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The semiclassical geometry of charged black holes is studied in the context of a two-dimensional
dilaton gravity model where effects due to pair-creation of charged particles can be included in a
systematic way. The classical mass-inflation instability of the Cauchy horizon is amplified and we find that
gravitational collapse of charged matter results in a spacelike singularity that precludes any extension of
the spacetime geometry. At the classical level, a static solution describing an eternal black hole has
timelike singularities and multiple asymptotic regions. The corresponding semiclassical solution, on the
other hand, has a spacelike singularity and a Penrose diagram like that of an electrically neutral black hole.
Extremal black holes are destabilized by pair-creation of charged particles. There is a maximally charged
solution for a given black hole mass but the corresponding geometry is not extremal. Our numerical data
exhibits critical behavior at the threshold for black hole formation.

DOI: 10.1103/PhysRevD.73.124036 PACS numbers: 04.60.Kz, 04.70.Dy, 97.60.Lf

I. INTRODUCTION

In a recent paper [1] we introduced a two-dimensional
model for the study of quantum effects in a charged black
hole spacetime. The main advantage of this model is that
the backreaction on the geometry, due to the pair-
production of charged particles, can be taken into account
in a systematic way. In the weakly coupled asymptotic
region the backreaction amounts to a minor modification
of the classical theory but the effect on the interior geome-
try of a charged black hole is more dramatic. The timelike
singularities and Cauchy horizons of a static classical
charged black hole are replaced by a simpler causal struc-
ture with a spacelike singularity inside a single horizon. In
other words, the Reissner-Nordström like Penrose diagram
of the classical geometry, shown in Fig. 1, is replaced at the
semiclassical level by the Schwarzschild type Penrose
diagram, shown in Fig. 2. This conclusion is reached by
a combination of analytic and numerical calculations.

The backreaction effect on dynamical black holes
formed in gravitational collapse of charged matter is
equally dramatic. In numerical simulations based on our
semiclassical equations a spacelike singularity forms in-
side a single apparent horizon, as was advocated in pio-
neering work of Novikov and Starobinsky [2]. This
spacelike singularity replaces the relatively weak mass-
inflation singularity that develops at a null Cauchy horizon
in the classical theory [3–7].

In the present paper we carry out a more detailed study
of our two-dimensional model, elaborating on and going
beyond the results reported in [1]. In Sec. II we discuss
classical black hole solutions of two-dimensional dilaton
gravity coupled to an Abelian gauge field. Like four-
dimensional Reissner-Nordström black holes, these static
geometries have timelike curvature singularities inside

FIG. 1. The Penrose diagram of a classical 1� 1-dimensional
charged black hole is the same as for a Reissner-Nordström
black hole in 3� 1 dimensions. The thick lines represent the
timelike singularities and the dashed lines are the horizons. The
structure repeats itself in the vertical direction.
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Cauchy horizons and the maximally extended spacetime
contains multiple asymptotic regions [8,9], as shown in
Fig. 1.

In Sec. III we add charged matter to the model in order to
study dynamical solutions involving gravitational collapse.
Our choice of matter sector, i.e. charged Dirac fermions, is
particularly convenient for studying semiclassical correc-
tions to the geometry due to matter quantum effects.
Bosonization of the fermions has the combined advantage
of including the effect of fermion pair-production at a
semiclassical level and converting the matter equations of
motion into a scalar field equation, which is more amena-
ble to analytic and numerical study than the original fer-
mion theory.

The resulting semiclassical equations are obtained in
Sec. IV and we study their static solutions in some detail
in Sec. V, paying attention both to the black hole region,
where we find a spacelike singularity, and to the exterior
region, where there is an outgoing flux of charged particles
due to pair-production in the electric field of the black hole.

We also consider maximally charged solutions for a
given black hole mass and contrast their Schwarzschild
like geometry against that of extremal black holes in the
classical theory.

In Sec. VI we turn to the study of gravitational collapse
in the semiclassical model. We describe a leapfrog algo-
rithm that is well adapted to problems of this kind and
present numerical results that show the formation of a
spacelike singularity inside a single apparent horizon. We
also study gravitational collapse in the limit of vanishing
black hole mass and observe a form of Choptuik scaling
[10].

In Sec. VII we add terms to the semiclassical action to
include the Hawking effect in addition to Schwinger pair-
production. The resulting semiclassical equations are
somewhat more complicated but can still be solved nu-
merically and we discuss both static and dynamical
solutions.

Quantum effects in a charged black hole spacetime, due
to electrically neutral matter, have been considered previ-
ously by a number of authors, see for example [11–14], but
pair-production is not considered in those papers.

Combined quantum effects, due to both electrically
neutral and charged matter, were studied by Ori [15]. He
obtained analytic expressions for energy and charge emis-

sion in a classical charged black hole background in two-
dimensional dilaton gravity. This provides valuable infor-
mation about relative rates of discharge and energy loss for
different charged black hole parameters but does not in-
clude the semiclassical backreaction on the geometry
which is the main focus of the present paper.

II. CLASSICAL THEORY

Let us begin by describing classical black hole solutions
of 1� 1-dimensional dilaton gravity coupled to an Abelian
gauge field. The classical action is given by

 Sdg �
Z
d2x

�������
�g
p

e�2�
�
R� 4�r��2 � 4�2 �

1

4
F2

�
:

(1)

The overall factor of e�2� in front tells us that the strength
of both the gravitational coupling and the gauge coupling is
governed by the dilaton field.

This 1� 1-dimensional theory can be obtained by
spherical reduction of 3� 1-dimensional dilaton gravity
in the background of an extremal magnetically charged
black hole [16–18]. In what follows we are mostly inter-
ested in the 1� 1-dimensional theory in its own right as a
simplified model of gravity but the higher-dimensional
interpretation sheds light on some aspects of the physics.

The action (1) inherits a mass scale � from the 3�
1-dimensional theory, which is proportional to the inverse
of the magnetic charge of the extremal dilaton black hole.
In the following we use units where � � 1. The area of the
transverse two-sphere in the Einstein frame in 3� 1 di-
mensions is proportional to  � e�2�, and hence we refer
to  as the area function.

In order to study the formation of charged black holes in
our 1� 1-dimensional world, we have to add some form of
charged matter to the theory. The detailed form of the
matter action is not needed for this preliminary discussion
and will be specified later on.

The classical equations of motion are

 

1
4R�r

2�� �r��2 � 1 � 1
16F��F

��; (2)

 r�r��� g����r��2 �r2�� 1�

�
1

4
�F��F

�
� �

1

4
g��F��F

��� �
e2�

2
Tm��; (3)

 r��e
�2�F��� � j�; (4)

where j� and Tm�� are components of the matter current and
energy-momentum tensor, whose form depends on the
matter system in question. The vacuum equations, with
j� � Tm�� � 0, have a two-parameter family of static so-
lutions

 � � �x; (5)

FIG. 2. The Penrose diagram for a semiclassical charged black
hole in 1� 1 dimensions is the same as that of a 3�
1-dimensional Schwarzschild black hole.
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 ds2 � �a�x�dt2 �
1

a�x�
dx2; (6)

 Ftx � Qe�2x; (7)

where

 a�x� � 1�Me�2x � 1
8Q

2e�4x: (8)

In this coordinate system the dilaton field depends linearly
on the spatial coordinate. The metric approaches the two-
dimensional Minkowski metric and the coupling strength
e� goes to zero in the asymptotic region x! 1. The
electromagnetic field Ftx also goes to zero asymptotically.
Its 3� 1-dimensional origins are reflected in the fact that it
goes as the inverse of the transverse area.

