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We point out that 5D large radius doubly spinning black rings with rotation along S1 and S2 are afflicted
by a robust instability. It is triggered by superradiant bound state modes. The Kaluza-Klein momentum of
the mode along the ring is responsible for the bound state. This is shown by analyzing the boosted Kerr
black string. The present kind of instability in black strings and branes was first suggested by Marolf and
Palmer and studied in detail by Cardoso, Lemos and Yoshida. We find the frequency spectrum and time
scale of this instability in the black ring background, and show that it is active for infinite-radius rings with
large rotation along S2. We identify the end point of the instability and argue that it provides a dynamical
mechanism that introduces an upper bound in the rotation of the black ring. To estimate the upper bound,
we use the recent black ring model of Hovdebo and Myers, with a minor extension to accommodate an
extra small angular momentum. This dynamical bound can be smaller than the Kerr-like bound imposed
by regularity at the horizon. Recently, the existence of higher-dimensional black rings has been
conjectured. They will be stable against this mechanism.
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I. INTRODUCTION

It is not an easy problem to find exact black hole
solutions with a clear physical interpretation in gravity
theories, but it is not less difficult to prove or discard their
uniqueness and stability. In four dimensions, years of
research ended with the conclusion that the Kerr black
hole solution is stable and satisfies a uniqueness theorem.

The higher-dimensional arena, both in the vacuum
Einstein theory and in its extension to include the super-
gravity fields of low energy string theory, has a broad
variety of black hole solutions. For example, five-
dimensional (5D) Einstein theory allows not only the ex-
istence of black holes with topology S3 —the Tangherlini
black hole [1] and the Myers-Perry black hole [2]—but
also the Emparan-Reall black ring with topology S1 � S2

[3], and extended objects known as black strings [4].
This higher variety of solutions suggests that the unique-

ness theorem might not be valid in higher dimensions. The
uniqueness of the 5D Myers-Perry solution for black holes
with topology S3, and with two commuting spacelike
Killing vectors and a stationary timelike Killing vector,
has been proven [5]. However, when other topologies and
Killing symmetries are considered, the uniqueness theorem
is violated as the discovery of the black ring explicitly
proves. In five dimensions, a black hole can rotate along
two distinct planes. The rotating black ring of [3] has
angular momentum only along S1. Setting one of the
angular momenta equal to zero in the Myers-Perry black
hole, there is an upper bound for the ratio between the
angular momentum J and the mass M of the black hole,
J2=M3 � 32=�27��, while for the black ring there is a

lower bound in the above ratio, J2=M3 � 1=�, i.e., there
is a minimum rotation that is required in order to prevent
the black ring from collapsing. Now, what is quite remark-
able is that for 1=� � J2=M3 � 32=�27�� there are
Myers-Perry black holes and Emparan-Reall black rings
with the same values of M and J. Moreover, for the same
values of the conserved charges, there are actually two
branches of black rings differing in the size of their radius.
The uniqueness in higher dimensions is further violated
when extra conserved charges and dipole charges are in-
cluded [6–9]. For our purposes, it will be important to note
that one of the parameters that characterizes the Emparan-
Reall black ring is its radius, R [3]. When this radius goes
to zero the black ring reduces to the Myers-Perry black
hole, while in the infinite-radius limit it yields a boosted
black string. Recently, a vacuum black ring solution with
angular momentum along S2 (but no rotation along S1) was
found by Mishima and Iguchi [10]. This solution was
rediscovered and properly interpreted by Figueras [11].
Since this solution does not rotate along S1, it is balanced
by the pressure of a conical disk. When its radius goes to
zero the black ring reduces to the Myers-Perry black hole,
while in the infinite-radius limit it yields a Kerr black string
[11]. The most general element of the vacuum black ring
family of solutions—hereafter dubbed doubly spinning
black ring—with rotation along both S1 and S2 is still
not yet known. However, we know that it will reduce to
[3] or [11] when one of the rotations vanishes. Moreover,
the zero-radius limit of this doubly spinning black ring will
be a 5D Myers-Perry black hole with two angular mo-
menta, and the infinite-radius limit will yield a boosted
Kerr black string.

Black hole solutions in higher dimensions also bring
new challenges to the stability issue. Some progress is
being slowly achieved. The stability of Tangherlini black
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holes is established [12]. However, in the higher-
dimensional arena it has been progressively realized that
instability is more the rule rather than the exception. There
are indeed several instabilities that afflict higher-
dimensional objects, and some of them can be grouped in
the following classes.

(a) The Gregory-Laflamme instability [13]: This gravi-
tational instability is active in extended black ob-
jects like black strings, black branes, and at least
large radius black rings [14,15]. The unstable modes
are long wavelength modes along the string, so this
instability can be eliminated by reducing the radius
of the compactification along the string. For a fixed
radius, it is also suppressed by boosting the solution
along the string direction [15].

(b) Superradiant instability: Superradiant scattering,
where an incident wave packet can be reflected
with a stronger amplitude, can lead to an instability
if, e.g., we have a reflecting wall surrounding the
black hole that scatters the returning wave back
toward the horizon. In such a situation, the wave
will bounce back and forth, between the mirror and
the black hole, amplifying itself each time. The total
extracted energy grows exponentially until finally
the radiation pressure destroys the mirror. This is
Press and Teukolsky’s black hole bomb, first pro-
posed in [16] and studied in detail in [17]. This
instability can arise with a natural ‘‘mirror’’ in a
variety of situations: a massive scalar field in a Kerr
background creates a potential that can cause flux to
scatter back toward the horizon [18]; infinity in
asymptotically anti-de Sitter (AdS) spaces also pro-
vides a natural wall that leads, for certain condi-
tions, to an instability [19]; a wave propagating
around spinning black strings may similarly find
itself trapped, because the Kaluza-Klein (KK) mo-
mentum along the string can provide a potential
barrier at infinity [20–22]. The unstable modes
can be scalar, electromagnetic or gravitational. In
general, but with exceptions, this instability can be
present for arbitrary values of angular momentum of
the geometry.

(c) Gyration instability: In the context of D1-D5-P
black strings, it was found that a spinning black
string, whose angular momentum exceeds a certain
critical value, decays into a gyrating black string in
which part of the original angular momentum is
carried by gyrations of the string [20]. The gyrating
string has a helical profile traveling along the string
with the velocity of light. This instability is active
for long strings with large angular momentum.

(d) Ultraspin instability: In six or higher spacetime
dimensions, there is no upper bound for the rotation
of the Myers-Perry black hole [2]. However, it was
argued [23] that a Gregory-Laflamme-like instabil-
ity will arise to dynamically enforce a Kerr-like

bound in these cases. While this analysis does not
directly apply in five dimensions, entropy argu-
ments suggest an analogous instability still exists
and will lead to the formation of a black ring if the
angular momentum is too large [3].

(e) Ergoregion instability: Geometries that have an er-
goregion but are horizon-free develop this kind of
instability [24]. It occurs in rotating stars with an
ergoregion [25], as well as in smooth nonsupersym-
metric D1-D5-P geometries [26].

In this paper we point out that 5D doubly spinning back
rings can be expected to suffer from the superradiant
instability described in item (b), and we find its properties.
This instability is triggered by two factors that occur simul-
taneously. On one hand, the KK momentum of the waves
along the ring works effectively as a massive term that
provides a potential barrier at infinity. This potential barrier
allows the appearance of a potential well where bound
states get trapped. On the other hand, the bound state
modes can suffer superradiant amplification in the ergore-
gion. The unstable modes are then waves that bounce back
and forth between the ergoregion and the potential barrier,
and that are amplified in each scattering. This kind of
instability, where the bound states are induced by the KK
momentum, was first suggested by Marolf and Palmer [20],
and explicitly studied by Cardoso, Lemos and Yoshida
[21,22]. This is the same instability, but with a different
source for the bound states, as the one studied in [16–19].

To fully study analytically this instability in the black
ring geometry we would have to separate the wave equa-
tion in this background. However, it is not possible to do
this separation even in the scalar case or even in the black
ring with rotation only along S1. This is explicitly shown in
[27], where the term that impedes this wave separation is
identified. This obstacle is closely connected with the fact
that the Hamiltonian-Jacobi equation for the geodesics is
also not separable [28], and ultimately with the fact that the
solution does not have a Killing tensor [29]. An investiga-
tion of waves in this geometry will have to be done using
full 3D numerical simulations. Given this handicap (and
the fact that the finite radius doubly spinning black ring
metric is still not yet known), we do what can be done
analytically: we consider the large radius limit of the
doubly spinning black ring—which yields a boosted
Kerr black string—and we verify that this instability is
active in this background. We then compactify the string
direction to find conclusions about the instability in finite
radius black rings.

