital condition’’ [33]:

�F 
 1� � �� 
 id�F � �1 
F � � �id 
��F ;

�� 
 id�F � 1 � �id 
 ��F :
(6)

Since the Poincaré algebra P has a commutative subalgbra
fP�g, it is easy to construct a twisting element F from
P�’s:

F � exp
�
i
2
���P� 
 P�

�
: (7)

The new Hopf algebra generated from this twisting ele-
ment is the same as the algebra part of the original Hopf
algebra while it has different co-algebra structure. This
means that the Lie algebra commutation relations have
the same form and the representation of Poincaré gener-
ators remains unchanged.

The new coproduct �F has the form,

�FY � F � �Y �F�1; (8)

with the same co-unit and antipode, �F � �, SF � S.
Under the change of coproduct, the action of Y (Eq. (4))
does not transform covariantly in general. For the form of
Eq. (4) to change covariantly, one has to twist the target
algebra A properly. This consistent multiplication, �, of
twisted algebra AF has the form

� �  � ��F�1��� 
  ��: (9)

When �,  2AF are the functions of the same space
time coordinate x�, the product � becomes the well known
Moyal product. Since P� ! �i@� in this representation,
the commutation relation between space time coordinates
is deduced from this �-product:

x� � x� � ��e��i=2����@�
@���x� 
 x���

� x� � x� �
i
2
���; (10)

which leads to the commutation relation

�x�; x��� � i���: (11)

The above arguments imply that with a twisting element
satisfying 2-cocycle condition, one can construct a new
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algebra pair fUF �P �;AF g from the original pair of alge-
bras fU�P �;Ag. Thus, one can think of a field theory
belonging to a class fU�P �;Ag in noncommutative space
time as a field theory belonging to a class fUF �P �;AF g
in commutative space time. The field theory that belongs to
a class fUF �P �;AF g has many advantages. An important
feature of this class of theories is that the theory has the
twist-deformed Poincaré symmetry. Moreover, the opera-
tors such as P2 and W2 (W� � �

1
2 ���	
M

�	P
) remain
Casimir operators in the twisted algebra. So in this frame-
work the symmetry of the theory is more transparent, and
one can utilize the irreducible representation of the
Poincaré algebra in studying the noncommutative field
theory. This framework justifies the earlier studies in non-
commuatative quantum field theory where the representa-
tion of the Poincaré algebra has been utilized [16].
III. TWISTED ALGEBRA OF CREATION AND
ANNIHILATION OPERATORS

In the previous section, we summarized how the con-
ventional field theory can be deformed to a field theory
which has a twist-deformed Poincaré symmetry. Since the
Poincaré generators act on physical Hilbert space also, it is
natural to deform the algebra of operators on Hilbert space
covariantly when we twist the Poincaré symmetry.
Chaichian et al. [30] and Balachandran et al. [31] have
studied this aspect of the noncommutative field theory and
most recently Zahn has also investigated this aspect (he
especially considered twisting the commutation relations
of quantum operators) [32]. In this section, we construct a
noncommutative field theory by twisting the algebra of
quantum field operators in such a way to preserve the
action of Poincaré group on the Fock space. In conven-
tional field theory, if we create/annihilate n-particles of
momenta p1; . . . ; pn in a Lorentz frame, then it implies that
we create/annihilate n-particles of momenta �p1; . . . ;�pn
in a Lorentz transformed frame. Since we want to preserve
this relation in the twisted theory, the focus in this paper
will mainly be on the relation between the action of
Poincaré group and creation/annihilation operators.