Horizons occur at zeroes of the metric function a�x�.
Thus the nature of the solution in the interior region
depends on the constants M and Q, the mass and charge
of the geometry. Just as in the 3� 1-dimensional Reissner-
Nordström solution, there are three cases to consider for a
given jQj> 0:

(i) M> jQj=
���
2
p

: A charged black hole with two sepa-
rate horizons,

(ii) M � jQj=
���
2
p

: An extremal black hole where the
two horizons coincide,

(iii) M< jQj=
���
2
p

: A naked singularity.
We will focus on black holes with M � jQj=

���
2
p

. In this
case a�x� has two zeroes where the area function  takes
the values

  � �
1

2

�
M�

�����������������������
M2 �

1

2
Q2

s �
: (9)

This relation can equivalently be written

 M �  � �  �; (10)

 Q2 � 8 � �: (11)

The metric (6) is singular at  �  � but, since the
spacetime curvature is finite there, this signals the break-
down of the linear dilaton coordinate system rather than a
problem with the geometry itself. It is straightforward to
find new coordinates which describe the solution in the
interior region where  <  �. A standard Kruskal-like
extension results in the Penrose diagram in Fig. 1, which
is identical to that of a 3� 1-dimensional Reissner-
Nordström black hole. We will not work out that extension
here but rather use variables that turn out to be convenient
when we generalize our equations to include semiclassical
effects.

In two dimensions we can write F�� � f"��, where f is
a scalar field and "�� is an antisymmetric tensor, related to
the Levi-Civita tensor density by

 "�� �
����������
�g
p : (12)

We work in conformal gauge

 ds2 � e2���dt2 � d�2� (13)

and look for static solutions with j� � Tm�� � 0. The
classical equations reduce to

 �00 � 2�0�0 � 0; (14)

 �00 � �00 � 1
2f

2e2� � 0; (15)

 �0�0 ��02 � �1� 1
8f

2�e2� � 0; (16)

 �fe�2��0 � 0; (17)

where prime denotes d=d�. The Maxwell Eq. (17) allows
us to eliminate the gauge field in favor of the area function,

 f �
Q
 
; (18)

with the black hole charge Q appearing as an integration
constant. The electric field at the event horizon fjH � f�
is given by

 f� �
Q
 �
�

����������
8 �
 �

s
; (19)

where we have used Q2 � 8 � �. Similarly, the electric
field at the inner horizon is

 f� �
Q
 �
�

����������
8 �
 �

s
: (20)

We note that the field at either horizon does not depend on
the two black hole parameters independently but only on
their ratio Q=M. Furthermore, the field at the inner horizon
is bounded from below, f� >

���
8
p

, for all classical black
holes in this model.

Now introduce � � e2����� and define a new spatial
coordinate y via dy � �d�. The remaining classical equa-
tions take a particularly simple form when expressed in
terms of  and �,

 

� � 0; (21)

 

�� �
8 � �
 3 ; (22)

 

_� _ � 4
�
1�

 � �
 2

�
; (23)

where the dot denotes d=dy. For a charged black hole these
equations are valid outside the outer horizon and inside the
inner horizon. In the region between the two horizons the y
coordinate is timelike and the left hand sides of Eqs. (21)–
(23) change sign.

The solution for a charged black hole, shown in
Fig. 3(a), is given by
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  �y� �  � � 	y; (24)

 ��y� �
4

	2

��������	y�  � �
 � � 	y

�  �

��������; (25)

where 	> 0 sets the scale of the y coordinate and we have
placed the origin y � 0 at the outer horizon. The absolute
value sign accommodates the sign-flip in Eqs. (21)–(23) in
the region between the two horizons. In the asymptotic
region y! 1 the conformal factor of the metric ap-
proaches a constant value e2� ! 4=	2 and the spacetime
curvature goes to zero. If we require the metric to approach
the standard Minkowski metric the scale parameter is fixed
at 	 � 2. It turns out to be convenient, however, to allow
for general 	 in the classical solution when comparing to
semiclassical results.

The area function goes to zero at y � � �=	. This is a
curvature singularity and the solution cannot be extended
any further.

In the extremal limit we have  � �  � � M=2 and the
above solution reduces to

  �y� �
M
2
� 	y; (26)

 ��y� �
8y2

M� 2	y
: (27)

In this case there is a double horizon at y � 0 and a
curvature singularity at y � �M=2	. The electric field at
the double horizon of an extremal black hole is fH �

���
8
p

for all values of M. The extremal solution is shown in
Fig. 3(b).

In the limit of neutral black hole we instead have  � �
M,  � � 0 and the classical solution takes the following
simple form,

  �y� � M� 	y; ��y� �
4

	
jyj: (28)

In this case there is only one horizon and the curvature
singularity at y � �M=	 is spacelike.

So far, we have only considered static classical solu-
tions. In order to study charged black hole formation one
would couple the dilaton gravity and gauge field to some
form of charged matter and look for solutions of the
classical equations of motion (2)–(4) with incoming matter
energy and current. As far as we know, no closed form
dynamical solutions to these equations exist. This is per-
haps not surprising given that the system is known to
exhibit intricate dynamical behavior, including a two-
dimensional version of mass inflation [19–21]. In the
following section we couple the theory to charged matter
but we do not pursue the problem of classical gravitational
collapse. Instead we go on to include quantum effects in
the form of pair-production of charged particles and then
study the resulting semiclassical equations.

III. COUPLING TO CHARGED MATTER

In order to study the effect of Schwinger pair-production
we add matter in the form of a 1� 1-dimensional Dirac

fermion � �
 L
 R

� �
to the theory,

 Sm �
Z
d2x

�������
�g
p

	i ��
��D� � ieA����m ���
 (29)

where e andm are the charge and mass of our ‘‘electrons‘‘,
and D� � @� �

i
2 Jab!

ab
� denotes a covariant derivative

acting on 1� 1-dimensional spinors. With this matter
sector, our model can be viewed as a generalization to
include gravitational effects in the ‘‘linear dilaton electro-
dynamics‘‘ developed in [22–24]. The current and energy
momentum carried by the fermions are given by

 j� � e ��
�� (30)

 

T�� �
i
4

���
�D� � 
�D���

�
1

2
g���i ��
��D� � ieA����m ����: (31)

We could in principle look for dynamical solutions of the
combined fermion and dilaton gravity system that describe
classical black hole formation by an incoming flux of
fermions. Our main interest is, however, in semiclassical
geometries, with the backreaction due to Schwinger pair-
creation taken into account and this requires a different
approach.

