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Could quantum gravity phenomenology be tested with high intensity lasers?
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In phenomenological quantum gravity theories, Planckian behavior is triggered by the energy of
elementary particles approaching the Planck energy, Ep, but it is also possible that anomalous behavior
strikes systems of particles with total energy near Ep. This is usually perceived to be pathological and has
been labeled ‘“‘the soccer ball problem.” We point out that there is no obvious contradiction with
experiment if coherent collections of particles with bulk energy of order Ep do indeed display
Planckian behavior, a possibility that would open a new experimental window. Unfortunately, field
theory realizations of “doubly” (or deformed) special relativity never exhibit a soccer ball problem; we
present several formulations where this is undeniably true. Upon closer scrutiny we discover that the only
chance for Planckian behavior to be triggered by large coherent energies involves the details of second
quantization. We find a formulation where the quanta have their energy-momentum (mass-shell) relations
deformed as a function of the bulk energy of the coherent packet to which they belong, rather than the
frequency. Given ongoing developments in laser technology, such a possibility would be of great

experimental interest.
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I. INTRODUCTION

Doubly special relativity (DSR) is an interesting arena
for studying quantum gravity (QG) phenomenology at
energies close to the Planck energy Ep = 1/Ip =
10" GeV [1-4]. Typically, in such theories the Planck
energy is an invariant and particles can never exceed this
energy. For example, a photon cannot be blue-shifted over
the Planck energy; likewise, a hypothetical photon with
energy Ep would be seen with Ep by all observers. These
desirable properties ensure an invariant separation between
the realms of classical and quantum gravity and provide an
invariant cutoff, removing divergences from field theory.

But they also entail apparent paradoxes [5,6]. Most
infamously, a naive application of the formalism leads to
the conclusion that not only do single particles have a
maximal energy Ep, but this property extends to collec-
tions of particles. Systems of particles, notably soccer
balls, can blatantly exceed Ep, hence the eponymous
problem.

There are a number of ad-hoc solutions to the ‘““soccer
ball problem” (see, e.g., [3,7]). One approach posits that a
system of particles simply does not have the same trans-
formation laws and dispersion relations as its constituents
[3], and that the distinction between elementary and com-
posite is fundamental. Specifically, it was proposed that a
system of N particles obeys nonlinear transformations and
nonquadratic dispersion relations obtained by replacing Ep
by NEp (or Ip by Ip/N). This implies a nonassociative
addition law for energy and momentum, since one cannot
“associate’” terms in a sum, thereby losing track of how
many elementary particles it contains. The maximal energy
for a system of N particles is now NEp, resolving the
paradox.
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Solving the soccer ball problem ensures consistency
with experiment, but also limits testability. In this paper
we investigate whether there might be a middle ground
where collections of particles retain the imprint of QG in a
way that is not obviously inconsistent with experiment. For
example, it could be that loss of coherence is essential for
solving the soccer ball problem. Perhaps a coherent super-
position of particles (e.g. a laser) does have maximal
energy Ep, and QG effects are of the order of the ratio
between its fotal energy and Ep. The macroscopic objects
we commune with in daily life are noncoherent, and per-
haps only these are protected from soccer ball anomalies.

This speculation is not immediately at odds with experi-
ment. Laser beams are the most powerful coherent super-
positions of particles available, but the largest energy
attained so far is about 10'> GeV, much smaller than Ep
[8,9]. Laser technology is improving fast, however, so the
possibility that a laser carrying a bulk energy close to Ep
might display strong QG behavior suggests a remarkable
competitor to ultra high energy cosmic rays (UHECRs).
These are widely regarded as the test bed of QG and DSR,
because the predicted Greisen-Zatsepin-Kuzmin energy
cutoff [10] probes Lorentz boosts at the highest available
energies [11]. If the cutoff at E = 10'! GeV predicted by
special relativity is present, however, then high energy
cosmic rays will dry out as a probe of QG. This is not so
with lasers. The currently operational NOVA laser [8] can
deliver 400 KJ of coherent light, i.e. 2.5 X 10> GeV, al-
ready larger than the highest cosmic rays detected. The
planned National Ignition Facility [9] will raise this figure
to 2.5 X 10'3 GeV.

Regrettably this possibility is by no means a generic
feature of DSR or QG. The arguments leading to the soccer
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ball problem are purely kinematic and refer to classical
point particles. In this paper we reevaluate the situation
from a field theory perspective. In field theory realizations
of DSR, there should be classical plane-wave solutions
with wave number k, = (w, —K), constrained by de-
formed dispersion relations (with a deformation dependent
on lpw, say). Their amplitude A further tunes the bulk
energy £ of the wave. These waves form our ‘“‘soccer
balls.” Upon quantization the quanta have energy and
momentum proportional to @ and k, and therefore feel
dispersion relations deformed according to /pw. It does not
follow that the wave’s bulk energy £ and momentum P;,
dependent on amplitude A, must feel deformations accord-
ing to [p& as opposed to [pw. Indeed we show that it is very
difficult to have a soccer ball problem in a field theory
formulation of DSR.

