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Higgs mechanism for gravity. II. Higher spin connections
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We continue the work of [Phys. Rev. D 72, 024001 (2005)] in which gravity is considered as the
Goldstone realization of a spontaneously broken diffeomorphism group. We complete the discussion of
the coset space Diff �d;R�=SO�1; d� 1� formed by the d-dimensional group of analytic diffeomorphisms
and the Lorentz group. We find that this coset space is parametrized by coordinates, a metric, and an
infinite tower of higher-spin or generalized connections. We then study effective actions for the
corresponding symmetry breaking which gives mass to the higher spin connections. Our model predicts
that gravity is modified at high energies by the exchange of massive higher spin particles.
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I. INTRODUCTION

Gauge field theories have a long and successful history
in elementary particle physics. As it is generally known,
the starting point for gauging is the experimental observa-
tion of a conserved charge which, via Noether’s theorem, is
related to a rigid symmetry. In particular, a conserved
energy-momentum current corresponds to the invariance
under global space-time translations. Since energy mo-
mentum is the source of gravity, one expects the gravita-
tional interaction to emerge from gauging the global
translational symmetry. Indeed, general relativity (GR)
can be derived by gauging the translational group as was
first conclusively shown in [1]. The gauge status of gravity
remains however rather subtle, see e.g. [2–6] and many
references therein.

In this paper we adopt the view that gauge theories of
gravity describe only the low-energy effective, i.e. mass-
less degrees of freedom of a more general gravitational
theory featuring a spontaneously broken space-time sym-
metry. This view is based on a theorem in [7] which states
that the gauge theory associated with a local groupGloc can
be obtained by the nonlinear realization of the correspond-
ing infinite-parameter group G with the Poincaré group H
being the vacuum stability group. The Minkowski metric
�ij is assumed to be given from the beginning. Mech-
anisms for the selection of the signature of the metric
have been proposed in [8,9].

Let us illustrate the theorem for the case in which Gloc is
the local translational group T�d� in d dimensions. By
construction, the group T�d� is locally isomorphic to the
infinite-parameter group Diff �d;R� of analytic diffeomor-
phisms [10]. Then, according to the theorem of [7], the
(simplest) gauge theory of the translational group Gloc �
T�d�, general relativity, can be derived by nonlinearly
realizing G � Diff �d;R�.

The key observation in the proof of this theorem is that
the gauge potential of Gloc, here the tetrad ei

j, can be
06=73(12)=124023(17) 124023
identified with a parameter of the coset space G=H. In
fact, applying the nonlinear realization method [11]
adapted to space-time groups [12–15], one finds that
G=H is parametrized by the field hij and an infinite tower

of fields �s�!i
j1...jsk

(s > 1). The exponential of hij, ej
i �

�eh�ij transforms exactly as a tetrad [13]. The translational
gauge potential thus arises as one of the Goldstone fields of
a spontaneously broken diffeomorphism invariance.

This was first explicitly shown by Borisov and
Ogievetsky [16]. These authors used the fact that the
infinite-dimensional algebra of analytic diffeomorphisms
can be represented as the closure of two finite-dimensional
algebras [10]. This splitting, however, impeded the discus-
sion of the remaining Goldstone fields �s�!. It was pointed
out later in [7] that the fields �s�! may acquire mass
through a Higgs effect, leaving the tetrads as the only
massless degrees of freedom. Since gauging translations
only provides the tetrads but not the massive fields �s�!, the
gauge principle leads to the correct low-energy effective
theory, at least as long as the masses of �s�! are high
enough. However, if one takes the idea of a spontaneously
broken diffeomorphism invariance seriously, the gravita-
tional interaction will be modified at high energies by the
exchange of massive fields �s�!.

This paper is devoted to the study of these coset fields
and the construction of a spontaneous symmetry-breaking
mechanism [17] for the diffeomorphism group. (For brev-
ity, we will refer to it as ‘‘Higgs mechanism,’’ although this
terminology is unfair, see Refs. [17].) To gain some insight
into this Higgs mechanism, we first complete the nonlinear
realization of Diff �d;R� studied in [16,18,19] by providing
the complete transformation laws for all coset fields of
Diff �d;R�=SO�1;d�1�. We find that the fields �s�! natu-
rally generalize the concept of a linear connection; the
transformation law is inhomogeneous and contains the
s� 1th derivative of the diffeomorphism parameter "i�x�.
-1 © 2006 The American Physical Society
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The nonlinear realization will also provide gauge trans-
formations of the (linearized) form

�1�!0ijk �
�1�!ijk � @khij; (1)

�s�!0ij1...jsk
� �s�!i

j1...jsk
� @k

�s�1�!i
j1...js

�s > 2�;

(2)

which show a mutual absorption of the Goldstone fields
�s�!i

j1...jsk
and hij. The generalized connection �s�! of level

s eats the connection �s�1�! of level s� 1, while the
ordinary connection �1�!i

jk absorbs the metric hij. This

will give mass to each of the generalized connections �s�!
(s > 2) and �1�!

�ij�k. As the field with the lowest spin in the
coset space, the metric remains massless.

In the second part of the paper we model the gravita-
tional Higgs mechanism by concrete actions. We restrict
here to find actions for the lowest two absorption processes
given by Eqs. (1) and (2) for s � 1, 2. We consider these
models as describing only a part of the full Higgs mecha-
nism for the complete diffeomorphism group which, in full
generality, appears to be quite complex.

The first model we present describes the breaking of the
linear group GL�d;R� � Diff �d;R� down to the Lorentz
group SO�1; d� 1�. Here we assume that the generalized
connections �s�! with s > 2 have already been decoupled
and we are left with a massless linear connection �1�!i

jk of
an effective affine space-time. The breaking of the tangen-
tial group GL�d;R� will then be induced by the introduc-
tion of the metric as a Higgs field. This involves the
absorption process (1) by which the symmetric part
�1�!0

�ij�k of the connection acquires mass.
The model is largely based on that given in [19]. There

are two essential improvements: (i) We explicitly show that
the Higgs mechanism leads to a massive spin-3 field asso-
ciated with the totally symmetric field �1�!0�ijk�. (ii) The
field which was introduced in [19] as a kind of gravitational
analog to the (so-called) Higgs particle plays now the role
of an auxiliary field in the Singh-Hagen formulation [20] of
the massive spin-3 field. We therefore do not predict a new
Higgs particle.

The second model describes the absorption process (2)
for s � 2 by means of which the field �2�!0ij1j2k

becomes
massive. The model is along the lines of the so-called
‘‘telescopic Higgs effect’’ (see [21] and references
therein), more recently also known as ‘‘La Grande
Bouffe’’ [22]. Here we aim at the more modest goal of
constructing the Stückelberg Lagrangian for the massive
field �2�!0ij1j2k

.
In the last part of the paper, we discuss a possible

relation between the coset fields �s�! and higher spin
connections as first introduced in the gauge formalism of
higher spin fields in [23]. Note that a relation between the
124023
latter formalism and the nonlinear realization approach
was recently pointed out in [24]. We also show that a space
endowed with generalized connections satisfies the strong
equivalence principle and is equivalent to a space-time
with a velocity-dependent affine connection.

The paper is organized as follows. In Sec. II we study the
coset space Diff �d;R�=SO�1; d� 1� by means of the non-
linear realization approach [11]. We also discuss the
double role of Goldstone fields in gravity as absorber fields
and fields which get absorbed by other Goldstone fields. In
Sec. III we construct Higgs models which lead to a ultra-
violet modification of general relativity. In Sec. IV we
discuss a possible link between the generalized connec-
tions �s�! and higher spin connections known from the
literature. We also discuss the geometrical structure of a
space-time equipped with generalized connections. We
conclude in Sec. V with some final remarks and open
questions.

II. NONLINEAR REALIZATION OF THE
ANALYTIC DIFFEOMORPHISM GROUP

In this section we consider the (left) coset space
Diff �d;R�=SO�1; d� 1� formed by the d-dimensional
group of analytic diffeomorphisms Diff �d;R� and its sta-
bilizing Lorentz subgroup SO�1; d� 1�. We show that the
coset space is parametrized by a coordinate field, a metric
and an infinite tower of generalized connections.

A. Review on the diffeomorphism algebra

We begin by briefly reviewing the algebra of analytic
diffeomorphisms. The diffeomorphism algebra is gener-
ated by an infinite tower of generators F�m�j1...jm�1

i (m �
�1; . . . ;1) which are symmetric in the m� 1 upper in-
dices. The lowest generators are the translations Pi �
F��1�
i and the generators of the linear group Li

j � F�0�ji .
Generators F�m�j1...jm�1

i with m > 1 generate nonlinear
transformations.

The corresponding diffeomorphism algebra diff �d;R� is
given by the commutation relations

�F�n�i1...in�1
k ; F�m�j1...jm�1

l 	 � i
Xm�1

a�1

�jak F
�m�n�i1...in�1j1...ĵa...jm�1
l

� i
Xn�1

a�1

�ial F
�m�n�i1...îa...in�1j1...jm�1
k ;

(3)

where indices with a hat are omitted. We easily identify the
Lorentz (sub)algebra

�Mij;Mkl	 � i�j�kMl	i � i�i�kMj	l; (4)

with Lorentz generators Mij � L
�i
k�j	k � F�0�k

�i �j	k. We
denote complete strength-one antisymmetrization on indi-
ces by using square brackets, while complete strength-one
-2



1For a general linear connection !i
jk, the totally symmetric

component !�ijk� is nonvanishing. See [25] for recent works in
metric-affine theory of gravity, where exact solutions are built
that display a propagating spin-3 component of the linear
connection.
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symmetrization is denoted by curved brackets. For ex-
ample, F�0�k

�i �j	k �
1
2 �F

�0�k
i �jk � F

�0�k
j �ik�.