The key to including pair-creation is provided by the
quantum equivalence between fermions and bosons in 1�
1 dimensions. The massive Schwinger model, i.e. quantum
electrodynamics of a massive Dirac particle in 1� 1 di-
mensions, is equivalent to a bosonic theory with a Sine-

(a) (b)

FIG. 3. (a)  and � plotted as a function of y for a classical
black hole solution. The two horizons are at the zeroes of � and
the curvature singularity is where  goes to zero. (b) In the
extremal limit � has a double zero at y � 0 and the two horizons
coincide.
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Gordon interaction [25,26]. In flat spacetime the identifi-
cation between the fermion field and composite operators
of a real boson field Z is well known [25,26]. This identi-
fication carries over to curved spacetime, with appropriate
replacement of derivatives by covariant derivatives, as long
as the gravitational field is slowly varying on the micro-
scopic length scale of the matter system. The description in
terms of bosons will break down in regions where the
curvature gets large on microscopic length scales, i.e.
near curvature singularities, but in such regions any clas-
sical or semiclassical description will be inadequate
anyway.

In terms of the bosonic field the matter current is given
by

 j� �
e����
�
p "��r�Z; (32)

and the covariant effective action for the boson is

 Sb �
Z
d2x

�������
�g
p

�
�

1

2
�rZ�2 � V�Z� �

e�������
4�
p "��F��Z

�
;

(33)

where V�Z� � cem�1� cos�
�������
4�
p

Z��, with c a numerical
constant whose precise value does not affect our consid-
erations. In order to model real electrons our fermions
should have a large charge-to-mass ratio. In this case the
fermion system is highly quantum mechanical but, since
the fermion-boson equivalence in 1� 1 dimensions is an
example of a strong/weak coupling duality, the boson
system is classical precisely when m� e. For simplicity,
we set m � 0 in most of what follows, but our numerical
results below include runs with m> 0.

IV. SEMICLASSICAL EQUATIONS

We obtain the semiclassical geometry of a two-
dimensional black hole by solving the equations of motion
of the combined boson and dilaton gravity system, (1) and
(33). We consider both dynamical collapse solutions and
static solutions that describe eternal black holes. For the
dynamical solutions it is convenient to work in conformal
gauge with null coordinates ds2 � �e2�d��d��. Writing
F�� � f"�� as before, the Maxwell equation. (4), includ-
ing the bosonized matter current (32), becomes

 @�

�
e�2�f�

e����
�
p Z

�
� 0: (34)

Once again the gauge field can be eliminated,

 f �
1

 

�
�

e����
�
p Z� q

�
: (35)

By comparing to the classical result (18) we see that the
value of the bosonic field Z at a given spatial location
determines the amount of electric charge to the left of
that location, or ‘‘inside‘‘ it from the 3� 1-dimensional

point of view. There is also an integration constant q that
represents a background charge located at the strong cou-
pling end of the one-dimensional space. In the following
we will set q � 0. This is natural when we consider gravi-
tational collapse of charged matter into an initial vacuum
configuration. Furthermore, if we assume that the back-
ground charge q is an integer multiple of the fundamental
charge e carried by our fermions, then it can be set to zero
by a symmetry of the semiclassical equations under a
discrete shift of Z by

����
�
p

times an integer. For m � 0 the
shift symmetry becomes continuous and in that case an
arbitrary background charge, and not just integer multiples
of e, can be absorbed by a shift of Z. For convenience we
adopt units in which e � 1 in the remainder of this paper.

We now insert expression (35) for the gauge field, with
q � 0 and e � 1, into the remaining semiclassical equa-
tions. They are somewhat simplified if we introduce � �
2����� and work with the area function  instead of the
dilaton field itself. The resulting system of equations is

 � 4@�@� �
�
4�

Z2

2� 2

�
e� �

V�Z�e�

 
; (36)

 � 4@�@�� �
Z2e�

� 3 �
V�Z�e�

 2 ; (37)

 � 4@�@�Z �
Ze�

� 2 �
V 0�Z�e�

 
; (38)

along with two constraints

 @2
� � @��@� � �

1

2
�@�Z�2: (39)

Equations (36)–(39) can be solved numerically with
initial data that describes charged matter undergoing gravi-
tational collapse. In Sec. VI we employ a finite difference
algorithm to study this process but let us first consider the
simpler problem of static solutions of the semiclassical
equations that describe eternal black holes.

V. STATIC BLACK HOLES

For static configurations of the semiclassical Eqs. (36)–
(39) we require the fields to depend only on the spatial
variable � � 1

2 ��
� � ���. To study such solutions we

proceed as in the classical theory, writing � � e� and
defining a new spatial coordinate via dy � �d�. Outside
the event horizon the semiclassical Eqs. (36) and (37)
reduce to

 � � � _� _ � 4�
Z2

2� 2 �
V�Z�
 

; (40)

 

�� �
Z2

� 3 �
V�Z�

 2 ; (41)
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 � �Z� _� _Z �
Z

� 2 �
V0�Z�
 

; (42)

where the dots once again denote derivatives with respect
to y. The constraints (39) become

 

� �
1

2
� _Z�2 � 0: (43)

At first sight, it appears that we have four equations for
only three fields, but the equations are not independent.
Inserting (43) into (40) gives

 �
1

2
� _Z2 � _� _ � 4�

Z2

2� 2 �
V�Z�
 

; (44)

which is easily seen to be a first integral of Eqs. (41)–(43).
Inside the event horizon y becomes timelike which

means that the derivative terms in Eqs. (40)–(42) change
sign in that region.

 � � � � _� _ � 4�
Z2

2� 2 �
V�Z�
 

; (45)

 � �� �
Z2

� 3 �
V�Z�

 2 ; (46)

 � � �Z� _� _Z �
Z

� 2 �
V 0�Z�
 

; (47)

The semiclassical equations are more complicated than the
classical ones and explicit analytic solutions are not avail-
able. They can, however, be integrated numerically to
obtain information about the semiclassical geometry of
charged black holes.

A. Numerical black hole solutions

In order to find a numerical black hole solution which is
well behaved at the event horizon we start our integration
at y � 0 and set ��0� � 0. Different black holes are pa-
rametrized by the initial values Z�0� and  �0�. Second-
order equations also require initial values for first deriva-
tives of the fields. The choice of _��0� does not affect the
geometry but instead sets the scale of the spatial coordinate
y. The remaining two initial values are provided by the
equations themselves when we impose the condition that
the solution be regular at the event horizon [27]. By setting
��0� � 0 in Eqs. (40) and (42) for the exterior solution
(Eqs. (45) and (47) for the interior solution) while requiring
that � and �Z are finite at y � 0, we obtain

 

_ �0� �
1

j _��0�j

�
4�

Z�0�2

2� �0�2
�
V�Z�0��
 �0�

�
; (48)

 

_Z�0� �
1

j _��0�j

�
Z�0�

� �0�2
�
V 0�Z�0��
 �0�

�
: (49)

The exterior solution is found by starting with these initial
values at the black hole horizon at y � 0 for some _��0�> 0
and integrating Eqs. (40)–(42) numerically towards y > 0.
For the integration into the black hole we instead use
Eqs. (45)–(47) and change the sign of _��0�.