A. The action of U�P� on algebra of operators �

Let � denote a vector space of selected operators whose
domain and range are the physical Hilbert space T . By
defining the composite map of two operators as a multi-
plication (we denote it by the symbol �), � becomes an
algebra if it is closed under this multiplcation �. In other
words, for arbitrary � 2 T , and for all a, b 2 �, the map

a � b: T ! T �a � b�� � a�b����; (12)

defines a multiplication in �.
We denote the action of Y 2U�P � on a selected target

algebra � as � to distinguish it from the action � defined
in the last section, and let U��; �� be a Poincaré trans-
-2
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formation in the physical Hilbert space T (� denotes a
Lorentz transformation, x! x0 � �x, and � denotes a
translation, x! x0 � x� �). From the relation,

U��; ���a�� � U��; �� � a �U�1��; ���U��; ����

� a��;�����;��; (13)

where � 2 T and a 2 �, and from the definition of �,
a��;�� � U��; ���a, we have 
��;��a � �i�c�Yc�a�
where �c are infinitesimal parameters of Poincaré trans-
formation and c denotes f����; �j�; �; � � 0; 1; 2; 3g.
These relations give the form of the action �:

�Y�a�� � Y��a�� � a�Y���; (14a)

Y�a  �Y; a�; (14b)

where the commutator in Eq. (14b) is understood as in
Eq. (14a). This operation satisfies the properties needed to
be an action:

�Y � Z��a � Y��Z�a�; 1�a � a; Y�1 � 0;

(15a)

Y��a � b� � ���Y��a 
 b�� �
X
�Y�1��a� � �Y�2��b�:

(15b)

Thus, we have to twist the quantum operators properly so
as to preserve the relation Eq. (15).

B. Twisted algebra of creation and annihilation
operators

As in Sec. II, the algebra of quantum operators � has to
be deformed properly to make the form of Eq. (15b) co-
variant. Let this consistently twisted product of � be de-
noted as ?. In order to distinguish this product from the
Moyal product, we denote the twisted product of �F by ?
and the Moyal product of AF by * throughout this paper.
The consistent form of ?-product is,

�a ? b�� � ��F�1��a 
 b���; (16)

where F is the same twisting element of Eq. (7). The
explicit form of the ?-product is expressed as,

�a ? b�� �
X
�F�1
�1��a� � ��F

�1
�2��b���

�
X1
k�0

1

k!

�
�
i
2

�
k
��1�1 � � � ��k�k

� �P�1��P�2
� � � � �P�k�a� � � ��

� f�P�1��P�2
� � � � �P�k�b� � � ���g

�
X1
k�0

1

k!

�
�
i
2

�
k
��1�1 � � � ��k�k

� �P�1
; �P�2

; � � � ; �P�k; a�; � � ��

� f�P�1
; �P�2

; � � � ; �P�k; b�; � � ���g: (17)
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In conventional field theory, the scalar field operator is
expressed as (see Section 14.2 of [34])

�̂�x� �
Z
p
��p�x� � a� ��p� � ��p�x� � a

y��p��;

Z
p

Z d3p

�2��32!p
;

(18)

where �p denotes the positive frequency solution of the
Klein-Gordon equation, and a� ��� and ay��� are the anni-
hilation and the creation operators, respectively. In the
above relation we regard the creation and the annihilation
operators as basis operators which act on the physical
Hilbert space and �p�x� and ��p�x� as coefficients. Thus
the selected target algebra to be twisted is the algebra
generated by f1; a��p�; ay��p�;8pg. We abbreviate
a��p� and ay��p� as ap and ayp, respectively, hereafter.

The action of P� on this basis operators is represented as

P��aq � �q�aq; P��ayq � �q� � a
y
q ; (19)

which will be denoted in a simplified notation as,

P� ) ~q� �
�
�q�; for ayq ;
�q�; for aq:

(20)

From Eq. (17), ?-product between two of the creation and/
or the annihilation operators is expressed, in terms of the
conventional multiplication, as

ap ? aq � e��i=2�p^qap � aq;

ayp ? a
y
q � e��i=2�p^qayp � a

y
q ;

ap ? a
y
q � e��i=2�p^qap � a

y
q ;

ayp ? aq � e��i=2�p^qayp � aq:

(21)

This relation can be written in a compact form as

cp ? cq � e��i=2�~p^~qcp � cq; cp � ap and=or ayp:

(22)

In Appendix A we explicitly compute the product of n
operators, ap and/or ayq , to be

cq1
? � � � ? cqn � E�~q1; � � � ; ~qn�cq1

� � � cqn ;