B. The coset space Diff �d;R�=SO�1; d� 1� and
generalized connections

The coset space G=H � Diff �d;R�=SO�1; d� 1� is pa-
rametrized by the fields �i (d parameters), hij (d�d� 1�=2

parameters), and an infinite set of fields �s�!i
j1...jsk

(s > 1),
each with

d
d� s
s� 1

� �
(5)

components. These fields are associated with broken trans-
lations Pi, shear transformations and dilations Tij � L�ij�,

and generators F�s�j1...jsk
i (s > 1), respectively.

As was shown in [18,19] the parameters �i transform as
coordinates under the diffeomorphism group,

��i � "i���; (6)

with "i��� the parameters of Diff �d;R�. As explained in
detail in [19], the breaking of translations makes the pa-
rameters of Diff �d;R� dependent on the coordinates �i and
turns the coset parameters into space-time dependent
fields. For a recent discussion on the tight link between
the coset fields �i and space-time coordinates, see [5].

The transformation behavior of the coset field hij��� has
been known since the very first publications on nonlinear
realizations of space-time groups [12,16]. It is usually
given for the exponential

ej
i � �eh�ij � �ij � h

i
j � h

i
kh

k
j=2� . . . (7)

which transforms as a tetrad [16]. From now on we will be
using Greek indices for the Minkowski metric ��� and
define a space-time metric, as usual, by

gij � ei
�ej

����: (8)

Finally, the field !i
jk��� associated with F�1�jki was

shown to transform as a linear connection under the diffeo-
morphism group [18,19],

�!i
jk �

@"i

@�m
!m

jk � 2
@"m

@��j
!i

k�m �
1

2

@2"i

@�j@�k
: (9)

Since !i
jk is symmetric in the indices j and k, there is no

torsion.
So far not much attention has been paid to the fields

�s�!i
j1...jsk

associated with the nonlinear generators F�s�

with s > 1. These fields are completely symmetric in the
lower s� 1 indices, which is ultimately a consequence of
the assumed commutativity of the coordinates of Rd [19].

Using the general nonlinear realization technique [11–
16], in App. Awe compute the infinitesimal transformation
law for the fields �s�!i

j1...jsk
. We obtain
124023
�"�s�!i
j1...jsk

� "im�s�!m
j1...jsk

� �s� 1�"m
�j1

�s�!i
j2...jsk�m

� "ij1...jsk
�O��s�1�!�; (10)

with

"ij1...js
�

1

s!
@s"i

@�j1 
 
 
 @�js
; (11)

which generalizes Eq. (9) (s � 1) to arbitrary values of s.
The left-hand side (l.h.s.) of Eq. (10) is defined to be
�"�s�!i

j1...jsk
� �s�!0ij1...jsk

��0� � �s�!i
j1...jsk

���. We iden-
tify Eq. (10) with the transformation behavior of a gener-
alized connection: The first line in Eq. (10) is the tensor
part of the transformation, while the first term in the second
line shows the inhomogeneity which contains the s� 1th
derivative of the diffeomorphism parameter "i��� [18]. The
finite form of the transformation law is given by

�s�!0ij1...jsk
�
@�0i

@�m
@�l1

@�0j1

 
 


@�ls

@�0js
@�n

@�0k
�s�!m

l1...lsn

�
@�l1

@�0j1

 
 


@�ls

@�0js
@�n

@�0k
@s�1�0i

@�l1 
 
 
 @�ls@�n

�O��s�1�!�: (12)

Upon substituting �0i � �i � "i��� with "i��� small into
(12) and redefining �s�!! ��s� 1�!�s�!, we regain the
infinitesimal transformation (10).

A new feature of the generalized connections is the
occurrence of additional terms in the transformation law
(10) which are summarized in O��s�1�!�. By using a
convenient bracket notation, in App. A we give an algo-
rithm to compute the complete transformation ��s�! in-
cluding all terms in O��s�1�!�. In general, these terms
contain connections of lower spin. For instance, the trans-
formation law for the connection ��2�!i

j1j2k
, Eq. (A13),

contains the term

2"il�j1
!l

j2k�
: (13)

This term involves the ordinary linear connection !i
jk

which has one index less than �2�!i
j1j2k

. Generalized con-
nections mix and cannot be considered independently from
each other.

In App. C we decompose the fields �s�!i
j1...jsk

with
respect to the general linear group and determine their
spin content. We find that, unless further constraints are
imposed, these fields describe several states of different
spin, where the highest state possesses spin s� 2. For
instance, the highest component of a general linear con-
nection !i

jk (s � 1) has spin 3, see e.g. [3].1 This leads us
-3



TABLE I. Goldstone fields parametrizing the infinite-
dimensional coset space Diff �d;R�=SO�1; d� 1�.

Broken symmetry Generators Geometrical field

Translations Pi � F��1�
i coordinates �i

Shears/dilations Tij � F�0�
�ij� metric gij

Nonlinear F�s�j1...jsk
i (s > 1) gen. connections

Transformations �s�!i
j1...jsk
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to the presumption that the generalized connections �s�!
are related to higher spin connections. For the construction
of actions, we will implicitly assume this relation. We will
come back to the possible link with higher spin connec-
tions in Sec. IVA.

In Table I we summarize the parameters of the coset
spaceG=H � Diff �d;R�=SO�1; d� 1� and give their geo-
metrical interpretation. We have shown that the fields �i,
hij, �1�!i

jk,
�2�!i

jkl, etc. can be regarded as coordinates,
metric, and an infinite tower of generalized connections,
respectively. As we will see in Sec. III, most of these
Goldstone bosons become massive though and decouple
at low energies. Einstein gravity results as the appropriate
low-energy effective theory of gravity.

As in [19] we define the space-time manifold M as that
part of the coset space G=H which is spanned by the
(global) translations. This part is parametrized by the
coordinates �i. If we wish to recover Einstein gravity at
low energies, we need to have local Poincaré invariance in
the tangent space of the manifold M. Local translational
invariance is ensured by the diffeomorphism invariance of
the manifold M, cf. Eq. (6).2 Local Lorentz invariance is
more subtle to see. Note that the vacuum stability group
H � Diff �d;R� is just the global Lorentz group. However,
in the present nonlinear realization the group H induces
local Lorentz transformations: Recall that in the transfor-
mation law for coset elements � 2 G=H [11,12],

g���� � ���0�h��; g�; (14)

the elements h 2 H depend nonlinearly on g 2 G and the
coset parameters �. Since global translations are broken,
the group elements h depend, in particular, on the coordi-
nates �i, i.e. they are functions of �i, h � h��i; . . .�. We can
thus perform an independent Lorentz transformation at
each space-time point.

C. The total nonlinear connection

Let us now turn to the total nonlinear connection one-
form � which can be expanded in the generators of G �
Diff �d;R� as
2G can be considered as a principal H-bundle over G=H,
�: G! G=H. Recall from [19], Sec. III A that we gain local
translational invariance on M (i.e. on the base spaceG=H) at the
expense of losing global translational invariance in the fiber.

124023
� � i#�P� � i
X1
s�1

�s����1...�s
F�s�1��1...�s
� : (15)

In order to find the coefficients #� and ���1...�s
(s > 1),

we fix the stabilizing group to be H � SO�1; d� 1� such
that an element � of the coset space G=H is parametrized
by

� � ei�
mPmeih

ijTijei!
i
j1j2

F
�1�j1j2
i 
 
 
 ei

�s�!i
j1...js�1

F
�s�j1...js�1
i 
 
 
 :

(16)

The coefficients of the total nonlinear connection � �
��1d� are then given by the one-forms

#� � �e�1�k
�d�k; (17)

�1���� � �e
�1�k

�dek� � 2!�
��#

�; (18)

�2����1�2
� d!�

�1�2
� 3!�

�1�2�
#� �!�

�1�2
!�

��#
�

� 2!�
���1

!�
�2��

#� � �e�1�l
�del�!�

�1�2

� 2!�
���1j
�e�1�l

�del
j�2�

(19)

and for s > 3 by

�s����1...�s
� d�s�1�!�

�1...�s
� �s� 1��s�!�

�1...�s�
#�

�O��s�1�!2�: (20)

Here we used Latin (i; j; . . . ) and Greek (�;�; . . . ) letters
for holonomic and anholonomic (frame) indices, respec-
tively. O��s�1�!2� denotes terms of quadratic order and
higher in �s�1�!; �s�2�!; . . . ; �1�!. A general formula for
the coefficients �s����1...�s

is given to all orders by Eq. (B2)
in App. B. To evaluate Eq. (B2), one may use the bracket
notation introduced in App. A.

As spelled out in [19], the coefficients #� and �1���� can
be interpreted as the coframe and linear connection. Linear
connections can also be obtained by the gauging of the
linear group as first proposed in [26] and elaborated on in
metric-affine gravity [3], see also [27]. We observe that
nonlinear realizations of Diff �d;R� provide an alternative
derivation of the linear connection.