The plan of the paper is as follows. In Sec. II we carry
out, in the undeformed theory, the model calculation later
to be performed in field theories representing DSR. We use
the stress-energy tensor to evaluate the mass-shell relations
for the wave’s bulk £ and P;, and contrast them with the
dispersion relations for k,. Then, in Sec. III we explain
how DSR may be represented by higher-order derivative
(HOD) field theories. Although we have lasers in mind, we
keep our arguments general and consider massless and
massive particles. For massless particles, we consider the
possibility of an energy dependent speed of light [12,13],
but this is by no means necessary. For simplicity, we ignore
spin and examine a real scalar field, but the constructions
presented may be easily generalized to any spin including
spin 1. We set up a Lagrangian formulation for HOD
theories and derive their stress-energy tensor, essential
for the assessment of the macroscopic properties of the
waves.

Equipped with these tools, in Sec. IV we examine two
concrete examples of DSR theories, where k, has de-
formed transformation laws and dispersion relations. We
find that the deformations felt by bulk quantities £ and P;
depend on /pw, not [p€. Thus, as long as w remains well
below Ep the deformations felt by the bulk wave are very
small, regardless of the total £, and therefore there is no
soccer ball problem. The argument does not rely on the
details of second quantization; however, in Sec. V we show
how it is possible to quantize in such a way that the
dispersion relations felt by a system of N particles can be
obtained by the replacement [, — [p/N, thus proving the
suggestion in [3] from first principles.

This conclusion exempts DSR models from a paradox,
but does not satisfy our motivations. We therefore spend
the rest of the paper seeking theories that might have
phenomena akin to the soccer ball problem, preferably
only in the case of coherent objects. Nonquadratic
Lagrangian theories are considered in Sec. VI. They have
the property that both quanta and bulk dispersion relations
are dependent on the energy density, i.e. on E/(VE}).
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Therefore they do not display a soccer ball problem either.
In Sec. VII we argue that this conclusion is unavoidable
without appealing to an unorthodox second quantization.
This is developed in Sec. VIII, where an exotic second
quantization procedure is presented (to be contrasted with
that in Sec. V), for which the quanta’s mass-shell condi-
tions are deformed according to /p&, where £ is the energy
of the coherent packet to which the quanta belong. This is
undoubtedly unusual, but cannot be ruled out a priori.
Thus we satisfy our experimental motivation. An overview
is provided in the concluding section.

Throughout this paper we use a metric with signature
+ — — — . We choose units where, in the low energy limit,
h = ¢ = G = 1. Whenever we consider frequency depen-
dent functions h(w) or c¢(w) these refer to dimensionless
ratios with the low energy values of # or c. To avoid any
confusion we stress that the results in this paper cannot be
extended to noncommutative DSR theories, with noncom-
mutative space-time coordinates. Noncommutative DSR
theories are determined by Hopf-algebraic structure [14],
which, under a standard coproduct interpretation of mo-
mentum addition law, does imply a soccer ball problem.

II. A MODEL CALCULATION

The basic idea behind this paper is that plane waves (or
wave packets) form excellent test tubes with which to
probe the behavior of sets of coherent particles in deformed
special relativity. We can use their amplitude to tune the
number N of particles they contain. We can then compute
the stress energy of the wave seen as a bulk and check
directly what the dispersion relations are for a set of N
coherent particles. Such coherent superpositions of quan-
tum particles in effect form classical waves and provide
good models for lasers.

We start by illustrating what we are hoping to do by
considering the undeformed theory, taking as a prototype a
free field theory with Lagrangian

L=Yo,parp—m¢’] (1)

As explained in the Introduction we shall ignore the com-
plications of spin (polarization), but the argument can
easily be generalized. Variation with respect to ¢ leads
to the Klein-Gordon equation

[0,0% + m*]¢p =0 )
which accepts plane-wave solutions
b = Ae ¥k 3)
or, more precisely,
¢ = Acos(x*k,) 4)

(we can only use the complex notation for the real field ¢
as long as we are dealing with linear operations). The
quanta, or particles, in this theory have momentum k,, =
(w, k;) = (w, —k') and satisfy quadratic dispersion rela-
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tions
w? — k? = m2 (&)

The proposed exercise is now to work out the dispersion
relations for a collection of these quanta, by evaluating the
energy £ and momentum P; of the wave (3).

