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We show that the problem of stabilization of extra dimensions in Kaluza-Klein type cosmology may be
solved in a theory of gravity involving high-order curvature invariants. The method suggested (employing
a slow-change approximation) can work with a rather general form of the gravitational action. As
examples, we consider pure gravity with Lagrangians quadratic and cubic in the scalar curvature and some
more complex ones in a simple Kaluza-Klein framework. After a transition to the 4D Einstein conformal
frame, this results in effective scalar field theories with certain effective potentials, which in many cases
possess positive minima providing stable small-size extra dimensions. Estimates made in the original
(Jordan) conformal frame show that the problem of a small value of the cosmological constant in the
present Universe is softened in this framework but is not solved completely.
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I. INTRODUCTION

Modern cosmology is able to explain many properties of
our Universe due to a substantial progress in experimental
methods and technology and development of new theoreti-
cal models. Nevertheless, there is quite a number of long-
standing and challenging unsolved problems. We are going
to discuss some of them. The first one, known for two
decades, concerns the origin and form of the inflaton
potential [1] able to provide a sufficient primordial infla-
tion satisfying the observational constraints. Despite nu-
merous attempts, see, e.g., [2,3], the problem is yet to be
solved. Another problem is related to the recently observed
accelerated expansion of the Universe whose origin is
usually ascribed to some unknown and invisible dark en-
ergy, which is likely to be identified with an extremely
small but nonzero vacuum energy density, or cosmological
constant. Certain problems of theoretical origin are com-
mon to all modern theories, employing the idea of extra
dimensions, among which well known are M theory, super-
gravities, diverse Kaluza-Klein, and brane world scenarios.
A requirement which inevitably accompanies such inves-
tigations is that the extra dimensions should be invisible
since our space-time looks 4-dimensional at least at scales
over 10�17 cm. In models where the extra dimensions are
assumed to be compact, this is a severe restriction on their
size. Moreover, to account for the observed constancy or
nearly constancy of the fundamental physical constants
(the gravitational constant G, the fine structure constant
�, and others [4]), this size should be constant and stable,
and therefore a mechanism of stabilization of the extra
dimensions is required in any scenario that involves them.
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The most popular way of reaching such a stabilization is
to invoke a scalar field of nongeometric origin with an
appropriate potential. This new entity seems somewhat
artificial because scalar fields already exist in this frame-
work: the metric tensor components corresponding to the
extra dimensions behave as scalar and vector fields in our
4D space. It is, however, difficult to obtain a suitable form
of the potential for such fields [5,6]. To improve the
situation, additional nongravitational fields are invoked
thus returning us to the starting point.

On the other hand, the gravitational action, in general,
includes terms containing nonlinear functions of the Ricci
scalar as well as other curvature invariants. Such nonlinear
terms inevitably appear if one takes into account quantum
phenomena [7–9]. In fact, the first model of inflation was
based on this idea [10]. Gravity represents a wide choice of
different forms of action since even renormalization of
nongravitational quantum fields against a curved back-
ground yields various curvature terms with indefinite co-
efficients, to say nothing of presently unknown classical
‘‘traces’’ of quantum gravity and Casimir-like contribu-
tions from a nontrivial space-time topology (if any). This
wealth of possibilities has a negative imprint. Indeed, only
one form of the gravitational action among many is real-
ized in our Universe, and it is a challenging problem to
choose the correct one.

In this paper, we study curvature-nonlinear gravity in a
space-time manifold with an arbitrary number of extra
dimensions. Our aim is threefold. First, we intend to dem-
onstrate that even the simplest version of nonlinear multi-
dimensional gravity (with the Lagrangian F�R�, R being
the Ricci scalar) leads to a scalar field with potential and
kinetic terms having promising shapes. Second, we are
going to point out some particular examples of minima
of the effective potential V with positive V � Vmin, which
-1 © 2006 The American Physical Society
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are, in principle, able to describe the present accelerated
expansion of the Universe (certainly in a very rough ap-
proximation). Third, we try to find out whether or not, or to
which extent, the well-known cosmological constant prob-
lem can be solved in the present class of theories.