Typical numerical results for massless matter are shown
in Fig. 4(a). We have also numerically integrated the
equations with a nonvanishing fermion mass m and find
the same qualitative behavior for small m. For large values
of m the bosonic theory is strongly coupled and our semi-
classical equations can no longer be trusted.

The scalar fields  and Z extend smoothly through the
horizon at y � 0, while � goes to zero there and _� changes
sign, as in the classical theory. Away from the horizon we
see important departures from the classical solution. We
will discuss the exterior region below, but let us first
consider the interior of the black hole where the semiclas-
sical solution is dramatically different from the classical
geometry.

B. Black hole region

In the classical black hole solution (24) and (25) the area
function  goes linearly to zero with negative y inside the
event horizon. The falloff of  is more rapid in the corre-
sponding semiclassical solution. This can be traced to pair-
creation of charged fermions in the black hole interior,
which causes the amplitude of the bosonized matter field
to decrease as we go deeper into the black hole. From the
constraint equation (43) we see that  is a concave function
and any variation in Z serves to focus it towards zero. The
conformal factor of the metric is contained in the � field.
Inside the event horizon at y < 0 the left-hand side of (41)
changes sign and as a result the � field is also concave in
this region. Initially, � grows away from zero at the horizon

Z

ξ

ψ

ξ

ψ

)b()a(

FIG. 4 (color online). (a)  , �, and Z plotted as a function of y
for a semiclassical black hole. The inner horizon of the classical
solution is replaced by a singularity where  , �, and Z all
approach zero. (b) A corresponding plot for a classical black
hole solution, repeated from Fig. 3 for comparison.
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as we go towards negative y but eventually it turns over and
approaches zero again at a finite negative value y � �y0.

This second zero of � does not correspond to a smooth
inner horizon, as can be seen from the following argument.
Finiteness of � and �Z at y � �y0 would require

 

_ ��y0� � �
1

_���y0�

�
4�

Z��y0�
2

2� ��y0�
2

�
; (50)

 

_Z��y0� � �
1

_���y0�

�
Z��y0�

� ��y0�
2

�
; (51)

where we have set the fermion mass m to zero for sim-
plicity. Since _���y0�> 0 as y! �y0 it follows from
Eq. (51) that

 

d
dy

logjZj< 0; as y! �y0; (52)

while the same quantity is positive at y � 0. This sign
change can occur in one of two ways, shown in Fig. 5.

Assuming Z�0�> 0 (a parallel argument can be given
for Z�0�< 0) we either have a local minimum of Z at some
y in the interval �y0 < y< 0, as in Fig. 5(a), or Z goes
through zero at some y in the same interval, as in Fig. 5(b).
A local minimum for Z is easily ruled out. Inserting _Z � 0
into Eq. (47) with Z > 0 we find that �Z < 0, which corre-
sponds to a local maximum rather than a minimum. The
other possibility, i.e. Z going through zero, can be elimi-
nated on physical grounds, because it would correspond to
the charge inside a given location changing sign. Screening
due to pair-production will reduce the charge as one goes
deeper into the black hole but cannot change its sign. We
cannot rule out that nonlinear effects in a strong coupling
region close to a curvature singularity could reverse the
sign of Z, but the above argument does rule out the possi-
bility of having an inner horizon with macroscopic area.

We conclude from this that the solution will not be
smooth as �! 0 inside the black hole and this is borne
out by our numerical calculations. We find that all the fields
�,  and Z are simultaneously driven to zero while their
derivatives become large. The Ricci scalar

 R � �� � � _� _ � �� �
� _ 2

 2 ; (53)

evaluated for the numerical solution, increases rapidly as
we approach the singular point. This indicates that the
classical inner horizon is replaced by a curvature singular-
ity at the semiclassical level. The numerical solution
breaks down before an actual singularity is reached, but
as far as the numerical evidence goes, it indicates that the
singularity is spacelike. In Sec. VI we will present numeri-
cal evidence that the singularity formed in dynamical
gravitational collapse in this model is also spacelike.

We have found a two-parameter family of singular scal-
ing solutions, which is a candidate for the final approach to
the singularity,

  �y� � A�y� y0�	� log�y� y0�

a; (54)

 ��y� �
4

�A2 	� log�y� y0�

�2a; (55)

 Z�y� � �
���������
8aA
p

�y� y0�
1=2	� log�y� y0�


�a�1�=2: (56)

Here y � �y0 is the coordinate location of the singularity,
which depends on the global coordinate scale set by _��0� in
Eqs. (48) and (49). We emphasize that this singular solu-
tion is at best asymptotic to the true solution near the
singularity, since it only equates the most singular terms
in the semiclassical equations, leaving behind terms that
are subleading but nevertheless divergent. The neglected
subleading terms are only logarithmically suppressed com-
pared to the leading terms and this means that we are
unable to match our numerical solution onto the proposed
scaling solution. A successful match would either involve
following the numerical solution extremely close to the
singularity, far beyond presently attainable numerical pre-
cision, or working out several subleading orders in the
scaling solution, which is beyond our analytic persever-
ance. In the absence of successful matching we can only
tentatively claim that our scaling solution correctly de-
scribes the geometry near the singularity, but let us never-
theless investigate some of its properties.

The Ricci scalar (53) is easily seen to diverge as y!
�y0 in the scaling solution (54)–(56) so the singular point
represents a true curvature singularity. The singularity is in
fact strong, in the sense that not only does the curvature
itself blow up there but also its integral along a timelike
geodesic approaching y � �y0. This indicates that both
the tidal force acting on an extended observer and the
integrated tidal force will diverge as the singularity is
approached.

The conformal factor of the metric, which is given by the
ratio �= , diverges as y! �y0. A singularity described by
Eqs. (54)–(56) is therefore spacelike rather than null. The
area function  goes to zero as the singularity is ap-
proached in both the numerical solution and our proposed

− y0

Z

− y0

Z

(a) (b)

FIG. 5 (color online). Two cases in which the sign change of
Eq. (52) occurs. (a) The field Z has a local minimum at some y in
the interval �y0 < y< 0, or (b) the field Z goes through zero at
some y in the same interval.
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scaling solution. This means that the gravitational sector
becomes infinitely strongly coupled at the curvature
singularity.

C. Exterior region

The spacelike singularity encountered in the black hole
interior is the most important feature of our semiclassical
solutions, but it is useful to consider also the region far
away from the black hole. Understanding the asymptotic
behavior of the solutions provides a check on our formal-
ism. In this region the coupling strength e� goes to zero
and the gravitational fields  and � should approach clas-
sical behavior. Both  and � grow linearly with y in the
classical solution (24) and (25). The corresponding semi-
classical fields also grow linearly at large y but have addi-
tional logarithmic terms. The static equations (40)–(43)
are solved to leading order at large y by

 Z�y� � Z0 log�	y� � � � � (57)

  �y� � 	y�
Z2

0

2
log�	y� � � � � (58)

 ��y� �
4

	
y� �0 log�	y� � � � � (59)

where the � � � denote terms that are constant or vanish in
the limit.