Note that it is not possible in the nonlinear realization
approach to single out a single generalized connection (or a
finite number of such connections). Assume we break only
a single generator F�s� which gives rise to a single connec-
tion �s�!. Then, terms of higher order would be absent in
Eqs. (10) and (20). However, the stabilizing subgroup H is
not closed in this case, since e.g. the commutator [F�s�1�,
F�1�] ends on F�s�. The nonlinear generators F�s� (s > 1)
can thus only be broken as a whole. This property is shared
by the higher spin algebras, see e.g. [28] and references
therein.
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D. Higgs phenomenon and double role of Goldstone
fields in gravity

For the following it is useful to recall the Higgs phe-
nomenon in elementary particle physics. For instance, in
U�1� gauge theory the gauge boson A	 (spin 1) becomes
massive due to the absorption of a Goldstone scalar 
.
Usually this is achieved by the U�1� gauge transformation

A0	 � A	 � @	
 (21)

turning the Goldstone field
 into the longitudinal mode of
the massive gauge boson A0	.

In the coset realization under consideration, the gravita-
tional analog of Eq. (21) is given by the coefficients of the
total nonlinear connection �. Equations (18)–(20) can be
regarded as redefinitions of the generalized connections.
There are basically two absorption processes:
(I) s
3Note
GL�d;R
G=H w
of G=H
�G=H a
� 1: The ordinary spin connection �1�!�
�k ab-

sorbs the degrees of freedom of the tetrad ei� as can
be seen from Eq. (18). Since the tetrads are related
to the shear and dilation parameters, this corre-
sponds to the breaking of GL�d;R� down to
SO�1; d� 1�.
(II) s
> 1: The generalized connections �s�! eat the
fields �s�1�! as described by Eq. (20). The connec-
tions �s�1�! parametrize the coset space
Diff0 �d;R�=GL�d;R�, where Diff0 �d;R� is the ho-
mogeneous part of the diffeomorphism group.
The absorption takes place in such a way that the fields
�s����1...�s

(s > 1) and �1��
���� ( � �G=H) turn into

rank-s� 2 tensors, while �1��
���	 ( � �H) remains a true

connection. Recall that the coset part �G=H of the total
connection transforms homogeneously under the diffeo-
morphism group, while �H is a true connection.3

The coset fields �s�! play a fascinating double role at the
absorption process as can be seen by linearizing Eq. (20):

�s����1...�sk
� @k

�s�1�!�
�1...�s

� �s� 1��s�!�
�1...�sk

:

(22)

Here �s�1�! behaves as a genuine Goldstone field which
gets absorbed by the field �s�!. The same field plays how-
ever a different role on the next lower level. Considering
Eq. (22) for s� 1 instead of s, we see that �s�1�! itself
absorbs �s�2�!. In this aspect it resembles more the char-
acteristic behavior of a gauge boson.

The fact that in gravity Goldstone bosons can also take
over the role of absorber fields is related to the ‘‘inverse
Higgs effect’’ [29], see also [30] for a recent review.
Goldstone’s theorem states that there is a massless mode
that, with G being Diff �d;R� and H being either
� or SO�1; d� 1�, the commutator of a generator of

ith a generator of H is a linear combination of generators
(making G=H a reductive coset), which ensures that

nd �H transform independently under G.
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for each broken symmetry. However, since some of the
Goldstone bosons can become massive for spontaneously
broken space-time groups [12], the theorem gives only an
upper bound on the number of massless Goldstone modes.

The standard example is the spontaneous breaking of the
conformal group SO�4; 2� down to the Poincaré group
ISO(1, 3) [12,30]. From the dimension of the coset space
one would expect five massless Goldstone bosons, one
corresponding to scale transformations and four corre-
sponding to special conformal transformations. However,
the special conformal parameter ’	 becomes massive by
the absorption of the dilaton
 as can be seen from the total
nonlinear connection component along the dilations �D �
’0	dx	 � �2’	 � @	
�dx	.

It is usually argued [29,30] that one can set the part �G=H
of the total nonlinear connection � to zero, �G=H � 0. This
gives relations among the coset fields, which reduces the
actual number of massless Goldstone fields. For instance,
setting �D � 0 in the above example implies that 2’	 can
be replaced by @	
. Note however that �G=H � 0 should
be interpreted as an effective equation, since one ignores
all massive Goldstone bosons (’0	 in the above example).
This constraint is justified only at energies much below the
mass of these Goldstone bosons.

In the realization considered in this paper, the relation
�G=H � 0 translates into �s�� � 0 (s > 1) and �1��

���� � 0.

The constraint �s�� � 0 (s > 1) relates all the generalized
Goldstone connections by

�s�1�!
���1	...�s�1k

�
2

s!
@�2

. . . @�s�1

�1�!
���1	k

: (23)

We have shown in [19] that by setting �1��
���� � 0, the

affine connection �1�����	k becomes metric compatible, i.e.
equivalent to the Christoffel connection. In this way all
higher spin connections are given in terms of derivatives of
the tetrad. We stress again that this is only true at low
energies, where all higher spin fields are assumed to be
decoupled.
III. HIGGS MECHANISM FOR GRAVITY

The spontaneous breaking of the diffeomorphism group
down to the Lorentz group gives rise to an infinite tower of
higher spin connections as well as to the metric. In this
section we construct actions for some parts of the corre-
sponding Higgs mechanism by which the higher spin con-
nections get massive. Assuming their decoupling at low
energies, general relativity results as the appropriate effec-
tive low-energy description of gravity.

A. The breaking of dilations and shear transformations

One part of the symmetry breaking of the diffeomor-
phism group is the spontaneous breaking of its linear
subgroup GL�d;R� � Diff �d;R� down to the Lorentz
-5
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group SO�1; d� 1�. In the following we propose a Higgs
mechanism for this breaking which shows the occurrence
of the metric as a Goldstone field in an affine space-time.
The model is largely based on that of [19]. Previous Higgs
models of the (special) linear group have been constructed
in [31,32].

We begin by assuming that all higher spin connections
have already been decoupled and we are left with a mass-
less connection �ijk of an effective affine space-time. This
connection is considered as an independent dynamical
variable and, in particular, does not depend on the exis-
tence of the metric. In this space-time the metric will be
introduced as a Higgs field which breaks the linear group
GL�d;R� in the tangent space. Recall from Sec. II B that
the breaking of shear and dilation invariance leads to the
metric as a Goldstone field.

We construct the Higgs sector as follows. In analogy to
the complex scalar � of U�1� symmetry breaking, the
breaking is induced by a (real) scalar field 
 and a sym-
metric tensor ’ij. Under the Lorentz group the tensor ’ij
decomposes into a scalar � and a traceless symmetric
tensor ĥij (10! 1� 9 in d � 4),

’ij � ĥij �
1

d
��ij; �ijĥij � 0: (24)

The singlet � has been introduced in analogy to the Higgs
field in U�1� symmetry breaking. The fields hij � ĥij �


d �ij are the d�d� 1�=2 Goldstone fields parametrizing the
coset space GL�d;R�=SO�1; d� 1�. In fact, compared to
the previous section, the coset fields hij associated with the
linear generators Tij have been rescaled and redefined so
that they now possess mechanical dimension m�d�2�=2

P . The
quantity �hij has no dimension, if � is the gravitational
constant appearing in Einstein-Hilbert’s action SEH�gij	 �
2
�2

R
ddx

�������
�g
p

R. In terms of the Planck mass mP, we thus

have � � m�2�d�=2
P . Similarly, the quantity �� is dimen-

sionless, and so are �’ij and �
.
For later convenience, we also introduce another pa-

rametrization for ’ij, which is the analog of the polar
parametrization for the complex scalar field � in the
U�1� Higgs mechanism:

’ij �
�
d
e��
gij; gij :� e�
�e� �h�ij: (25)

In order for both parametrizations (24) and (25) to define
one and the same field ’ij, it is easy to see that the real,
symmetric matrix �hij must satisfy one constraint.4 In other
4Being real and symmetric, �hij can be diagonalized by an
orthogonal matrix O: �h�ODO�1 where D � diag ��1; . . . ; �d�.
Now, the identification ĥij �

1
d ��ij � ’ij �

�
d �exp� �h	�ij im-

plies that ĥij �
�
d �

�h� 1
2!

�h2 � 1
3!

�h3 � . . .	ij. Finally, because
�ijĥij � 0, one can easily see that the above equation yieldsQd
n�1 �n � lnd, that is, one constraint on �h.
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words, the matrix �h possesses the same number of inde-
pendent components as does ĥ, viz. d�d�1�

2 � 1. The fields

and �hij may therefore as well parametrize the coset space
GL�d;R�=SO�1; d� 1�. The field
 parametrizes dilations
while �hij parametrizes SL�d;R�=SO�1; d� 1�. We will use
the metric gij and its inverse, denoted gij, to lower and
raise the indices.

It is then convenient to define the nonmetricity tensor
Qijk by

Qijk � �Dkgij � �@kgij � 2�lk�igj�l: (26)

Note that this definition exactly reflects the symmetric part
of the absorption equation (18) (identify �1���ij�k �Qijk

and !i
jk � �ijk). Solving this for �ijk,

�ijk � �fgijk � N
i
jk; (27)

Ni
jk �

1
2�Qjk

i �Qk
i
j �Q

i
jk�; (28)

we observe that a general symmetric connection can be
expressed in terms of the Christoffel connection �fgijk�gij�
and nonmetricity.

We can now write down a GL�d;R� invariant action for
the fields �ijk�x�, 
�x�, ’ij�x� and the descendant

gij�
�x�; ĥij�x��. However, it turns out to be more conve-
nient to perform a change of variables by Eq. (27),
�ijk�x� ! Qijk�x�, and to construct instead an action for
Qijk�x�, 
�x�, ’ij�x�. Nonmetricity contains a totally sym-
metric part ~Qijk � Q�ijk� which can be viewed as represent-
ing a massless spin-3 field, if no mass terms are introduced
for Q. We therefore have to construct an action for a
massive spin-2 field ’ij (and a scalar 
) in the background
of a massless spin-3 field ~Qijk.