In our study we use the slow-change approximation,
assuming smallness of all derivatives, in a sense discussed
below, and smallness of energy densities compared to the
Planck scale. Such assumptions are rather widespread in
studies of inflationary scenarios. This method allows deal-
ing with rather general forms of the gravitational action
and extended parameter ranges. With its help, new minima
of the potential which can provide stability and smallness
of the extra dimensions are found.

The paper is organized as follows. In Sec. II we consider
F�R� theories of gravity in multidimensional space-times
where the extra dimensions comprise a constant-curvature
space with a scale factor b�x�, depending on the external
(observed) coordinates. Integrating out the extra dimen-
sions in the action and applying the slow-change approxi-
mation, we obtain an effective scalar-tensor theory in 4
dimensions with a single scalar field b�x� and specific
forms of its potential and kinetic terms. It should be noted
that the complexity of the kinetic term can also affect the
system dynamics and qualitatively change its properties
[11,12].

We also show that our approximation agrees with the
conventional approach that reduces F�R� gravity to
D-dimensional Einstein gravity coupled to a scalar field
with a potential related to F�R�.

Section III is devoted to numerical estimates concerning
possible stationary states of the extra dimensions. We
briefly discuss the role of conformal frames, distinguishing
the fundamental frame in which the theory is originally
formulated (saying what happens as a matter of fact) and
the frame used to interpret the observations (showing what
we can see). The choice of the latter depends on the
properties of references employed in our measurements
[13]. We here restrict ourselves to the simplest and maybe
the most natural assumption, that the observational frame
coincides with the fundamental (Jordan) one. Under this
assumption, it turns out that the smallness of the present
cosmological constant remains a problem though less se-
vere than in conventional cosmology.

In Sec. IV we use our method for seeking stable states of
the extra dimensions in quadratic multidimensional grav-
ity, with F�R� � R� cR2 � 2� where c and � are con-
stants. This theory has been previously discussed in
Ref. [14], where local minima of the potential V with
Vmin < 0 were found at values of R corresponding to
dF=dR > 0. In the cosmological context, such minima
can only lead to models with the anti-de Sitter space
AdS4. We confirm this result but also find new minima of
the potential in the unusual range where dF=dR < 0; for
some of them, Vmin > 0, which leads to de Sitter
cosmology.
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Section V discusses other choices of the initial
Lagrangian. Thus, with F�R� taken in the form of a cubic
polynomial, we find minima of the effective potential with
Vmin > 0 in the region where dV=dR > 0. Then we dem-
onstrate that our method can be successfully applied to a
much wider class of multidimensional theories of gravity,
e.g., those containing the Ricci tensor squared and the
Kretschmann scalar. Section VI contains some concluding
remarks.
II. F�R� THEORY IN D DIMENSIONS

A. Basic equations

We consider a (D � d0 � d1)-dimensional manifold
with the metric

ds2 � g��dx�dx� � e2��x�babdxadxb; (1)

where the extra-dimensional metric components bab are
independent of x�, the observable space-time coordinates.
The relevant case is certainly d0 � 4 but, in Eqs. (2)–(5),
we keep d0 arbitrary for generality.

The D-dimensional Riemann tensor has the nonzero
components

R���� � �R����;

R�a�a � �abB
�
� ;

B�� :� e��r��e
����;

Rabcd � e�2� �Rabcd � �
ab
cd���

�;

(2)

where capital Latin indices cover all D coordinates, the bar
marks quantities obtained from g�� and bab taken sepa-
rately, �� � @�� and �abcd � �ac�

b
d � �

a
d�

b
c . The non-

zero components of the Ricci tensor and the scalar
curvature are

R�� � �R�� � d1B
�
�;

Rba � e�2� �Rba � �
b
a���� d1�@��

2�;

R � �R�g� � e�2� �R�b� � 2d1��� d1�d1 � 1��@��2;

(3)

where �@��2 � ����, � � g��r�r� is the
d0-dimensional d’Alembert operator while �R�g� and �R�b�
are the Ricci scalars corresponding to g�� and bab,
respectively.