Noether’s theorem tells us that we need to collect the
surface terms (or full divergences) eliminated in going
from (1) to (2) in order to identify the conserved currents
associated with symmetries of the action. Specifically,
translations x* — x* + dx* induce field variations 6¢ =
d,¢ox*. These in turn induce a variation in the action
given only by the full divergence

os = [ ax's <a<2£¢> 54)

= [dx“& <6(2£¢)6 g{))Sx

assuming that the field equations are satisfied. But the
action does not depend explicitly on x* so another way
to obtain this variation is to replace the fields by their
explicit functions of x* in order to identify L(x) =
L(¢(x), 9,,¢(x)) and then compute

55=fdx4

Comparing the two expressions, we thus obtain the result
that

g—jjé‘x’” = [dx“éﬂ(g’,fl)c?x”. (6)

Y
B9 (k)

is divergence free, that is, 9, T#" = 0.
For theory (1) the stress-energy tensor is

y = 0,00, — g, L ®)

Applying this expression to a wave we get

V¢ gp,v (7)

A2
Too = 7(a)2 — k? cos(2x*k,,)), )

A2
Tor = = wki(l = cos(2xk,)) (10)

[we should use the real expression (4) here rather than (3)
since this operation is nonlinear]. Integrating over a suffi-
ciently large volume (with respect to the wavelength) the
oscillatory terms in these expressions vanish. Thus the
wave’s bulk energy £ and momentum 2; inside a volume
V are given by

£ =TV = 1A20?V, (11)

P, =T,V =iAwkV. (12)

Given that the wave’s energy and momentum are the sum
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of its quanta’s energy w and momentum k;, we learn that
the number of quanta contained in the wave is

N =1VA%w (13)
so that
£ =No, (14)

The basic assumption is that there is additivity when going
from the (quantum) parts to the (classical, coherent) whole.

We can now check explicitly that the set of particles, i.e.
the wave seen as a bulk, also satisfies quadratic dispersion
relations,

E? — P? = N} (w? — k*) = (Nm)>. (16)
The mass of the bulk equals the sum of masses of its
quanta. Even though in this case we have considered a
coherent superposition, we see that the issue of coherence
only affects the counting of N in the wave, i.e. whether the
amplitudes add or simply their squares.

None of this is surprising but it should be obvious that
several steps in the calculation break down under deformed
dispersion relations. We will now try to repeat this ‘““model
calculation” in field theories representing deformed spe-
cial relativity, in the hope of identifying dispersion rela-
tions for (coherent) collections of quanta. This should
illuminate the soccer ball problem from a more fundamen-

tal perspective.

ITI. HIGHER-ORDER FIELD THEORIES

First, however, we need to develop some tools. A pos-
sible method for introducing deformed dispersion relations
into field theory appeals to Lagrangians with higher-order
derivatives (see [15]). We will need to generalize the
methods for obtaining the Euler-Lagrange equation and
the stress-energy tensor for such theories. We stress that
in what follows the variables x* are to be seen as standard
(commutative) variables, and that this is to be contrasted
with approaches based on noncommutative geometry
[14,16,17]. The issue of invariance (and consequent energy
dependence of the metric) is discussed in [15,18], and can
be ignored at this level.

Consider an action where the Lagrangian depends on
higher-order derivatives,

S = [de L06.8,0. 0,00 0006, ) (D)

Variation with respect to ¢ now leads to a much more
complex structure of surface terms, since we have to con-
vert terms of the form

La 5 (18)
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into terms proportional to d¢. For a term involving n
derivatives of d¢ this can be achieved by integrating by
parts n times, from which result n full divergences. The
final result entails the generalized Euler-Lagrange equa-
tions

E _ 3 oL + oL
ap  Ha(a,)  HTa(0,,9)
_ oL 4
#7000 pva®)
where we note that the sign alternates depending on the

order of the derivative in each term. The divergences
generated by this process have the form 9, D* with

=0 (19)

oL oL oL
B R O I T R
oL oL
Tard 0 T e, g 00
oL
Tl g,

Following an argument identical to the one in the previous
section we can therefore identify the conserved stress-
energy tensor

oL oL oL
T T s T ) e
oL oL
Ta@r, ) e T P,
oL

+ dap o 6(6“B¢) a,¢ - —guL. (20)

It can be checked directly that the condition
9,TH =0 @21

is equivalent to the Euler-Lagrange equation (19). Since
the position variables x* remain standard commutative
variables, the concepts of translational symmetry and its
associated conserved stress-energy tensor remain unmodi-
fied. In particular, the law (21) remains the same, except
that the expression for 7', is much more complex. But the
only novelties in this section are of a technical nature.

HOD field theories may be used to represent modified
dispersion relations and by extension DSR [15,19]. The
prescription is that the field equation should be obtained
from the replacement

k,—id, (22)
applied to whatever deformed dispersion relation,
@’ fA(w) — k*g*(w) = m?, (23)

one wants to represent. Of course, we may algebraically
rearrange the dispersion relations before applying this
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prescription, thus leading to different field equations.
This is the same ambiguity associated with the fact that
the same dispersion relation may be represented by a
variety of nonlinear representations of the Lorentz group
[3]. In practice, the particular representation chosen fully
fixes the field equation used.

For example, if the proposed particle kinematics is given
by the invariant

2 _ |2
1w (1 k)2 = @9
— (pw
the field equation should be
90" +m =0 (25)
[1 + (Ipdg)* }(b .

This equation is higher than second order, is linear (i.e.
accepts a superposition principle) and has plane-wave
solutions that satisfy dispersion relations (24). A less trivial
matter is finding a Lagrangian from which (25) can be
derived. One possibility is

1

L= ¢[

Oud” + m? 26
. m e o

1+ (l,uao)2

More generally, £ can be obtained by sandwiching the
deformed Klein-Gordon operator between two fields, but
only if the dispersion relations contain no odd powers of w.
This is equivalent to demanding that functions f and g in
(23) are functions of w?, or that their expansions in powers
of [pw only have even powers. The dispersion relations are
then symmetric under @ — — w, that is, positive and nega-
tive frequencies (energies) are treated equally.