We are not aware of any action that would consistently
couple a massive spin-2 field to a massless spin-3 gauge
field, but consistent nonlinear higher spin field equations
have been constructed [33], that involve an infinite tower of
higher spin gauge fields.

Our point of view in the present work is to postulate the
existence of an action in which all higher spin gauge fields
would consistently interact, and focus only at particular
sectors of this action. Then, those subsectors need not be
separately consistent but must obey the requirement that, in
the free limit, they should reduce to a positive sum of
Singh-Hagen [20] and/or Fronsdal [34] actions. Clearly,
as we already mentioned, the mechanism we are presenting
here must be seen as a very small part of a complete Higgs
mechanism involving the infinite number of Goldstone
fields of the coset space Diff �d;R�=SO�1; d� 1�.

The action S we propose is given by

S �
Z
ddx

�������
�g
p

��pL� ~Qijk� � 3L�
;’ij� �Lint	; (29)
-6
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with ( ~Qi � ~Qi
k
k, p �

2�d�4�
2�d )

L � ~Qijk� � �
1
2�Di

~Qjkl�
2 � 3

2�D
i ~Qijk�

2 � 3
2�Di

~Qj�
2

� 3�DiDj ~Qijk� ~Qk � 3
4�D

i ~Qi�
2; (30)

L�
;’ij� �
1

2
�Di’jk�

2 �
1

2
�Di’

k
k�

2 �Di’jkD
k’ij

�Di’kkD
j’ij �

3d� d2 � 2

2d2 �Di
�2

�Di
Dj’ij � V�
;’ij�; (31)

L int � �’ij’ij ~Qklm ~Qklm �
3

2d
�Di ~Qijk�’jk’ll; (32)

and the effective potential

V�
;’ij� �
��p

4

�
’2

�p
�M2

�
2
�
m2

2

2 �

�0

2�p
’2
2;

’2 � �’ijgij�2 � ’ij’ij:

The kinetic terms in the Lagrangians L� ~Qijk� and
L�
;’ij� are obtained from the Fronsdal Lagrangian for
a massless spin-3 field ~Qijk and the Fierz-Pauli Lagrangian
for a massive spin-2 field ’ij. The Lagrangian L�
;’ij�
contains also a kinetic term for the scalar 
 and a
symmetry-breaking potential V�
;’ij�. The kinetic terms
in L�
;’ij� are invariant under the exchange of ’kk and

.

By construction, the action is invariant under the linear
group. The linear connection is minimally coupled to the
fields 
, ’ij, and ~Qijk via the covariant derivative

Di’jk � @i’jk � 2�li�j’k�l � ri’jk � 2Nl
i�j’k�l (33)

and similarly for ~Qijk. Here ri is the covariant derivative
constructed from the Christoffel connection �fgijk and Ni

jk

as in Eq. (28). Lint contains some additional nonminimal
interactions.

For brevity, we omitted kinetic terms for the field �Qijk �

Qijk � ~Qijk. �Qijk enters the Lagrangian via the covariant
derivatives and is required for linear invariance. Linear
invariant actions for all components of the nonmetricity
can be found in [3]. Note that �Qijk is nonpropagating in
d � 4 if massless.

The potential V�
;’ij� has a minimum at

v2
’ � h’

2i � �pM2 �
�0

�

2 (34)

and is invariant in the Goldstone direction that parame-
trizes SL�d;R�=SO�1;d�1�. This can best be seen in the
parametrization (25) in which V, upon rescaling �0 �
e��
�, becomes identical to the potential of hybrid infla-
tion [35]. Scale invariance is softly broken at energy scales
of order of the parameter M and below (we assume m2�
M2).
124023
As in hybrid inflation, we assume that the dilaton field

is slow-rolling and large at the beginning of the breaking.
As long as the dilaton 
 is larger than the critical value

2
c � �p�M2=�0, the field ’ij is trapped at ’ij � 0. The

effective mass squared of ’ij,

m2�’ij� �
�0

�p

2 � �M2; (35)

becomes negative as soon as the value of 
 falls below
c,

<
c, at which point the vacuum becomes metastable.
Then the field ’ij is not trapped at ’ij � 0 anymore and
rolls down the ‘‘waterfall’’ to its minimum v’ � 
�p=2M
at 
0 � 0. In this way the breaking of scale invariance
triggers the spontaneous breaking of the special linear
group SL�d;R� � GL�d;R� down to the Lorentz group.

Higgs phase and massive spin-3 fields

We now study the action (29) in the Higgs phase. Below
Eq. (26), we identified the nonmetricity field Qijk with the
component �1��

�ij�k of the total nonlinear connection �.

Since �1��
�ij�k � �G=H, we expect Qijk to acquire mass

during the symmetry breaking. We thus have to show
that at the minimum of the potential the Lagrangian in
(29) contains the Singh-Hagen Lagrangian for the massive
spin-3 field ~Qijk.

Let us first verify that the Goldstone field ĥij becomes
massless at the minimum of the potential. According to the
general Higgs procedure, we have to expand 
 and ’ij
around the absolute minimum of the potential at 
0 � 0

and v’ �
���������
h’2i

p
� 
�p=2M. We choose the parametriza-

tion

’ij �
� v’������������������
d�d� 1�

p �
1

d
�
�
�ij � ĥij;


 � 
0 � ~
 � ~
;

(36)

where the normalization is chosen such that ’2 � v2
’ �

. . . . Substituting this into the potential V�
;’ij�, we ob-
serve that the Goldstone field ĥij is indeed massless,
whereas the Higgs-like field � obtains a positive mass,

m2
� � �M2 d� 1

d
: (37)

It is much simpler to work in the unitary gauge

’ij �
� v’������������������
d�d� 1�

p �
1

d
�
�
�ij; 
 � 0; (38)

in which the Goldstone bosons ĥij and 
 are gauged away.
This corresponds to the flat space limit gij � �ij. In this
gauge the Lagrangian in (29) reduces to

L � �pLF� ~Qijk� �
v2
’

2
~Q2
ijk �

3

2
v2
’� ~Ql

lj�
2 �

9

4
�M2�2

�
9

16
�@i��

2 �
3

4
v’�@

i ~Ql
li��� . . . ; (39)
-7
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where dots denote additional mixed terms. The Fronsdal
Lagrangian LF� ~Qijk� in flat space follows directly from
L� ~Qijk� in (30), while the mass terms for ~Qijk and its trace
~Ql
lj descend from the kinetic terms of the Goldstone

bosons. If we choose � � 1, then Eq. (39) is nothing but
the Stückelberg Lagrangian for a massive spin-3 field ~Qijk

[36] which is equivalent to the spin-3 Singh-Hagen
Lagrangian [20]. The mass of ~Qijk is given by

m2
Q �

1

�p
v2
’ � M2: (40)

The vacuum expectation value v’ � �p=2M is a free pa-
rameter in the model and has to be determined by experi-
ment. If we assume that our model is indeed related to
hybrid inflation, we can make a rough estimation of the
massmQ � M. It has been found [37] that the parameterM
determined by the COBE normalization is roughly
1015–1016 GeV.

The development of the field � is quite exciting. Since
we introduced � as a Higgs-like field, we would have
expected it to be an independent massive scalar, just like
the Higgs particle in elementary particle physics. Instead,
the field � turned out to be the auxiliary scalar required in
the Singh-Hagen Lagrangian for a massive spin-3 field. We
thus do not have an additional Higgs particle.

In the general parametrization (36), there are additional
terms involving the Goldstone metric. Let us assume that
m2
Q is very high such that ~Qijk and � decouple at low

energies. In this decoupling limit, the Lagrangian in (29)
effectively reduces to the linearized Einstein-Hilbert
Lagrangian LF�hij� with hij � ĥij �

1
d
�ij. Gravity is

thus effectively described by general relativity at the mini-
mum of the potential. This shows explicitly that the con-
dition Qijk � �Dkgij � �1���ij�k � 0 imposed by the
‘‘inverse Higgs effect’’ is an effective equation.

B. Higgs mechanism for higher spin connections

In the previous section we proposed a full Higgs mecha-
nism for the linear group including a symmetry-breaking
potential. An essential part of the mechanism was the
absorption process (I) of Sec. II D. A description of the
breaking of the complete diffeomorphism group appears to
be quite complex. We therefore aim at the more modest
goal of modeling the absorption process (II) of Sec. II D for
s � 2 without giving a symmetry-breaking potential. This
is along the lines of [21,22,38] which discuss a ‘‘telescopic
Higgs effect.’’ The latter effect is briefly reviewed now.

1. Stückelberg formalism and the ‘‘telescopic Higgs
effect’’

At the basis of the Stückelberg formalism lies the well-
known fact that O�d� 1�, the little group for a massless
particle in d� 1 dimensions, is the same as the little group
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for a massive particle in a d-dimensional space-time.
Consistent actions for massive particles can indeed be
obtained by dimensional reduction of massless gauge-
invariant actions. The dimensionally reduced action is
itself invariant under a set of gauge invariances which
display a ‘‘telescopic Higgs effect.’’