Suppose now that bab describes a d1-dimensional space
of nonzero constant curvature, i.e., a sphere (k � 1) or a
compact d1-dimensional hyperbolic space [15] (k � �1)
with a fixed curvature radius r0 normalized to the
D-dimensional analogue mD of the Planck mass, i.e., r0 �
1=mD (we use the natural units, with the speed of light c
and Planck’s constant @ equal to unity). We have

�R ab
cd � km2

D�
ab
cd; �Rba � km2

D�d1 � 1��ba;

�R�b� � km2
Dd1�d1 � 1� � Rb:

(4)
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The scale factor b�x� � e� in (1) is thus kept dimension-
less; Rb has the meaning of a characteristic curvature scale
of the extra dimensions.

Consider, in the above geometry, a sufficiently general
curvature-nonlinear theory of gravity with the action

S �
1

2
mD�2
D

Z ������
Dg

q
dDx�F�R� � Lm�; (5)

where F�R� is an arbitrary smooth function, Lm is a matter
Lagrangian, and Dg � j det�gMN�j. The extra coordinates
are easily integrated out, and the action is reduced to d0 �
4 dimensions:

S �
1

2
V �d1�m

2
D

Z �����
4g

q
d4xed1��F�R� � Lm�; (6)

where 4g � j det�g���j and V �d1� is the volume of a
compact d1-dimensional space of unit curvature.

B. Slow-change approximation—The Einstein frame

Equation (6) describes a 4D theory which is nonlinear in
curvature and, moreover, contains a nonminimal coupling
between the effective scalar field � and the curvature. Let
us simplify it in the following manner:
(a) E
xpress everything in terms of 4-dimensional vari-
ables and ��x�; note that now

R � R4 ��� f1; R4 � �R�g�;

f1 � 2d1 ���� d1�d1 � 1��@��2;
(7)

and we have introduced the effective scalar field

��x� � Rbe�2��x� � kd1�d1 � 1�m2
De�2��x�: (8)

Recall that we have k � 	1 for positive and nega-
tive curvature in d1 extra dimensions, respectively,
so that � has different signs in these cases by
definition.
(b) S
uppose that all quantities are slowly varying, i.e.,
consider each derivative @� (including those in the
definition of �R) as an expression containing a small
parameter "; neglect all quantities of orders higher
than O�"2� (see [9]).
(c) P
erform a conformal mapping leading to the
Einstein conformal frame, where the 4-curvature
appears to be minimally coupled to the scalar �.
In the decomposition (7), both terms f1 and R4 are
regarded small in our approach, which actually means
that all quantities, including the 4D curvature, are small
compared to the D-dimensional Planck scale. So the only
term which is not small is �, and we can use a Taylor
decomposition of the function F�R� � F��� R4 � f1�:

F�R� � F��� R4 � f1�

’ F��� � F0��� 
 �R4 � f1� � . . . ; (9)

with F0��� � dF=d�. Substituting it into Eq. (6), we
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obtain up to O�"2�

S �
1

2
V �d1�m

2
D

Z �����
4g

q
d4xed1��F0���R4 � F���

� F0���f1 � Lm�; (10)

where � is related to � according to (8). The expression
(10) is typical of a scalar-tensor theory (STT) of gravity in
a Jordan frame.

