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A general geometrical structure of the entanglement entropy for spatial partition of a relativistic QFT
system is established by using methods of the effective gravity action and the spectral geometry. A special
attention is payed to the subleading terms in the entropy in different dimensions and to behavior in
different states. It is conjectured, on the base of relation between the entropy and the action, that in a
fundamental theory the ground state entanglement entropy per unit area equals 1=�4GN�, where GN is the
Newton constant in the low-energy gravity sector of the theory. The conjecture opens a new avenue in
analogue gravity models. For instance, in higher-dimensional condensed matter systems, which near a
critical point are described by relativistic QFT’s, the entanglement entropy density defines an effective
gravitational coupling. By studying the properties of this constant one can get new insights in quantum
gravity phenomena, such as the universality of the low-energy physics, the renormalization group
behavior of GN , the statistical meaning of the Bekenstein-Hawking entropy.
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I. FUNDAMENTAL ENTANGLEMENT

A. General properties

Quantum entanglement is an important physical phe-
nomenon in which the quantum states of several objects
cannot be described independently, even if the objects are
spatially separated. Quantum entanglement is used in dif-
ferent research areas [1]. In quantum information theory
entangled states are a valuable source of processing the
information. Quantum entanglement also plays an impor-
tant role in properties of strongly correlated many-body
systems and in collective phenomena such as quantum
phase transitions. In quantum gravity the entanglement
may be a key for understanding the mystery of the black
hole entropy.

The entanglement can be quantified by an entropy. One
can define it as the measure of the information about
quantum states which is lost when these states cannot be
observed. In many-body systems, which are the subject of
the present work, ‘‘observable’’ and ‘‘unobservable’’ states
can be located in different regions. Consider, for instance, a
lattice of spins being in a quantum state characterized by a
density matrix �̂. Suppose that the lattice is divided into
regions A and B with a common boundary B. The entan-
glement between the two regions can be described by the
reduced density matrix

�̂ B � TrA�̂;

where the trace is taken over the states of spin operators at
the lattice sites in the region A. The entanglement entropy
in the region B is defined as the von Neumann entropy

SB � �TrB�̂B ln�̂B: (1)

Analogously one can define the entanglement entropy SA
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in the region A by tracing the density matrix over the states
located in the region B. If the system is in a pure state j i,
i.e. �̂ � j ih j, it is not difficult to show that SA � SB,
see [2].

It has been observed long ago [2,3] (see also recent
works [4,5]), that in lattice models representing a discrete
version of a relativistic quantum field theory (QFT) the
ground state entanglement entropy in the leading order is
proportional to the area A of B,

S � SB �
A

%D�2 : (2)

Here % is the lattice spacing and D is the number of
spacetimes dimensions (it is assumed that D> 2). This
geometrical property of S follows from the fact that field
excitations in different regions are correlated across the
boundary.

B. Black hole entropy

If % is identified with the Planck length lPl, (2) looks
very similar to the Bekenstein-Hawking entropy of a black
hole

SBH �
AH

4GN
: (3)

Here AH is the area surface of the black hole horizon and
GN is the Newton constant, GN � lD�2

Pl . The similarity of
the two entropies suggests that SBH may be an entangle-
ment entropy, as was first pointed out in [2,3]. An external
observer, who is at rest with respect to a black hole, never
sees what happens inside the horizon. Because the observer
perceives the vacuum excitations in a mixed state it is
natural to assume that SBH measures the loss of the infor-
mation inside the horizon.

The reduced density matrix for a black hole is thermal
[6]. Thus, the entanglement entropy coincides with the
-1 © 2006 The American Physical Society
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entropy of a thermal atmosphere around the black hole
horizon (see [7] for a review of different interpretations of
SBH in terms of the entropy of quantum excitations).
However, relation between SBH and the entropy of entan-
glement (or thermal entropy) is nontrivial because S is
divergent. In the lattice regularization (2) diverges in the
continuum limit when %! 0. It was pointed out in [8,9]
that the divergences in S are the standard ultraviolet diver-
gences. If the entropy of thermal atmosphere is considered
as a quantum correction to SBH the divergences can be
eliminated in the course of renormalization of the gravita-
tional coupling.

A deep connection between the divergences in S and the
divergences in the quantum effective action has been es-
tablished latter for different field species at the one-loop
level [7]. This connection is very important. Suppose,
following the original idea by Sakharov [10], that the
Einstein action is entirely induced by quantum effects of
some underlying fundamental theory. Because the Newton
constant in this case has a pure quantum origin, so does the
entropy SBH. The hypothesis is that the entropy of a black
hole in such a theory is an entanglement entropy of funda-
mental quantum excitations which induce low-energy
gravity dynamics [11–13].

The mechanism of generation of the black hole entropy
in induced gravity may be quite general and, in particular,
it can be realized in string theory [14]. In string theory the
low-energy effective gravity action appears from the tree-
level diagrams of closed strings. From the point of view of
open strings these are one-loop diagrams. Thus, the gravity
action as well as the Bekenstein-Hawking entropy can be
interpreted as a pure loop effect. Another argument in favor
of entanglement interpretation of black hole entropy comes
from analysis of string theory on asymptotically anti–de
Sitter backgrounds and its duality to a conformal field
theory (CFT) [15,16].

C. Entanglement entropy in fundamental theories

The purpose of the present work is to look at these
results from a different perspective. Suppose the under-
lying fundamental theory of quantum gravity is known.
This can be a string-D-brane theory or some other theory
which correctly describes the observable particle physics
and gravitational effects. Consider a low-energy limit of
this theory and the entanglement entropy S in the ground
state for partition of the system in Minkowsky spacetime
by a plane. It is assumed that S measures entanglement of
all genuine microscopical degrees of freedom of the fun-
damental theory (which may not coincide with the low-
energy fields). We call such quantity the fundamental en-
tanglement entropy.