Whenever one has an instability, we naturally ask what
its end point is. Usually, it is remarkably difficult to give a
definite answer to this question. For example, the ultimate
fate of the Gregory-Laflamme instability [30,31], the gy-
ration instability [20], and the ergoregion instability [26]
still remains an open issue. However, the superradiant
instabilities are special, in the sense that we usually can
make strong statements about their end point. This follows
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from the fact that the growth of this type of instability is fed
by the rotational energy of the background geometry which
decreases during the process. In our case, we will conclude
that the boosted Kerr black string will release all its angular
momentum, and will settle down into a nonrotating
boosted black string. However, as a consequence of the
KK momentum quantization that occurs when we compac-
tify a black string, we will argue that finite radius black
rings will not lose all their angular momentum along S2.
Therefore, in practice this means that the superradiant
instability provides a dynamical mechanism that imposes
an upper bound for the rotation of the black rings along S2.
Note that, due to the presence of other instabilities on the
system, like, e.g., the Gregory-Laflamme one, we expect
that a classical evolution of the black ring will proceed
with the contribution of all the instabilities that afflict the
system. It is not clear yet what the exact end state of this
evolution is.

The plan of this paper is organized as follows. In
Secs. II, III, and IV it is argued that 5D doubly spinning
black rings are expected to be unstable. In Sec. II we
review the relevant black ring geometries and their large
radius limit. In Sec. III we separate the Klein-Gordon
equation in the infinite-radius black ring background, and
we discuss the relevant ingredients and properties of the
instability. The quantitative features of the instability,
namely, its frequency spectrum and its time scale, are
computed in Sec. IV, using the matched asymptotic
method. The stability analysis of the higher-dimensional
boosted Myers-Perry black string is carried out in Sec. V,
where it is shown that they are stable against the super-
radiant mechanism. The eventual implications of this result
to the stability of higher-dimensional rings is then dis-
cussed. Finally, in Sec. VI we discuss the results, with an
emphasis given to the issue of the instability end point. In
particular, we argue that the instability discussed in this
paper provides a mechanism that effectively bounds the
rotation of doubly spinning black rings. We estimate the
upper bound, both on the rotation along S1 and S2, using
the recent black ring model of [15], with a minor extension
to accommodate an extra small angular momentum.

II. BLACK RING GEOMETRIES AND THEIR
LARGE RADIUS LIMIT

A. The black ring with rotation along S1

The first element of the family of 5D black rings was
found by Emparan and Reall [3] and is described by (here
we write the metric in the form displayed in [7] after using
the factorization of [32])
 

ds2��
F�y�
F�x�

�
dt�R

������������������������������
������

1��
1��

s
1�y
F�y�

d 
�

2
�

R2

�x�y�2

�F�x�
�
�
G�y�
F�y�

d 2�
dy2

G�y�
�
dx2

G�x�
�
G�x�
F�x�

d�2

�
; (1)

where
 F��� � 1� ��; G��� � �1� �2��1� ���: (2)

The coordinates x and y vary within the ranges
 � 1 � x � 1; �1< y � �1: (3)

To avoid conical singularities the period of the angular
coordinates � and  must be

 �� � � �
2�

�������������
1� �
p

1� �
; (4)

and the parameters � and � must satisfy the relation

 � �
2�

1� �2 ; 0< �< 1: (5)

This condition guarantees that the rotation of the ring
balances the gravitational self-attraction of the ring.

The black ring has a curvature singularity at y � �1.
The regular event horizon of topology S1 � S2 is at y �
�1=�. The ergosphere is located at y � �1=�. The solu-
tion is asymptotically flat with the spatial infinity being
located at x � �1 and y � �1. When � � � the geometry
(1) describes a static black ring without rotation, whose
dynamical equilibrium is ensured by a conical singular
disk whose pressure balances the self-gravitational attrac-
tion of the ring.

We will be particularly interested in the large radius
limit of (1), which is defined by taking [7]

 R! 1; �! 0; and �! 0; (6)

in the solution (1), and keeping R� and �=� finite. More
particularly, take

 R� � 2M;
�
�
� cosh2�; r � �

R
y
;

cos� � x; z � R ;

(7)

where M and � are constants. Then the black ring solution
(1) goes over to the boosted black string solution with
horizon located at r � 2M and with boost angle tanh� �
1=

���
2
p

. This particular value of the boost angle is the one
that follows from the balance condition (5). This solution
can also be constructed by applying a Lorentz boost with
angle � to the geometry four-dimensional
�4D� Schwarzschild� R [6]. The parameter M is the
mass density of the black string extended along the z
direction.

The black ring solution can be extended in order to
include electric charge [6,7], as well as magnetic dipole
charge [8]. The most general known seven-parameter fam-
ily of nonsupersymmetric black ring solutions, that in-
cludes the above solutions as special cases, was
presented in [9]. It is characterized by three conserved
charges, three dipole charges, two unequal angular mo-
menta, and a parameter that measures the deviation from
the supersymmetric configuration. In the black ring back-
ground, the Penrose process was discussed in [33], pertur-
bation analysis in the large radius limit was carried out in
[27], and an ultrarelativistic boost of the black ring was
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considered in [34]. The algebraic classification of the black
ring is done in [35]. There are also supersymmetric black
rings that we will not discuss in this paper. A recent de-
tailed discussion of the supersymmetric black ring system
can be found, e.g., in [36].

B. The black ring with rotation along S2

The 5D rotating black ring with rotation along S2 (and
no rotation along S1) was found by Mishima and Iguchi
[10] and Figueras [11]. In its most appropriate form for
physical interpretation [11], the line element is

 ds2 � �
H��; y; x�
H��; x; y�

�
dt�

�ay�1� x2�

H��; y; x�
d�

�
2

�
R2H��; x; y�

�x� y�2

�
�

dy2

�1� y2�F��; y�

�
�1� y2�F��; x�
H��; x; y�

d 2 �
dx2

�1� x2�F��; x�

�
�1� x2�F��; y�
H��; y; x�

d�2

�
; (8)

where

 F��; �� � 1� ���
�
a�
R

�
2
;

H��; �1; �2� � 1� ��1 �

�
a�1�2

R

�
2
:

(9)

The coordinates x and y vary in the intervals defined in (3).
To avoid conical singularities at x � �1 and y � �1, the
period of the angular coordinates� and  must be given by

 �� � � �
2���������������������������������

1� �� a2=R2
p : (10)

However, the solution has a conical singularity at x � 1
that signals the presence of a conical singular disk that
balances the self-gravitational attraction of the ring. The
parameters � and a must satisfy the relation

 

2a
R
< �< 1�

a2

R2 ; (11)

where the lower bound guarantees that there is a horizon
and the upper bound ensures the absence of closed timelike
curves. This black ring has a curvature singularity, and a
regular event horizon with topology S1 � S2. It is asymp-
totically flat with the spatial infinity being located at x �
�1 and y � �1. Moreover, the black ring has rotation
along the azimuthal direction � of the S2, and it also has
an ergoregion.

Again, we will be interested in the large radius limit of
(8), which is defined by taking [7]

 R! 1 and �! 0; (12)

in the solution (8), and keeping R� fixed. More concretely,
take

 R� � 2M; r � �
R
y
; cos� � x; z � R ;

(13)

where M is a constant. Then the black ring solution (8)
goes over to the Kerr black string solution extended along
the z direction, with mass densityM and rotation parameter
a along the azimuthal � direction. This solution can also
be constructed by adding a flat direction to the 4D Kerr
black hole, yielding 4D Kerr� R.

C. The large radius doubly spinning black ring:
Boosted spinning black string

The most general 5D black ring solution—the doubly
spinning black ring—is not yet known. This more general
element of the family will have rotation both along the
plane of the ring (i.e., along the S1 direction parametrized
by  ) that will balance the self-gravitation of the ring, and
along the azimuthal � direction of the S2. Therefore, when
the rotation along S2 vanishes this doubly spinning solution
reduces to (1), while when it is the rotation along S1 that is
absent it reduces to (8).

Although we still do not know the line element of the
doubly spinning black ring, we do know the geometry that
describes its large radius limit. Indeed, it is not difficult to
convince ourselves (see Fig. 1) that in this limit it will be
described by a boosted Kerr black string extended along
the z direction. This black string is characterized by the
mass density M, by the boost angle � � arctanh�1=

���
2
p
�,

and by the rotation parameter a along the azimuthal �
direction. This can also be constructed by adding a flat
direction z to the 4D Kerr black hole, and then applying a
Lorentz boost to it, dt! cosh�dt� sinh�dz and dz!
sinh�dt� cosh�dz. This yields the boosted Kerr black
string geometry
 

ds2 � �

�
1�

2Mrcosh2�
�

�
dt2 �

2Mr sinh�2��
�

dtdz

�

�
1�

2Mrsinh2�
�

�
dz2 �

�

�
dr2 � �d�2

�
�r2 � a2�2 � �a2sin2�

�
sin2�d�2

�
4Mr cosh�

�
asin2�dtd�

�
4Mr sinh�
�� 2Mr

asin2�dzd�; (14)

Jψ∼Pz

Jφ

Large R

Jψ

Jφ

FIG. 1. In the large radius limit, the doubly spinning black ring
yields a boosted Kerr black string.
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where

 � � r2 � a2 � 2Mr; � � r2 � a2cos2�: (15)

When we set a � 0 and � � arctanh�1=
���
2
p
�, we get a

boosted black string that describes a large radius skinny
balanced black ring that is also found by taking the limit (6)
and (7) in (1). Unbalanced rings give boosted black strings
with a general �. In the data examples that we will give in
this paper, we will fix � to have the balanced value. On the
other side, if we set � � 0 we get a Kerr black string that
describes a large radius skinny black ring that is also
obtained by taking the limit (12) and (13) in (8).