E�~q1; � � � ; ~qn� � exp
�
�
i
2

Xn
i<j

~qi ^ ~qj

�
;

(23)

where cq represents aq or ayq and ~q is defined in Eq. (20).
Thus the ?-products of n-number of creation or annihila-
tion operators are just the conventional products of the
corresponding operators multiplied by the phase factor
E�~q1; � � � ; ~qn�. It is worth to note that this twisted algebra
is associative as shown in Eq. (A2), and the complex
conjugation is also compatible with this algebra:
-3
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�cq1
? � � � ? cqn�

y � cyqn ? � � � ? c
y
q1
; (24)

since �E�~q1; � � � ; ~qn� � E��~qn; � � � ;�~q1�.
In this construction, we note that the coefficient func-

tions are not ?-producted:�X
ai�x�ci

�

?
�X

bj�x�cj

��
�
P
�ai�x� � bj�x���ci ? cj�;

�
P
�ai�x� � bj�x���ci ? cj�:

(25)

Since ?-product is deduced by requiring covariance of the
action of Poincaré algebra on �, it is enough to check this
property of the ?-product by evaluating the action on the
free scalar field case. Specifically, let U� be a Lorentz
transformation which acts only on the operator part, but
not on the space time part, then

�̂0�x��U� ��̂�x� �U�1
�

�
Z
p
�eip�x �U� �ap �U�1

� �e
�ip�x �U� �a

y
p �U�1

� �

�
Z
p
�eip�x �a�p�e�ip�x �a

y
�p�


Z
p
�eip��x �ap�e�ip��x �a

y
p�� �̂��x�; (26)

BU et al.
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where the use has been made of the fact that p � x � �p �
�x. This leads to
Y��̂�x� � Y��̂�x�: (27)
This suggests other possibilities of twisting the algebra of
quantum field operators. Since quantum field operators are
functions of space time and are also operators in the Hilbert
space, one may twist the quantum operator part as indi-
cated in [35], and carried out in this paper, or twist the
space time function part of the field operators as has been
done by Chaichian et al. [30], and Zahn [32]. Or one may
twist both the quantum operator part and the space time
function part as has been done by Balachandran et al. [31],
which will result different S-matrix due to the cancellation
of the effects of the two twist operations. We have chosen
in this paper to twist the algebra of quantum operator part
of the field operators, which gives the same S-matrix as
those of earlier studies [36], as will be shown in the next
section.

Incidentally, our ?-product has the same expression as
that of Ref. [30] when it is performed on the scalar field
operators:
�̂�x� ? �̂�y� �
Z
p;q
�eipxeiqy�ap ? aq� � eipxe�iqy�ap ? a

y
q � � e�ipxeiqy�a

y
p ? aq� � e�ipxe�iqy�a

y
p ? a

y
q ��

�
Z
p;q
�e��i=2�p^qeipxeiqy�ap � aq� � e��i=2�p^qeipxe�iqy�ap � a

y
q � � e��i=2�p^qe�ipxeiqy�ayp � aq�

� e��i=2�p^qe�ipxe�iqy�ayp � a
y
q ��

� e�i=2�@x^@y��̂�x� � �̂�y��  �̂�x� ? �̂�y�jChaichian et al:: (28)
This shows that our expression for the ?-product corre-
sponds to the momentum space representation of
Chaichian et al.’s ?-product for the free scalar field case.

IV. PHYSICAL FOCK SPACE AND S-MATRIX

In the previous section, we have constructed twisted
algebra of quantum operators. The physical quantities
such as S-matrix must also be written in twist covariant
form. Since the physical quantities can be expressed as a
sum of products of creation and annihilation operators in
the conventional field theory, the physical quantities in the
twisted theory must be expressed as the same quantities
with the conventional product replaced by the ?-product.
Thus we can consistently construct noncommutative field
theory by twisting the conventional field theory.
A. Twisted Fock space

1. Commutative case

Let H denote a one particle Hilbert space of scalar field
theory. Then the Fock space of this theory can be written as
T�H � � C � �

L
1
n�0 H

n
S�, H n

S 
Nn

SH , where sub-
script ’S’ denotes symmetrization and

Nn denotes n’th
order tensor product H 
 � � � 
H . The action of crea-
tion and annihilation operators on the normalized
n-particle state jq1; � � � ; qni 2H n

S, is expressed as

ayq jq1; � � � ; qni � jq;q1; � � � ; qni;

aqjq1; � � � ; qni �
Xn
k�1


�q� qk�jq1; � � � ; qk�1; qk�1; � � �qni:

(29)

They satisfy the fundamental commutation relations,
-4
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�ayp; a
y
q � � 0; �ap; aq� � 0; �ap; a

y
q � � 
�p� q�:

(30)

Any elements jq1; � � � ; qni in the Fock space can be ob-
tained by successive operations of creation operators to the
vacuum state j0i (aqj0i � 0, for all momentum q),

jq1; � � � ; qni � ayq1
� � � ayqn j0i: (31)
2. Noncommutative case

In noncommutative space time, jq1; � � � ; qni in Eq. (31)
is mapped into

jq1; � � � ; qni? � ayq1
? ayq2

? � � � ? ayqn j0i; (32)

which will be called twisted n-state rather than n-particle
state. If the vacuum state is defined as j0i? � j0i, the
twisted 1-state is the same as the one particle state in the
conventional quantum field theory:

jqi? � ayq ? j0i? � �a
y
q ? 1�j0i � ayq j0i � jqi: (33)

This definition of twisted n-state seems very natural, but
due to the noncommutativity of the ?-product, the state
vector jq1; � � � ; qni? is not symmetric under the permuta-
tion of �q1; q2; � � � ; qn�. The explicit form of jq1; � � � ; qni?
is

jq1; � � � ; qni? � E�q1; � � � ; qn�jq1; � � � ; qni;

E�q1; � � � ; qn� � exp
�
�
i
2

Xn
i<j

qi ^ qj

�
:

(34)

The state jq1; � � � ; qni is symmetric under any permutation
of �q1; � � � ; qn�, but the phase factor E�q1; � � � ; qn� is not
symmetric in general for n ^ 2. Since the phase factor has
unit norm (jEj � 1), jq1; � � � ; qni? and jq1; � � � ; qni are in
the same ray of the physical Hilbert space.

Some properties of the phase factor E are listed in
Appendix B. In this new algebra the creation and the
annihilation operators do not satisfy the fundamental com-
mutation relation Eq. (30), rather, they satisfy (the same
form of relations appear in [31]),

ayp ? a
y
q � e�ip^q � ayq ? a

y
p;

ap ? aq � e�ip^q � aq ? ap;

ap ? a
y
q � e�ip^q � ayq ? ap � 
�p� q�:

(35)

The action of creation and annihilation operators on the
state jq1; � � � ; qni? gives

ayq ? jq1; � � � ; qni? � jq; q1; � � � ; qni?

aq ? jq1; � � � ; qni? �
Xn
k�1


�q� qk�e
iq^�q1�����qk�1�jq1; . . . ;

qk�1; qk�1; . . . ; qni?: (36)
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From these twisted states jq1; � � � ; qni?, we define
twisted Fock space as TF �H � � C � �

L
1
n�0 H

n
F �,

(H n
F 

NnH ). Using the above twisting process, it is
natural to define the total number operator as

NF �
X
k

ayk ? ak: (37)

This number operator satisfies

�NF ; a
y
q �? � ayq ; �NF ; aq�? � �aq: (38)

The state jq1; � � � ; qni? has the same eigenvalue for the
number operator as that of the state jq1; � � � ; qni in the
conventional theory, i.e., the eigenvalue equation,

Njq1; � � � ; qni � n�q1; � � � ; qn� � jq1; � � � ; qni;

leads to

NF ? jq1; � � � ; qni? �
X
k

ayk ? ak ? a
y
q1
? � � � ? ayqn j0i

�
X
k

E�k;�k; q1; � � � ; qn� � Nk

� jq1; � � � ; qni

� E�q1; � � � ; qn� � �Njq1; � � � ; qni�

� n�q1; � � � ; qn� � jq1; � � � ; qni?;

(39)

where we have used the relation Eq. (B6).
The Hamiltonian for the free scalar field theory has the

form,

HF �
X
k

!k � a
y
k ? ak; where !k �

�����������������
k2 �m2

p
: (40)

Thus as in the number operator case, the state jq1; � � � ; qni?
has the same energy eigenvalues as the state jq1; � � � ; qni
for the free Hamiltonian of the commutative scalar field
theory.