Because the space is infinite it is convenient to discuss
the density of S per unit area. Let us denote this quantity by
S. We make a conjecture that the density of the fundamen-
tal entanglement entropy is finite and is given precisely by
124025
the relation

S �
1

4GN
; (4)

whereGN is the Newton constant in the low-energy gravity
sector of the theory. The conjecture is based on the above
mentioned arguments:
(i) i
-2
n a fundamental theory the cutoff parameter % in
(2) should be of the order of the Planck length;
(ii) t
here are evidences that the Bekenstein-Hawking
entropy (3) is the entanglement entropy for partition
of the system by the horizon.
In what follows we discuss a more formal argument in
favor of (4). It is based on the observation that the black
hole entropy and the entropy of entanglement are derived
in a unique way from the effective gravity action.

Relation (4) has a number of interesting consequences.
One of them is that the definition of GN becomes not only
the subject of gravitational physics. The flat space entan-
glement is an alternative source of information about the
Newton constant. (In a certain sense the situation with
different definitions of GN can be compared with ‘‘gravi-
tational’’ and the ‘‘inertional’’ notions of the mass.)

In this paper we pay attention to the fact that relation (4)
can be used to study the properties of the gravitational
coupling by carrying the computations of the entanglement
entropy in condensed matter systems. There are higher-
dimensional condensed matter systems which near a criti-
cal point corresponding to a second-order phase transition
are described by relativistic QFT’s which contain massive
fields. The class of Ising models is one of such examples.
The QFT’s in these systems are analogous to low-energy
limit of the fundamental theory. The relativistic covariance
guarantees that the entanglement entropy density in the
near-critical regime determines an effective gravitational
coupling by the same equation as Eq. (4). The lattice
spacing in the underlying theory serves as a cutoff.
Hence the entanglement entropy is finite and can be calcu-
lated by using analytical and numerical methods. This
enables one to pose different questions about properties
of GN and try to find the answers in gravity analogs.

D. Outline of the paper

The rest part of the paper is organized as follows.
Section II is devoted to the entanglement entropy in rela-
tivistic QFT’s. The Section starts with discussion of one-
dimensional spin models which serve as an illustration. We
then establish connection between the entanglement en-
tropy S in relativistic QFT’s and the effective gravity
action, and use methods of the spectral geometry for
derivation of S. By studying the theories in a cubic region
we find a geometric form of S in different dimensions, at
zero and high temperatures. We pay a special attention at
boundary effects. Our result for the ground state entangle-
ment in four-dimensional space-times looks as follows:
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S�
A

%2 �
L

%
� C ln%; (5)

where A is the area of the separating surface B and L is
the length of the boundary of B. The last term in S has a
topological form. It depends on the number C of sharp
corners (vertexes) of the boundary of B and does not
change under smooth deformations of B. Calculation of
the subleading terms in (5) is the new result.

Relation of S to the Bekenstein-Hawking entropy in
induced gravity models in four dimensions is discussed
in Sec. III. We also discuss the concept of gravity analogs
and possible models which can be used to study properties
of the gravitational coupling on the base of relation (4).
There are several topics which can be pursued by using
simulations in the new class of gravity analogs. Some of
them such as the renormalization group behavior of GN ,
the universality of the low-energy physics and the statisti-
cal meaning of the Bekenstein-Hawking entropy are listed
in Sec. IV.
II. ENTANGLEMENT IN RELATIVISTIC FIELD
THEORIES

A. One-dimensional spin chains

We begin with discussion of the properties of the en-
tanglement entropy in one-dimensional spin chains.
Consider as a simplest example the entanglement entropy
for a block of spins in the Ising model. The Hamiltonian of
the model is

H �
XN
i�1

��xi�
x
i�1 � ��

z
i �; (6)

where N is the number of spins and �xi , �
z
i are the Pauli

matrices. Parameter � is the strength of external magnetic
field. At zero temperature the Ising chain has a second-
order phase transition at the critical value � � 1.

As is known, there is a unitary transformation (the
Jordan-Wigner transformation) which maps the spin mod-
els like (6) to one-dimensional models with two spinless
fermions. This transformation can be used to diagonalize
the Hamiltonian.

The entanglement entropy can be investigated for the
ground state when the chain is separated into two blocks of
contiguous spins of equal sizes N=2. Suppose that � is
fixed and N varies (N is much larger than the correlation
length). The behavior of S has been studied in two regimes
[17]. In the off-critical regime, � � 1 and j�� 1j � 1, the
entropy at large N reaches the saturation value

S�N; �� � �
1

6
log2j�� 1j: (7)

In the critical regime, � � 1, the entropy does not reach the
saturation and behaves at large N as
124025
S�N; �� ’
1

6
log2N=2: (8)

The explanation of these results is based on the fact that in
the continuous limit, N ! 1, the Ising model near the
critical point corresponds to a quantum field theory with
two fermion fields whose mass m (or the inverse correla-
tion length ��1) is monotonically related to j�� 1j. In the
critical regime m vanishes and one has a conformal field
theory with two massless fermions each having the central
charge 1=2.

Formulas (7) and (8) are quite general. They have been
verified in other exactly solvable one-dimensional statisti-
cal models (XXZ, XY and other models) which generalize
the Izing chain (6), see [17–19] and a review of results in
[20]. To discuss the continuum limit in lattice models it is
convenient to introduce the lattice spacing %. Then the
number of spins N defines the size of the system L �
N%. In the systems separated into two equal parts the
entropy at the critical points behaves as

S ’
c
6

ln
L
2%
; (9)

where c is a total central charge of the corresponding
effective two-dimensional conformal theory. Near the criti-
cal point the entropy behaves as

S ’
c
6

ln
1

%m
; (10)

where m is the corresponding inverse correlation length.
From the point of view of QFT % is the ultraviolet cutoff
parameter.

B. Entanglement entropy and effective gravity action

There are different ways to derive (9) and (10) by QFT
methods. Our purpose is to show how it can be done by
using the effective action approach. We first start with a
theory in a flat spacetime with arbitrary number of dimen-
sions D and then focus on theories in D � 2, 3, and 4.