The boosted Kerr black string has a curvature singularity
at r � 0, a Cauchy horizon r� and an event horizon r� at
r	 � M	

������������������
M2 � a2
p

, and an ergosurface at re �
Mcosh2��

���������������������������������������������
M2cosh4�� a2cos2�
p

. To avoid naked sin-
gularities, the rotation is constrained to be a � M.

Three important parameters of the boosted Kerr black
string are the angular velocity of the horizon along the �
coordinate, �� � ��gt�=g���jr�r� , the area per unit
length of the horizon, AH, and the temperature of its
horizon, TH, given by

 �� �
a cosh�

r2
� � a

2 ; AH � 4��r2
� � a

2� cosh�;

TH �
r� � r�

4��r2
� � a

2� cosh�
:

(16)

For completeness note that the linear velocity of the hori-
zon along the string direction, Vz � ��gtz=gzz�jr�r� , is
given by Vz � � tanh�.

III. THE WAVE EQUATION OF THE BOOSTED
KERR BLACK STRING: PROPERTIES OF THE

INSTABILITY

In this section we will show that a boosted Kerr black
string is unstable, against massless field perturbations, due
to the combined effect of the superradiant mechanism and
of the presence of an effective reflective wall sourced by
the KK momentum of the mode along the string direction.
This wall provides the arena for the existence of bound
states. The mechanism at play in this instability was re-
cently described in [17,19–22,37]), and is active in some
extended rotating black objects. The massless scalar field
acquires an effective mass (due to the KK momentum in
the extra dimension) and this makes the wave bounce back
and forth. In each scattering the wave suffers superradiant
amplification in the ergosphere and this leads to an insta-
bility [20,21]. This superradiant instability will also be
present in the case of electromagnetic and gravitational
waves.

We extend the analysis carried out in [21,22] for Kerr
black strings to the boosted case, and then we further
extend this analysis to the black ring case. Generically,
the results for boosted black strings are in a way the same

as the ‘‘boosted results’’ of unboosted black strings.
However, we must be cautious since some exceptions to
this rule are already known. For example, a boosted black
string has an ergoregion and the Penrose process can occur
in this region, while in the unboosted case this phenomena
is not present [33]. As another example, it was recently
shown [15] that Sorkin’s critical dimension [31]—below
which stable black strings and small black holes on a
compact circle can coexist—is boost dependent and ac-
tually vanishes for large boosts. Therefore, the boosted
results do not seem to follow trivially from the unboosted
ones. As explained in [15], this is intimately connected
with the different boundary conditions in the two systems.

A. Separation of the wave equation

The evolution of a scalar field � in the background of
(14) is governed by the curved space Klein-Gordon equa-
tion, r�r�� � 0. It is appropriate to use the separation
ansatz

 � � e�i!teim�e�i	zSml �����r�; (17)

where Sml ��� are spheroidal angular functions, and the
azimuthal numberm takes on integer (positive or negative)
values. For our purposes, it is enough to consider positive
!’s in (17). Inserting this ansatz into the Klein-Gordon
equation, we get the following angular and radial wave
equations for Sml ��� and ��r�,
 

1

sin�
@��sin�@�S

m
l � �

�
a2�!2 � 	2�cos2�

�
m2

sin2�
� �lm

�
Sml � 0; (18)

 

�@r��@r�� ��
	2r2� a2!2� 2!ma cosh���lm��

� 

!�r2� a2� �ma cosh��2

� 2Mr�r2� a2�cosh2�
!�	 tanh��2� 2Mr�r2� a2�!2

�m2a2sinh2�� 4	maMr sinh���� 0; (19)

where �lm is the separation constant that allows the split-
ting of the wave equation, and is found as an eigenvalue of
(18). For small a2�!2 � 	2�, the regime we shall be inter-
ested in, the eigenvalues associated with the spheroidal
wave functions Sml are [38]

 �lm � l�l� 1� �O�a2�!2 � 	2�� � l�l� 1�; (20)

where the integer l is constrained to be l � jmj.

B. Boundary conditions: Necessary conditions for the
instability.

Together with the wave equation, we must also specify
the appropriate boundary conditions for the instability
problem. The features of these boundary conditions reveal
the two ingredients responsible for the presence of the
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instability. We are interested in wave perturbations that
develop in the vicinity of the horizon and that propagate
both into the horizon and out to infinity. Our boundary
conditions therefore require only ingoing flux at the hori-
zon and only outgoing waves at infinity.

At the horizon, the second set of terms proportional to �
in (19) can be neglected and the radial wave equation
reduces to
 

�@r��@r�� � �r
2
� � a

2�2cosh2�
�
!� 	 tanh�

�
ma

�r2
� � a

2� cosh�

�
2
� � 0; as r! r�; (21)

where we made use of ��r�� � 0 which implies 2Mr� �
�r2
� � a

2�. At infinity, the radial wave equation (19) is
dominated by

 @r�r
2@r�� � �!

2 � 	2�r2� � 0; as r! 1; (22)

where we used � r2 as r! 1. Here, or in (19), we
realize that the KK momentum 	 contributes effectively as
a mass term, �	2r2, in the wave equation.

The solutions of these two equations that satisfy our
boundary conditions are

 ��r� 
�
�r� r���i$ � e�i$ ln�r�r��; as r! r�;
r�1e�i

�����������
!2�	2
p

r; as r! 1;
(23)

where we have defined
 

$ �
�r2
� � a

2� cosh�
r� � r�

�
!� 	 tanh��

ma

�r2
� � a

2� cosh�

�

�
1

4�TH
�!�!sup�; (24)

with

 !sup � 	 tanh��
m��

cosh2�
; (25)

and TH and �� are, respectively, the temperature and the
angular velocity of the horizon of the boosted Kerr black
string defined in (16).

The features of the boundary conditions (23) reveal the
two ingredients responsible for the presence of the insta-
bility. Indeed, at infinity we identify the presence of the KK
term or mass term, 	2, that is responsible for the effective
reflective wall. On the other side, at the horizon one
identifies the presence of the so-called superradiant factor
$. When the frequency of the wave is such that $ is
negative,

 !<!sup; (26)

one is in the superradiant regime, and the amplitude of a
(corotating) wave is amplified after each scattering.

It is important to understand why it is � e�i$ ln�r�r��

and not � e�i$ ln�r�r�� that always describes an ingoing

wave at the horizon, since this is the key source of super-
radiance. It follows from (17) and (23) that at the horizon
the wave solution behaves as ��t; r�jr!r� 
e�i!te�i$ ln�r�r��. The phase velocity of the wave is then
vph / �

!
$ . Now, the value of this phase velocity can be

positive or negative depending on the value of ! (when we
fix the other parameters), so one might question if the first
line of (23) really always describes an ingoing wave. As in
other applications, what is relevant to find the physical
ingoing wave solution at the horizon is the group velocity
of the wave rather than its phase velocity. The normalized
group velocity, vgr, at the horizon is vgr � 4�TH

d��$�
d! �

�1. This is a negative value that signals that the horizon
wave solution in (23) always represents an ingoing wave
independently of the value of !, and is thus the correct
physical boundary condition. However, note that in the
superradiant regime (26), the phase velocity is positive
and so waves appear as outgoing to an inertial observer
at spatial infinity—energy is in fact being extracted.

Notice that (since we are working with positive !)
superradiance will occur only for positivem, i.e., for waves
that are corotating with the black hole. Indeed, the wave
function is given by ��t; ��  ei!t�im�. The phase veloc-
ity along the angle � is then v� � !=m, which for !> 0
and m> 0 is positive, i.e., is in the same sense as the
angular velocity �� of the black string.