To find stationary points, it is helpful to pass on to the
Einstein frame. After the conformal mapping

g�� � ~g�� � jf���jg��; f��� � ed1�F0���; (11)

with the corresponding transformation of the scalar curva-
ture

R4 � jfj
�

~R4 �
3

f
~�f�

3

2f2 �
~@f�2

�
(12)

(the tilde marks quantities obtained from or with ~g��), the
action (10) acquires the form

S �
1

2
V �d1�m2

D

Z ���
~g

p
d4x

�
�signF0����� ~R4 � K� � V���

�
e�d1�

F0���2
Lm

�
(13)

with the kinetic (K) and potential (V) terms

K �
3

2

�@f�2

f2 � 2d1

f;���
f
� �@��2;

V��� � �e�d1�F���=F0���2:
(14)

It remains to express everything in terms of a single
scalar variable, say, �. We can write the action (13) in the
form

S �
V �d1�

2
m2
D

Z ���
~g

p
�signF0�L;

L � ~R4 �
1

2
KEin����@��2 � VEin��� � ~Lm;

~Lm � �signF0�
e�d1�

F0���2
Lm;

(15)

KEin��� �
1

2�2

�
6�2

�
F00

F0

�
2
� 2d1�

F00

F0
�

1

2
d1�d1 � 2�

�
;

(16)

VEin��� � ��signF0�
�
j�jm�2

D

d1�d1 � 1�

�
d1=2 F���

F0���2
: (17)

In (12)–(15), the indices are raised and lowered with ~g��;
everywhere F � F��� and F0 � dF=d�.
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Equations (15)–(17) are valid for both positive (�> 0)
and negative (�< 0) curvature of the extra dimensions.
Minima of the potential VEin, defined in the Einstein frame,
determine stationary points of the scalar field, and they
remain to be stationary points after a transition to any other
conformal frame, including the original Jordan frame. It is
the Einstein frame that determines the scalar field behavior
since its dynamics near an extremum is governed directly
by the potential V��� and only implicitly by the metric.

If � resides at a minimum of the potential VEin, this
potential turns into an effective cosmological constant.
Being applied to the present cosmological epoch, it can
determine the observable dark energy density that drives
the accelerated expansion of the Universe. Alternatively, in
principle, it may drive inflation in the early Universe.

We have achieved one of our goals: the potential (17)
valid for any function F�R� looks quite complex to have
some nontrivial extrema. In addition, we have obtained
rather a complex form of the kinetic term (16). Its proper-
ties are known to be as important for the field dynamics as
the shape of the potential. For example, as shown in
Ref. [12], zeros and singular points of the kinetic term
may be responsible for stable states of a scalar field.

In our expressions, both the effective potential (17) and
the kinetic term (16) are singular at the values of � where
f��� � F0�R� [the factor before R4 in the Jordan-frame
action (10)] is zero. Unlike many papers restricted to
F0�R�> 0, we also include models with F0�R�< 0. As
will be seen below, this opens new promising possibilities
such as new minima of the effective potential at which the
extra dimensions may be stabilized. Moreover, models
with conformal continuations [16,17], which unify regions
with F0 > 0 and F0 < 0, are possible; these regions corre-
spond to different Einstein-frame manifolds but turn out to
be smoothly connected in the Jordan frame. Though, such
models are likely to be unstable, as follows from the
experience of dealing with different solutions of scalar-
tensor theories [18]. Our main interest here is in other
values of �, namely, those at which it may be stabilized.

In (15)–(17) we have actually changed the sign of the
Lagrangian in the case F0 < 0; to preserve the attractive
nature of gravity for ordinary matter, the matter
Lagrangian density should appear with an unusual sign
from the beginning. As a result, the sign of the whole
action of gravity and matter will be unusual, without any
effect on the matter equations of motion, and the conven-
tional form of the effective Einstein equations at a sta-
tionary value of � will also be preserved. Only the action
of the � field itself can be unusual, according to Eqs. (16)
and (17). It should be noted that the common sign of the
total action does not affect quantum transitions as well.
Indeed, the transition amplitude is expressed in the path
integral technique as

R
exp�iS�q��Dq where q�t� is some

dynamical variable. The transition probabilityRR
exp�iS�q1� � iS�q2��Dq1Dq2 is invariant under the sub-
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stitution i! �i (with interchanging the integration varia-
bles q1 and q2).