The entanglement entropy (1) for a lattice system dis-
cussed in Sec. I A can be rewritten as

SB � �lim
n!1

@
@n

TrB�̂
n
B: (11)

Suppose that near a critical point the system is equivalent
to a QFT with field variables � whose dynamics is deter-
mined by the action IE��	. The density matrix �̂B in the
configuration representation depends on variables �B in
the region B. We consider the system at a finite-
temperature T. The result for the ground state entangle-
ment can be obtained in the limit T ! 0. The matrix
elements of �̂B can be described in terms of the
Euclidean path integral

h�0Bj�̂Bj�Bi �N �1
Z ���0B

���B

�D ~�	e�IE��	; (12)
-3
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where N is a normalization coefficient introduced to
satisfy the condition TrB�̂B � 1. The classical action
IE��	 is defined on a Euclidean space with Euclidean
time � compactified on a circle of length T�1. To be
more specific suppose that the partition of the space is
done orthogonally to one of the spatial coordinates, say
x1. Then regions A and B can be defined, respectively, as
�L=2< x1 < 0 and 0< x1 <L=2, the separating surface
is located at x1 � 0. Relative sizes of A and B can be
arbitrary in general. The integration in (12) goes over field
configurations � with the boundary conditions

��x1; . . . ; xD�1; � � 0� � �B�x1; . . . ; xD�1�;

��x1; . . . ; xD�1; � � T�1� � �0B�x
1; . . . ; xD�1�;

where x1 takes values in the interval �0; L=2�.
Let us denote by M0

1 the space where the field configu-
rations � are given. It is easy to see how M0

1 looks in two
dimensions. It is a cylinder (see the upper picture on Fig. 1)
with coordinates �x1; �� and a cut parallel to its axis, the
length of the cut is equal to the length of the interval B. The
field takes values �B, �0B on the lower and upper sides of
the cut, respectively. In higher dimensions the cut is a
(D� 2)-dimensional hyperplane.

If the parameter n in (11) is positive and integer the
matrix elements of the operator �̂B

n can be represented by
integral (12) where field variables are defined on a space
M0

n which is obtained by gluing n copies of M0
1 along the

cuts. M0
n still has a single cut which disappears when one
1/T

3/T
X

FIG. 1. The upper picture shows M0
1 in two dimensions. It is a

cylinder with the circumference length T�1 and a cut along the
axis. The space M3 is schematically drawn on the lower picture.
It is obtained by gluing along the cuts of 3 copies of M0

1. The
circumference length of the right boundary of M3 is 3T�1. The
cuts meet at the point X which is a conical singularity.

124025
takes the trace, TrB�̂
n
B. We denote the space obtained as a

result of this procedure as Mn. The lower picture on Fig. 1
shows M3 in two dimensions.
Mn is locally flat but has a nontrivial topology. Its

boundary in two dimensions consists of n circles of the
length T�1 each and a circle of the length nT�1. The
important property is that Mn has a singularity at a
hyper-surface where all n cuts meet. For n 
 2 each point
on this hyper-surface is the conical singularity because a
unit circle around it has the circumference length equal
2�n.

The singular behavior of Mn is easy to see in two
dimensions. Mn has the same topology as a disk with n
holes. Thus, its Euler characteristic,

��Mn	 �
1

4�

�Z
Mn

R� 2
Z
@Mn

k
�
;

equals 1� n. The boundary @Mn of Mn consists of n� 1
circles, each of which has a vanishing extrinsic curvature
k � 0. Therefore, the integral of the scalar curvature R for
Mn should be nontrivial for n 
 1,

Z
Mn

R � 4��1� n�:

The nonzero value of the integral is ensured by the conical
singularity. If this point is located at x � 0 the curvature is
the distribution R � 4��1� n�	�2��x�, see, e.g. [21].

Let us introduce the parameter 
 � 2�n and rewrite
(11) in another form following from (12),

SB � lim

!2�

�


@
@

� 1

�
��
�: (13)

��
� is the effective action defined by the path integral

e���
� �
Z
�D ~�	e�IE��;
	; (14)

where field variables are given on Mn. IE��;
	 is the
classical action on Mn. The normalization of the integral
(14) is fixed by the condition ��2�� � � lnN .

The operation with the parameter 
 in (13) should be
understood in the following way: one first computes ��
�
for 
 � 2�n, and then replaces 
 with a continuous
parameter. This can be done even if Mn itself cannot be
defined at arbitrary 
.

If one defines a ‘‘free energy’’ F�
� � ��
�=
 and
interpretes 
 as an inverse temperature, Eq. (13) formally
coincides with the definition of the entropy in statistical
mechanics. Note, that 
�1 is a ‘‘geometrical temperature’’
which should not be confused with the physical tempera-
ture T.

C. Spectral geometry on Mn

The expression of the entanglement entropy in terms of
the effective action has a number of advantages. It enables
one to reformulate the problem on the geometrical lan-
-4



FIG. 2. This figure shows division of a cube by a plane B. The
trace is taken over the states of a QFT in one of the halves of the
cube.
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guage and use powerful methods of the spectral geometry
to study the form of the entropy.