C. The radial wave equation as a Schrödinger equation:
Necessary and sufficient conditions for the instability.

The necessary conditions—superradiant regime and
presence of the KK effective mass term—are not, in
general, sufficient to guarantee that a instability develops
in the geometry as we shall conclude in Sec. V. Necessary
and sufficient conditions are that the superradiant regime is
active and that bound states are present. The requirement
of these conditions is better understood by rewriting the
radial wave equation (19) in the Schrödinger-like form,
 

@2
r�
� V
 � 0; with V � ���!� V���!� V��;

� � �r2
� � a

2��1=2
; (27)

and r� is the usual tortoise coordinate r�. The explicit form
of � > 0 and V	 will be given in great detail in (65), where
we will also consider the higher-dimensional case. At the
moment, we are interested in a plot of the behavior of the
potentials V	. The asymptotic behavior of V	 is

 lim
r!r�

V	 � !sup; lim
r!1

V	 � 	j	j: (28)

There are only two distinct cases that we sketch in Fig. 2(a)
(unstable case) and in Fig. 2(b) (stable case). In these
figures, when ! is above V� or below V� (allowed re-
gions), the solutions have an oscillatory behavior. In those
intervals where ! is in between the curves of V� and V�
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(forbidden regions), the solutions have a real exponential
behavior. In both Figs. 2(a) and 2(b), the potential V� has a
well that is limited at infinity by the KK momentum
potential barrier of height 	. Modes with a frequency
greater than the bottom of the well, am, and smaller than
	, am <!< 	, are bound states. If these bound state
frequencies further satisfy the superradiant condition
(26), an instability will settle down: the waves will bounce
back and forth between the KK wall at infinity and the
black hole, amplifying itself each time [Fig. 2(a)]. If the
bound state frequencies do not satisfy the superradiant
condition (26) the modes will bounce back and forth in
the potential well, but each time part of the wave will
tunnel to the horizon until the full mode is completely
absorbed by the horizon [Fig. 2(b)].

Here we note that when we set the rotation parameter to
zero, a � 0 (boosted Schwarzschild black string), we al-
ways get potentials of the form represented in Fig. 2(b), for
any M, � and 	, l, m. In particular, this means that the
bound states of the boosted black string are always damped
modes since the superradiant condition (26) is never sat-
isfied. This was first noticed in [27,33], where it was shown
that superradiant scattering is never possible in a boosted
Schwarzschild black string, although the particle analogue
of this phenomena—the Penrose process—can occur.
Ultimately, this is because one can construct, with a com-
bination of @=@t and @=@z, a Killing vector field that is
everywhere timelike outside the horizon [39].

The KK momentum is a necessary condition for the
existence of bound states, but is not a sufficient condition
as we shall see in Sec. V, where we will conclude that the
Myers-Perry black string is stable due to the lack of bound
states.

IV. FREQUENCY SPECTRUM: INSTABILITY TIME
SCALE

In the last section we concluded that some boosted Kerr
black strings are unstable to scalar field perturbations that
might develop in the vicinity of the horizon, and we
identified the relevant ingredients for this process.
However, we still do not know the quantitative features
of the instability, namely, we do not know the allowed
spectrum of real frequencies of the bound states, and
what the instability time scale is.

In this section we will address these issues. The method
we shall use here, known as matched asymptotic expan-
sion, has been widely used with success for the computa-
tion of the scattering cross section of black holes [40], and
also for computing instabilities in the Kerr background
[17–19]. We will assume that the Compton wavelength
of the scalar particle is much larger than the typical trans-
verse size of the black string; we divide the space outside
the event horizon into two regions, namely, a near region
and a far region. These two regions have an overlapping
region where we can match their wave solutions to get a
solution to the problem. This allows the analysis of the
instability properties. When the correct boundary condi-
tions are imposed, namely, only ingoing flux at the horizon
and only outgoing waves at infinity, we get a defining
equation for !. The stability or instability of the spacetime
depends basically on the sign of the imaginary component
of !.

A. The near-region solution

First, let us focus on the near region in the vicinity of the
horizon, r�r��1=!. We work in the regime!2r2

� � 1,

r

V+

sup

V-

Vi

r+

am

(a)

r

V+

V-

Vi

r+

sup

am

(b)

FIG. 2 (color online). (a) Qualitative shape of the potentials V� and V� for a boosted Kerr black string in which an instability is
present. An example of data that yields this kind of potentials is �2M � 1; a � 0:499 999; tanh� � 1=

���
2
p
; 	 � 1:85; l � m � 1�.

Potentially unstable modes are those whose frequency satisfies am <!< 	. Thus, they are bound states of the potential well in V�
that satisfy the superradiant condition !<!sup. (b) Qualitative shape of the potentials V� and V� for a case in which the Kerr black
string is stable. An example of data that yields this kind of potentials is �2M � 1; a � 0:4; tanh� � 1=

���
2
p
; 	 � 1:85; l � m � 1�. The

bound state modes with am <!< 	 are stable because they do not satisfy the superradiant condition !<!sup, where !sup is defined
in (25).
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!2a2 � 1, 	2r2
� � 1 and � not too large (which is def-

initely the case for balanced rings), and define the new
variable

 y �
r� r�
r� r�

; (29)

whose range is 0 � y � 1. The horizon is at y � 0 and
infinity is at y � 1. We have � � �r� � r��2y=�1� y�2,
�@r � �r� � r��y@y. In the near region and in the regime
in which we work, we can neglect the contribution of the
terms coming from 	2r2 � a2!2 � 2!ma cosh� in (19),
when comparing them with �ml ’ l�l� 1�. In this case we
can find an analytical near-horizon solution for the wave
equation. More concretely, in the near region, the radial
wave equation (19) can then be written as
 

y�1� y�@2
y�� �1� y�@y�

�

�
�
l�l� 1�

1� y
�

1� y
y

$2

�
� � 0; (30)

where we have introduced the superradiant factor $ as
defined in (24). Through the definition

 � � zi$�1� y�l�1F; (31)

the near-region radial wave equation becomes
 

y�1� y�@2
yF� 
�1� i2$� � 
1� 2�l� 1� � i2$�y�@yF

� 
�l� 1�2 � i2$�l� 1��F � 0: (32)

This wave equation is a standard hypergeometric equation
[41] of the form

 y�1� y�@2
yF� 
c� �a� b� 1�y�@yF� abF � 0;

(33)

with

 a � l� 1� i2$; b � l� 1; c � 1� i2$:

(34)

The general solution of this equation in the neighborhood
of z � 0 is Ay1�cF�a� c� 1; b� c� 1; 2� c; y� �
BF�a; b; c; y�. Using (31), one finds that the most general
solution of the near-region equation is
 

� � Ay�i$�1� y�l�1F�a� c� 1; b� c� 1; 2� c; y�

� Byi$�1� y�l�1F�a; b; c; y�: (35)

The first term represents an ingoing wave at the horizon
y � 0, while the second term represents an outgoing wave
at the horizon [recall the discussion after (26)]. We are
working at the classical level, so there can be no outgoing
flux across the horizon, and thus one sets B � 0 in (35).
Note that one then gets the near-horizon solution written in
(23). Later on, to do the matching between the near and far
regions, we will be interested in the large r, y! 1, behav-
ior of the ingoing near-region solution. To achieve this aim
one uses the y! 1� y transformation law for the hyper-

geometric function [41],
 

F�a� c� 1; b� c� 1; 2� c; y�

� �1� y�c�a�b
��2� c���a� b� c�

��a� c� 1���b� c� 1�

� F�1� a; 1� b; c� a� b� 1; 1� y�

�
��2� c���c� a� b�

��1� a���1� b�
F�a� c� 1;

b� c� 1;�c� a� b� 1; 1� y�; (36)

and the property F�a; b; c; 0� � 1. The large r behavior of
the ingoing wave solution in the near region is then given
by

 � A��1� i2$�
�
�r� � r���l��2l� 1�

��l� 1���l� 1� i2$�
rl

�
�r� � r��l�1���2l� 1�

���l����l� i2$�
r�l�1

�
: (37)

B. The far-region solution

In the far region, r� r� � r�, and for !a� 1, the
wave equation (19) reduces to
 

@2
r�r�� �

�
!2 � 	2 �

r� � r�
r

�! sinh�� 	 cosh��2

�
l�l� 1�

r2

�
�r�� � 0: (38)

If we define

 �2 � 	2 �!2;

 �
�r� � r���! sinh�� 	 cosh��2

2�
; 
 � 2�r;

(39)

Eq. (38) is written as

 @2

�
�� �

�
�

1

4
�



�
l�l� 1�


2

�
�
�� � 0: (40)

This is a standard Wittaker equation [41], @2

W � 
�

1
4�



�

1��2


2 �W � 0, with

 W � 
�; � � l� 1=2: (41)

The most general solution of this equation is W �

��1=2e�
=2
�M�~a; ~b; 
� � �U�~a; ~b; 
��, where M and
U are the Wittaker’s functions with ~a � 1=2��� 
and ~b � 1� 2�. In terms of the parameters that appear
in (40) one has

 ~a � l� 1� ; ~b � 2l� 2: (42)

The far-region solution of (40) is then given by
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 � � �
le�
=2M�~a; ~b; 
� � �
le�
=2U�~a; ~b; 
�: (43)

To impose the boundary condition at infinity, we will
need to know the behavior of the far-region solution at the
large 
 � 2�r! 1 regime. When 
! �1, one has
U�~a; ~b;
�
�~a and M�~a; ~b;
�
~a�~be
��~b�=��~a� [41],
and thus, for large 
, the far-region solution behaves as

 � �
��2l� 2�

��l� 1� �

�1�e
=2 � �
�1�e�
=2: (44)

It is clear that the first term proportional to e�
=2 represents
an ingoing wave, while the second term proportional to
e�
=2 represents an outgoing wave. At this point we can
finally discuss the second boundary condition of our prob-
lem. In our present experiment, one perturbs the boosted
Kerr black string outside its horizon, and this generates a
wave that propagates both into the horizon and out to
infinity. Therefore, at r! �1, our physical system has
only an outgoing wave, and thus one has to set � � 0 in
(43) and (44). The behavior of the solution at infinity then
boils down to (23). We can understand this boundary
condition in an alternative way. As we are already antici-
pating with the definition chosen for�2 in (39) the unstable
modes will be those with !< 	, i.e., whose frequency is
smaller than the potential barrier at infinity. At infinity the
wave mode will then have a real exponential behavior,
� e	
, and the requirement of regularity at infinity
amounts to discarding the solution e�
 that diverges at
infinity. This is done by setting � � 0.