As a result of the logarithmic growth of Z there is a
nonvanishing energy density in matter in the asymptotic
region and, via Eq. (32), a finite electric charge density
also. The ADM total mass and total charge of these black
hole geometries are therefore infinite. At first sight, one
might expect that an infinite amount of matter energy will
collapse the geometry, but the gravitational coupling goes
to zero in the asymptotic region so the matter in fact
decouples from the gravitational sector. In two spacetime
dimensions we can interpret a nonvanishing asymptotic
energy density of massless matter in a static solution in
terms of balanced incoming and outgoing energy fluxes
carried by particles in the limit of zero momentum [28]. In
our case, the elementary fermions carry electric charge so
there is also a balance between outgoing and incoming
electric flux.

The outgoing flux is due to pair-production in the elec-
tric field outside the event horizon of the black hole.
Particles carrying charge of opposite sign to that of the
black hole are electrically attracted to the hole while same
sign charges are repelled. This leads to a net flow of charge
and energy away from the black hole but since we are
considering static solutions this flow is balanced by an
equal influx from an external source at infinity. This is
reminiscent of the so-called quantum black hole solutions
of [27] and the interpretation is similar, except in that case
the outgoing energy flux at infinity is in the form of

Hawking radiation rather than charged particles formed
by pair-production.

The asymptotic matter energy density, measured with
respect to an asymptotically Minkowskian coordinate
frame, is given by

 " � lim
y!1

1

2
 �

�
dZ
dy

�
2
; (60)

which reduces to " � 2Z2
0 for the semiclassical fields in

Eqs. (57)–(59). The value of " for a given semiclassical
black hole is easily obtained from the numerical solution
and the results are plotted in Fig. 6. The data clearly show
that the energy density depends on the electric field at the
black hole horizon but is independent of the overall size of
the black hole for a fixed electric field. We are using
Eq. (35) to define the electric field strength at the horizon
as [29]

 f�0� �
Z�0�����
�
p

 �0�
: (61)

For massless fermions the exponential suppression of
Schwinger pair-production is absent, and the pair-
production rate per proper volume depends on the electric
field strength as a power law. In two spacetime dimensions
this dependence is linear but this is only part of the story.
Particles are created at every distance from the black hole,
although most of them come from near the horizon where

0.2 0.4 0.6 0.8 1
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0.1

0.15

0.2

0.25

0.3

f (0) / 8
(a)

2000 4000 6000

0.05

0.1

0.15

0.2

(0)

(b)

FIG. 6 (color online). (a) The asymptotic energy density " as a
function of the electric field at the horizon f�0�. (b) The asymp-
totic energy density " as a function of  �0� for four values of
f�0�=

���
8
p
� 0:2, 0.4, 0.6, 0.8.
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the electric field is strongest, and those particles that carry
the same sign charge as the black hole are then accelerated
out to infinity by the electric field. These particles, along
with a corresponding influx of energetic particles to main-
tain the static nature of the solution, make up the asymp-
totic matter energy density ". The dots in Fig. 6(a) are
results from numerical integrations while the solid line is
given by a curve "
 f�0�2. The close fit shows that the
energy density at infinity goes like the electric field
strength at the horizon squared.

D. Maximally charged black holes

At the classical level the extremal black hole of mass M
carries the maximum possible charge for a black hole of
that mass. Adding more charge, keeping the mass fixed,
results in a naked singularity instead of a black hole. The
geometry of an extremal black hole is qualitatively differ-
ent from that of a nonextremal black hole in the classical
theory. The two horizons have merged into a double hori-
zon which is located at infinite proper distance from fidu-
cial observers outside the black hole. This picture is
modified in the semiclassical theory with m � 0 where
we find that there is again a maximum charge that can by
carried by a black hole of a given mass but the correspond-
ing geometry is not extremal.

The absence of extremal black holes is explained by the
screening effect of charged pairs produced in the electric
field outside the black hole. Recall from Eq. (43) that  is a
concave function of y and in order for the spacetime to be
asymptotically flat  must remain a growing function of y
in the asymptotic region y! 1. If the charge-to-mass
ratio of the semiclassical black hole becomes too large
the solution collapses to  � 0 at a finite distance outside
the horizon and the geometry is no longer that of a black
hole. This is most conveniently analyzed in terms of the
electric field at the black hole horizon, f�0�, which is
bounded from above in the classical limit by the field of
an extremal black hole, f�0� �

���
8
p

. A close look at our
numerical solutions reveals that  will collapse far away
from the black hole unless the electric field at the horizon
satisfies

 

f�0����
8
p < 1�

1

8� �0�
�O

�
1

 �0�2

�
; (62)

which is lower than the classical maximum. By looking at
Eq. (48) for m � 0 (and therefore V�Z� � 0) we see that
_ �0�> 0 for all f�0�<

���
8
p

but if the electric field at the
horizon is in the range

 1�
1

8� �0�
�O

�
1

 �0�2

�
<
f�0����

8
p < 1 (63)

for large  �0�, then _ changes sign at some y > 0 and the
solution collapses to  � 0.

The interior geometry of any semiclassical black hole,
for which the electric field at the horizon is below the

maximal value in Eq. (62), looks like the typical solution
in Fig. 3(b). In particular there is no sign of the double
horizon of the classical extremal black hole in Fig. 4(b).
We conclude that the energy density of pair-created parti-
cles outside a two-dimensional charged black hole will
collapse the geometry before the extremal limit is reached.

VI. DYNAMICAL COLLAPSE

In this section, we study the problem of dynamical
collapse of a charged matter distribution by solving the
semiclassical Eqs. (36)–(39) numerically. It is the internal
structure of the resulting black hole that is of prime interest
to us. We must therefore choose our coordinate system
carefully (it should penetrate horizons) and select a nu-
merical method which avoids propagating information
faster than true characteristic speed of the equations. We
employ a grid based on double-null coordinates �u; v� and
discretize the second-order equations of motion (36)–(38)
using a variation of a leapfrog algorithm.

The initial data for the null Cauchy problem is specified
by providing the values of the functions  , �, and Z on a
double-null wedge, as shown in Fig. 7. Only one of the
three functions is physical and we have chosen this to be
the bosonized matter field Z. The area function  can be
fixed by a choice of null coordinate parametrization on the
initial wedge and then the remaining function � is deter-
mined by solving the constraint Eq. (39).