Consider a Laplace operator � � �r2 on Mn and the
trace of its heat kernel, Tr e�t�, where t is a positive
parameter. The spectral geometry relates the asymptotic
of the trace at small t to integral geometrical characteristics
of Mn,

Tr e�t� �
1

�4�t�D=2

X
n

antn; (15)

where n takes non-negative integer and half-integer values.
The coefficients an are expressed in terms of the powers of
the Riemann tensor and its derivatives, and include bound-
ary terms (see, e.g., [22]). The coefficients also depend on
the singularities of the background manifold such as jumps
of the curvature, sharp corners, and so on. The effect of
conical singularities appears starting with the coefficient
a1. For scalar and spinor Laplacians in two dimensions
[23]

a1 �
�
3

�
2�


�



2�

�
�

1

3

Z
@M

k: (16)

For spaces Mn like those shown on Fig. 1 the extrinsic
curvature for each element of the boundary is zero and a1 is
determined only by the conical singularity. Other nonvan-
ishing coefficients in the asymptotic expansion for the heat
kernel on Mn in D � 2 are

a0 � lvol�Mn� � l
nL
T
� l


L
2�T

; (17)

a1=2 �
�������
4�
p

b�1=2

Z
@Mn

�
�������
4�
p

b�1=2

2n
T
�

�������
4�
p

b�1=2



�T

:

(18)

For scalars and spinors l � 1 and l � 2, respectively. The
numerical coefficients b�1=2 and b�1=2 � �b

�
1=2 correspond,

respectively, to the Dirichlet and Neumann conditions on
the boundaries of Mn. For the scalar Laplacian b�1 �
�1=4 and b�1 � �1=2 for the spinor Laplacian. The non-
trivial dependence on 
 in the first term in the r.h.s. of (16)
is the direct consequence of the conical singularity.

Consider now QFT in a (D� 1)-dimensional cube with
the Dirichlet or Neumann boundary conditions on its faces.
Let L be the length of the edge of the cube. Suppose we are
interested in the entanglement entropy associated with the
partition of the cube by a plane B which is orthogonal to
one of the faces and divides the cube into two equal parts,
as is shown on Fig. 2. Let us denote by M�D�

n a
D-dimensional manifold which appears in calculation of
the entanglement entropy in terms of the effective action
along the lines explained in Sec. II B.

In two dimensions M�2�
n is shown on Fig. 1. IfD> 2 the

manifold M�D�
n is the space product of M�2�

n and D� 2
intervals of the length L. For a scalar Laplace operator ��D�
124025
on M�D�
n one can write

Tr e�t�
�D�
� �KL�t��

D�2Tr e�t�
�2�
; (19)

where KL�t� is the trace of the heat kernel of the Laplace
operator on the interval [22]. The following asymptotics
hold at small t up to exponentially small terms

Tr e�t�
�2�
�

1

4�t
�a0 � a1=2

��
t
p
� a1t�; (20)

KL�t� �
1��������
4�t
p �L� 2b�1=2

��������
4�t
p

�; (21)

where an are given in (16)–(18). Therefore,

Tr e�t�
�D�
�

1

�4�t�D=2

XD=2

n�0

a�D�n tn; (22)

where coefficients a�D�n can be found from (20) and (21).
One can check with the help of (16)–(18) that the first
coefficients take the form

a�D�0 �



2�T
LD�1 � vol�M�D�

n �; (23)

a�D�1=2 �
�������
4�
p

b�1=2



�T
�D� 1�LD�2 �

�������
4�
p

b�1=2

Z
@M�D�

n

;

(24)
-5
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a�D�1 �
�
3

�
2�


�



2�

�
LD�2

� �
�������
4�
p

b�1=2�
2 

�T
�D� 1��D� 2�LD�3; (25)

a�D�3=2 �
�
3

�
2�


�



2�

�
�
�������
4�
p

b�1=2�2�D� 2�LD�3

� �
�������
4�
p

b�1=2�
3 

�T

22 �D� 1�!

3!�D� 4�!
LD�4; (26)

a�D�2 �
�
3

�
2�


�



2�

�
�
�������
4�
p

b�1=2�
22�D� 2��D� 3�LD�4

� �
�������
4�
p

b�1=2�
4 

�T

23 �D� 1�!

4!�D� 5�!
LD�5: (27)

The heat kernel coefficients for the spinor Laplacian have a
similar structure and can be found in analogous way.

Although our computations have been done in a simple
setting, the results can be easily generalized when M�D�

n is
an arbitrary curved manifold. We are particularly inter-
ested in the geometrical form of contributions to the heat
kernel coefficients from the conical singularities because
they yield a nontrivial value of the entanglement entropy.
These contributions depend on the factor ��2�=
� �
�
=2��� and appear in the coefficients an with n 
 1.
The geometrical structures related to conical singularities
in the coefficients a1, a3=2, and a2 are, respectively,

LD�2 �
Z
B
�A; (28)

2�D� 2�LD�3 �
Z
@B
� L; (29)

2�D� 2��D� 3�LD�4 �
Z

sing@B
� C: (30)

The separating surface B is a (D� 2)-dimensional mani-
fold. In general, it may have a boundary @B and the
boundary may consist of different hypersurfaces where
the curvature of @B has jumps. Integrals in the right
hand sides of (29) and (30) are taken, respectively, over
the boundary @B and codimension 1 singular hypersurfa-
ces inside @B. In the considered example of the theory in
the hypercube, B is a square if D � 4 (see Fig. 2). It has
the area A � L2 if the edge length is L. Its boundary @B
has the length 4L and consists of 4 singular points, the
vertexes of the square. If B is a D� 2-dimensional hyper-
cube, 2�D� 2� is the number of its ‘‘faces’’ and 2�D�
2��D� 3� is the number of its ‘‘edges’’.

D. Effective action and the entropy

Let us show now how the geometrical structure of the
entanglement entropy can be established by using the
effective action. We consider, as an example, a free scalar
124025
field theory in a cube divided into two parts, Fig. 2. The
effective action for a massive scalar field can be defined as
follows
� �
1

2
lndet����m2���2� � �

1

2

Z 1
%2

dt
t

Tr e�t�e�tm
2
;

(31)
where� is a dimensional parameter. The right hand side of
(31) gives the effective action in the Schwinger-De Witt
representation. The parameter % is a ultraviolet cutoff
which has a dimensionality of a length.

It is assumed that the correlation length m�1 of the
theory is much larger than %. Let us also assume that
m�1 is much smaller than the size of the system L. In
this case one can use for � an approximation which can be
obtained when the heat kernel is replaced by its asymptotic
(22).