For example, in the previous section we recovered the
Singh-Hagen Lagrangian for a massive spin-3 field as
resulting from the expression, in the unitary gauge, of a
Lagrangian containing an appropriate symmetry-breaking
potential V. This Lagrangian can also be obtained starting
from Fronsdal’s gauge-invariant Lagrangian LF�
MNP�
for a massless spin-3 field 
MNP, dimensionally reduced
from d� 1 down to d dimensions. Upon dimensional
reduction, the field 
MNP gives rise to the set of
d-dimensional fields f
ijk, 
ij, Ai,  g, entering a
d-dimensional Stückelberg Lagrangian LS�
ijk;

ij;Ai; �. However, not all of these fields will survive.
The dimensionally reduced Lagrangian LS�
ijk;

ij; Ai;  � inherits gauge invariances from LF�
MNP�

whose effect is to eliminate all the fields but 
ijk and 
,
the trace of 
ij.

2. Higher spin connections in the Stückelberg
formulation

We now apply the Stückelberg formalism to model the
absorption process (II) of Sec. II D. We begin by splitting
Eq. (22) into irreducible pieces under the linear group. The
total symmetric and the ‘‘hook’’ parts are given by

�s��̂���1...�sk� �
�s�1�!̂���1...�s;k�

� �s� 1��s�!̂���1...�sk�
;

�s��̂����1	...�sk� �
�s�1�!̂����1	...�s;k�

� �s� 1��s�!̂���1	...�sk
;

(41)

where in the second line we first symmetrize in �1; . . . ; �s,
k and then antisymmetrize in � and �1. A comma denotes
a partial derivative, e.g. �;k :� @k�.

We have restricted to (double) traceless fields, which is
required for the construction of Fronsdal’s Lagrangians.
The hat on top of a field indicates its tracelessness in the
anholonomic indices, e.g. �s�!̂�

��2...�sk
��s�!̂�

�
��3...�sk

�

0. This guarantees the double tracelessness of the field
�s�!̂��1...�sk

. Note that the fully anholonomic field

�s�1�!̂��1...�s
� �s�1�!̂��1...�s�1k

êk�s (42)

is traceless, rather than double traceless. In the non-
linear realization of Diff �d;R� with the Lorentz group
SO�1; d� 1� as stabilizing subgroup, it is indeed natural
to decompose the generators F��1...�2 of Diff �d;R�—as
expressed in an anholonomic basis—with respect to irre-
ducible representations of SO�1; d� 1�. In other words,
the generators F��1...�2 � ei�Fi

j1...js�e�1�j1

�1 . . . �e�1�js
�s
-8
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can be decomposed into their traceless and pure-trace parts
by using the Minkowski metric ���.

It is convenient to define the fields


��1...�sk�
�s�!̂

���1...�sk�
; 
0��1...�sk

��s��̂���1...�sk�;

T��1j�2...�sk�
�s�!̂

���1	...�sk
; T0��1j�2...�sk

��s��̂����1	...�sk�;

(43)

which, by assumption (more details in Sec. IVA), satisfy
the gauge transformation laws

�
��1...�s � s@���̂�1...�s�; (44)

�T��1j�2...�s � @��k̂�1	j�2...�s �
3�s� 1�

s� 1
@���2

k̂�j�1	�3...�s�;

(45)

where the last term in (45) is first antisymmetrized in the
indices �2, �, �1 and then completely symmetrized in the
indices �2; �3; . . . ; �s [39]. The gauge parameters �̂ and k̂
satisfy �̂���3...�s � 0 and k̂�1j

�
��4...�s � 0. Using

!�j�1...�s �
2s
s� 1

T���1j�2...�s� �
��1...�s ; (46)

Eq. (41) can then be rewritten as


0��1...�sk
� @�k
��1...�s� � �s� 1�
��1...�sk; (47)

T0��1j�2...�sk
� ��s� 1�T��1j�2...�sk

�
2s

�s� 1�2
@��1

T�	��2j�3...�sk�

�
s

s� 1
T��1j�2...�s;k

�
1

s� 1
@��1


�	�2...�sk: (48)

Equation (47) is the relevant gauge transformation in-
volved in the Higgs mechanism for totally symmetric
spin-s� 2 fields 
��1...�sk (Young diagram [s� 2; 0]),
while Eq. (48) describes the Higgs effect for spin-s� 1
fields T��1j�2...�sk in the hook representation �s� 1; 1	.

For simplicity, we restrict to s � 2 in the following.
Let us compare Eqs. (47) and (48) with the fields arising

in the Stückelberg formalism. Decomposing the massive
representations �4; 0	m and �3; 1	m into massless represen-
tations, we obtain

�4;0	m
z��}|��{
0��1�2k

! �4;0	
z}|{
��1�2k

� �3;0	 � �2;0	 � �1;0	 � �0;0	;

�3;1	m
z��}|��{T0
��1j�2k

! �3;1	
z}|{T��1 j�2k

� �2;1	
z}|{C��1j�2

� �2;0	
z}|{
��

� �1;1	
z}|{B��

� �1;0	
z}|{X�

� �3;0	
z}|{S��1�2

:

(49)

This shows that a massless representation [4, 0] has to
absorb the massless representations [3, 0], [2, 0], [1, 0],
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[0, 0] to become massive. These representations descend
themselves from the massive representation �3; 0	m
(
��1k). Moreover, the massless representation [3, 1]
must absorb the [2, 1], [2, 0], [1, 1], [1, 0], and [3, 0] to
become massive. The first four of these representations
come from the massive representation �2; 1	m (T��jk).
The remaining representation [3, 0] originates from

��1k, cf. with the last line in Eq. (48).

This agrees with the fact that, in a full Higgs mechanism
including a symmetry-breaking potential, the Goldstone
bosons 
��1k and T��jk would be introduced inside a
(tachyonic) Higgs field, i.e. as massive representations.
At the minimum of the potential the Goldstone bosons
condense and become massless. Note however that in the
following we restrict to give the Stückelberg description of
the massive representations which we consider as part of
the full symmetry-breaking mechanism.

3. Stückelberg formulation of massive [3, 1] hook field

The Stückelberg formalism for the representation [4, 0]
has been discussed in detail in [22].5 We therefore need to
construct only a field equation for the representation [3, 1]
which describes the absorption (48) for s � 2.

Upon dimensional reduction �xi; y� # xi, the (d� 1)-
dimensional massless gauge field TMNjPQ�x; y� gives rise
to the following d-dimensional gauge fields

TMNjPQ�x; y� �
1���
2
p TMNjPQ�x�eimy � c:c:;

Tijjkl�x; y� �
1���
2
p Tijjkl�x�e

imy � c:c:;

Tijjky�x; y� �
i���
2
p Cijjk�x�eimy � c:c:;

Tiyjjk�x; y� �
i���
2
p

�
Sijk�x� �

2

3
Ci�jjk��x�

�
eimy � c:c:;

Tijjyy�x; y� �
1���
2
p Bij�x�eimy � c:c:;

Tiyjyj�x; y� �
1���
2
p

�

ij�x� �

1

2
Bij�x�

�
eimy � c:c:;

Tiyjyy�x; y� �
i���
2
p Xi�x�eimy � c:c::

The descendant fields Tijjkl, Sijk, Cijjk, Bij, 
ij and Xi are
all real. The field TMNjPQ�x; y� has the following symme-
tries

TMNjPQ � �TNMjPQ � �TNMjQP; T�MNjP	Q � 0;

while the descendant d-dimensional fields have the sym-
metries
-9
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Cijjk � �Cjijk; C�ijjk	 � 0; Sijk � S�ijk�;

Bij � �Bji; 
ij � 
ji:

The gauge transformations of the field TMNjPQ�x; y� are

�TMNjPQ � @�MK̂N	jPQ �
3
4�@�PK̂MjN	Q � @�QK̂MjN	P�;

where the gauge parameter K̂N	jPQ�x; y� possesses the fol-
lowing symmetries

K̂ MjNP � K̂MjPN; 0 � K̂MjN
N � K̂Mj�

� � K̂Mjyy:

The (d� 1)-dimensional gauge parameter K̂MjNP�x; y�
generates the following d-dimensional gauge parameters
upon dimensional reduction

K̂MjNP�x; y� �
1���
2
p K̂MjNP�x�eimy � c:c:;

K̂ijjk �
1���
2
p

�
k̂ijjk �

�jk
d
ai

�
eimy � c:c:;

K̂ijjy �
i���
2
p tije

imy � c:c:

K̂yjij �
i���
2
p

�
l̂ij �

�ij
d
l
�
eimy � c:c:;

K̂yjyi �
1���
2
p 
ie

imy � c:c:; K̂yjyy �
�i���

2
p leimy � c:c:;

where the descendant gauge parameters k̂ijjk, ai, tij, l̂ij, l,
and 
i are all real and

ai � K̂ijk
k�x�; l � K̂yjk

k�x�:

They furthermore obey

k̂ ijjk � k̂ijkj; �jkk̂ijjk � 0 l̂ij � l̂ji; �ijl̂ij � 0:
4. Gauge transformations and field redefinitions

The d-dimensional gauge transformations of the de-
scendant fields read

�Tijjkl � @�ik̂j	jkl �
3

4
�@�kk̂ijj	l � @�lk̂ijj	k� �

1

2d
�kl@�iaj	

�
1

4d
��jl@�kai	 � �jk@�lai	 � �il@�jak	

� �ik@�jal	�;

�Cijjk �
3

4
�@�itj	k � @�ktij	� �

m
4

�
k̂�ijj	k �

1

d
�k�jai	

�

�
1

4
@�il̂j	k �

1

4d
�k�j@i	l;