The physical initial condition is the initial incoming
charge distribution Z, which we take to be a smooth kink
profile

 Z�0; v� �
Q
2

�
tanh

�
w tan�

�
v� v1

v2 � v1
�

1

2

��
� 1

�
(64)

collapsing into a previously empty spacetime with
Z�u; 0� � 0, as illustrated by Fig. 7. The kink in the profile
is localized between v1 and v2. It carries a total charge Q
and an energy density determined by its gradient squared,
so the total mass scales roughly as Q2w.

u v

kin
k p

ro
filevacuum

collapse

FIG. 7 (color online). Initial data for dynamical collapse.
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The null coordinate choice is effectively given by a
choice of  profile on the initial wedge. As the vacuum
solution takes a particularly simple form in a gauge

  �u; v� � ��u� u0��v� v0�; ��u; v� � 0; (65)

one is tempted to take  �u; 0� and  �0; v� as linear func-
tions of u and v respectively. However, in order to cover
the entire spacetime by a finite grid, we compactify the v
coordinate by taking, for example,  �0; v� �  0 �
	 tankv. Here v runs over the range 	0; 1
 and the parame-
ter k < �=2 provides a regulator for  as v! 1. On the
other hand, we leave  �u; 0� linear in u. With incoming
matter we expect a curvature singularity to form at  � 0
and since  �u; 0� has a zero at a finite advanced time u �
u0 there is no need to compactify the u coordinate.

The remaining function � is determined by fourth order
fixed step Runge-Kutta integration of the constraint
Eq. (39) on the initial slice u � 0. We also integrate @u
and @uu derivatives, which are then used to jump-start the
two-dimensional evolution.

The numerical evolution scheme is a leapfrog algorithm
on a staggered grid, which is illustrated by Fig. 8. The
values of functions at a given u are stored in an array, and
are propagated to the next time step u� � using the
equations of motion, except for the leftmost values, which
are filled in using the vacuum initial conditions at v � 0.
The differential operators on the left hand sides of
Eqs. (36)–(38) are discretized as

 � @u@vX �
1

�2 �Xlt � Xrt � Xdn � Xup�; (66)

which gives a second-order accurate expression in the
center of the cell formed by Xlt, Xup, Xdn, and Xrt. This is
why the staggered grid was chosen—it provides the values
of the fields at the correct location for evaluation of the
right-hand sides. One can think of the staggered grid as a
square grid rotated by 45 degrees. Then the discretization
(66) is readily recognized as the usual leapfrog discretiza-
tion of the wave operator �@2

t � @
2
x.

A. Numerical results

We now present results obtained from numerical evolu-
tion using the above algorithm and initial data of the type
shown in Fig. 7. The results are exhibited as density plots of
the various fields with shading intensity giving the value of
the field in question. To facilitate the interpretation of the
numerical data we indicate curvature singularities in the
plots by thick black curves and apparent horizons by thin
black curves. The local condition for a future trapped event
is that the area function be decreasing along both future
null directions,

 @� < 0: (67)

The apparent horizon is located at the boundary of such a
region, i.e. where @� � 0 or @� � 0 [30].

Figure 9(a) shows the charge distribution Z�u; v� in a
spacetime where matter in the form of massless fermions
undergoes gravitational collapse. Observe how Z! 0 deep
inside the black hole, which can be attributed to charge
screening due to fermion pair-production. One can also see
the (slow) discharge of a black hole by pair-production at
the horizon. The shading scheme is exaggerated to show
this more clearly. For comparison, Fig. 9(b) shows the
collapse resulting from the same initial conditions, but
for massive fermions. In this case, the charge penetrates
deeper into the black hole before pair-production can
screen it efficiently. The geometry of the spacetime is not
substantially different for the massless and massive cases
and is only shown for the former. Figure 9(c) depicts the
dilaton field  �u; v�, while Fig. 9(d) shows the scalar
curvature R�u; v� with compressed shading to span a
huge range. From these plots one clearly sees the formation
of a spacelike curvature singularity in the black hole in-
terior and there is no indication of a null singularity or a
Cauchy horizon.

The white stripe preceding the singularity in the curva-
ture plot in Fig. 9(d) is a region of negative curvature,
which the plot program treats as missing data. This oscil-
lation in the spacetime curvature is also seen in Fig. 10
which shows the curvature along a profile at fixed retarded
time, v � constant. The figure is a log-log plot of jRj
against  along the profile and the middle hump is in the
region of negative curvature.

B. Scaling behavior

Rather remarkable critical behavior occurs at the onset
of black hole formation in gravitational collapse in classi-
cal Einstein gravity coupled to a massless scalar field [10].
A sufficiently weak ingoing s-wave pulse reflects from the
origin without creating a black hole but above a certain
critical threshold, as the amplitude of the pulse is in-
creased, a black hole will form. Near this threshold the
black hole mass obeys a scaling law,

 logM � 
 log
�O�
0�; (68)

hr

uplt

rtdn

1

2

FIG. 8 (color online). The numerical evolution scheme is a
staggered grid leapfrog.
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where 
 parametrizes the distance from the threshold in the
initial data and 
 � 0:37 is a scaling exponent obtained
from numerical data [10].

We have looked for analogous scaling behavior in the
formation of charged black holes in our semiclassical
model. Figure 11 shows the area of the apparent horizon
that forms in gravitational collapse of charged matter as a
function of the amplitude of the incoming kink profile. A
close look at the numerical data indicates that there is
indeed a threshold for black hole formation, which we

find by bisection. The data also suggest that black hole
formation turns on at finite size, which is reminiscent of the
Type I critical behavior found in gravitational collapse of a
Yang-Mills field in Einstein gravity [31]. For a supercriti-
cal collapse, the size of the black hole can be fitted by a
power law

  AH / �Z0 � Z��

Z ; (69)

where Z0 is the amplitude of the initial kink, and the
scaling exponent is

(a) Z(u, v), m = 0 (b) Z(u, v), m = 0.05

(c) ψ(u, v), m = 0 (d) R(u, v), m = 0

FIG. 9 (color online). Density plots of the charge distribution Z�u; v� for the collapse of massless (a) and massive (b) fermions. The
density plots of (c) dilaton  �u; v� and (d) scalar curvature R�u; v� are for collapse of massless fermions. The corresponding plots for
collapse of massive fermions are not substantially different, and are not provided here. The singularity is shown by a thick black line,
while the thin line indicates the apparent horizon. The white stripe just below the singularity in (d) is a region of negative curvature.
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Z � 1:85� 0:01: (70)

We have also considered a family of initial data where the
width parameter w of the kink profile in Eq. (64) is varied
rather than its height. We again find scaling behavior,

  AH / �w� w��

w; (71)

but with a different scaling exponent

 
w � 0:71� 0:03; (72)

so it appears that the scaling exponent is not universal. We
should note that the best-fitting offset values Z� and w� are
substantially less than the actual threshold values.

By Eq. (35) the bosonized matter field Z determines the
amount of charge to the left of, or inside, a given location.
It is therefore straightforward to consider the initial black
hole charge, which we define as the charge inside the
apparent horizon when the black hole forms, for initial
data in the scaling regime. The results, presented in Fig. 12,
show more complicated behavior than that of the black
hole area. The black hole charge appears to exhibit an
overall power-law scaling, but the sign of the charge starts
oscillating and the power-law exponent steepens as the
threshold is approached. It would be interesting to under-
stand this behavior better.