In terms of the field theory, this requirement means that
the Klein-Gordon operator should be real and only contain
even order derivatives. If one begins with a dispersion
relation which has odd powers of /pw one may still con-
struct a Klein-Gordon operator and a Lagrangian as before;
however, the field equation derived from it will automati-
cally be symmetrized, as will the dispersion relations it
represents. We shall therefore assume that the dispersion
relations have w — —w symmetry, even though this ex-
cludes some outstanding examples [2,14].

As explained above, one may propose many different
field theories corresponding to the same dispersion rela-
tions (but there is a one-to-one relation with the particular
DSR or nonlinear representation of the Lorentz group
chosen). For example, the expression (24) may be arranged
as w? — k?> = m*(1 — (Ipw)?). Applying prescription (22)
to these two equivalent expressions leads to inequivalent
field theories; the latter is no more than a (linear, non-
frequency dependent) redefinition of the units of frequency
(or energy).
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IV. THE ENERGY AND MOMENTUM OF WAVES
Let us take as an example dispersion relations
w? — K2 )

1= (a) o) =m 27)

which we assume belong to a nonlinear representation of
the Lorentz group with generators K; = U~ 'L, U, where
L, are the usual linear generators, and

Ulw, k) = (o(1 + m*l50?)'?, k;) (28)

(the procedure is described in detail in [3]). Then, we
should rewrite the dispersion relations as

o*(1 + m*lw?*) — k> = m?, (29)
before applying prescription (22). This leads to the field
equation

(0,0 +m? = IEm*38)p = 0 (30)
which indeed has plane-wave solutions with a k, satisfying

dispersion relations (27). A possible Lagrangian [giving
this equation via (19)] is

L =oupore—m¢>+Lm*(956)] (G
for which the stress-energy tensor, computed according to
(20), is

Ty = 0,h0,¢ + [m* 8, (g, ¢ — ¢0,¢) = g, L.
(32)

When evaluated for a plane wave, and integrated over a
sufficiently large box (as done in Sec. II), this leads to bulk
energy and momentum

E =TyV =3A%w0*V(1 + 2[m*w?), (33)

?i = T()iV = %AZC()le(l + 2[‘;”’[2&)2) (34)

At once, we see that the soccer ball problem has been
eliminated. Consider a case where the quantum particles
are definitely sub-Planckian, with w << Ep and m < Ep.
Then regardless of how large £ is, we have

E? — P> = (Nm)? 35)
with £ = Nw and P; = Nk;, and
N = 1lVAw. (36)

This is true even if £ > Ep, thus eliminating the soccer
ball problem. Notice that N here does not need to be the
actual number of quanta, a matter to be refined in Secs. V
and VIII. Interpreting N as the macroscopic parameter
defined as N = £/w, the point is that departures from
(36) are a function of /[pw and therefore negligible for
sub-Planckian frequencies. Regardless of the second quan-
tization details (and what the actual number of particles is)
there is no soccer ball problem.
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Bearing laser physics in mind (see the Introduction) we
consider another example, where the dispersion relation for
a massless particle is given by

w2

k2 =
ey 0 (37)

Such a dispersion relation entails a frequency dependent
speed of light (see, e.g., [3,12]). A varying speed of light
has been considered in a variety of circumstances [13,20—
22], some of which are cosmological in nature. Before
applying (22) we rewrite these relations as

0*(1 + Bo’k?) — k2 =0 (38)

so that we now get the field equation
(0,0 — 130%07)p = 0. (39)

A Lagrangian giving this equation is
L =i0,40"¢ + 1}(39;¢)°] (40)

and so the relevant components of the stress-energy tensor
are

TOV = d)avd) + l%’(a()id)aivd) - alzcﬁa,,qﬁ) - gOV‘£’ (41)

Evaluated for a plane wave, and integrated over a large
volume so as to eliminate the oscillatory terms, we get

1 1 + (lpw)?
£ =TV =z A%V — 0 42
00 ATV Upw)? (42)
1 1+ 2
?i = TOiV = —AzwkiV (le) (43)

2 1-— (le)Z

and once more we see that there is no soccer ball problem.
If w < Ep, then these expressions reduce to the unde-
formed ones regardless of the amplitude, and so anomalous
behavior is triggered by Planckian w, not by £ ~ Ep.

What happens in these two cases is actually very gen-
eral. Because of the linearity of the field equation and the
quadratic nature of the stress-energy tensor, £ and P will
always be quadratic in amplitude, and be deformed by a
function of /pw rather than a function of /p,£. This imme-
diately eliminates the soccer ball problem. This is true for
general Lagrangians of the form

1
L= —Ecb[aﬂa“ > cnllpdo)" + mz}ﬁ, (44)
and
1
[ = 5%¢3“¢ + E cu((Lpdg)"a; )%, (45)

or similar generalizations for other Lagrangians considered
in the examples above.