Here and in what follows we use instead SB the notation
S because in the considered examples the regions A and B
are identical.
(1) D
-6
=2
In two-dimensional theories

���
1

8�

�
a�2�0 %

�2 � 2a�2�1=2%
�1 � �m2a�2�0 � a

�2�
1 �

 ln�m2%2� � �a�2�0 m
2 � a�2�1=2m

����
�
p
�

�
: (32)

In this expression we drop all terms which vanish in
the limit %! 0. To find the entropy one can apply
(13) to (32) and use (23)–(25). It yields

S��
1

12
ln�m2%2�: (33)

If % is identified with the lattice spacing, this result
coincides with computations in spin chains in the
near-critical regime, see (10). The central charge in
the given case is c � 1. Formula (33) is obtained for
the partition of the interval into two parts. It can be
easily generalized for more complicated cases when
the regions A and B consist of several disjoint
intervals. The effective action in this case is defined
on a 2D manifold M�2�

n with some number of han-
dles. Figure 3 shows M�2�

3 for tracing the degrees of
freedom in two disjoint internal intervals. As is easy
to understand the number of conical singularities
N c of M�2�

n equals the number of internal points
of the intervals. Each conical singularity yields an
independent contribution to the entropy. Thus, in
general case the result in the right hand side of
(33) has to be multiplied by N c [24].
(2) D
=3
In three-dimensional theories



FIG. 3. The manifold M�2�
3 is shown for computing the en-

tanglement entropy SB at a finite temperature when the region A
consists of two internal disjoint intervals. M�2�

3 is obtained by
gluing 4 copies of the manifold shown on Fig. 1. M�2�

3 has 4
conical singularities at branch points.
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���
1

16�3=2

�
2

3
a�3�0 %

�3 � a�3�1=2%
�2 � 2�a�3�1

�m2a�3�0 �%
�1 � �a�3�3=2 �m

2a�3�1=2� ln�m
2%2�

�

�
2

3
����
�
p a�3�0 m

3 � a�3�1=2m
2 �

����
�
p

a�3�1 m
��

(34)

and the entanglement entropy takes the form

S�
1

12
����
�
p

��
1

%
�

����
�
p

2
m
�
A� b�1=2 ln�m2%2�L

�
;

(35)

where we used (28) and (29). For the theory in the
square A � L, L � 2. The term in (35) which is
proportional to L has the following property: it does
not change under continuous deformation of the
separation surface B. This property is in agreement
with a more general behavior of the entanglement
entropy in three-dimensional theories which has a
topological part arising from short wavelength
modes localized near the boundary of B, see [25].
(3) D
=4
In four-dimensional theories

���
1

32�2

�
1

2
a�4�0 %

�4 �
2

3
a�4�1=2%

�3

� �a�4�1 �m
2a�4�0 �%

�2 � 2�a�4�3=2 �m
2a�4�1=2�%

�1

�

�
a�4�2 �m

2a�4�1 �
m4

2
a�4�0

�
ln�m2%2�

�

�
3

4
a�4�0 m

4 �
2

3
����
�
p a�4�1=2m

3 � a�4�1 m
2

�
����
�
p

a�4�3=2m
��
: (36)

Equations (23)–(30) give the following expression
for the entanglement entropy
124025-7
S�
1

48�

��
1

%2 �m
2�ln�m2%2� � 1�

�
A

� 4
����
�
p

b�1=2

�
2

%
�

����
�
p

m
�
L�

�
4

ln�m2%2�C

�
:

(37)

For a theory in the cube, L � 4L, C � 4. In general,
C is the number of singular points of the boundary
@B of the separation surface. The term in (37) which
is proportional to C does not change under the
continuous deformation of @B. Therefore, it is a
topological term similar to the subleading term in
the entropy in three dimensions.
Expressions (35) and (37) hold for relativistic theories.
In general, dispersion relations in condensed matter sys-
tems are not Lorentz invariant and are not linear. As a
result, the leading term in the ground state entanglement
entropy may have a more complicated dependence on the
area of the partition surface A than in (35) and (37). In
particular, an additional logarithmic coefficient pointed out
in [26–28] may appear in the scaling of the entropy.

E. Ground state entanglement at critical points

So far we assumed that the system has a nonvanishing
correlation length which is small compared to the size of
the system. At critical points the correlation length be-
comes infinite and approximations considered above do
not hold. In general, the effective action in this regime is
nonlocal and its computation is nontrivial.

The effective action � is the sum

� � �div � �ren:

�div diverges in the limit of vanishing cutoff % while the
‘‘renormalized’’ part �ren is finite at % � 0. The structure
of divergences �div can be found from (32), (34), and (36).
To obtain �div in the massless theory one has to leave in
(32), (34), and (36) only terms depending on % and take the
limit m � 0.

For critical systems whose size is parametrized by a
single parameter the renormalized part can be found by
using anomalous scaling properties of �ren. Let us consider
as before a free scalar field theory in a cube of the edge size
L. The effective action is � � 1

2 lndet���2. If one changes
the operator � to �0 � e2��, where � is a constant, the
renormalized part of the action for �0 can be written as

�0ren � �ren � �
a�D�n�D=2

�4��D=2
: (38)

This result can be easily obtained in the dimensional
regularization [29]. The last term in the right hand side
of this equation is known as conformal anomaly. In the
considered case the action is a function �ren�
;L; T;��. By
using (38) one can write
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�ren�
;L; T;�� � �ren�
;L0; �LT�=L0; ��

�
a�D�n�D=2

�4��D=2
ln
L
L0
: (39)

Analogously, the entanglement entropy can be written as

S � Sdiv � Sren; (40)

where Sdiv and Sren are divergent and finite parts which are
calculated, respectively, from �div and �ren by using
Eq. (13). According to (39), the renormalized part can be
written as

Sren�L; T;�� � Sren�L0; �LT�=L0; �� �
s�D�n�D=2

�4��D=2
ln
L
L0
;

(41)

s�D�n�D=2 � � lim

!2�

�


@
@

� 1

�
a�D�n�D=2: (42)

The part of the entropy Sren�L0; �LT�=L0; �� is determined
by �ren�
;L0; �LT�=L0; ��.