B. S-matrix

By properly twisting the algebra of the quantum opera-
tors we have the expression for the S-matrix in the non-
commutative field theory:

S? � T exp
�
�i

Z
d4xH ?

I �x�
�

�
X1
k�0

��i�k

k!

Z
d4x1 � � � d

4xkTfH
?
I �x1� ? � � �

?H ?
I �xk�g; (41)

where H ?
I is the interacting part of the Hamiltonian and T

denotes the time ordering. Since we can not define inter-
action Hamiltonian H I in space time noncommutative
case in general, we assume the space-space noncommuta-
-5
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tive case only in this section. For the g�n�x� theory, the
element of S-matrix can be calculated by using the prop-
erties of the phase factor E, given in Appendix B. If we use
the abbreviation

�in�x� �
Z
q
���q�x�aq � �q�x�a

y
q �


X

cq�aq;a
y
q

Z
q
cq � �~q�x�; (42)

the interaction Hamiltonian can be written as
125001
H ?
I �x� � g

Z
q1

� � �
Z
qn
�cq1

? � � � ? cqn�

� �~q1
�x� � � ��~qn�x�

 g
X
cQ

Z
Q
c?Q � � ~Q�x�; (43)

where
R
Q 

R
q1
� � �

R
qn

, c?Q  cq1
? � � � ? cqn , � ~Q�x� 

�~q1
�x� � � ��~qn�x�,

P
cQ 

P
cq1
�aqq ;a

y
q1
� � �

P
cqn�aqn ;a

y
qn

.

The twisted S-matrix is then expressed as
S? �
X1
k�0

��i�k

k!

Z
d4x1 � � � d

4xkTfH
?
I �x1� ? � � � ?H ?

I �xk�g

�
X1
k�0

��i�k
Z
d4x1 � � � d4xk��x1; � � � ; xk�H

?
I �x1� ? � � � ?H ?

I �xk�

�
X1
k�0

��ig�k
Z
Q1

� � �
Z
Qk

X
cQ1
���cQk

c?Q1
? � � � ? c?Qk

�Z
d4x1 � � � d4xk��x1; � � � ; xk�� ~Q1

�x1� � � �� ~Qk
�xk�

�

�
X1
k�0

��ig�k
Z
Q1

� � �
Z
Qk

X
cQ1
���cQk

E� ~Q1; � � � ; ~Qk�cQ1
� � � cQk

� ~�� ~Q1; � � � ; ~Qk�; (44)
where

~�� ~Q1; � � � ; ~Qk� �
Z
d4x1 � � � d4xk��x1; � � � ; xk�

	 � ~Q1
�x1� � � �� ~Qk

�xk�: (45)
In the limit �! 0, this S-matrix reduces to the one in the
commutative case:

S? ! S �
X1
k�0

��ig�k
Z
Q1

� � �
Z
Qk

X
cQ1
���cQk

cQ1
� � � cQk

� ~�� ~Q1; � � � ; ~Qk�

�
X1
k�0

��ig�k
Z
Q1

� � �
Z
Qk

X
cQ1
���cQk

Sk� ~Q1; � � � ; ~Qk�;

(46)
where Sk� ~Q1; � � � ; ~Qk� � cQ1
� � � cQk

� ~�� ~Q1; � � � ; ~Qk� cor-
responds to the momentum space representation of k-th
order term of the S-matrix in the conventional field theory.
Equation (44) and (46) show the relation between the
S?-matrix and the S-matrix of the corresponding commu-
tative theory. For the S-matrix element ?h�jS?j�i?, where
j�i?�j�i?� denotes ‘in’ twisted n�m�-state, we have
?h�jS?j�i? �
X1
k�0