The fact that these theories naturally bypass the soccer
ball problem does not mean that interesting bulk behavior
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is not present if the quanta are Planckian, i.e. if o = E,,.
Take expressions (42) and (43) [or Eq. (49)]. For quanta
with w = Ep we see that for the same amplitude A a wave
carries a much larger density of particles (indeed this is
infinite for = Ep). The implication is that the same laser
beam intensity can be reached with a much lower ampli-
tude, or, conversely, it takes much more energy to excite a
wave with a given amplitude when its color approaches the
Planck frequency.

V. SECOND QUANTIZATION

The field ¢ in the previous section is a classical field and
its amplitude a ¢ number, not a creation/annihilation op-
erator. No mention of the quantization procedure has been
made or is necessary. All we learn is that a macroscopic
object (here a classical wave) with @ << Ep does not run
into Planckian behavior even if £ is comparable to or larger
than Ep. By itself this is a solution of the soccer ball
problem; however, if we want to know in detail how bulk
quantities are deformed as a function of £ and N, and, in
particular, whether the prescription [, — [p/N is correct,
we need to know how the number of quanta is defined.
Here we present a simple quantization procedure leading to
the prescription in [3].

The main remark is that if we adopt a quantization
procedure in which the wave’s energy and momentum
satisfies £ = Nw and P; = Nk; [i.e. Egs. (14) and (15)]
then this is equivalent to the solution [, — [p/N proposed
in [3]. Take the first example in Sec. IV. If (14) and (15) are
correct then (13) is deformed as

N =1VA20(1 + 2l m*w?) (46)
and so
E2 = P2 =N (w? = 1) = (NmP*(1 = (lpw)*)  (47)
which can be rearranged into
52 _ ip2
———— = (Nm). (48)
1= (5

By comparing with (27) we see that the wave, seen as a
collection of particles, satisfies dispersion relations which
can be obtained from the quanta’s relations by replacing
the mass with the sum of the quanta’s masses and [p by
Ip/N, as intuited in [3]. The same is true of the second
example; if Egs. (14) and (15) are true then

1 1+ (lp(l))z
N=-VA?20—" 5 49
2 T T ) “49)
and again we can derive
52
—— - P2 =0 (50)
1€
1= )

to be contrasted with (37).
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This conclusion is quite general and therefore the ve-
racity of the prescription /p — Ip/N depends on whether
we can implement a second quantization procedure for
which Egs. (14) and (15) hold true, with N standing for
the actual quantum number operator (which should have an
integer spectrum). For the amplitudes to become proper
creation and annihilation operators they must satisfy

[ak, 6111:/] = Okk'- (51)

Then Ny = aiak is indeed the number operator: it has an
integer spectrum and ‘‘counts” the number of quanta
present in states belonging to a Fock space set up with
a' as usual. This is merely a definition, its physical content
residing in the expression linking fields and amplitudes

1 4 4
=N [ape ** + qf gik> 52
¢ Z_ m[ K ke ] (52)
or, equivalently, in the “convenience factor” C(w) in this
expression. In the undeformed theory C = w, a fact that
follows from canonical quantization, but here we shall
leave it as a free function and then investigate the impli-
cations of different choices.
Specifically, we want to know if it is possible for the
quantum Hamiltonian and momentum to be given by

H= szk, (53)
k

Py = kiNy, (54)
k

essentially the required conditions (14) and (15). Even
though there are ambiguities in defining conjugate mo-
menta in HOD theories, we can certainly define the quan-
tum Hamiltonian as

H= fd3xTOO (55)

where Ty, is to be read off from (32) (and similarly for the
momentum using T;). The field ¢ in this expression is to
be replaced by its quantum version (52), under a normal
ordering prescription. The result is

2
- it 274 2
H= Zm(l + 2m2 I 0?) Ny (56)
and thus it is possible to realize (54) if we choose
C(w) = o(1 + 2m*l}?). (57)

The question is now as follows: to what canonical quanti-
zation procedure does this correspond? One view is that in
HOD theories expressions (51) and (52) are more funda-
mental than the canonical quantization postulate

[¢(x, 1), II(y, )] = i6(x —y), (58)

where II is the momentum conjugate to ¢ (not simply
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defined for HOD theories). We point out that (51) and (52)
with C(w) given by (57) follow from canonical quantiza-
tion (58) for a deformed momentum

I = ¢ — 2m*1% . (59)
Given the ambiguities in defining conjugate momenta for
HOD theories, this proposal is certainly possible, if not
unique. Notice that this calculation is only possible be-
cause there is no upper bound on |k|, so that we still have
the identity

Zeik'x = V&(x). (60)
k

In theories where there is a minimal wavelength as well as
a maximum energy, this is no longer true and therefore (58)
can never be realized. The view that (51) and (52) are more
fundamental to second quantization is probably more sen-
sible in such cases.