�Sijk �
1

2
@�il̂jk� �

1

2d
��ij@k�l�

m
2

�
k̂�ijjk� �

1

d
��ijak�

�
;
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�Bij �
1
2�@�i
j	 � @�iaj	 �mt�ij	�;

�
ij �
1
2�@�i
j� �mt�ij��; �Xi �

1
2�mai � @il�:

The field Xi drops out of the action by doing the following
field redefinitions


ij ! 
0ij � 
ij; (50)

Bij ! B0ij � Bij �
1

m
@�iXj	; (51)

Sijk ! S0ijk � Sijk �
1

D
��ijXk�; (52)

Cijjk ! C0ijjk � Cijjk �
1

2D
�k�jXi	; (53)

Tijjkl ! T0ijjkl � Tijjkl �
3

2mD
���jk@l�Xi � �i�j@kXl�

� ��ik@l�Xj � �j�i@kXl�	: (54)

The redefined fields transform as

�T0ijjkl � @�ik̂j	jkl �
3
4�@�kk̂ijj	l � @�lk̂ijj	k�; (55)

�C0ijjk �
3

4
�@�itj	k � @�ktij	� �

m
4
k̂�ijj	k �

1

4
@�il̂j	k; (56)

�S0ijk �
1

2
@�il̂jk� �

m
2
k̂�ijjk�;

�B0ij �
1

2
�@�i
j	 �mt�ijj	�; �
0ij �

1

2
�@�i
j� �mt�ijj��:

(57)

Performing the field redefinitions (50)–(54) is equivalent
to going in the gauge

ai �
1

m
@il; (58)

whose effect is to eliminate Xi from the action. Of course
we must have m � 0. There is no redefined field varying
with respect to the gauge parameters ai and l.

The next gauge-fixing condition that we choose is
(m � 0)

tij � �
1

m
@i
j (59)

which is equivalent to gauging Bij and 
ij away. Note that
(55)–(57) are unaffected by this gauge-fixing condition. In
terms of field redefinition, the gauge (59) translates as
-10
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T0ijjkl ! T00ijjkl � T0ijjkl;

C0ijjk ! C00ijjk

� C0ijjk �
3

2m
@�i


0
j	k �

1

2m
�@kB

0
ji � @�iB

0
j	k�;

S0ijk ! S00ijk � S0ijk:

As a result, the fields B0 and 
0 disappear from the action
and we have

�T00ijjkl � @�ik̂j	jkl �
3
4�@�kk̂ijj	l � @�lk̂ijj	k�;

�C00ijjk �
1
4�@�i�̂j	k �mk̂�ijj	k�;

�S00ijk �
1
2�@�i�̂jk� �mk̂�ijjk��:

Obviously, the next gauge condition we impose is (m � 0)

k̂ ijjk �
1

m
@il̂jk; (60)

which enables us to eliminate the (jk)-traceless part of
Pijjk :� S00ijk �

8
3C
00
i�jjk� since it can be seen that

�Pijjk �
1
2�@il̂jk �mk̂ijjk�:

In other words, we can gauge away S00ijk and C00ijjk (the two
independent components of Pijjk) except for the trace
�jkPijjk which will remain in the action, playing the role
of an auxiliary vector field Vi that we need for the action of
a massive [3, 1] field. At the level of the action, the gauge
(60) translates as the field redefinition

T00ijjkl ! Hijjkl

� T00ijjkl �
2

m

�
@�iPj	jkl �

3

4
�@�kPijj	l � @�lPijj	k�

�
:

This equation expresses the absorption (48). Then, at the
end of all these field redefinitions which are the translation
of the gauge-fixing conditions (58)–(60), all the fields but
Hijjkl and Vi :� S00i �

8
3C
00
i remain in the action. The field

Hijjkl does not transform anymore, it has become a massive
field. The field Vi :� S00i �

8
3C
00
i does not transform either,

it is an auxiliary field, as we show explicitly in the
following.

5. Field equations

The field equations for a massless [3, 1] irreducible hook
field TMNjRS in dimension (d� 1) are [39,40] (see also [41]
in different symmetry conventions)

FMNjAB � 0; (61)

where FMNjAB is the kinetic tensor
124023
FMNjAB � @R@
RTMNjAB � 2@R@�MTN	RjAB

� 2@RTMNjR�A;B� � 4@�MTRN	jR�A;B�

� @A@BTMNj
R
R:

As before, a comma �B;A denotes a partial derivative
@A�B. Partially decomposing the field equation according
to xM � �xi; y� gives

0 � �TMNjAB � @y@yTMNjAB � @M@
kTkNjAB

� @M@yTyNjAB � @N@kTkMjAB � @N@yTyMjAB

� @A@
kTMNjkB � @A@yTMNjyB � @B@

kTMNjkA

� @B@yTMNjyA � @A@MTkNjkB � @A@MTyNjyB

� @A@NTkMjkB � @A@NTyMjyB � @B@MT
k
NjkA

� @B@MTyNjyA � @B@NTkMjkA � @B@NTyMjyA

� @A@BTkMNjk � @A@BTMNjyy:

We can now decompose the above expression where the
indices MNjAB take the values ijjab, iyjab, ijjyy, iyjyb,
and iyjyy, respectively. We find

0 � Fijjab �m2Tijjab � 2m@�iSj	ab �
4
3m@�iCj	�ajb�

� @a@bBij � 2mCijj�a;b� � 4@�i
j	�a;b� � 2@�iBj	�a;b�;

0 � ��Siab �
2
3Ci�ajb�� � @i@

k�Skab �
2
3Ck�ajb��

� @k@a�Sbik �
2
3Ci�kjb�� � @

k@b�Saik �
2
3Ci�kja��

� @a@b�S
k
ik �

2
3C

k
i � �m@

kTkijab � 2mTkijk�a;b�

� @a@bXi;

0 � ��
ib �
1
2Bib� � @b@

k�
ib �
1
2Bib� � @b@i


k
k

�m@kSkib � 2m@�iSb�k
k �m@bXi

� @i@
k�
kb �

1
2Bkb� �

4
3m@

kCkijb �
1
3m@

kCibjk

� 1
3m@iC

k
bjk �

5
3m@bCi

k
jk �m

2Tkijkb;

0 � �Xi � @i@kXk �m2Xi � 2m@kBki � 2m@k
ik

� 2m@i

k
k �m

2�Sik
k � 8

3Ci
k
jk�;

where Fijjab is the kinetic tensor for the field Tijjab.
We now perform all the field redefinitions given in the

previous section. The above field equations read

0 � Fijjab�H� �m2Hijjab �
2

m
@a@b@�i�S00j	k

k � 8
3C
00
j	kj

k�;

0 � @a@b�S
00
ik
k � 8

3C
00
ikj
k� �m�@kHkijab � @aHkijb

k

� @bHkija
k�;

0 � m2Hkijb
k �m@b�S00ik

k � 8
3C
00
ikj
k�;

0 � m2�S00ik
k � 8

3C
00
ikj
k	:
-11
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All together, these field equations imply

���m2�Hijjkl � 0; @iHijjkl � 0; �jkHijjkl � 0;

which are the field equations for a massive d-dimensional
[3, 1] hook field. We thus derived the correct field redefi-
nitions which express the absorption phenomenon by
which a massless [3, 1] hook field becomes massive.
6Since �s�!�
�1...�sk

is already completely symmetric in the
indices (�1 . . .�sk), there is no further parameter �kj�j�1...�s
on the right-hand side (r.h.s.) of Eq. (63).
IV. GEOMETRICAL INTERPRETATION OF
HIGHER SPIN CONNECTIONS

In Sec. II we found an infinite tower of generalized
connections �s�! parametrizing the coset space
Diff0 �d;R�=GL�d;R� associated with nonlinear coordi-
nate transformations. In Sec. IVA we will relate them
with higher spin connections known from the frame for-
malism of higher spin fields [23]. In particular, we derive
some gauge invariance principle for the generalized con-
nections which leads to a geometrical interpretation of
higher spin connections. In Secs. IV B and IV C we then
study the geometrical structure of a space-time equipped
with higher spin connections.

A. Gauge transformations of higher spin connections

In the frame formalism for higher spin gauge fields in
Minkowski space [23], Lorentz-like connections
!k

�j�1...�S�1 are given in terms of framelike fields
ek
�1...�S�1 . These fields are symmetric in the indices

�1; . . . ; �S�1 and satisfy the relations

!kj
�
j��2...�S�1

� 0; !kj�j
�
��3...�S�1

� 0;

!kj��j�1...�S�1�
� 0; ek

�
�
�3...�S�1 � 0:

The higher spin connections and tetrads are invariant under
the gauge transformations

�!kj�j�1...�S�1
� @ka�j�1...�S�1

��kj�j�1...�S�1
;

�ekj�1...�S�1
� @k��1...�S�1

� akj�1...�S�1
;

(62)

where the gauge parameters a, �, and � are traceless,
completely symmetric in the indices (�1 . . .�S�1) and
possess the following supplementary symmetry properties:

a��j�1...�S�1�
� 0 � �kj��j�1...�S�1�

;

�kj�j�1...�S�1
� ��jkj�1...�S�1

:

Of course, similar gauge transformation formulas are also
present in the metriclike formulation of higher spin gauge
fields [34] (see also [42]) and are crucial for the construc-
tion of consistent higher spin theories.

