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Volume of black holes
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We propose a simple definition of volume for stationary spacetimes. The proposed volume is constant
in time, independent of the choice of stationary time slicing, and applies even in the absence of a globally
timelike Killing vector. We then consider whether it is possible to construct spacetimes that have finite
horizon area but infinite volume, by letting the radius go to infinity while making discrete identifications to
preserve the horizon area. We show that, in three or four dimensions, no such solutions exist that are not
inconsistent in some way. This may constrain the statistical interpretation of the Bekenstein-Hawking
entropy.
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I. INTRODUCTION

Time and space are often regarded as being interchanged
across a black hole horizon; the interior of a Schwarzschild
black hole, for example, can usefully be thought of as a
collapsing universe. Moreover, what one means by the
volume of space depends on how spacetime is split into
space and time; spatial volume is not slicing invariant.
Hence, at first sight, it does not seem to make any sense
to talk about the volume of a black hole.

This is unsatisfying because one of the most celebrated
facts about quantum gravity is that the entropy is vastly
reduced from what it would have been in quantum field
theory. The Bekenstein-Hawking entropy equals area=4l2p,
which, it is proclaimed, is numerically much less than
volume=l3p. This begs the question: what volume?

Now, thermodynamic notions typically call for thermal
equilibrium, and, geometrically, ‘‘equilibrium’’ means that
the spacetime possesses a symmetry under time translation
i.e. there exists a timelike Killing vector. Suppose we have
such a timelike Killing vector. Can one determine a volume
in this more restricted setting?

Remarkably, the answer is yes. In this paper, we will
show that, if the spacetime admits a somewhere-timelike
Killing vector then it is possible to define a meaningful
notion of volume, even in the absence of a globally time-
like Killing vector. The volume that we define is not only
constant in time, but also independent of the choice of
stationary time slice (with the one proviso that the asymp-
totic form of the metric also be preserved).

Armed with a working definition of volume, an interest-
ing next question is: are there families of spacetimes whose
horizons have bounded area but whose volume can be
arbitrarily large? For example, one might try to send the
mass of a black hole to infinity, while simultaneously
making discrete identifications on the spacetime to pre-
serve the horizon area. Were such a construction to exist, it
would be more than a curious fact: as we will argue, it
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would suggest that the Bekenstein-Hawking entropy
counts only those Hilbert states that ‘‘live’’ near the hori-
zon—as opposed to all the states in the black hole’s Hilbert
space. However, we will be able to show that, at least in
three or four spacetime dimensions, no such families of
spacetimes exist. We interpret this as evidence that the
Bekenstein-Hawking entropy might not be independent
of the interior of the horizon.
II. THE VOLUME OF A BLACK HOLE

For illustration, we will have in mind nonrotating black
holes; the final formula, though, requires only stationarity
and applies equally to rotating black holes. Consider then
an Einstein space with a horizon and a line element of the
form

ds2 � ���r�dt2s �
dr2

��r�
� r2d�2

D�2� ~x�; (1)

where d�2
D�2 can be taken to be the line element of a

maximally symmetric D� 2-dimensional space. For in-
stance, � could be

��r� �
2�

�D� 1��D� 2�
r2 � ��

2M

rD�3 : (2)

One could also consider adding charge. When � � 0, � is
�1 but, in anti-de Sitter space (AdS), � can also be 0 or
�1, corresponding to black holes with flat or negatively
curved horizons. The horizon is at r� where r� is the
largest root of ��r� � 0. The time coordinate, ts, is static
time; the metric is invariant not only under ts ! ts � c, but
also under ts ! �ts. However, the coordinate breaks down
at the horizon, as evidenced by the divergence of grr and
gtt. To continue through the horizon, one defines a new
coordinate, t; static time is then expressed as ts�t; r; ~x�.
Then @t is a Killing vector if and only if the transformation
takes the form

ts � �t� f�r; ~x�: (3)

Here � is a constant, which we can take to be positive to
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preserve the orientation of time. In fact, our definition of
volume will require that � be restricted to 1:

ts � t� f�r; ~x�: (4)

When � � 0, � can be set to 1 by demanding a fixed
asymptotic form of the metric, or by fixing the asymptotic
normalization of the Killing vector. There remains an
enormous class of time slicings, since each choice of the
almost arbitrary function f�r; ~x� defines a different time
slice. To reduce clutter, take f�r; ~x� to be a function only of
r. The t� r part of the line element is now

ds2 � ���r�dt2 � 2��r�f0dtdr� dr2

�
1

��r�
� ��r�f02

�
:

(5)

By choosing f so that f0 is real and such that grr stays
positive and finite, one obtains a stationary slicing that
extends through the horizon. Note that, although @t may
become spacelike across the horizon, the normal to a
surface of constant t is—thanks to an off-diagonal
term—everywhere timelike; such surfaces constitute
bona fide spatial sections. We would like to define an
invariant measure on these sections. First, note that, if we
were to take the volume to be the proper volume of a
hypersurface of constant t, we would not get an invariant
volume because grr manifestly depends on the choice of
time slice through its dependence on f. Indeed, by consid-
ering a slicing that is nearly lightlike, one can arrange for
the proper three-volume to be as close to zero as one wants.

Instead, observe that the determinant of the spacetime
metric has no dependence on the time slicing: f0 drops out
and � has been set to 1. This suggests the following
definition of spatial volume. Consider the differential
spacetime volume

dVD�t� �
Z t�dt

t
dt0

Z
dr
Z
dD�2x

�������������
�g�D�
p

: (6)

While the combination dDx �������������
�g�D�
p is slicing invariant (in

fact, coordinate invariant), dVD is not, because the limits
on the integral are defined in terms of a time coordinate.
However, if the time coordinate is of the form (4)—that is,
if @t is a Killing vector—then the integrand is time inde-
pendent with time appearing in dVD only through the
multiplicative factor, dt.

We therefore propose that

Vspace �
dVD
dt
�
Z
dD�1x

�������������
�g�D�
p

: (7)

In other words, if, rather than using �������������g�D�1�
p as the mea-

sure, one uses �������������
�g�D�
p instead, then two things happen.

First, the volume stays constant in time for all choices of
Killing time since the integrand is time independent.
Second, the integral is now invariant under stationary
time slices.
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Here is why. Imagine the spacetime integral, (6), as a
Riemann sum of little strips, each of coordinate length dt,
lined up side by side from r � 0 to r � r�. According to
(4), a particular constant-time slice merely shifts these
strips up or down along the orbit of the Killing vector in
an f-dependent manner. But the metric is unchanged under
such shifts. Hence, the spacetime integral is invariant even
though different time slicings correspond to integration
over different spacetime regions. After dividing out by
dt, we therefore obtain an invariant spatial volume.
Indeed, when � is fixed to 1, it is the unique invariant
volume. Nor is the construction affected by the nature—
timelike, spacelike, or null—of the Killing vector.

Actually, this is also the notion of volume that appears in
thermodynamics. To see this, write the partition function as

Z � exp��F�� � exp
�
�
Z
dDx

�������������
�g�D�
p

L

�
: (8)

Now, in the region where thermodynamics applies, the
inverse temperature, �, is the period of a complexified
time coordinate, �. Notice: there is no

�����������
�g��
p

factor in
�. Suppose the field is constant in �. Then the free energy
is F �

R
dD�1x �������������

�g�D�
p

L. For an extensive system, the
free energy is proportional to the volume. We see that
this is not inconsistent with regarding

R
dD�1x �������������

�g�D�
p as

the volume.
Let us now evaluate the volume for some simple space-

times. For a four-dimensional spherically symmetric black
hole [1], we find that the volume takes a satisfyingly
familiar form:

Vspherical hole �
4
3�r

3
�: (9)

This result is in accord with what an observer in the time-
independent region might consider to be the black hole
volume. Indeed, it is amusing that this is precisely the
proper three-volume of flat Euclidean space. A slicing in
which the constant-time hypersurfaces are flat is given by
Painlevé coordinates, a coordinate system that has already
proven its utility in tunneling calculations [2,3]. However,
in general, a smooth flat slice that extends to the singularity
need not exist.

Finally, it should be clear that the above arguments
relied only on stationarity so the same volume formula
applies to rotating black holes. In four dimensions, one
finds

VKerr hole �
4
3�r��r

2
� � a

2�: (10)
III. FINITE AREA BUT INFINITE VOLUME?

Now that we have a notion of the volume of a black hole,
we might ask whether there are families of spacetimes with
bounded area but unbounded volume. The motivation for
searching for such families is this. Several of the statistical
interpretations of black hole entropy refer only to the out-
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side of the horizon; they ignore the hole’s interior. If this
perspective is correct, it should not matter what the volume
is; there should be no statistical mechanical obstruction to
finding finite entropy solutions with arbitrarily large
volume. The existence of such families would then serve
as evidence for the ‘‘outside’’ view of gravitational
entropy [4].