In this example we have worked backwards, but such a
construction is always possible (as long as there is no upper
bound on |k|). For the second example in Sec. IV the
momentum conjugate to ¢ should be chosen as

I = 9y(1 — 2597)¢ (61)
or even
1+ (Ipdy)*
n=9—= 62
0 1 _ (lp80)2 ¢ ( )

to obtain similar results. In either case (58) leads to (51)
and (52) with

1 — (lpw)?

Clo) = o100

(63)
and it can be checked that (54) is correct, ensuring (14) and
(15). The bulk dispersion relations therefore satisfy the rule
that I, should be replaced by Ip/N, where the particle
number N has now been defined rigorously.

It is of course possible to follow other second quantiza-
tion procedures, and a rather exotic one will be examined
in Sec. VIII. As the previous section shows, none of this
affects the fact that HOD theories cannot have a soccer ball
problem. However, something different but akin to the
soccer ball problem may be found if an exotic second
quantization is chosen, quite different from the one pro-
posed in this section.

VI. NONLINEAR FIELD THEORIES

HOD theories may be criticized on a number of grounds.
One may question the stability of the Cauchy problem or
even suspect that such theories contain ghosts upon suit-
able field redefinitions. None of these criticisms has been
definitely proved or disproved. Yet there are ways to in-
troduce deformed dispersion relations into field theory that
do not invoke higher-order derivatives. The conceptual
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gains are paid for by heavy technical complexity, because
such theories must be necessarily nonlinear. It turns out
that these theories are even better protected against the
soccer ball problem than those considered in the previous
sections.

The idea is that k,, should roughly correspond to 9, ¢
when setting up the Lagrangian. For example, one may
propose a Lagrangian of the form

_ [ 0ugdte
2[1 + (lpo®)?
for theory (24), or of the form
=3[9, p0%p —m*$*(1 — (13909))'] (65)

for theory (29). In general, these theories have a
Lagrangian that is not quadratic in the fields.
Nonquadratic Lagrangians (NQL) introduce nonlinearities
into the field equation and therefore one loses the super-
position principle.

For definiteness we consider as an example a theory with
the Lagrangian

L =[9,¢0"d —m*¢*(1 — ([5dg))*] (66)
for which the field equation is
[0,0* + m2]p + m*[h(p P + > p) = 0. (67)

Treating the last two terms (let us call them &s) as a
perturbation, and trying out a solution of the form

¢ = Acos(wt — kx) + 8¢, (68)

mzcﬂ (64)

we find that to leading order the extra terms are
8s = —Im*I} A3 (cos® + cos3 D) (69)

where the phase ® is the usual wt — kx. From the terms in
cos® we thus find the condition
w2 _ k2
— 2
———— = M, (70)
1 - LBAw)
that is, we discover that the dispersion relations are de-
formed with a controlling parameter of the order [2Aw.
Thus in these theories the wave’s amplitude has a direct
effect on the quanta dispersion relations. This is due to the
nonlinearity of the theory.
But there is another effect, due to the cos3® term in Js.
This should be canceled by a perturbation d¢, also pro-
portional to cos3®, specifically,

5 = —%(szw)Z cos(Blwr — kx). (71

This is an instance of the so-called phenomenon of ringing:
in addition to the fundamental mode, a higher harmonic is
necessarily excited. In this case the higher harmonic has 3
times the frequency of the fundamental mode, and its
amplitude is suppressed by a factor of ([pAw)?.
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Expression (70) is an interesting result. It appears that in
this theory the quanta’s dispersion relation knows about the
bulk wave and not just about the frequency of the quanta.
However, this is not quite a version of the soccer ball
problem, because the relevant bulk wave parameter is not
its energy £ but the energy density Ty = £/V. Indeed the
rough condition for anomalous behavior is

14261)2 -~ TOO -~ % -~ 1;4, (72)
i.e. we need the energy density, rather than the total energy
&, to be Planckian. This is also the parameter controlling
deformations of bulk behavior, e.g. £ and P. So it seems
that both quantum and bulk behavior are controlled by the
same parameter, which is in fact a feature of the bulk wave.

Condition (72) is even more restrictive than w ~ Ep,
since we now need both the quanta’s energy and their
number density to be Planckian. In general, we find that
in NQL theories Planckian effects are more suppressed
than in HOD theories, both in the quantum and bulk
dispersion relations. However, we have learned an interest-
ing lesson, as the next section will highlight: it is possible
for the quanta’s properties to be controlled by a bulk
feature.

It should be stressed that by this stage in our investiga-
tions we have gone beyond conventional DSR, which acted
as our initial motivation. In NQL theories the quanta’s
dispersion relations are deformed as a function of the
wave’s energy density. This is not kinematical point-
particle DSR (where the deformation is a function of the
frequency), nor is it an embodiment of the soccer ball
problem, but it is something in between. Still, this field
theory formulation establishes one of the many possible
micro-macro interactions that could, in principle, be found
in deformed dispersion relations, as we now proceed to
spell out.