To get the entropy in the ground state one has to go to the
limit T ! 0. It is known from the lattice computations that
the entanglement entropy is finite at zero temperature. This
property implies that Sren�L0; �LT�=L0; �� in the zero tem-
perature limit should be a finite constant, C�L0; ��, which
does not depend on the size L. Therefore,

Sren�L; T � 0; �� �
s�D�n�D=2

�4��D=2
ln
L
L0
� C�L0; ��: (43)

By using Eqs. (25)–(27), (33), (35), (37), (42), and (43) one
finds the ground state entanglement entropy of a massless
scalar field for a theory in a cube in dimensions D � 2, 3,
4, respectively,

S�
1

6
ln�L=%�; (44)

S�
1

12
����
�
p �%�1A� 2b�1=2 ln�L=%�L	; (45)

S�
1

48�

�
%�2A� 4

����
�
p

b�1=2%
�1L�

�
2

ln�L=%�C
�
;

(46)

where we omitted constants which do not depend on the
parameters of the system. By comparing (33), (35), (37),
and (44)–(46) one can conclude that the size of the system
L in the massless theory plays the role of the infrared cutoff
analogous to the inverse mass. The result for the entropy in
two dimensions is in agreement with the entanglement
entropy in the critical spin chains, see (9) and the earlier
computations of the entropy in [30].

Although formulas (44)–(46) are obtained for the theory
of a free field, they should preserve their form in the
124025
presence of interactions. The logarithmic terms related to
the conformal anomaly should not receive corrections.

F. High temperature limit

The asymptotic of the entanglement entropy can be also
found in the opposite limit, TL� 1, T � m. In this limit
the main contribution comes from the modes with the wave
length of the order of T�1. The theory in this case is
extensive. Consider first the theory on an interval L divided
into two parts. The corresponding background manifold
M�2�

n is shown on Fig. 1. As before, let �ren�
;L; T;��
be a renormalized action on M�2�

n (
 � 2�n). Let
~��
0; L=2; T; ��, 
0 � 2�, be the action on the cylinder
of the length L=2. The space M�2�

n can be obtained by
gluing n cylinders of length L=2 and the circumference
length T�1 with the cylinder of length L=2 and the circum-
ference length nT�1. Because the theory in the high tem-
perature limit is extensive the action can be written as

�ren�
;L;T;���n~��
0;L=2;T;��� ~��
0;L=2;T=n;��:

(47)

This relation also holds in higher dimensions. It is not
difficult to show by knowing the free energy of a one-
dimensional gas on an interval that at high temperatures

~��
0; L=2; T; �� � �
�
6
�L=2�T:

(The effective action is a free energy divided by tempera-
ture.) Therefore,

�ren�
;L; T;�� � �
�



2�
�

2�



�
�
6
�L=2�T: (48)

At
 � 
0 this result coincides with the effective action on
the cylinder of the length L. The divergent part of the
effective action in this limit can be neglected and the
entropy can be determined from (48) with the help of (13),

S�L; T;�� �
�
3
�L=2�T: (49)

The entanglement entropy in the high temperature limit
coincides with the usual statistical entropy of the system of
the length L=2. A similar result was found in [24].

In three and four-dimensional spacetimes the effective
action for a scalar theory in a volume V at high tem-
peratures behaves, respectively, as ���3�VT2=�2��,
��2VT3=�90�, see [31]. From (47) one then finds high
temperature entanglement entropy for partition of a square
or a cube into two parts

S�L; T;�� �
3��3�
2�

VT2; (50)

S�L; T;�� �
2�2

45
VT3: (51)
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Here ��x� is the Riemann zeta function and V � LD�1=2.
In general case, V in (50) and (51) is the volume of that
region where the entanglement entropy is calculated. Note
that in this regime the entanglement entropy coincides
with the usual statistical entropy in the volume V, in
agreement with extensive properties of the system at high
temperatures.
III. FUNDAMENTAL ENTANGLEMENT AND
INDUCED GRAVITY

A. Induced newton coupling

According to Sakharov’s idea [10], the classical
Einstein-Hilbert gravitational action can be entirely in-
duced by quantum effects of matter fields on a curved
background. As an example, consider a model of a free
scalar field of the mass m with an ultraviolet cutoff %. The
model is defined on a curved manifold M with metric g�.
To keep connection with finite-temperature theories we
assume that g� has the Euclidean signature. For simplic-
ity we also assume that M is a compact closed manifold.
The effective action of the field can be found by using (31).
The heat kernel operator now has the following asymptotic
(see e.g. [22])

Tr e�t� �
1

�4�t�D=2

X
n

A�D�n tn; (52)

A�D�0 �
Z
M

���
g
p
dDx; A�D�1 ’

1

6

Z
M

���
g
p
dDxR; (53)

where g � detg�, R is the scalar curvature of M, n takes
non-negative integer values. The higher coefficients are
integrals of powers of the Riemann tensor and its
derivatives.

We consider theory in D � 4. If the curvature radius of
M is much larger than m�1 on can proceed as in Sec. II D
and get

���
1

32�2

�
1

2
A�4�0 %

�4 � �A�4�1 �m
2A�4�0 �%

�2

�

�
A�4�2 �m

2A�4�1 �
m4

2
A�4�0

�
ln�m2%2�

�

�
3

4
A�4�0 � A

�4�
1 m

2

��

’ �
1

16�G

Z
M

���
g
p
dDx�R� 2��: (54)

In the last line all terms related to A�4�2 were omitted. The
right hand side of (54) coincides with the classical
Einstein-Hilbert action where G and � are the induced
Newton and cosmological constants, correspondingly,

1

G
�

1

12�

�
1

%2 �m
2�ln�m2%2� � 1�

�
; (55)
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�

G
� �

1

8�

�
1

%4 �
2m2

%2 �m
4

�
ln�m2%2� �

3

2

��
: (56)

The constant G has the correct order of magnitude if the
cutoff parameter % is of the order of the Planck length.