VII. INCLUDING THE HAWKING EFFECT

So far, we have considered semiclassical corrections due
to pair-creation of charged particles while leaving out
gravitational quantum effects. In particular, Hawking
emission of neutral particles has not been taken into ac-
count. This is justified for a wide range of black hole
parameters in the four-dimensional physics that we are
attempting to model; due to the large q=m ratio of the
electron, electromagnetic quantum effects dominate over
gravitational ones except when the black hole charge is
relatively small [2]. It is nevertheless of interest to include
the Hawking effect, and this requires some modification of
our two-dimensional model.

Following Callan et al. [16], we introduce conformally
coupled scalar fields fi, with flavor index i � 1; :::; N. The
semiclassical backreaction on the geometry due to this
matter is obtained by adding the nonlocal Polyakov term,

 �
N
48

Z
d2x

�������������
�g�x�

q Z
d2x0

���������������
�g�x0�

q
R�x�G�x; x0�R�x0�;

(73)

to the theory, giving an effective action in a leading 1=N
approximation if we assume N � 1. Here G is a Green
function for the operator r2. In conformal gauge this
reduces to a local expression

 � 2�
Z
d2x@��@��; (74)

where we have defined

 � � N=12: (75)

We also add the so-called RST-term [30],

 �
N
24

Z
d2x

�������
�g
p

R� � �2�
Z
d2x�@�@��; (76)

to the action. This term is allowed by the symmetries of the
original theory and has the appearance of a one-loop
counterterm. It therefore does not disturb the classical
physics of the model and has the benefit that it makes the
theory exactly soluble in the neutral case. We choose to
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FIG. 12 (color online). The absolute value of ZAH, the boson-
ized matter field at the apparent horizon, in the scaling regime.
The sign of ZAH changes between adjacent humps in the graph.
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FIG. 11 (color online). Scaling behavior of the area of the
apparent horizon.
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FIG. 10 (color online). Spacetime curvature along a constant v
profile that runs into the black hole singularity.
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include it here to be able to compare our numerical solution
for the special case of vanishing electric charge to the
known exact neutral solution.

Using the same field redefinitions as before, the equa-
tions of motion become

 � 4@�@�Z �
e2Z exp�

� 2 �
V 0�Z� exp�

 
; (77)

 � 4
�
1�

�
4 

�
@�@�� �

e2Z2 exp�

� 3 �
V�Z� exp�

 2 ; (78)

 � 4
�
1�

�
4 

�
@�@� �

�

 2 @� @� 

� 4 exp��
�1� 3�

4 

1� �
4 

�
e2Z2 exp�

2� 2 �

�1� �
4 

1� �
4 

�

�
V�Z� exp�

 
; (79)

where we have reinstated factors of the fermion charge e in
the equations. The constraints become

 0 �
�
1�

�
4 

�
�@2
� � @��@� � �

1

2
�@�Z�2

�
1

2

X
i

�@�fi�
2 � �t� �

�
4

�
2@2
���

2

 
@2
� 

� @��@���
2

 
@� @���

1

 2 @� @� 
�
; (80)

where the functions t����� and t�����, which reflect the
inherent nonlocality of the Polyakov term (73), are to be
determined by physical input, such as boundary conditions
at null infinity in dynamical solutions or regularity con-
ditions at the horizon of a static black hole. It is easily
checked that these formulas reduce to Eqs. (36)–(39) in the
�! 0 limit.

The curve  �  cr � �=4 has special significance. The
factor �1� �

4 � in Eqs. (78) and (79) vanishes there and the
second derivatives of � and  therefore diverge. This
singularity has been interpreted as the semiclassical ver-
sion of the classial  � 0 singularity [32,33].

Closely related semiclassical equations were previously
considered by Ori [15]. He obtained analytic expressions
for emission rates for energy and electric charge in a
background geometry of a classical static charged black
hole. In the present paper we are, on the other hand,
primarily interested in the interior geometry of charged
black holes which requires solving the full semiclassical
equations including backreaction effects.

A. Static solutions

Let us first look for static solutions describing eternal
black holes that are constantly fed by an external source to
balance their evaporation. The relevant equations are

 � �Z� _� _Z �
e2Z

� 2 �
V0�Z�
 

; (81)

 �� � � _� _ �
�
1�

�
4 

�
�

�

4 2 �
_ 2

� 4�
�1� 3�

4 

1� �
4 

�
e2Z2

2� 2 �

�1� �
4 

1� �
4 

�
V�Z�
 

; (82)

 

��
�
1�

�
4 

�
�
e2Z2

� 3 �
V�Z�

 2 ; (83)

with the constraint
 

0 �
�

1�
�

4 

�
�2 � �

1

2
�2

�
_Z2 �

X
i

_fi
2
�
� 4�t

�
�
4

�
2� ��� _�2 �

�2 _ 2

 2 �
2

 
�2 � 

�
: (84)

Numerical solutions are once again found by assuming that
there is a smooth horizon at y � 0 and integrating in both
directions. The plus and minus version of Eq. (80) give the
same static constraint equation and therefore t� � t is a
constant. The requirement of regularity at the horizon gives
t � � _��0�2=16.

We first consider the solution obtained by integrating
outwards from the horizon and look for Hawking radiation
in the asymptotic region. The asymptotic matter energy
density T00 is now given by

 " � � lim
y!1

 �
�
d2 

dy2

�
; (85)

which includes both a contribution from the charged par-
ticles pair-created via the Schwinger effect and an addi-
tional contribution from the fi fields due to the Hawking
effect. From dimensional analysis, we expect the energy
density of Hawking radiation to be proportional to T2

H,
where the Hawking temperature is given by

 TH �
1

2�

�
1�

 �
 �

�
�

1

2�

�
1�

1

8
f�0�2

�
: (86)

To test this expectation we subtract the contribution of the
Schwinger effect to the asymptotic energy density and plot

 "H � � lim
y!1

 �
�

� �
1

2
_Z2

�
(87)

as a function of the electric field at the horizon.
When � � 0 this energy density vanishes as can be seen

from the constraint Eq. (43), but for finite � the energy
density of Hawking radiation should go as

 "H 

�
1�

1

8
f�0�2

�
2
; (88)
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when f�0� goes from zero to (almost)
���
8
p

. Figure 13 shows
this kind of plot for  �0�=� � 200. The fit to the data is
very close. The dots are results from numerical integrations
and the solid line is given by a curve of the form (88).

We now turn our attention to the black hole interior in
static solutions. The qualitative behavior of numerical
solutions obtained by integrating inwards from the horizon
depends on the relative size of the model parameters e2 and
�. As mentioned above, it is the limit e2 � � that is of
most interest to us if we wish to model the physics of 3�
1-dimensional black holes carrying macroscopic electric
charge. A family of solutions of this type, with varying
electric field strength at the horizon, is shown in Fig. 14. In
all these solutions the area function monotonically de-
creases as we go deeper into the black hole. Eventually
the area hits its critical value,  !  cr, and simultaneously
the other fields � and Z (not shown in the figure) go to zero.
This is a spacelike curvature singularity just as we found
previously for � � 0.