VII. SOME ORIENTATION

In this section we pause to summarize our findings so
far. Having pointed out the experimental potential in the
possibility that Planckian behavior is triggered by £ ~ Ep,
we encountered severe difficulties in realizing this property
in field theory. We investigated DSR implementations
based on HOD Lagrangians,

L= L(0,:pdy)"$) (73)
and on NQL,
L = L(¢, 0,0 d*(130y)"). (74)

We then distinguished between two levels of phenomenol-
ogy, microscopic (relative to the quanta, and to k,) and
macroscopic (relative to the bulk wave, and £ and P;). The
first relates to dispersion relations for the quanta, i.e. the
replacement
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w? —k>=m?— qg(w, k,m) =0 (75)

where the deformation function ¢ depends on [ multiplied
by some energy, not necessarily w. The latter relates to the
behavior of matter in bulk, investigated here in the extreme
case of a classical wave, made up of coherent quanta. In
general, we expect a deformation

EX=TP=M>—>QE P,M)=0 (76)

via a possibly different function Q controlled by [ multi-
plied by some other energy, not necessarily w or £. We saw
that in HOD theories

q = C](w» k: m; le)’ Q = Q(g) P: M, le) (77)

whereas in NQL theories

q= q(a), k, m; 1 5), 0= Q(S, P, M;l3 g). (78)
Vv Vv
Thus in HOD theories the Planckian nature of the quanta
triggers both microscopic and macroscopic anomalies,
whereas in NQL theories it is a bulk parameter, the energy
density, that controls anomalous behavior (both micro-
scopic and macroscopic). In either case the low energy
world is well protected from the threat of Planckian effects.
But in the realm of abstract possibilities two interesting
alternatives might occur. First, anomalous macroscopic
behavior might be triggered by a Planckian bulk energy
(€ ~ Ep), with

This is the soccer ball problem. NQL theories, while not
realizing this scenario, suggest an even more insidious
second possibility. It could also be that

q = q(w, k,m;1pE), (80)

i.e., microscopic QG behavior might be triggered by a
Planckian bulk energy (in the sense that £ ~ Ep) where
£ is the energy of the coherent packet to which the quanta
belong. As pointed out in the Introduction, as long as either
of these possibilities happens only for coherent collections
of particles, this is interesting rather than problematic.
The realization of either possibility in classical field
theory is highly unlikely, however. It would require an
integral-differential field equation, for example,

[040, + m?]p — lpm*¢ fd%(ﬁz =0. (81

This equation approximately accepts plane-wave solutions,
with dispersion relations

2 _ 12
w k 2

k*_ 82
11— " (82)

But it would also entail severe nonlocality: the value of the
field at one point is directly entangled with the field every-
where else.
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The turn of phrase just used points to an interesting new
avenue. Perhaps the nonlocality required to realize (79) or
(80) is not present in the classical field theory, but is instead
part of the quantization process, in a suitable alternative to
Sec. V. Quantum entanglement is nonlocal, and so is the
phase coherence between all the quanta making up a laser.
This may be just the “nonlocal’’ ingredient required by the
anomalies (79) or (80). This we investigate in the next
section.

VIII. ANOMALOUS SECOND QUANTIZATION

In this section we search for a quantization procedure
that might lead to (79) or (80). Since we seek anomalous
behavior with £ ~ Ep but w < Ep, we may assume o <<
Ep and £/V < E}. Thus we may as well investigate
anomalous quantization of an undeformed classical field
theory (even if the considerations to follow in effect apply
to HOD and NQL theories, and further anomalies will be
present if w ~ Ep).

Since the undeformed Klein-Gordon equation is ap-
proximately valid, we have classical plane-wave solutions
¢ = Acos(wt — kx) with k, = {w, k;} such that, approxi-
mately,

0’ — k> = m?, (83)
The bulk quantities £ and P; satisfy
&= KAza)z, (84)
2
Vv
?i = §A2wki, (85)
Er— P2 = (Nm)* = M? (86)

with N formally defined as before. All of this is purely
classical.

In setting up second quantization in Sec. V we adopted a
deformation of the usual factor C(w) = w [cf. Eq. (52)],
but the deformation was taken to be a function of the
frequency. For all we know it could be a function of [p€
where £ is the energy of the coherent packet under exami-
nation. Then,

WIpE): i 4 i
— kx4 ik-x 87
¢ Z SV Lake ay e (87)
with
[a, al,] = Sy (88)

Once more Ny = alak properly counts the number of
quanta present in the states of the standard Fock space,
set up with a' as usual. This is bizarre but, as we shall now
see, hard to rule out a priori except by experiment. It is a
postulate, so one may take the evasive stance that “one
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does not need to justify it”’; but the underlying motivation
is that it leads to the missing vertex of the constellation of
possibilities laid out in Sec. VII.

This construction is equivalent to an £-dependent Planck
constant (explaining the notation used). It follows from
canonical quantization with

[$(x, 1), Gy, D] = in(IpE)d(x — y). (89)

Mimicking the calculation performed in Sec. V we find
that

H= Zh(ng)ka, (90)
K
K
Thus additivity is preserved in the form
£ = NE, (92)
P;=Np; 93)

but now we find that the energy momentum p, = (E, —p)
of the quanta is nontrivially related to their frequency and
wave number:

pu = h(lp&)k,. (94)

We have so far ignored the distinction between the quanta’s
energy E and their frequency w. We are now zooming in on
this distinction, and implementing the anomalous element
there.