C. Matching condition: Frequency spectrum

In this subsection we shall find the real frequencies that
are allowed to propagate in the boosted Kerr black string
background, and we will use the matching of the far and
near regions in their overlapping sector to select the imagi-
nary part of the mode frequencies.

We begin by asking what the (real) frequencies are that
can propagate in the background of the boosted Kerr black
string. To do so, we shall use a trick [18] that was already
applied with success to solve similar problems in the
background of a Kerr black hole [18], of a Kerr black
string [21], and of a boosted Schwarzschild black string
[27]. That this method yields indeed the correct answer has
already been confirmed by a full numerical checking.1 We
assume for a moment that we have no black hole, and we

ask what the frequencies are that can propagate in this
horizon-free background. In this setup, we are actually
looking for the pure normal modes that can propagate in
a geometry that is horizon-free and that have a reflecting
spherical wall produced by the effective mass of the extra
dimension. In this geometry, the wave solution of the
Klein-Gordon equation is everywhere described by (43),
subjected to the appropriate boundary conditions. The
outer boundary condition requires the presence of only
outgoing waves and this implies � � 0. The inner bound-
ary condition is that � must be regular at the origin, 
!
0. For small values of 
, the solution is described by �
�
��2l� 1�=��l� 1� ���2�r��l�1 [41]. So, when 
!
0, the wave function � diverges, r�l�1 ! 1. To have a
regular solution there, we must then demand that ��l�
1� � ! 1. This occurs when the argument of the
gamma function is a nonpositive integer, ���N� � 1
with N � 0; 1; 2; � � � . Therefore, the requirement of regu-
larity imposes the condition l� 1�  � �N. Since  is
related to !, the above regularity demanding amounts to a
natural selection of the allowed frequencies that can propa-
gate in the geometry.

Now, let us come back to the boosted Kerr black string
background, which differs clearly from the above back-
ground due to the existence of a horizon. In the spirit of
[18,19], we expect that the presence of a horizon induces a
small complex imaginary part in the allowed frequencies,
!i � Im
!�, that describes the slow decay of the ampli-
tude of the wave if !i < 0, or the slowly growing insta-
bility of the mode if !i > 0. Now, from (39), one sees that
a frequency!with a small imaginary part corresponds to a
complex  with a small imaginary part that we will denote
by � � Im
�. Therefore, we anticipate that in the
boosted Kerr black string one has

  � �l� 1� N� � i�; (45)

with N being a non-negative integer, and � being a small
quantity. In particular, this means that, onwards, the argu-
ments of the Wittaker’s function U�~a; ~b; 
� previously
defined in (42) are to be replaced by

 ~a � �N � i�; ~b � 2l� 2: (46)

What we have done so far is to find the spectrum of real
frequencies. To find the imaginary part of the modes, we
have to match the far region with the near region. So, we
need to find the small 
 behavior of the far-region solution
(43). The Wittaker’s function U�~a; ~b; 
� can be expressed
in terms of the Wittaker’s function M�~a; ~b; 
� [41].
Inserting this relation in (43), the far-region solution can
be written as

1We can do the analysis without making use of this trick.
Indeed, we can find an algebraic equation for the spectrum of
real frequencies and the instability time scale just by using the
second relation of (39), with  � Re
� � i�, and � given by
(50), and without using (45). However, this trick clarifies the
physical nature of the real frequencies, and yields the right
answer, as a full numerical analysis of the unboosted case
confirms [22].
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 � � �
le�
=2 �

sin��~b�

�
M�~a; ~b; 
�

��1� ~a� ~b���~b�

� 
1�~b M�1� ~a� ~b; 2� ~b; 
�

��~a���2� ~b�

�
; (47)

with ~a and ~b defined in (46). Now, we want to find the
small 
 behavior of (47), and to extract � from the
gamma function. This is done in (A1)–(A3), yielding for
small � and for small 
 the result

 � ���1�N
�2l� 1� N�!
�2l� 1�!

�2�r�l � ���1�N�1

��2l�!N!�i���2�r��l�1: (48)

The quantity � cannot take any value. Its allowed
values are selected by requiring a match between the
near-region solution (37) and the far-region solution (48).
So, the allowed values of � are those that satisfy the
matching condition

 � i�
�2l�!�2l� 1�!N!

�2l� N � 1�!�2��2l�1

� �r� � r��2l�1 ��l� 1�

��2l� 1�

���2l� 1�

���l�

�
��l� 1� i2$�
���l� i2$�

: (49)

Use of the gamma function relations (A4) yields

 � � �2$
2��r� � r���
2l�1 �2l� 1� N�!

N!

�

�
l!

�2l�!�2l� 1�!

�
2 Yl
|�1

�|2 � 4$2�; (50)

for l � 1, while for l � 0 one gets

 � � �4��r� � r���N � 1�$: (51)

Condition (45) together with (39) leads to

TABLE I. Some numerical values of the instability as we vary the rotation parameter a of a
geometry with 2M � 1, � � arctanh�1=

���
2
p
�, and for modes with 	 � 0:5 and l � m � 1, N �

0. In the second and third columns we have, respectively, the real part, Re
!�, and the imaginary
part, Im
!�, of the mode frequency. In the fourth column we present the superradiant factor $
multiplied by 4�TH. The unstable modes have Im
!�> 0 and are those that satisfy simulta-
neously $< 0 and !< 	. The last three columns show the values of the quantities that must be
small in the regime of validity of our results, namely, a2�	2 �!2� � 1, !a� 1 and 	2r2

� �
1. Note that the condition !2r2

� � 1 is automatically satisfied when 	2r2
� � 1, since the

unstable modes we are dealing with are those that have !< 	.

a Re
!� Im
!� 4�TH$ a2�	2 �!2� !a 	2r2
�

0.198 0.499 885 �3:90� 10�14 �0:0004 4� 10�6 0.10 0.23
0.199 0.499 885 4:85� 10�14 �0:0004 4� 10�6 0.10 0.23
0.200 0.499 885 1:36� 10�13 �0:0012 4� 10�6 0.10 0.23
0.300 0.499 885 7:50� 10�12 �0:0894 1� 10�5 0.15 0.20
0.400 0.499 885 1:29� 10�11 �0:2072 2� 10�5 0.20 0.16
0.450 0.499 885 1:59� 10�11 �0:2969 2� 10�5 0.22 0.13
0.490 0.499 885 2:00� 10�11 �0:4316 3� 10�5 0.24 0.09
0.499 0.499 885 2:26� 10�11 �0:5174 3� 10�5 0.25 0.07

TABLE II. Some numerical values of the instability for a geometry with 2M � 1, a � 0:35,
� � arctanh�1=

���
2
p
�, and for modes with l � m � 1, N � 0 and several values of the KK

momentum 	. In the second and third columns we have, respectively, the real part, Re
!�, and
the imaginary part, Im
!�, of the mode frequency. In the fourth column we present the
superradiant factor $ multiplied by 4�TH . The unstable modes have Im
!�> 0 and are those
that satisfy simultaneously $< 0 and !< 	. The last three columns show the values of the
quantities that must be small in the regime of validity of our results.

	 Re
!� Im
!� 4�TH$ a2�	2 �!2� !a 	2r2
�

0.01 0.009 99 1:67� 10�26 �0:285 2� 10�12 0.004 0.0007
0.10 0.099 99 1:38� 10�17 �0:259 2� 10�8 0.04 0.01
0.30 0.299 98 1:74� 10�13 �0:201 2� 10�6 0.10 0.07
0.50 0.499 88 1:04� 10�11 �0:142 1:4� 10�5 0.18 0.18
0.70 0.699 68 1:11� 10�10 �0:084 5� 10�5 0.25 0.36
0.90 0.899 32 3:10� 10�10 �0:026 2� 10�4 0.31 0.59
1.00 0.999 07 �9:90� 10�11 �0:003 2� 10�4 0.35 0.73
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�r� � r���! sinh�� 	 cosh��2

2
������������������
	2 �!2
p � l� N � 1� i�;

(52)

with � given by (50). This is an algebraic equation for the
characteristic values of the frequency !. All these values
must be consistent with the assumptions made, namely,
(20), (30), and (38) are valid only for a2�	2 �!2� � 1,
!a� 1 and 	2r2

� � 1. If! has a positive imaginary part,
then the mode is unstable. Indeed, the field has the time
dependence e�i!t, so a positive imaginary part for !
means the amplitude grows exponentially as time goes
by. We have indeed found unstable modes.
Representative elements of this class of modes are dis-
played in Table I (where we fix the Kaluza-Klein momen-
tum 	 of the mode and vary the rotation a of the geometry)
and in Table II (where we fix a and vary 	). As a consis-
tency check, in Appendix B, we show that, when we turn
off the boost, (52) yields the result found originally by
Detweiler [18].