By comparing (55) with (37) we conclude that, in accord
with the hypothesis (4), the induced Newton constant in
this simple model and the entanglement entropy of the
system in the flat space-time in a cube are related as

1

G
� 4 lim

L!1

S
A

: (57)

Here A � L2 is the area of the separation surface. The
result holds when the size of the cube is sufficiently large.

The reason why (57) takes place is because the conical
space possesses a curvature concentrated at the tip. Let us
consider the heat kernel coefficient a�D�1 , Eq. (25), for the
theory on M�D�

n and compare it with A�D�1 in (53). If 
 in
(25) is close to 2� then

a�D�1 ’
1

6
2�2�� 
�A� b:t: �

1

6

Z
M�D�

n

Rc � b:t:; (58)

where Rc � 2�2�� 
�	2�x� is the ‘‘curvature’’ of M�D�
n

concentrated at conical singularities on the hypersurface
x � 0. Notation ‘‘b.t.’’ stands for boundary terms which are
irrelevant for the computation of the entropy. Therefore,
the coefficients a�D�1 and A�D�1 have the same geometrical
form in this limit.

The similarity of the heat kernel coefficients on smooth
manifolds and manifolds with conical singularities at small
angle deficits is a quite general property. If the components
of the Riemann tensor are treated at the conical singular-
ities as distributions [21] the coincidence holds also for
higher heat kernel coefficients and for different field spe-
cies [32].

It should be noted that (57) does not hold for theories
with fields which have nonminimal couplings to the curva-
ture. A typical example is the scalar theory with the wave
operator �� �R, where � is a constant and R is the scalar
curvature. The coefficient a�D�1 does not depend on �
because, by the construction of the effective action ��
�
in Sec. II B, the wave operator on M�D�

n coincides with the
Laplacian �. However, the coupling changes the heat
kernel coefficients on curved manifolds. In particular, the
multiplier 1

6 in A�D�1 in (53) is replaced by 1
6� �.

It is still an open question whether the entanglement
entropy in a physical theory depends on the nonminimal
couplings. The answer to it may be related to the procedure
of the measurements of the energy (a discussion of the
topic can be found in [13]). In what follows we consider
theories without nonminimal couplings.
-9
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FIG. 4. This figure is based on results of [36]. It shows the
dependence of the entanglement entropy in the Ising spin chain
(6) at a fixed N as a function of magnetic field strength �. The
critical point � � 1 is ultaviolet fixed point. The arrows show
directions of the RG flow from the ultraviolet to infrared regions.

DMITRI V. FURSAEV PHYSICAL REVIEW D 73, 124025 (2006)
B. The gravitational coupling and analogue models
of gravity

It is natural to suggest that a fundamental gravity theory
and a simple model with a cutoff considered in the previous
Section share two features: (i) in the both cases the low-
energy gravity sector is a pure effective theory and equa-
tions for the metric tensor are determined entirely by the
polarization properties of the physical vacuum; (ii) the
theories do not have a problem of the ultraviolet
divergences.

The string theory which is considered as one of the
candidates to the role of the fundamental theory has these
features. The second property ensures that the induced
Newton coupling GN is finite and can be expressed in
terms of microscopical parameters. If the nonminimal
couplings are absent GN can be derived from the ground
state entanglement in a flat spacetime by using (57).

To get more intuition about quantum gravity it makes
sense to study other models where the effective Newton
coupling can be calculated with the help of (57). One of the
possibilities is to consider condensed matter systems which
are higher-dimensional generalizations of spin chains dis-
cussed in Sec. II A. The requirements to the models are:
(i) the models are lattice theories; (ii) they have critical
points which correspond to second-order phase transitions;
(iii) near the critical points the models are described by
relativistic QFT’s with massive fields.

The cutoff in this type of models is the lattice spacing.
The entanglement entropy is finite and it can be computed
numerically. The third requirement guarantees that in the
near-critical regime one can use results of Sec. II D to get
the leading asymptotic of the entropy. One can use for this
purpose an effective QFT (not the underlying lattice theory
itself ). Then the density of the entropy per unit area yields
the induced gravitational coupling (relation (57)).

One of examples of such systems are higher-
dimensional Ising models which are known to be equiva-
lent in the critical regime to scalar field theories with self-
interactions [33]. The models are also interesting for other
reasons. The behavior of the most part of known second-
order phase transitions is equivalent at the critical point to a
three-dimensional (3D) Ising model [33]. There are also
indications that Ising models can be represented as theories
of random (hyper) surfaces. In particular, as was conjec-
tured in [33] near the point of the second-order phase
transition the 3D Ising model might be equivalent to a
noncritical fermionic string theory.

The two-dimensional Ising model is exactly solvable.
The reduced density matrix for the ground state entangle-
ment can be diagonalized. This property significantly sim-
plifies computations of the entropy. In higher dimensions
exactly solvable Ising models are not known. Thus, one has
to rely on numerical methods.

It should be noted that the role of condensed matter
systems as gravity analogs is known for many years but
124025
in a different context: to study quantum effects in the
external gravitational fields [34]. One of such effects is
the Hawking radiation. Under certain conditions sound
waves in a liquid Helium or in Bose-Einstein condensates
behave as scalar excitations propagating in an effective
curved background with a metric similar to that near a
black hole horizon (see, e.g., [35] and references therein).

Let us emphasize that because we are interested only in
the behavior of the Newton coupling we do not need to
introduce any metric (or its analog) in the condensed
matter system. To determine the coupling it is sufficient
to study the response of the effective action in flat space to
introduction of conical singularity.
IV. APPLICATIONS

A. RG-flow of the gravitational coupling

The knowledge of entanglement entropy as a function of
parameters of the theory can be used to find renormaliza-
tion group (RG) evolution of the induced Newton constant.
This information is important for understanding the behav-
ior of gravitational interactions at different scales.