C. Comparison with the conventional approach

There is a well-known conformal mapping [19] bringing
the theory (5) to the form of general relativity with a
minimally coupled scalar field 	 that replaces the addi-
tional degrees of freedom connected with R:

gAB � e�2!�	�hAB; 	 � 	

�������������
D� 1

D� 2

s
lnjFRj;

e!�	� � jFRj1=�D�2�;

(18)

with FR � dF=dR. This results in a D-dimensional
Einstein frame, with the action

S � SDE�h� �
1

2
mD�2
D

Z ������
Dh

q
dDxf�signFR�

� �R�h� � �@	�2h� � 2V�	� � Lme�D!g;

2V�	� � e�D!�RFR � F�; (19)

where R�h� is the Ricci scalar obtained from hAB, Dh �
j det�hAB�j, and �@	�2h � hAB	;A	;B; the initial Ricci scalar
R is considered as a function of 	.

(An even more general transformation is known [20],
bringing a D-dimensional theory of gravity whose
Lagrangian contains an arbitrary function of two variables,
f�R;��, to an Einstein frame with two minimally coupled
scalar fields, � and the one similar to 	. Maeda’s method
[20] generalizes the corresponding mappings known for
both scalar-tensor [21] and f�R� [19] theories of gravity.)

The theory (19) may be further reduced to 4 dimensions
and brought with one more conformal mapping, now de-
pending on ��x� and similar to (11), to a 4-dimensional
Einstein frame. Reduction in terms of the metric hAB gives

S � S4J�h� �
1

2
mD�2
D V �d1�

Z
d4x

�����
4h

q
ed1�f�signFR�

� �R4�h� � �@	�2h � d1�d1 � 1��@��2h � e�2�Rb�

� 2V�	� � Lme�D!g;

� :� ��!; (20)

where 4h � j det�h���j. After a further transformation,

h�� � e�d1�
��; (21)

we arrive at a theory defined in the 4D Einstein frame with
the metric 
��. The action is
-4
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S� S4E�
� �
1

2
mD�2
D V �d1�

Z ����


p

d4x
�
�signFR�

�

�
R�
�� �@	�2
�

1

2
d1�d1� 2��@��2


� e��d1�2��Rb

�
� 2V�	�e�d1��Lme�D!�d1�

�
; (22)

with 
 � j det�g���j and �@	�2
 � 
��	;�	;�.
Evidently, under the conditions of our slow-change ap-

proximation, the action (22) should lead to the same results
as (13). Let us confirm that it is indeed the case, assuming
in (22) that all derivatives @� involve a small parameter.
We have, as before, (9) and similarly

FR � F0��� � F00����R4 � F1� � . . . ; (23)

where R4 � R4�g�. Then, comparing the transitions gAB !
g�� ! ~g�� in (11) and gAB ! hAB ! h�� ! 
��, we see
that the two Einstein-frame metrics ~g and 
 are related by

~g �� �
F0���
FR


�� �
�

1�
F00���
F0���

�R4 � f1� � . . .
�

��

(24)

and coincide in the leading order of magnitude. The lead-
ing terms of the actions (15) and (22), represented by their
potential and matter terms, should then also coincide, and
it is easy to confirm that it is really the case (the term RFR
in (22) transforms to �F0��� and is cancelled by the term
with Rb, leading to the expression (17) for the � field
potential).

It is also seen that both fields 	 and � are reduced, in the
same approximation, to the � field defined in Eq. (8):

�;�  �;� �
1

D� 2

F00

F0
�;�; 	;� 

�������������
D� 1

D� 2

s
F00

F
�;�;

(25)

and �;� � ��;�=�2��. As a result, the whole kinetic term
takes precisely the form (16). So the action (15) is com-
pletely restored.