We discuss the results in Sec. VI.

V. STABILITY ANALYSIS OF THE BOOSTED
MYERS-PERRY BLACK STRING

The boosted Myers-Perry black string can also be con-
structed by adding a flat direction z to the Myers-Perry
black hole [2],2 and then applying a Lorentz boost to it,
dt! cosh�dt� sinh�dz and dz! sinh�dt� cosh�dz.
The geometry of a boosted Myers-Perry black string ge-
ometry is then (for our purposes it is enough to consider the
case with rotation in a single plane parametrized by �)
 

ds2��

�
1�

2Mr1�ncosh2�
�

�
dt2�

2Mr1�n sinh�2��
�

dtdz

�

�
1�

2Mr1�nsinh2�
�

�
dz2�

�

�
dr2��d�2

�
�r2�a2�2��a2sin2�

�
sin2�d�2

�
4Mr1�ncosh�

�
asin2�dtd�

�
4Mr1�n sinh�

��2Mr1�n asin2�dzd��r2cos2�d�2
n; (53)

where n � D� 4, d�2
n describes the line element of a unit

n sphere, and

 � � r2 � a2 � 2Mr1�n; � � r2 � a2cos2�: (54)

Under the separation ansatz

 � � e�i!teim�e�i	zSml �����r�Y���; (55)

the Klein-Gordon equation yields the following angular
and radial wave equations for Sml ��� and ��r�,
 

1

sin�cosn�
@��sin�cosn�@�S

m
l � �

�
a2�!2 � 	2�cos2�

�
m2

sin2�
� �lm �

j�j� n� 1�

cos2�

�
Sml � 0; (56)

 

�

rn
@r�rn�@r�� �U� � 0; (57)

where �lm is the (n-dimensional) separation constant given
by �lm � l�l� 1� n� �O�a2�!2 � 	2��, and
 

U � ��
�
	2r2 � a2!2 � 2!ma cosh�� �lm

� j�j� n� 1�
a2

r2

�
� 

!�r2 � a2� �ma cosh��2

� 2Mr1�n�r2 � a2�cosh2�
!� 	 tanh��2

� 2Mr1�n�r2 � a2�!2 �m2a2sinh2�

� 4	maMr1�n sinh��: (58)

In (56) and (58), the integer m � 0;	1;	2; � � � comes
from separation of the angle describing the azimuthal
dependence of the perturbations around the symmetry
axis [see (55)]. The terms dependent on n and the parame-
ter j � 0; 1; 2; � � � are the eigenvalues of the hyperspherical
harmonics on the n sphere, which are given by�j�j� n�
1� [42]. The integer l is constrained to satisfy the condition
l � �j� jmj�. Note that (56)–(58) reduce to (18) and (19)
when we set simultaneously n � 0 and j � 0.

The boundary conditions are only ingoing flux at the
horizon and only outgoing waves at infinity,

 ��r� 
�
�r� r���i$ � e�i$ ln�r�r��; as r! r�;
r��n�2�=2e�i

�����������
!2�	2
p

r; as r! 1;
(59)

where

 $ �
r��r

2
� � a

2� cosh�

�n� 2�r2
� � �n� 1�a2 �!�!sup�; (60)

with !sup defined in (25).
Defining the tortoise coordinate r� and a new wave

function 
 as

 dr� �
r2
� � a

2

�
dr; � � 
�r2

� � a
2�rn��1=2
; (61)

the radial wave equation (57) can be written in the form of
an effective Schrödinger equation,

 @2
r�
� V
 � 0; (62)

with

2The Myers-Perry black hole lives in a background with D �
5 spacetime dimensions. The corresponding black string lives in
a �D� 1�-dimensional background.
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 V � �
U

�r2 � a2�2
�G2 � @r�G;

G �
1

2
@r� ln
�r2

� � a
2�rn�:

(63)

For a2�!2 � 	2� � 1 one has �lm � l�l� 1� n� and V is
then a quadratic function of ! that can be factorized as

 V � ���!� V���!� V��; (64)

with

 

� �
r1�n

�r2 � a2�2

r1�n�r2 � a2� � 2M�r2sinh2�

� a2cosh2���> 0;

V	 � �
V1

2�
	

��������������������������
V1

2�

�
2
�
V0

�

s
; (65)

and

 

V0 � �
j�j� n� 1�a2�

r2�r2 � a2�2
�
�
	2r2 � l�l� 1� n����m2a2 � 4	amMr1�n sinh�

�r2 � a2�2
�

2M	2r1�nsinh2�

r2 � a2

�
r�n�2�

4�r2 � a2�4

n�n� 2�a6rn � �n� 2�r5
2M�n� 2� � nr1�n� � a4r
2Mn2 � �3n2 � 2n� 4�r1�n�

� a2r3
4M�n2 � 2n� 4� � �3n2 � 2n� 4�r1�n��;

V1 � �
4Mr1�n cosh�
ma� 	 sinh��r2 � a2��

�r2 � a2�2
: (66)

Important features of � and V	 are their asymptotic values
at the horizon and infinity which are given by

 lim
r!r�

� � cosh2�; lim
r!1

� � 1;

lim
r!r�

V	 � !sup; lim
r!1

V	 � 	j	j:
(67)

Note that when n � 0 (which implies j � 0), the rela-
tions of this section yield the potentials discussed in
Sec. III C. In this case, we have already analyzed the

potentials V	 in Figs. 2(a) and 2(b). For n � 1, the relevant
features of the potentials are independent of n, and signifi-
cantly different from the n � 0 case. The only two kinds of
potentials that can occur for n � 1 are drawn in Figs. 3(a)
and 3(b). Superradiant modes are allowed [Fig. 3(a)], but
the KK momentum is never able to generate a potential
well, i.e., bound states, and thus the superradiant instability
does not develop. When we set the boost to zero, � � 0,
our results and graphs reduce to the ones found in [22,43].

r

V+

V-

Vi

r+

sup

(a)

r

V+

V-

Vi

r+

sup

(b)

FIG. 3 (color online). (a) General qualitative shape of the potentials V� and V� for a boosted Myers-Perry black string. In this case
the geometry is always stable, but superradiant scattering is possible. An example of data that yields this kind of potentials is �2M �
1; a � 0:9; tanh� � 1=

���
2
p
; 	 � 1:5; l � m � 1; j � 0; n � 1�. There are no bound state modes since V� approaches 	 at infinity from

above. This absence of bound states for n � 1, as opposed to the n � 0 case, annihilates the possibility of an instability existing for
n � 1. Since !<!sup, superradiant scattering is possible. (b) Qualitative shape of the potentials V� and V� for a Myers-Perry black
string. In this case the geometry is stable, and moreover superradiant scattering is not possible. An example of data that yields this kind
of potentials is �2M � 1; a � 0:5; tanh� � 1=

���
2
p
; 	 � 2; l � m � 1; j � 0; n � 1�. There are no bound state modes and superradiant

scattering is not possible (since !>!sup).

ÓSCAR J. C. DIAS PHYSICAL REVIEW D 73, 124035 (2006)

124035-12



As pointed out in [22], this absence of instability in the n �
0 case seems to be related with the fact that, at least for
n � 1, there are no stable circular orbits [44].

We end this section with a remark on the value of the
boost angle for n � 1. As is being assumed in this section,
if black rings exist in six and higher dimensions, their
infinite-radius limit will be a boosted Myers-Perry black
string. However, the balanced rings need not give boosted
strings with tanh� � 1=

���
2
p

(the value for the Kerr black
string). Presumably, but we do not know for sure, the
balanced rings give pressureless boosted black strings. To
find the relevant value for� in the higher-dimensional case
one would have to solve the equation Tzz � 0, where Tzz
will be defined in (69). The result for � may therefore
depend on the dimension of the spacetime. We have tested
several values of � and verified that we always get poten-
tials like the ones plotted in Fig. 3 that show no evidence of
superradiant instability.