��ig�k

	
Z
Q1

� � �
Z
Qk

X
cQ1
���cQk

E� ~�; ~Q1; � � � ; ~Qk; ~��

	 h�jcQ1
� � � cQk

j�i � ~�� ~Q1; � � � ; ~Qk�

� E� ~�; ~��
X1
k�0

��ig�k

	
Z
Q1

� � �
Z
Qk

X
cQ1
���cQk

E� ~Q1; � � � ; ~Qk�

	 h�jSk� ~Q1; � � � ; ~Qk�j�i

�� ~�� ~� � 0� � E���;��h�jS?j�i; (47a)

where the momenta ~�, ~� are related to those of � �
j�1; �2; � � �i, � � j�1; �2; � � �i as shown in Fig. 1, and

h�jS?j�i �
X1
k�0

��ig�k
Z
Q1

� � �
Z
Qk

X
cQ1
���cQk

E� ~Q1; � � � ; ~Qk�

	 h�jSk� ~Q1; � � � ; ~Qk�j�i: (47b)

It can be easily shown that the result (47b) is the same as
that of Filk [36]. Since the quantities h�jcQ1

� � � cQk
j�i

contain the energy-momentum conservation delta func-
tions 
� ~Q1� � � �
� ~Qk�, E� ~Q1; � � � ; ~Qk� in Eq. (47b) can be
written as E� ~Q1� � � � E� ~Qk�, and each of these E� ~Qi� gives
the phase factor at each vertex in the Feynman diagram.
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C. Statistics of indistinguishable particles

The unit matrices in the space of N-particle state can be
expressed as

1 D �
X
	

j	iDh	jD; 1C �
1

N!

X
	

j	ih	j;

1? �
1

N!

X
	

j	i??h	j� 1C�;

(48)

where the subscript C�D� denotes indistinguishable (dis-
125001
tinguishable) state in the conventional field theory and ?
denotes the noncommutative case. We must be careful in
the order of momenta in kets and bras because the twisted
n-state is not symmetric under the permutation of the
momenta. From Eq. (24) we find jk1; � � � ;kNi

y
? �

?hkN; � � � ;k1j, i.e., j	i?  jk1; � � � ;kNi? and h	j? 
?hkN; � � � ;k1j.

Let ���� denote the free N-particle in (out) twisted
n�m�-state, respectively, and P denotes arbitrary permuta-
tion. Then, for spatial dimensions d � 3, (See [37,38]), we
have

?h�j�i? � E���;��h�j�iC

� E���;��
X
P

CP hP ���j�iD; (49)

where CP are complex constants. From the form of 1? and
1D in Eq. (48) we finally obtain the relation,
?h�j�i? �
1

N!

X
	
?h�j	i??h	j�i? �

1

N!

X
	

E���;	�E��	; ��
X

P 0;P 00
CP 0CP 00 hP

0���j	iDhP
00�	�j�iD

� E���;��
1

N!

X
P 0;P 00

CP 0CP 00
X
	

hP 0���j	iDhP
00�	�j�iD

� E���;��
1

N!

X
P 0;P 00

CP 0CP 00
X
	

hP 00P 0���jP 00�	�iDhP 00�	�j�iD � E���;��
1

N!

X
P 0;P 00

CP 0CP 00 hP
0P 00���j�iD:

(50)
Since E���;�� � 0, we have

X
P

CP hP ���j�iD �
1

N!

X
P 0;P 00

CP 0CP 00 hP
00P 0���j�iD

) CP 0;P 00 � CP 0 � CP 00 ;

which is the one dimensional representation of the permu-
tation group as we have in the conventional field theory
case. Consequently, we have the same statistics for indis-
tinguishable particles in the noncommutative field theories
as in the corresponding commutative case [35,39].