Though nonlinear realizations are different from gaug-
ing, the group action on the coset fields is very similar to a
gauge transformation [12]. We may exploit this similarity
to derive a gauge transformation for the generalized con-
nections �s�! which is basically given by Eq. (62).
124023
We begin by rewriting the defining equations of the
nonlinear connection one-forms �s��. For simplicity, we
consider once again the linearized version of Eq. (20):

��s�!�
�1...�sk

� @k
�s�1�!�

�1...�s
; �s > 1� (63)

where the variation ��s�!�
�1...�sk

has been defined by

��s�!�
�1...�sk

� �s����1...�sk
� ��s� 1��s�!�

�1...�sk

and where one takes the traceless projection of this equa-
tion in the anholonomic indices, as we did in Sec. III B 2.
For the interpretation of Eq. (63) as the gauge transforma-
tion of the coset field �s�!, we have to consider the
field �s�1�!�

�1...�s
as the gauge parameter of �s�!. In-

deed, if we define a��j�1	�2...�s
:� �s�1�!

���1	�2...�s
and

!kj��j�1	�2...�s
:� �s�!

���1	�2...�sk
, then Eq. (63) antisymme-

trized in (��1) is equivalent to the transformation (62) in
the manifestly antisymmetric conventions.6

It is crucial to observe here that a certain coset field �s�!
plays simultaneously the role of a gauge field as well as
that of a gauge parameter: On the one hand, the field
�s�1�!�

�1...�s
acts as the gauge parameter of the connection

�s�!�
�1...�sk

. On the other hand, on the next higher level,
�s�!�

�1...�s�s�1
has to be interpreted itself as the gauge

parameter of �s�1�!�
�1...�s�1k

. We have already encoun-
tered this double role in Sec. II D, where we interpreted
Eq. (20) as an absorption equation.

Why do we expect Eq. (20) to reproduce the gauge
transformations of higher spin connections? In Sec. II D
we interpreted Eq. (20) as an absorption equation for
Goldstone bosons. In the standard Higgs mechanism of
elementary particle physics the absorption of a Goldstone
boson by a gauge field is identical to a gauge transforma-
tion in which the gauge parameter is identified with the
Goldstone boson. It is thus natural to regard Eq. (20) as a
kind of gravitational gauge transformation.

Continuing the analogy to gauging even further, we may
ask which global symmetry is made local by the general-
ized connections. Note that the fields �s�!�

�1...�sk
are the

components of the connection one-forms ���1...�s
associ-

ated with the generators F�s�1��1...�s
� (s > 1). In this sense,

the global symmetries generated by F�s�1��1...�s
� are

‘‘gauged’’ by �s�!�
�1...�sk

. For s � 1 this implies that the
ordinary connection !�

�k is the gauge potential of the
linear group.
-12
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B. The strong equivalence principle

Gravity in a space-time equipped with generalized con-
nections obeys the strong equivalence principle (SEP). The
SEP states that gravitational interactions can be gauged
away by an appropriate coordinate transformation. To see
this, we prove that at each point P there exists a coordinate
system such that

�s�!i
j1...jsk

jP � 0

for all s > 1.
Let us choose P as the point of origin xi � 0 (choose

gauge �i � xi) and perform the coordinate transformations

xi ! x0i � xi �
1

�s� 1�!
"ij1...jsk

xj1 
 
 
 xjsxk: (64)

Substituting this into the transformation law (12), we ob-
tain7

�s�!0ij1...jsk
jP �

�s�!i
j1...jsk

jP � "ij1...jsk
:

If we choose the parameters "ij1...jsk
� �s�!i

j1...jsk
jP, we get

�s�!0ij1...jsk
jP � 0 and, from this, �s��ij1...jsk

jP � 0 for all
s > 1. It is thus possible to find a coordinate system at a
point P in which there is no gravitational force on a point
particle, i.e. �xijP � 0 (SEP). All higher spin connections
have been gauged away.

C. Velocity-dependent affine connection

There exists an interesting alternative view of a space-
time endowed with higher spin connections. This view is
based on a geometrical object called N-connection (N for
nonlinear). The concept of an N-connection Ni

j�x; _x� was
first introduced by É. Cartan [43] in his work on Finsler
spaces, see [44] for a modern review. The N-connection is
related to a velocity-dependent affine connection �ijk�x; _x�
by

Ni
j�x; _x� �

1

2

@
@ _xj
��ink�x; _x� _xn _xk�: (65)

The affine connection �ijk�x; _x� can now be defined in

terms of the higher spin connections �s��,

�ink�x; _x� �
X1
s�1

�s��inj2...jsk
_xj2 
 
 
 _xjs (66)

which transforms as required:

��ink�x; _x� � "im�
m
nk � 2"m

�n�
i
k�m � "

i
;nk: (67)

The inhomogeneity "i;nk follows from the variation ��1��,
7We perform the coordinate transformation (64) first for �1�!,
then for �2�!, etc. In this way the term O��s�1�!� in (12) is
absent, since we have already set all lower spin connections to
zero.
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while the terms with s > 1 on the r.h.s. of (66) transform as
(use � _xi � _"i � "im _xm)

���s��inj2...jsk
_xj2 
 
 
 _xjs� � �"im

�s��mnj2...jsk

� 2"m
�nj
�s��ij2...jsjk�m

� _xj2 
 
 
 _xjs ;

(68)

where only the indices n and k are symmetrized. Here
terms involving the variations � _xi have cancelled s� 1
terms in the tensor transformation of �s�� (s > 1).

Physically, Eq. (66) means that a space-time equipped
with higher spin connections is equivalent to a space-time
with a velocity-dependent affine connection �ijk�x; _x�. The
gravitational force on a test particle thus depends not only
on the location of the particle, but also on its velocity
similar as in a Finsler space. However, since �ijk is not
derived from any metric structure, this space-time is more
general than a Finsler space.

D. Matter currents

We have not yet discussed the matter currents associated
with the generalized connections. Here, we restrict our-
selves to a few comments. A thorough discussion of the
matter currents is beyond the scope of this paper.

Consider a general matter Lagrangian L �
L��; d�; #�; d#�; �s��; d�s��� which includes a matter
field �, the coframe #�, and the generalized connections
�s����1...�s�1

(s > 0) as given by Eqs. (17)–(20). We may
then define the d� 1-form currents

�� :�
�L
�#�

; (69)

��s��1...�s�1
� :�

�L

��s����1...�s�1

�s > 0�: (70)

Here �� is the canonical energy-momentum current and
��s��1...�s�1
� denotes currents which we will call hypermo-

mentum currents of degree s. The currents ��s��1...�s�1
�

generalize the hypermomentum current ��0��� known
from the metric-affine theory of gravity [3].
Hypermomentum is the sum of the spin current ��� �

��0�
���	 and the shear and dilation current ��0�

����.

The components of �� � �k�dxk and ��s��1...�s�1
� �

��s��1...�s�1
k� dxk may be used to define the generators of

the diffeomorphism algebra. In fact, integrating the com-
ponents �0� and ��s��1...�s�1

0� over a d� 1-dimensional
spacelike hypersurface, we recover (gauge �i � xi)

P� �
Z
dd�1x�0�; (71)
-13
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F�s��1...�s�1
� �

Z
dd�1x��s��1...�s�1

0� (72)

which, by construction, satisfy the algebra (3).
Which are the matter fields carrying these currents?

Representations of the Poincaré group carry only energy
momentum and spin. In order to have also sources for
hypermomentum, we would have to construct field equa-
tions for representations of the double covering of
GL�d;R� or the diffeomorphism group Diff �d;R�. We
briefly commented on this in [19], Sec. IV A, see also [3]
and references therein.
V. CONCLUSIONS

In this paper we discussed the higher spin Goldstone
fields �s�!i

j1...jsk
of the spontaneous breaking of the group

of analytic diffeomorphisms and its relevance for gravity. It
is quite a challenge to construct a Higgs mechanism for the
complete diffeomorphism group.

As a partial realization, we provided a Higgs mechanism
for the breaking of its linear subgroup down to the Lorentz
group. Our model predicts that gravity is modified at high
energies by the exchange of a massive spin-3 field. This
field was identified as the totally symmetric part of the
nonmetricity field Qijk. In [19] we suggested the name
‘‘triton’’ for the corresponding particle. The range of this
additional spin-3 force is of order of the Compton wave-
length �c � h=mQc and appears to be extremely short-
ranged. The massmQ of nonmetricity enters our model as a
free parameter and has to be measured experimentally.
Under the assumption that our model is related to hybrid
inflation, we estimated mQ to be at 1015–1016 GeV.

Of course, one expects [7] all higher spin fields �s�! to
become massive due to a similar Higgs effect. To gain
insight into the complexity of the Higgs effect, we there-
fore modeled also the absorption process for �2�!i

j1j2k

adopting the Stückelberg formalism.
From the nonlinear realization discussion, it is clear that

the complete symmetry breaking of the diffeomorphism
group should provide a massless graviton and an infinite
tower of massive higher spin particles. This particle spec-
trum reminds to that of string theory, but with the differ-
ence that here the fields acquire mass by a Higgs
mechanism. It would be exciting to find a constraint in a
generalization of our Higgs model to higher spin fields
which constraints the corresponding particles to lie on
Regge trajectories.
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APPENDIX A: THE TRANSFORMATION
BEHAVIOR OF THE COSET FIELDS �s�!

In this appendix we compute the transformation behav-
ior of the coset fields �s�!i

j1...jsk
associated with the broken

generators F�s�j1...jsk
i of the diffeomorphism group. The

computation is analog to that in [19], App. A, where it
was performed for the special case s � 1.