Consider as an illustration a one-dimensional spin chain.
It has a compact momentum space with the radius �p �
2�=% determined by the lattice spacing %. The Wilson RG-
transformation implies integration over high-energy modes
with momenta in the interval t�1 �p � p � �p (with t > 1)
followed by rescaling, p to p0 � tp. As a result one gets a
theory with larger masses. For the Ising model (6)
with � � 1 this is equivalent to increasing the difference
j�� 1j. The RG-transformation drives the theory away
from ultraviolet fixed point � � 1.

The RG-evolution of the entanglement entropy for the
Ising model is known precisely [36]. The dependence of
the entanglement entropy in the Ising spin chain (6) at a
-10
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fixed N as a function of magnetic field strength � is shown
on Fig. 4. This behavior is in accord with a general prop-
erty: in unitary theories the entanglement entropy should
not increase along the RG flow because RG transforma-
tions eliminate contribution of the high-energy modes.

The fact that the entropy is not increasing does not imply
the same property for the induced coupling G�1 defined by
(57). The coupling behaves as the density of the entropy,
G�1�t� � tD�2f�t�, where D is the number of space-time
dimensions and f�t� is a function which has the same RG-
evolution as the entropy. In three-dimensional model dis-
cussed in Sec. II D the induced gravitational coupling
defined by (57) increases under RG-evolution. On the other
hand, in four-dimensional model the gravitational coupling
decreases which means that gravitational interactions get
weaker in the infrared region.

B. The scaling hypothesis

The scaling hypothesis in classical critical phenomena
asserts that the physics is determined by large scale fluc-
tuations which do not depend on the underlying micro-
scopical details. For instance, in a magnetic at temperature
T in an external field h which undergoes a second-order
phase transition the physical properties are determined by
the large domains of aligned spins. The microscopic
atomic scale does not enter thermodynamical relations
near the critical point T � Tc. Nonanalytic dependence
of the physical quantities on jT � Tcj is entirely deter-
mined by a ‘‘singular part’’ of free energy density fsing.
This part has a universal scaling

fsing�t; h� � ���D�1�f��h�
�dh�;

where �� jT � Tcj� is the correlation length and dh is
the scaling dimension of h. Functions f� are universal in a
sense they coincide for different systems from the same
class.

Let us denote by Sren the surface density of the renor-
malized part of the entanglement entropy in the ground
state, see Sec. II E. This is the part of the entropy which
remains finite in the limit % � 0. In general, Sren is a
function of external fields h, and other parameters, g,
driving the phase transition of the system at g � gc. By
using analogy with the classical scaling one can conjecture
that near a critical point Sren has the following scaling [38]

S ren�g; h� � ���D�2�s��h��dh�; (59)

where � � jg� gcj� is the correlation length, dh is the
scaling dimension, and s� are universal functions. It can be
also suggested that the divergent part of the entropy is
analytic in g.

One can check the validity of these statements in scalar
field models discussed in Sec. II D In the limit when the
edge size L of the cube is large one finds from (35) and (37)
that s� � �1=�24� in D � 3 and s� � �1=�24��
ln�m=�� in D � 4.
124025
In analogue models of gravity the universality conjec-
ture (59) means that the part of the induced Newton cou-
pling (57) which does not depend on the cutoff is a
universal function. This part of the coupling can be deter-
mined entirely in terms of an effective low-energy QFT and
it does not depend on the details of the underlying micro-
scopic theory.

C. The problem of black hole entropy

Studying entanglement in gravity analogs might be help-
ful for understanding the microscopical origin of the
Bekenstein-Hawking entropy SBH of black holes. As was
discussed in Sec. I B, if the gravity is entirely induced
by some underlying degrees of freedom the entropy of a
black hole can be related to the entanglement between
observable states and states hidden inside the horizon.
Understanding the relation between the two entropies in
the framework of a local relativistic quantum field theory is
plagued by the problem of the ultraviolet divergences. The
definition of the induced Newton coupling either requires
introduction of the ultraviolet cutoff or working with a
special class of ultraviolet finite theories with nonminimal
couplings [12], [13]. The presence of nonminimal cou-
plings makes statistical interpretation of SBH a difficult
task.

The equality of SBH to the fundamental entanglement
entropy S is implied in suggestion (4). One of the argu-
ments why it should be true is that both in classical and in
quantum theory the Bekenstein-Hawking entropy can be
derived by the conical singularity method from the gravi-
tational action (see e.g. [7,21]), in the same way which we
employed for calculation of S.

If equality (4) holds one has a tool to learn more about
the degrees of freedom responsible for the origin of SBH by
using gravity analogs. There are different questions which
can be addressed in different models. For instance, can one
relate these degrees of freedom in the 3D Ising model with
noncritical stings, do the near-horizon symmetries play any
role in the entropy counting as was suggested in [37], and
other questions.
V. SUMMARY

This paper has two purposes. First, we wanted to show
how the effective action approach and the methods of
spectral geometry can be applied for derivation of the
entanglement entropy in condensed matter systems in the
regimes when these systems can be described by relativis-
tic QFT’s. In particular, such regimes appear in the vicinity
of the second-order phase transitions. By using the effec-
tive action approach we established the form of the entan-
glement entropy in the presence of boundaries at zero and
high temperatures. Our new result is establishing the geo-
metrical structure of the subleading terms in the entropy,
Eq. (5).
-11
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Second, we showed that in the effective action approach
the black hole entropy and the entanglement entropy have
the same geometrical origin, the conical singularities of a
background manifold. On this base we conjectured (and
this is the main result of the paper) that the surface density
of the fundamental entanglement entropy in the genuine
quantum gravity theory and the low-energy gravitational
couplingGN are related by (4). Finally, we suggested to use
this relation to study the properties of GN in analogue
124025
gravity models and pointed several topics where this kind
of research could be interesting.
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