As an elementary example, consider D-dimensional
Rindler space, with D> 2. In Cartesian coordinates, an
observer moving with constant acceleration in the positive
X1 direction has a future Rindler horizon described by the
light-sheet T � X1. The light-sheet has infinite extent in
the Xi directions, for i � 2 . . .D� 1, so the horizon has
infinite area. The volume of the spacetime behind the
Rindler horizon is also intuitively infinite. If we now
make a toroidal compactification of all the transverse
directions,

Xi � Xi � Li; i � 2 . . .D� 1; (11)

the horizon area becomes finite: A �
Q
iLi. (The compac-

tification does not imply a dimensional reduction; the Li
could be chosen to be enormous compared with the
D-dimensional Planck length.) However, because X1 is
not identified, spatial sections behind the horizon are non-
compact and intuitively have infinite volume. Thus this
would appear to be an example of a spacetime with a
horizon of finite area and infinite volume. However, it
has been shown that Rindler space with all but one spatial
direction compactified is inconsistent [5] with the finite-
ness of the entropy.

To find other spacetimes with this property, we note that
Rindler space is the infinite mass limit of a nonextremal
black hole. Thus, in general, we would like to take a
spacetime with a horizon and send the radius of the horizon
to infinity, while making discrete identifications to keep the
area finite as the radius diverges. More precisely, we would
like to quotient by groups obeying:
(i) T
he group must be a subgroup of the isometry
group of the spatial section of the horizon. This is
necessary so that the quotient space has a well-
defined metric.
(ii) T
he group must act freely on the spacetime: no
fixed points. Otherwise, we would introduce singu-
larities. However, we may allow a fixed point to
occur at a ‘‘point’’ that is already singular since
singular points are not formally part of the
manifold.
(iii) T
he fundamental domain must not have any non-
contractible loops, or 1-cycles, whose length van-
ishes during the process of simultaneously blowing
up the horizon radius and quotienting by the
groups. This is because, if there were vanishing 1-
cycles, the gravity description could not be trusted;
winding modes of closed strings winding around
the cycle would become lighter than momentum
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modes. This is a restrictive requirement. It implies
that the identifications have to act democratically in
all dimensions along the horizon. Otherwise, the
directions in which they do act would be forced to
become vanishingly small to preserve the area as
the radius grows.
A. Spherical horizons

Consider first spacetimes whose horizons, when sliced
using stationary time, are spheres. These have the isometry
group O�D� 1�. We need a family of discrete subgroups
of arbitrarily high order so that, by quotienting with groups
of ever larger order, we can keep the area bounded even as
the radius diverges. For D> 3, there are two infinite
families of discrete subgroups of O�D� 1�: the cyclic
and the dihedral groups. The cyclic groups, Cn, have order
n and are isomorphic to Zn. They act by identifying points
in the azimuthal direction:���� 2�=n.Cn does not act
freely because, for example, it leaves the poles of the two-
sphere fixed, in violation of requirement (ii). The dihedral
groups, Dn, have order 2n, and are isomorphic to Z23 2Zn.
They are non-Abelian and act freely. However, bothCn and
Dn essentially act mainly along the azimuth. The funda-
mental domain, after modding out by Dn, can be regarded
as a wedge extending down from the pole to the equator,
much like a segment of an orange. As the radius of the
sphere becomes ever greater, the width of the segment must
vanish to preserve the area, thus violating requirement (iii).

In three dimensions, stationary sections of the horizon
are just circles. So here we need subgroups of O�2�.
Obviously, we can mod out by Zn. There are two space-
times with horizons in three dimensions: the Bañados-
Teitelboim-Zanelli (BTZ) black hole and three-
dimensional de Sitter space. For de Sitter space modding
out by Zn in the angular direction results in a conical
singularity at r � 0. (After appropriate relabelings, this
can be regarded as a Schwarzschild-de Sitter space, with-
out an identification.)

This leaves the BTZ black hole. The horizon is a circle
with circumference

C � 2�l
�����������
8GM
p

; (12)

where M is the mass parameter. Now let M ! sM, define
n �

�����
bsc

p
, and make the identification ���� 2�

n . Then,
as s! 1, C! C. Thus, M can be made arbitrarily large
without causing the circumference to diverge. However,
there is a problem here. Although discrete identifications
can be performed, there is no invariant volume because,
since � � 0 in (2), there is no way to fix � to 1; time can be
rescaled.

We have shown that there are no spherically symmetric
spacetimes with finite area and infinite volume. We could
also have tried quotienting nonspherically symmetric
spacetimes such as the Kerr black hole or Taub-NUT
space. However, their isometry groups are just proper
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subgroups of those of a sphere; hence they also do not yield
finite area and infinite volume quotients.