For simplicity, we only consider fields with holonomic
indices and restrict on the coset space G=H �
Diff �d;R�=GL�d;R�. For the coset element � 2 G=H,
the group elements g 2 G and h 2 H, we choose the
parametrizations

���;!� � ei�
Pei!
�1�

F�1�ei!

�2�

F�2� 
 
 
 ; (A1)

g�
� � 1� i
 
 P� i
 
 F�0� � i
 
 F�1� � . . . ; (A2)

h��� � 1� i� 
M; � � ��
; �;!�; (A3)

where


 
 P � 
iPi; 
 
 F�0� � 
ijF
�0�j
i ;


 
 F�1� � 
ij1j2
F�1�j1j2
i ; etc:

(A4)

In order to obtain the transformation behavior
��s�!i

j1...jsk
, we substitute the above parametrizations into

the nonlinear transformation law for elements � of G=H
given by [11,12]

g�
����;!� � ���0; !0�h�
; �;!�: (A5)

Solving for h�
; �;!�, we get

1� i� 
 F�0� � 
 
 
 e�i!
�2�

F�2�e�i!

�1�

F�1� �1� i"

�0�

 F�0�

� i"
�1�

 F�1� � . . .�ei!

�1�

F�1�ei!

�2�

F�2� 
 
 


�
X1
n�1


 
 
 e�i !
�n�1�

F�n�1�

e�i!
�n�

F�n�

�

�
i
X1
in�0

��1�in�1

�in � 1�!
�!
�n�
�in��!

�n�
	 
 F�nin�n�

�

� ei!
�n�

F�n�ei !

�n�1�

F�n�1�


 
 
 ; (A6)

where
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"
�n�

 F�n� �

1

�n� 1�!

@n�1"i���

@�j1 . . . @�jn@�k
F�n�j1...jnk
i ;

"i��� � 
i � 
ij�
j � 
ij1j2

�j1�j2 � . . . � ��i:

(A7)

Note that we have already performed the multiplication
with e
i�
P. As shown in detail in [19], App. A1, this
promotes the parameters of g�
� to space-time dependent
fields: 
! "���.

For the computation of (A6), it turns out to be conve-
nient to introduce the following bracket notation: For any
two tensors T�n��Tij1...jnk

and U�q��Ui
j1...jqk

of type

(1; n� 1) and (1; q� 1), completely symmetric in their
covariant indices, we have the following bracket which
gives a tensor of type (1; n� q� 1), completely symmet-
ric in its covariant indices as well

�; 	: �T�n�; U�q�� ! �T�n�; U�q�	�n�q�;

�T�n�; U�q�	ij1...jn�qk
� �n� 1�Til�j1...jn

Ul
jn�1...jn�qk�

� �q� 1�Ui
l�j1...jq

Tljq�1...jn�qk�
: (A8)

If we further define the notation

!
�n�
� "
�p�
	 :� � "

�p�
; !
�n�
	;

�!
�n�
�2� "
�p�
	 :� �� "

�p�
; !
�n�
	; !
�n�
	;

�!
�n�
�3� "
�p�
	 :� ��� "

�p�
; !
�n�
	; !
�n�
	; !
�n�
	;

..

.

and

!
�n1�

 
 
 !

�ns�
� "
�p�
	 :� �. . . � "

�p�
; !
�ns�
	; !
�ns�1�
	; . . .	; !

�n1�
	; (A9)

then, for example,

e�i!
�r�

F�r� �1� i"

�0�

 F�0� � i"

�1�

 F�1� � . . .�ei!

�r�

F�r�

� 1� i
X1
s�1

�Xs�1

k�0

1

k!
�!
�r�
�k� "
�s�k�1�

	

�

 F�s�1�: (A10)

Here we used the Baker-Campbell-Hausdorff formula in
the form

e�BAeB � A� �A;B	 �
1

2!
��A;B	; B	 � . . . (A11)

for two operators A and B.

We have now an algorithm to write down �!
�s�

in a closed
form. Comparing successively the coefficients of F�1�, F�2�,
F�3�, etc. in Eq. (A6), we obtain

�!
�1�
� "
�1�
� !
�1�
�"
�0�
	; (A12)

�!
�2�
� "
�2�
� !
�2�
�"
�0�
	 � 1

2!
�1�
�"
�1�
	; (A13)
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�!
�3�
� "
�3�
� !
�3�
�"
�0�
	 � !

�1�
�"
�2�
	 �

1

3!
!
�1�
!
�1�
�"
�1�
	; etc: (A14)

For general �!
�s�

, we therefore get

�!
�s�
� "
�s�
�!
�s�
�"
�0�
	 � . . . ; (A15)

which is identical to Eq. (10).
APPENDIX B: THE TOTAL NONLINEAR
CONNECTION

In this appendix we give a compact expression for the
total nonlinear connection � � ��1d�. The coset element
� 2 Diff �d;R�=SO�1; d� 1� will be parametrized as in
Eq. (16). After a short computation, we get

� �
X1
n��1

Y1
m�n�1

e�i
�m�!
F�m� �e�i

�n�!
F�n�dei
�n�!
F�n� �ei

�m�!
F�m� ;

(B1)

where

e�i
�n�!
F�n�dei

�n�!
F�n� �
X1
in�0

i��n�!�in�d�n�!	
�in � 1�!


 F�nin�n�:

Here we defined ��1�! � � and �0�! � h, where h is the
shear coset parameter corresponding to
GL�d;R�=SO�1; d� 1�. It is understood that the exponen-
tials have to be written in ascending (descending) order on
the right (left) of the central factor e�...de....

Using the bracket notation of App. A, we find for the
one-forms �ij1...js

� ��jF�s�1� �ij1...js
the compact expression

�jF�s�1� �
Xs�1

n��1

Xs
in;...;is�0

��s�!�is 
 
 
 ��n�!�in�d�n�!	

�
��in; . . . ; is; n�

�in � 1�!in�1! . . . is!
�i�1;0; (B2)

where

��in; in�1; . . . ; is; n� � 1; (B3)

if n� nin � �n� 1�in�1 � . . .� sis � s� 1, zero
otherwise.

To linear order this can be expanded as

�jF�s�1� � d�s�1�!� �s�!�d�	 �O�!2�; (B4)

where the first two terms correspond to n � s� 1, in � 0
and n � �1, i1 � . . . � is�1 � 0, is � 1, respectively.

The first five coefficients are

�jF��1� � # � eh�d�	 � �1� h� 1
2h

2 � . . .��d�	; (B5)

�jF�0� � e�1de� �1�!�#	; (B6)
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�jF�1� � d�1�!�
�
�2�!�

1

2!
��1�!�2

�
�#	 � �1�!�e�1de	;

(B7)

�jF�2� � d�2�!�
�
�3�!� �2�!�1�!�

1

3!
��1�!�3

�
�#	

�

�
�2�!�

1

2!
��1�!�2

�
�e�1de	 �

1

2!
�1�!�d�1�!	;

(B8)

�jF�3� � d�3�!�
�
�4�!� �3�!�1�!�

1

2!
��2�!�2

�
1

4!
��1�!�4

�
�#	 �

�
�3�!� �2�!�1�!�

1

3!
��1�!�3

�

� �e�1de	 �
�
�2�!�

1

3!
��1�!�2

�
�d�1�!	; (B9)

with

e�1de �
X1
i0�0

1

�i0 � 1�!
hi0�dh	: (B10)

If we apply the rule for the bracket in Eq. (A8), we find
Eqs. (17)–(20).

The transformation law for the one-forms �ij1...js
�

��jF�s�1� �ij1...jsk
d�k follows from those for �s�! given in

App. A. Since �G=H transforms as a tensor, we expect

��jF�s�1� � ��jF�s�1� ��"
�0�
	 � �"

�0�
;�jF�s�1� 	 (B11)

for s > 2. We explicitly checked this for �jF�1� using
Eqs. (A12), (A13), and (B7).
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APPENDIX C: DECOMPOSITION OF HIGHER
SPIN CONNECTIONS

Upon lowering the upper index i, the higher spin con-
nection !i

j1...jsk
can be decomposed under GL�d;R� into a

totally symmetric part corresponding to the Young tableau
[s� 2; 0] and a part corresponding to [s� 1; 1]:

GL (d, ) dimension

(s) ω (ij1 ...js k) · · ·
(d + s + 1)!

(d − 1)!(s + 2)!
,

(s) ω [ij1 ]...js k · · ·
(d + s)!(s + 1)
(d − 2)!(s + 2)!

.

In total, the higher spin connection �s�! has

d
d� s
s� 1

� �
(C1)

off shell components.
Let us consider the case in which �s�! is massless. Then,

in order to apply the Fronsdal description for these fields,
we have to split �s�! into double-traceless fields. For
instance, �s�!

�ij1...jsk�
is equivalent to the sum of double-

traceless fields �s� ^̂!�ij1...jsk�
, �s� ^̂!�ij1...js�4k�

, �s� ^̂!�ij1...js�8k�
, etc.

The number of on shell degrees of freedom are given by
the same Young diagram, now labeling an O�d� 2� irre-
ducible representation. In d � 4, the fields �s� ^̂!�ij1...js�nk�

(n � 0; 4; 8; . . . ), have spin s� n� 2 and 2 on shell de-
grees of freedom, while the fields �s� ^̂!�ij1	...js�nk

(n �
0; 4; 8; . . . ) are nondynamical. The hook representations
have vanishing on shell degrees of freedom, since the
dimension of the same Young tableau under the little group
O�2� is zero.
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