But the dispersion relations for k, are undeformed (or
rather, they are deformed according to /[pw and we are
taking the limit [pw << 1). Thus the proposed deformation
of the relation between p,, and k,, implies that the quanta’s
mass-shell condition must be deformed as a function of
[p€. For example, if

1
h = 95
1= 1€ ©3)
so that
w
E=—, 6
1 —[p€ 96)
k.
=" 7
Pi=1C I8 o7
then (83) leads us to the quantum mass-shell conditions
E2 ——
=P = (98)
(1 =1p€)

Therefore if we consider a high intensity laser, and perform
experiments sensitive to the energy, rather than the fre-
quency of its quanta (for example, photo-electric type
experiments), we should become sensitive to QG. The
most dramatic implication follows from the proved addi-
tivity (90), which implies

N = %Asz(l = 1pé). (99)
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This creates a version of the soccer ball problem: we
cannot build a coherent wave packet with an energy larger
than Ep. As £ approaches Ep the packet behaves more and
more like a single quantum, and the energy of a single
quantum (for which now E = &) cannot exceed Ep. In this
limit we have blurred the distinction between bulk and
quantum, thus creating a version of the soccer ball problem
for coherent matter.

This construction has parallels with [19], but also strik-
ing differences. In that work it was proposed that

pi = kih(lpk), (100)

leading to a deformed Heisenberg uncertainty principle
and a frequency dependent Planck’s constant. As in [19]
we postulate that the relation between p, and k, is de-
formed, but as a function of [p€ rather than [pk.
Furthermore, in [19] the quantum mass-shell relations are
assumed to remain undeformed, implying deformed dis-
persion relations for k,. We have exactly reversed this
assumption. This is because HOD and NQL theories teach
us that deformations of (83) can never be a function of [,€
(the purpose of this paper).

To restate the case in a more physical language, in [19] it
takes more and more energy to produce a quantum as its
wavelength approaches /p. Here we suggested that it may
take more and more energy to make a quantum (of what-
ever wavelength, not necessarily small), as the energy of
the coherent packet to which it belongs approaches Ep.
Then N = 1 and the distinction between classical and
quantum disappears. The packet behaves like a single
quantum particle for which Ep cannot be exceeded.

IX. CONCLUSIONS

In DSR, Planckian behavior is triggered whenever the
energy of elementary particles approaches Ep. The fact
that the Planckian behavior may also set in when the total
energy in a collection is close to Ep constitutes the soccer
ball problem. In this paper we pointed out that there is no
obvious contradiction with experiment if only coherent
superpositions of particles with collective energy close to
Ep display Planckian behavior. The proverbial soccer balls
are not coherent and the strongest lasers have bulk energies
well below Ep.

Unfortunately, upon closer inspection, we found that, in
classical field theory realizations of DSR, it is very diffi-
cult, if not impossible, not to solve the soccer ball problem.
Our analysis was not exhaustive—for example, we left out
noncommutative field theory—but the results obtained are
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more than suggestive. We conclude that the soccer ball
concern is a red herring, a mental block peculiar to sim-
plistic kinematic models. With the community having
spent so long worrying about the ‘“problem,” it is ironic
that now, when a ““good side” is found, difficulties are
encountered in realizing it at all.

But we found a better experimental window of oppor-
tunity. Even though classical waves with sub-Planckian
frequencies can never display anomalous bulk properties,
it is possible for their quanta to behave unusually. We
proposed that in sets of coherent particles the relation
between the quanta’s energy and frequency, and between
their momentum and wave number, is deformed whenever
the energy of the coherent packet nears Ep. In other words,
Planck’s constant is deformed as a function of /£ and, like
most deformations considered in DSR, diverges for £ —
Ep. Then, in the same way that in DSR there cannot be
elementary particles with energy bigger than Ep, it be-
comes impossible to construct a coherent packet with
energy larger than Ep. As the packet energy gets larger
each quantum absorbs more and more energy (for fixed
frequency), until for £ — Ep the whole packet effectively
becomes a single quantum, with sub-Planckian frequency,
but Planckian energy. The distinction between the bulk and
the particle then disappears, and it is impossible to push the
energy of the particle or packet beyond Ep. It is therefore
impossible to have a laser deliver more than about a
TeraJoule of coherent light. The implied limitations to
military systems, such as those inspired by the Strategic
Defense Initiative, are so tragic they should not even be
contemplated.

Once regarded as an embarrassment, the soccer ball
problem never exists in its classical field theory realization.
But Pandora’s box is opened with the realization that an
important test, rather than a paradox, follows for a version
of the phenomenon that only affects coherent collections of
particles. We found that it is possible (but not generic) for
the quantum mass-shell condition to be deformed as a
function of /€, where £ is the total energy of a coherent
wave packet. The consequent implications of high intensity
laser projects for QG phenomenology are highlighted for
the first time in this paper.
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