VI. DISCUSSION OF THE RESULTS: THE
INSTABILITY END POINT—BOUND MECHANISM

FOR THE ROTATION

We have shown that the 5D large radius doubly spinning
black rings are unstable against superradiant bound modes.
The most physically intuitive method to identify the nature
of the instability is to write the radial wave equation as a
Schrödinger equation and to look to the factorized
Schrödinger potentials, as was done in Sec. III C. When
the instability is present the potentials are like the ones
drawn in Fig. 2(a). The two ingredients necessary for the
activation of the instability are the existence of a potential
well in V� that can trap bound states, and that super-
radiance is present. In the boosted Kerr black string (n �
0) these two ingredients can be simultaneously present.
Therefore, the large radius 5D black rings are unstable
against this mechanism. We also note that there are, in
addition, damped modes which are bound states that do not
suffer superradiance and die off through the tunneling to
the horizon, as shown in Fig. 2(b).

To find the frequency spectrum of the unstable modes
and the time scale of the process, we have used the matched
asymptotic method. The main features of the instability
found for the large radius black ring solution (the boosted
Kerr black string) can be summarized as follows:

(i) In Table I we show the evolution of the instability
when the rotation a of the boosted Kerr black string
increases, while keeping all other parameters of the
geometry and angular parameters of the mode
fixed. We see that the instability is robust and it
gets stronger (the time scale � 1=Im
!� de-
creases) when the rotation a increases. There is a
natural explanation for this behavior. The instabil-
ity is triggered by superradiance which is present
only when the background rotates. Therefore we
expect the superradiance and thus the instability to

be stronger when the rotation is bigger: in Table I,
one sees that as a increases so does j$j and Im
!�.

(ii) Climbing Table II from the bottom to the top we
verify that a transition from an unstable situation to
a stable one occurs between the second and first
line. This happens because below a critical rotation
the superradiant condition Re

!�< 	 tanh��
m��cosh�2� is no longer valid, and it clearly
identifies superradiance as the mechanism respon-
sible for the instability.

(iii) In Table II we show the evolution of the instability
when the KK momentum 	 of the mode increases,
while keeping all other parameters of the geometry
and angular parameters of the mode fixed. In gen-
eral, the instability is robust and it gets stronger
when 	 increases. This behavior can be understood
by noting that the potential well of V� in Fig. 2(a)
gets deeper when 	 increases. Thus, the bound
modes get more efficiently trapped in the well.

(iv) However, when 	 increases above a critical value
the superradiant condition Re
!�< 	 tanh��
m��cosh�2� is no longer valid and the instability
stops. This situation can be seen in the transition
between the last two lines of Table II. Again, this is
strong evidence that superradiance is the mecha-
nism responsible for the instability.

(v) The most unstable mode we have found has a time
scale � 1=Im
!�  107, frequency Re
!� �
1:843 98, KK momentum 	 � 1:85, and l � m �
1. This mode is present in the geometry 2M � 1,
a � 0:499 999 and tanh� � 1=

���
2
p

. The most un-
stable mode when there is no boost, � � 0, has a
time scale � 108 [22]. Therefore the boost can
considerably increase the strength of the instability.

(vi) When we set the rotation parameter to zero, a � 0
(boosted Schwarzschild black string), we always
get potentials of the form represented in Fig. 2(b),
for any M, � and 	, l, m. In particular, this means
that the bound states of the boosted black string are
always damped modes since the superradiant con-
dition (26) is never satisfied. This was first noticed
in [27,33], where it was shown that superradiant
scattering is never possible in a boosted
Schwarzschild black string, although the particle
analogue of this phenomena—the Penrose pro-
cess—can occur.

We have shown that infinite-radius black rings have
unstable scalar modes. However, we also expect gravita-
tional unstable modes of the same kind to be present.
Indeed, metric modes will also have KK momentum that
provides the potential well that allows the existence of
bound states, and it is well known that superradiant scat-
tering also occurs for gravitational perturbations [37,40].
We thus have the ingredients for the development of the
instability. Moreover this gravitational instability will be
considerably stronger than the scalar one. Indeed, the
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maximum superradiant amplification after each scattering
is only 2% in the scalar case but it reaches 138% in the
gravitational case [45].

A question that naturally arises whenever one has an
instability is what is its end point. Quite often, this problem
does not have a clear answer, the most paradigmatic ex-
ample being the end point of the Gregory-Laflamme in-
stability. The end point of the superradiant instability is,
however, more predictable. Indeed, the amplitude of an
unstable mode gets amplified during each scattering. The
total energy of the system is conserved because the rota-
tional energy of the boosted Kerr black string decreases
during the process. Thus, the rotation a decreases as the
instability evolves until it reaches the critical minimum
value for which the superradiant factor $ vanishes (see the
second item above). At this point the instability stops, and
we have a black string with lower rotation than the initial
one and some rotating radiation around it trapped in the
potential well (that eventually escapes to infinity). This
would be the full story if we only had one unstable mode
with a specific value of 	, l, m. However, mode perturba-
tions with several different values 	, l,m are spontaneously
generated in the vicinity of the horizon. And the smaller the
value 	 of the unstable mode is, the smaller the minimum
critical value of rotation, acrit, is for which superradiance
(and the instability) ceases to operate, as indicated in
Table III. Therefore we conclude that the several unstable
modes will effectively spin down completely the boosted
Kerr black string until its rotation along S2 vanishes, and
we are left with a boosted black string. Note, however, that
Table III also tells us that, as the critical rotation decreases,
the time scale of the unstable mode also gets significantly
weaker. So the final stage of the complete spin down will
take, in practice, a long time. Summarizing, a large radius
doubly spinning black ring with rotation along both S1 and
S2 will decay into a large radius black ring that rotates only
along S1.

We can ask if we can extend these results for black rings
with finite radius. For example, it would be important to
find out if the potential barrier of height 	 at infinity is also
present in small radius rings. To fully address this issue
would require finding the line element of the doubly spin-
ning black ring. Then, we would have to perform a full
numerical analysis, since even when one of the rotations
vanishes, the Klein-Gordon equation does not separate

[27]. However, with the present knowledge, we can still
partially address this question. Indeed, we can keep the
approximation in which we use the boosted Kerr black
string as a toy model for the doubly spinning black ring, but
now we compactify the transverse direction, z z� 2�R,
and we slowly decrease R. In this case the KK momentum
of a mode that propagates in the geometry gets quantized
and can take only discrete values: 	 � k

R , with k being an
integer. This discretization of 	 has important consequen-
ces. Indeed, now there is a minimum value for 	 and thus
there is a nonvanishing minimum for the critical rotation
acrit below which there is no superradiance and no insta-
bility. So we expect that a finite radius doubly spinning
black ring will lose angular momentum along S2 and will
stabilize into a doubly spinning black ring with small, but
nonvanishing, rotation along S2. The superradiant instabil-
ity will effectively impose an upper bound on the rotation
along S2. We can estimate the value of this upper bound. To
stabilize the system, superradiance cannot be present, i.e.,
we must have $ � 0, with $ defined in (24). As we see in
Tables I, II, and III, the unstable modes are waves with
Re
!�  	. Therefore, in (24) we can replace the fre-
quency by the KK momentum. Use of 	 � k=R yields
that superradiance and hence the instability will be absent
for black rings that satisfy the relation

 R< k cosh��1� tanh��
r2
� � a

2

ma
: (68)

We can cast this relation in a more interesting form that
gives an upper bound for the conserved angular momentum
of the ring along S2. To do so, we shall use the model of the
black ring recently proposed by Hovdebo and Myers [15],
with a small extension to accommodate a small angular
momentum along S2. The end point of the instability will
have a small rotation along �. It is then sufficient to work
in the small a regime, for which one has r2

� � a
2  r2

�.
The Hovdebo-Myers model assumes that the main features
of a finite radius black ring can be reproduced by taking a
loop of string with radius R and with an Arnowitt-Deser-
Misner (ADM)-like stress tensor given by [46],
 

Tab�
1

16�

I
d�2r̂2ni
�ab�@ihcc�@ihjj�@jh

j
i��@ihab�;

(69)

TABLE III. The critical value for the rotation parameter, acrit, for which the superradiant factor
vanishes, $ 0, for three different values of 	. The other values not specified in the table are
2M � 1, � � arctanh�1=

���
2
p
�, and l � m � 1, N � 0. For a < acrit, the instability is not active

because superradiance is no longer present.

	 acrit 4�TH$ Re
!� Im
!� a2�	2 �!2� !a 	2r2
�

0.50 0:1985 0� 0.499 88 4:79� 10�15 5� 10�6 0.099 0.23
0.10 0:0414 0� 0.099 99 2:44� 10�21 3� 10�10 0.004 0.01
0.01 0:0043 0� 0.009 99 6:28� 10�30 3� 10�16 0.000 04 0.0001
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where d�2 is the line element of a 2-sphere, ni is a radial
unit vector in the transverse subspace, ��� is the flat space
metric, and h�� � g�� � ��� is the deviation of the
asymptotic metric from flat space. The index labels a, b,
c 2 ft; zg, while i, j run over the transverse directions. To
apply this formula, the asymptotic metric must approach
that of flat space in Cartesian coordinates. In the a� r�
limit, this is accomplished by applying the coordinate
transformation r � r̂
1� r�=�2r̂�� to (14) [15]. Using
(69), one finds that the total energy, angular momentum
along S1, and angular momentum along S2 are, respec-
tively, given by