V. SUMMARY AND DISCUSSIONS

We have constructed noncommutative quantum field
theory by properly twisting the algebra of creation and
annihilation operators.

As mentioned in Sec. IV the twisted n-state is not
symmetric under the permutation of its momenta. If we
permute its momenta the state changes by a phase factor E
which has unit norm. Thus jq1; � � � ; qni and jq1; � � � ; qni?
are in the same ray in Hilbert space, and as we have shown
in Sec. IV the phase factor is always factorized out of the
S-matrix element. Moreover, the states jq1; � � � ; qni? and
jq1; � � � ; qni have the same eigenvalues for the correspond-
ing number operators. Hence we have the same physics
whether we use jq1; � � � ; qni? or jq1; � � � ; qni as a basis for
in/out states (for example, twisted Lorentz transformation
changes only the phase factor of the twisted n-states).
Hence we can define n-particle state as an equivalence
class of this twisted n-states.

We have shown that S-matrix elements differ by phase
factors from the S-matrix elements of the conventional
theory. In SSNC quantum field theory it gives the phase
factor to every vertex in the Feynman diagram. This phase
factor is the same as that in [36], thus justifying the results
of Filk. The expression of S-matrix in this paper is mani-
festly twist Lorentz covariant, except that time ordering
may break this symmetry since ?-commutator of two
interacting Hamiltonians separated by spacelike distance
does not vanish in general, i.e.,

�H ?
I �x�;H

?
I �y��? � 0; for �x� y�2 < 0: (52)

This possible violation of locality is known to be inherited
from the presence of space time noncommutativity. Some
authors have argued that the micro causality is satisfied in
the SSNC case, while it is violated in STNC case [40]. It
appears that further studies are needed to have a consistent
STNC field theory.
-7
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We have observed that the statistics of indistinguishable
particles do not change in the properly twisted formulation
of the noncommutative field theory. It reflects the cohomo-
logical properties of the phase factors, i.e.
E���;	�E��	; �� � E���;��.

In summary, by careful construction of quantum field
theory using the twisted algebra applied to the quantum
operator space, we have constructed the S-matrix of the
interacting noncommutative scalar field theory, and the
result is shown to be consistent with earlier ones [36].
We hope that this formulation can be generalized to the
case of more general noncommutative field theories.
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APPENDIX A: EXPLICIT CALCULATIONS OF
?-PRODUCT OF CREATION AND ANNIHILATION

OPERATORS

In this appendix, we derive the explicit form of
?-product of the creation and annihilation operators in
terms of the conventional products.
(1) T
he ?-product of �cp1
� � � cpk� and �cq1

� � � cql� is
given by

�cp1
� � � cpk� ? �cq1

� � � cql�

� e��i=2� ~P^ ~Q�cp1
� � � cpkcq1

� � � cql�; (A1)

where ~P �
P

~pi and ~Q �
P

~qj.
Proof.

P���cq1
� � � cql� � ���

�l�P���cq1

 � � � 
 cql��

� �
Xl
i�1

�cq1

 � � � 
 �P��cqi�


 � � � 
 cql�

�
X
i

�~qi���cq1
� � � cqi � � � cql�

� ~Q��cq1
� � � cql�;

and since �cp1
� � � cpk�, �cq1

� � � cql� 2 �, we have

�cp1
� � � cpk� ? �cq1

� � � cql�

� �fe��i=2����P�
P����cp1
� � � cpk�


 �cq1
� � � cql��g

� e��i=2���� ~P� ~Q��cp1
� � � cpkcq1

� � � cql�:

�
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(2) F
-8
or all natural number n, we have

cq1
? � � � ? cqn � E�~q1; � � � ; ~qn�cq1

� � � cqn ;

E�~q1; � � � ; ~qn� � exp
�
�
i
2

Xn
i<j

~qi ^ ~qj

�
:

(A2)
Proof. (A2) can be shown by mathematical induction:

(i) I
t holds for k � 1, 2.
(ii) S
uppose that this relation holds for k, l � 1; . . . ; n
(n � 2), then for n� 1 � N � k� l � 2n,