B. Flat horizons

Flat horizons exist in Rindler space, which we have
already rejected, as well as in AdS. The AdS black brane
solutions have �< 0 and� � 0 in (2). The isometry group
of stationary sections of the horizon is E�D� 2� i.e.
ISO�D� 1�. The lattice groups are discrete subgroups
with no fixed points. Thus, we can make a toroidal iden-
tification on the horizon: Xi � Xi � Li. It is easy to see that
this satisfies all the requisite properties. After identifica-
tion, the topology of the stationary slices is now TD�2. But,
since � � 0, � cannot be set to 1. So, as with the BTZ
black hole, there is no invariant volume.

C. Hyperbolic horizons

AdS also has solutions with hyperbolic horizons. These
have �< 0 and � � �1. A stationary section of the
horizon is a hyperbolic space, HD�2, a noncompact
Riemannian manifold with constant negative curvature
(i.e. ‘‘Euclidean’’ anti-de Sitter space).

Consider D � 4. Hawking’s uniqueness theorem [6] on
horizon topology does not apply to AdS black holes; in-
deed, H2 has infinitely many topologically inequivalent
compactifications [7]. One might hope that some of these
might possess finite area and infinite volume horizons.
However, the global Gauss-Bonnet theorem says that the
integral of the Ricci scalar is related to the Euler character-
istic, �, of the horizon:

1

4�

Z
RdA � �) A � 4��g� 1�r2

� � 4�r2
�; (13)

where g is the genus, and � � 2� 2g. Thus, we see that,
irrespective of the compactification, the area becomes
infinite as the radius goes to infinity.

In conclusion, there are no families of spacetimes with
bounded horizon area but unbounded volume, at least in
three or four dimensions. It would be interesting to see
whether this no-go theorem can be extended to higher
dimensions. Two loopholes in higher dimensions are that
asymptotically flat black geometries can have horizons
with more complicated topologies such as S1 	 S2 [8],
and that higher-dimensional hyperbolic horizons are not
subject to the Gauss-Bonnet theorem.

IV. DISCUSSION

We have defined a slicing-invariant volume and shown
that one cannot construct families of spacetimes that have
horizons of bounded area but unbounded volume. It is
intriguing that, in each case where this might have worked,
something went wrong: either there was a cycle of vanish-
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ing length (Schwarzschild black holes), or there was a
conical singularity (de Sitter space), or the definition of
volume became ambiguous (AdS branes and BTZ), or
there was a conflict with symmetries (Rindler space), or
the area itself diverged (hyperbolic horizons). Perhaps
there is a deeper reason why such a construction may be
impossible.

One deeper reason might be a conflict with holography.
The statistical interpretation of gravitational entropy re-
mains contentious [4,9–12]. One school of thought holds
that the entropy enumerates all possible gravitational de-
grees of freedom within the volume enclosed by the area.
That is, it counts the total number of states in the quantum
gravity Hilbert space. An alternative view is that entropy
counts only entangled states [9]. (Among other possibil-
ities, the entropy might also enumerate horizon states [11],
or configurations of the black hole’s thermal atmosphere
[12].) The fact that the entropy scales as the area has two
very different implications from these two perspectives.
The first implies that quantum gravity is highly nonlocal,
with far fewer degrees of freedom than a local quantum
field theory would have had. In contrast, the second implies
that quantum gravity is local, locality being precisely the
reason that the field deep inside the hole is not entangled
with the field outside. Which of these two interpretations is
correct is still in dispute because we are unable to count the
quantum gravity states directly. For example, in string
theory, the counting of microstates [13] is typically done
in a dual picture for which the string coupling is weak,
leaving the gravity picture of the states unclear (though
recent work attempts a more direct approach [14]).

Now, entanglement entropy is indifferent to the volume
of space. Indeed, its most appealing feature is that the
entropy-area relation appears quite naturally. From the
perspective of entanglement entropy—or indeed of any
of the interpretations that do not refer to the interior
region—there appears to be no reason why spacetimes
with finite area could not have unbounded volume. In
fact, their existence would have been evidence against
the alternate interpretation; that the total number of
Hilbert states in an infinite volume might be finite seems
hard to believe. However, the fact that no such families of
spacetimes exist suggests (if indeed the underlying reason
is holographic) that volume and entropy may not be
independent. The Bekenstein-Hawking entropy might
really be counting all the Hilbert states of quantum
gravity.
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