For e2 � � we encounter rather different behavior, as
shown in Fig. 15. In this case, the area  is not a monotonic
function of y but has a local minimum inside the event
horizon and then bounces back to large values. The solu-
tion eventually runs into a singularity where � goes to zero.
The Ricci scalar grows rapidly as this singularity is ap-
proached, indicating that we are dealing with a genuine
curvature singularity, and the area function diverges. This
is peculiar because it means that the gravitational coupling
is going to zero at the singularity and also, from the 3�
1-dimensional viewpoint, the geometry develops an infi-
nite volume interior with diverging spacetime curvature.
This bouncing behavior has been seen previously in [19]
and is somewhat analogous to the behavior exhibited by so-
called quantum kinks, found in the CGHS-model [22,27].
The CGHS-model kinks were shown to be unphysical in
the sense that even though the area function can have a
local minimum in a static solution, such behavior cannot
develop in an evolving geometry [22]. Unfortunately that

particular proof does not go through for the equations we
are studying here but we have investigated the issue nu-
merically, using the methods described in the next subsec-
tion, and find that the troublesome bouncing behavior is
absent in our dynamical solutions.

B. Dynamical solutions

It is important to determine whether the problematic
bouncing of the area function that afflicts some of our
static solutions also occurs in dynamical collapse. This
turns out to be a more challenging numerical problem
than the one involving only the Schwinger effect. The
main issue is what to do at  �  cr. In the vacuum, this
curve is timelike and boundary conditions must be pro-
vided. Following Russo et al. [32,33] we impose the con-
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FIG. 15. The area function  inside the horizon for e2 � � for
different values of the electric field at the horizon f�0�=

���
8
p
�

0:0, 0.1, . . ., 0.9. For nonvanishing f�0� the area function bounces
before it reaches the critical value  cr � �=4.
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FIG. 14. Typical solutions for the area function  inside the
horizon for e2 � �. The different curves correspond to different
values of the electric field at the horizon f�0�=

���
8
p
� 0:0, 0.1, . . .,

0.9. In all cases the area function decreases to its critical value
inside the black hole.

0.2 0.4 0.6 0.8 1 f

1

2

3

4

5
ε

(0)/√8

FIG. 13 (color online). The asymptotic energy density "H of
Hawking radiation as a function of the electric field at the
horizon f�0�.

FROLOV, KRISTJÁNSSON, AND THORLACIUS PHYSICAL REVIEW D 73, 124036 (2006)

124036-14



ditions

 

�
1�

�
4 

�
@� � 0 (89)

at the critical curve  �  cr where it is timelike.
To simplify the numerical evolution we move the bound-

ary curve  �  cr to a fixed coordinate line �� � ��.
This is achieved by a conformal transformation of the
retarded time ��. Ideally we would set the function t� to
zero at past null infinity but we instead impose t� � 0 on
the initial time slice of the numerical evolution. As a result
the incoming energy flux in our dynamical solutions has a
semiclassical component in addition to the incoming mat-
ter kink. For large black holes the additional flux makes
little difference and at any rate it only serves to enhance
black hole formation.

The numerical code is similar to the one used in Sec. VI
apart from the boundary curve and the more complicated
equations of motion for � > 0. Figure 16 shows a simula-
tion of a dynamical collapse of charged matter with both
the Schwinger effect and Hawking radiation taken into
account. The parameters e2 and � were chosen such that
the area function would have bounced inside a static black
hole of the same mass. However, no such bouncing behav-
ior is seen inside the black hole in the dynamical solution.

It is clear from the figure that the apparent horizon
recedes with time as is expected for an evaporating black

hole. At late advanced time the apparent horizon meets the
spacelike singularity. The numerical algorithm does not
supply a boundary condition at the endpoint of the singu-
larity and therefore our solution terminates at a null line
that emanates from this endpoint. The physical spacetime
presumably extends beyond this null line into a post-black
hole region where the boundary curve  �  cr is once
again timelike.

VII. DISCUSSION

We have studied the geometry of charged black holes in
the context of a 1� 1-dimensional model of dilaton grav-
ity with charged matter in the form of bosonized fermions.
At the classical level, the model has static black hole
solutions with a global causal structure identical to the
four-dimensional Reissner-Nordström solution. When the
quantum effect of pair-production of charged particles is
taken into account the classical inner horizon is replaced
by a spacelike singularity and the global structure of the
spacetime geometry is that of an electrically neutral black
hole.

This result is based on a combination of numerical and
analytic analysis of semiclassical equations of motion,
both static and dynamical. The static solutions are being
constantly fed by an external source to balance quantum
mechanical black hole evaporation and discharge. The
dynamical solutions, on the other hand, describe the col-
lapse of charged matter into vacuum.

There exists an extensive literature on the Hawking
effect and its backreaction on the geometry of neutral black
holes in two-dimensional dilaton gravity, for reviews see
[34–38], and the combination of Hawking radiation and
Schwinger pair-production in a classical charged black
hole background has been studied in [15]. We have solved
numerically the combined set of semiclassical equations,
with both Schwinger and Hawking effects included.
Subtleties involving boundary conditions in the strong
coupling region complicate the problem but we find that
our main conclusion, that the singularity formed in the
gravitational collapse of charged matter is spacelike, re-
mains unchanged.

The strong form of the cosmic censor conjecture [39]
forbids naked singularities to be visible to any physical
observers, including ones who travel inside charged black
holes. Our semiclassical results clearly support strong
cosmic censorship, while its validity for charged black
holes in classical gravity is a delicate issue [4,7].

We believe our two-dimensional model captures some of
the essential physics of this problem while leaving out
many of the complications of the full higher-dimensional
quantum gravity problem. The model is certainly not with-
out fault, it has no propagating gravitons or photons and the
electric field of a black hole only depends on the charge-to-
mass ratio of the black hole, but as far as we know there
exists no systematic treatment of quantum effects, includ-

FIG. 16 (color online). Density plot of  �u; v� for a collapse of
charged matter with the backreaction due to both the Schwinger
effect and Hawking radiation taken into account.

GLOBAL GEOMETRY OF TWO-DIMENSIONAL CHARGED . . . PHYSICAL REVIEW D 73, 124036 (2006)

124036-15



ing pair-production of charged particles, for higher-
dimensional black holes.

One might worry about the phenomenological relevance
of charged black holes in general. It is after all very
unlikely that black holes carrying macroscopic electric
charge are found in Nature. Solutions that describe such
objects do, however, exist in the theories we use to describe
Nature and they provide an important testbed for theoreti-
cal ideas. Furthermore, issues of Cauchy horizons and
nontrivial global topology of spacetime also arise in the
context of rotating black holes, which presumably are the
generic black holes of astrophysics.
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