One can note, however, that our approximation, being
applied from the very beginning, not only makes things
simpler but is more universal: it can deal with actions more
general than (5) (see Sec. V).
III. EFFECTIVE CONSTANTS: SOME ESTIMATES

A. Conformal frames and requirements to the model

To relate the theory to nature, it is necessary to specify
which conformal frame is to be confronted to observations.

In our problem setting, the Jordan frame described
above appears to be fundamental since the initial theory
is formulated in it, and the quantum effects that give rise to
the nonlinearity of gravity are also supposed to take place
there.
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It is, however, quite unnecessary to believe that this
Jordan frame corresponds to the observed picture, in which
the properties of our measurement instruments and the
standards of the relevant physical units do not change in
space and time [13]. The latter is thus the frame in which
the basic atomic units (depending, above all, on fermion
masses) are constant, if certainly they are all constant
simultaneously. How sensitive the matter Lagrangian is
to conformal mappings is even well seen from the coeffi-
cient before Lm in Eq. (15), to say nothing of a nontrivial
metric dependence of matter fields entering into Lm.

Since we here do not specify how fermions are included
into the theory, it is only possible to assume which is the
observational frame. We will here dwell upon, probably,
the most natural choice and make some estimates in the
Jordan frame thus assuming that the basic and observatio-
nal frames coincide.

As regards the Einstein frame in which the action takes
the form (13), we simply use it as a technical trick to
determine stationary states.

In any observational frame, in the expected stationary
state, the gravitational action has the approximate Einstein-
Hilbert form

SGR �
1

2
m2

4

Z �����
4g

q
d4x�R�4 � 2�eff�; (26)

where m4 � �8�GN�
�1=2 is the 4D Planck mass, GN is the

effective Newtonian constant, and R�4 is the observable 4D
curvature (for our choice, R�4 � R4). To be consistent with
our approach and with observational constraints, this sta-
tionary state should satisfy the following requirements:
(i) A
-5
classical space-time description should be ad-
missible, i.e., the true size of the extra dimensions
should exceed the true D-dimensional Planck
length 1=mD, the fundamental length scale of the
theory:

mDb0 � e�0 � 1; or �=m2
D � d1�d1 � 1�:

(27)
(ii) T
he slow-change approximation should work,
which, for � � const, reduces to the requirement
R4 � m2

D.

(iii) T
he observed size b� of the extra dimensions can be

much larger than the Planck length l4 � 1=m4 
8� 10�33 cm, but not larger than about 10�17 cm,
which corresponds to the TeV energy scale.
(iv) T
he predicted effective cosmological constant �eff

should be very small to conform to the observa-
tions:

�eff=m2
4 � 10�120 (28)

(the exponent is �120 instead of more conven-
tional �122 because the definition of m4 involves
8�).
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Obtaining such a small value as (28) is one of the well-
known problems of theoretical cosmology since it is hard
to explain without fine tuning why �m2

4, generally asso-
ciated with vacuum energy density, is so many orders of
magnitude smaller than the characteristic energy densities
inherent to the known physical interactions (e.g., the
Planck density m4

4 for gravity).

B. Estimates in the Jordan frame

Thus we assume that observations are performed in the
Jordan frame. The corresponding action (10) is approxi-
mated by (26) with the effective constants

1

8�GN
� m2

4 � V �d1�mD�2
D bd1

0 F
0
0;

�eff � �
F��0�

2F00
;

(29)

where b0 � e���0�=mD � b� is the observable size of the
extra dimensions and F00 � F0��0�.

Equation (29) leads to the following relation between the
dimensionless quantities b0mD and b0m4:

b2
0m

2
4 � V �d1�F

0
0�b0mD�

d1�2: (30)

The factor V �d1� is of order unity; the same may be
expected from the dimensionless quantity F00. By
item (iii) above, b2

0m
2
4 & 1030, and Eq. (30) gives

b0mD & 1030=�d1�2�;

m4=mD � �b0mD�
d1 & 1015d1=�d1�2�:

(31)

Thus mD does not differ too much from m4. It means, in
particular, that our slow-change approximation (item (ii)
above) works manifestly well in almost all thinkable cir-
cumstances since R4 is the observable curvature.