�cq1
? � � � ? cqk� ? �cqk�1

? � � � ? cqN �

� E�~q1; � � � ; ~qk�E�~qk�1; � � � ; ~qN�

� �cq1
� � � cqk� ? �cqk�1

� � � cqN �

� E�~q1; � � � ; ~qk�E�~qk�1; � � � ; ~qN�

� e��i=2� ~Q1^ ~Q2�cq1
� � � cqk� � �cqk�1

� � � cqN �

� E�~q1; � � � ; ~qk; ~qk�1; � � � ; ~qN�

� �cq1
� � � cqk � cqk�1

� � � cqN �

� E�~q1; � � � ; ~qN� � �cq1
� � � cqN �; (A3)

where Q1 � q1 � � � � � qk, Q2 � qk�1 � � � � �
qN . Hence, (A2) is satisfied for all natural number
n, and this equation also proves the associativity of
?-product. �
Using the above theorem we find the action of creation
and annihilation operators on the twisted states to be,

ayq ? jq1; � � � ;qni?� E�q;q1; . . . ;qn� � jq;q1; � �� ;qni

� jq;q1; � � � ;qni?; (A4a)

aq ? jq1; � � � ;qni?� E��q;q1; � �� ;qn� �aqa
y
q1
�� �ayqn j0i

� E��q;q1; � �� ;qn�
Xn
k�1


�q�qk�jq1;

. . . ;qk�1;qk�1; . . . ;qni

�
Xn
k�1


�q�qk�E��q;q1; � � � ;qk�1;q;

qk�1; � � � ;qn�jq1; . . . ;qk�1;qk�1; . . . ;qni

�
Xn
k�1


�q�qk�e
iq^�q1�����qk�1�jq1; . . . ;

qk�1;qk�1; . . . ;qni?: (A4b)
APPENDIX B: PROPERTIES OF PHASE FACTOR
E�q1; � � � ; qn�

In this appendix we summarize the useful properties of
the phase factor:
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E �q1; � � � ; qn� � exp
�
�
i
2

Xn
i<j

qi ^ qj

�
;

where for n � 1, we define E�q� � 1. From direct calcu-
lation we find

E �k;�k� � 1; E�q; k;�k� � 1; (B1)

and since the phase factor is quadratic in q’s, we have

E �q1; � � � ; qn� � E��q1; � � � ;�qn�: (B2)

The phase factor is invariant under the cyclic permutations
P of �q1; . . . ; qn� if

P
qk � 0, i.e.,

E �q1; � � � ; qn� � E�qP1; � � � ; qPn�; for
X
qk � 0:

(B3)

It also has the following property:

E�p1; � � � ;pn;q1; � � � ; qm� � e
��i=2��p1�����pn�^�q1�����qm�

	 E�p1; � � � ;pn�E�q1; � � � ; qm�:

(B4)

If the sum of m-consecutive q’s is zero, the phase factor
is factorized into the product of two factors:

NONCOMMUTATIVE FIELD THEORY FROM TWISTED . . .
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E �q1; � � � ; qn� � E�q1; . . . ; qk; qk�m�1; . . . ; qn�

� E�qk�1; . . . ; qk�m�;

if
Xk�m

i�k�1

qi � 0:

This is a direct consequence of (B3) and (B4). For m � 2
case, we have

E �q1; . . . ; p;�p; . . . ; qn� � E�q1; � � � ; qn�: (B5)

From the above relations, we have

�E�q1; � � � ; qn� � E�qn; � � � ; q1� � E�qPn; � � � ; qP1�;

(B6)

where P is a cyclic permutation.
From these results we can derive the properties of E

given in Ref. [36]:

E�q1; . . . ; qn1
; p� � E��p; qn1�1; . . . ; qn2

� � E�q1; . . . ; qn2
�;

for q1 � � � � � qn1
� p � 0; (B7a)

E�q1; . . . ; qn1
; p; qn1�1; . . . ; qn2

;�p� � E�q1; . . . ; qn2
�;

for qn1�1 � � � � � qn2
� 0: (B7b)
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