 M̂ � 2�RTtt �
�
2
Rr��cosh2�� 1�;

Ĵ � 2�R2Ttz �
�
2
R2r� cosh� sinh�;

Ĵ� � 2�RTt� � �Rr�a cosh�:

(70)

Using these conserved charges we can rewrite (68) as

 Ĵ � &
k
m

�
r�
R

�
2
�
R
�
M̂�

�r�R
2

�
� Ĵ 

�
: (71)

Here, we confirm that for large radius rings the super-
radiant instability imposes Ĵ� ! 0. Note that (71) also
suggests that Ĵ < R�M̂� �r�R

2 �. That is, doubly spinning
black rings will also have an upper bound for the angular
momentum along S1, contrary to what happens with the
black ring rotating only along S1. This upper bound on Ĵ 
is present in dipole black rings rotating along S1, and this is
an indication that a similar case should occur in the doubly
spinning black rings [8]. Relation (71) does not depend
only on the conserved charges. The string model depends
on four independent parameters, R, r�, �, and a, which
correspond, respectively, to the size of the loop, thickness
of the loop, tangential boost velocity along the loop, and
rotation transverse to the loop [15]. The system (70) gives
only three relations between the above four parameters for
a fixed configuration of conserved charges. The fourth
parameter is fixed by demanding that the ring acquires a
configuration that maximizes its entropy [15]. This last
quantity is computed using the area per unit length of the
horizon, AH, defined in (16). One finds that the entropy is
given by S � 2�RAH=4 � 2�2R�r2

� � a
2��

cosh� 2�2Rr2
� cosh�, where the last approximation is

valid in the small rotation regime. In the model of [15], it
was found that this entropy is maximized for � � �max 
0:709. Use of (70) now allows us to write both r� and R as
a function of the conserved charges. Then, the upper bound
for the ADM angular momentum along S2 can finally be
written as

 Ĵ � & 10�3�
�
M̂2

Ĵ 

�
3
; (72)

where we have set k=m 1, since we do not expect high

multipoles to be excited in a slowly rotating ring along �.
This is one of the main results of this paper. Basically, it is
telling us that the instability provides a dynamical mecha-
nism that bounds the rotation of the doubly spinning black
ring along S2.

It is important to note that the demand of a regular
horizon in the yet to be found doubly spinning black ring
will introduce a different upper bound for the rotation. The
question is then whether the upper bound imposed dynami-
cally by the instability is or is not smaller than the Kerr-like
upper bound imposed by the existence of a regular horizon.
To address this issue heuristically, and since Ĵ plays a
minor role in this instability, we make use of the black ring
that rotates along S2 (see Sec. II B [11]). The comparison is
more clear when the relations are written in terms of the
parameters a and M. We first rewrite (71) in terms of a
yielding a=M & 2M=R, in the limit � 0 and a� r�.
Next, we use the first relation of (13) in the first inequality
of (11) to write the horizon bound as a=M < 1 (as ex-
pected, since in the large radius limit this is the Kerr
bound). Therefore, for 2M=R & 1, the instability plays
an important role in the evolution of the solution, i.e., the
instability will afflict large radius black rings but not small
radius black rings.

Recently the existence of higher-dimensional black
rings with horizon topology S1 � Sn�2, with n � D� 4>
0 [47], has been conjectured. Evidence for this existence
has already been given in [15], where a toy model for these
objects was constructed. The large radius limit of these
higher-dimensional black rings will naturally be a boosted
Myers-Perry black string. We have searched for a similar
instability in these geometries but we have found no super-
radiant instability. The stability of the Myers-Perry black
string against this mechanism was established by Cardoso
and Yoshida [22]. We have concluded that boosting the
Myers-Perry black string does not change its superradiant
stability. Again, the best way to understand the reason is to
look to the Schrödinger-like wave equation and its factor-
ized potentials, as was done in Sec. V. Although super-
radiance is still possible, the instability for D> 5 is not
present because the KK momentum is not able to produce
trapped bound states. This is clearly seen in the
Schrödinger factorized potentials shown in Fig. 3(a).
Again we can extend the analysis to black rings with finite
radius. A similar reasoning as the one of the previous
paragraph together with the absence of instability leads
to the prediction that higher-dimensional doubly (multiply)
spinning black rings will not have a superradiant upper
bound for their rotations along Sn�2. The situation is some-
what similar to the Kerr/Myers-Perry black hole: the Kerr
and 5D Myers-Perry solutions have an upper rotation
bound but D � 6 Myers-Perry black holes do not.
However, we expect that another dynamical process—
the ultraspin mechanism [23]—might introduce a bound
in the rotation.
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It is also being conjectured that more general higher-
dimensional black rings with other topologies rather than
S1 � Sn�2 might exist [48]. An example would be a black
object with topology S�D�3�=2 � S�D�1�=2 in odd D dimen-
sions. In principle, the large radius limit of these multiply
spinning black objects will be a boosted Myers-Perry
membrane, i.e. (in the previous example), a
�D�3

2 �-dimensional Myers-Perry black hole extended along
D�3

2 flat boosted directions. These black rings will also be
stable against superradiant bound modes since the KK
contribution, due to the �D�3

2 �-brane on the wave equation,
is not effectively different from the one coming from a
single line. Indeed, the only difference in the potential (58)
is that the KK massive term is 	2 �

P
	2
i with i �

1; � � � ; �D� 3�=2, but this does not change the stability
results [22].
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APPENDIX A: GAMMA FUNCTION RELATIONS

In this appendix we derive some gamma function rela-
tions that are used in the main body of the text.

(i) We start with the relations needed to extract �
from the gamma functions that appear in (47) in
order to get (48).
The properties M�~a; ~b; 
 � 0� � 1 and ��x���1�
x� � �= sin��x� (with x � ~b� ~a and then with
x � ~b� 1) allow us to write (47) as
 

� �
le�
=2

�
sin
��~b� ~a��

sin��~b�

��~b� ~a�

��~b�

� 
1�~b ��~b� 1�

��~a�

�
: (A1)

Use of (46) with � 0 yields

 

sin
��~b� ~a��

sin��~b�

��~b� ~a�

��~b�
 ��1�n

�2l� 1� n�!
�2l� 1�!

:

(A2)

To simplify the second term in between brackets in

(A1), we use ��~a���1� ~a� � �= sin��~a� with ~a
defined in (46) to get
 

1

���n� i��
 �

n!

�
sin
��n� i���

 ��1�n�1n!i�; (A3)

where in the first approximation we used � 0 to
obtain ��1� n� i��  ��1� n�, and in the sec-
ond approximation we used sin�x� y� �
sinx cosy� cosx siny together with sin�i��� 
i�� (valid for small �).
The relations (A1)–(A3) allow us to go from (47)
into (48).

(ii) Finally, we derive the relations needed to make the
transition from (49) into (50). Use of ��1� x� �
x��x� yields
 

��l� 1� i2$�
���l� i2$�

� i��1�l�12$
Yl
|�1

�|2 � 4$2�;

���2l� 1�

���l�
� ��1�l�1 l!

�2l� 1�!
: (A4)

APPENDIX B: ANALYTICAL RESULTS FOR THE
UNBOOSTED CASE

In Secs. II, III, and IV, we have studied the instability of
a massless scalar field with KK momentum in the boosted
Kerr black string geometry. When we turn off the boost, the
problem is equivalent to the instability of a massive scalar
field in the Kerr black hole background, as long as we
identify the KK momentum with the mass of the scalar
field. This last problem was studied originally by Detweiler
[18]. To clarify this equivalence, and as a check of our
results, in this appendix we show that our analysis yields
the results of [18] when we set � � 0. In this case we can
give the quantitative features of the instability in an ap-
proximated analytical form.

When the boost is switched off, the second relation of
(39) becomes simply

  �
M	2������������������
	2 �!2
p : (B1)

Use of (45) in (B1) yieldsM	2=
������������������
	2 �!2
p

� l� N � 1�
i�. Letting ! � !R � i!I, one has 	2 �!2  	2 �!2

R
since !I � !R. Moreover, taking �� l� N � 1 one
gets

 !2
R � 	2

�
1�

�
	M

l� n� 1

�
2
�
; (B2)

and thus !R  	 since the results are valid in the regime
	M� 1. Moreover, differentiating (B1), � �
M	2�	2 �!2��3=2!�!, and use of !R  	, �! � !I

and (B2) yields

ÓSCAR J. C. DIAS PHYSICAL REVIEW D 73, 124035 (2006)

124035-16



 !I �
�
M

�
	M

l� n� 1

�
3
; (B3)

with � given by (50). Expressions (B2) and (B3) are

exactly the relations for the real and imaginary parts of
the unstable modes found originally by Detweiler [18], for
a massive scalar field with mass 	 propagating in the
unboosted Kerr background.
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