If m4=mD is sufficiently close to unity, this approxima-
tion is even valid for the curvature characteristic of pri-
mordial inflation at the grand unification scale: thus, an a
priori estimate is R4=m2

4 � 10�6. In particular models this
inequality is strengthened.

Thus, at chaotic inflation governed by the inflaton ’, the
Ricci scalar is expressed in terms of the Hubble parameter
H and the potential V�’� as

R4 � 12H2; H �
_a
a
’

����������������������
8�G

3
V�’�

s
; (32)

where the term with _’ is omitted since ’ is assumed to be
slowly rolling down the slope of the potential. Let us
estimate R4 in the quadratic model of chaotic inflation,
with V � 1

2m
2’2. The observational data indicate that

H  10�6m4 (33)

during inflation, and so

R4=m2
4 � 12H2=m2

4 � 10�11: (34)
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Because of the slow rolling, one may not worry about
the smallness of f1 at the inflationary stage. The kinetic
terms are, however, the largest at the end of inflation, at
reheating, when ’�m4, while the slowly changing
Hubble parameter becomes comparable with the inflaton
mass, H �m, i.e., m=m4 � 10�6. Reheating is a result of
quick oscillations of the inflaton around the minimum of V,
where _’�m’, hence we again obtain a small parameter:

_’=m2
4 � 10�6; (35)

which justifies our approximation provided m4=mD < 106.
Otherwise our approximation starts to hold at later stages
of the evolution, and it is manifestly good for the present-
day Universe.

Let us now return to the inequalities (31) and estimate
�eff . The ratio �eff=m

2
4 may be expressed as follows:

�
�eff

m2
4

�
F��0�

2m2
DF
0
0

m2
Db

2
0

m2
4b

2
0

�
1

2F00

F��0�

m2
D

�F00V �d1��
�2=�d1�2�

� �m4b0�
�2d1=�d1�2�: (36)

If we try to make this ratio small, the last factor in (36) can
give at best about 10�30 (for sufficiently large d1). The
remaining 90 orders of magnitude must be gained due to
unnatural smallness of the dimensionless quantity
F��0�=m2

D (actually, of the initial cosmological constant)
and/or greatness of F00. The latter variant is, however,
unsuitable since it will make impossible b0mD � 1, see
(30).

As a result, the problem of fine tuning remains topical,
though it should be noted that the very small value of 10�30

appears in this approach without any artificial effort.
IV. QUADRATIC GRAVITY WITH A
COSMOLOGICAL CONSTANT

In what follows we consider pure gravity (Lm � 0) and
use the units mD � 1, thus dealing with dimensionless
quantities.

As the first and simplest example of multidimensional
nonlinear gravity, consider (5) with the function

F��� � �� c�2 � 2�; c;� � const: (37)

Then Eqs. (16) and (17) give the effective potential

V�2�Ein��� � �sign�1� 2c���d1�d1 � 1���d1=2j�jd1=2

�
c�2 ��� 2�

�1� 2c��2
(38)
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and the coefficient KEin of the kinetic term

K�2�Ein��� �
1

�1� 2c��2�2

�
c2�2�d2

1 � 2d1 � 12� � d2
1c�

�
1

4
d1�d1 � 2�

�
: (39)

In Ref. [14], the authors studied the case F0�R�> 0 and
showed analytically that a minimum of the potential stabi-
lizing the extra dimensions is only possible with a negative
energy density and a negative curvature k � �1. We con-
firm this result in our approach, see examples in Fig. 1. The
energy density corresponding to the minimum value of the
potential is negative, which, in the cosmological context,
corresponds to anti-de Sitter space-time.

There is one more minimum of the potential VEin with
F0 > 0, existing in the range �> 0 and located at the point
� � 0. The asymptotic �! 0 corresponds to growing
rather than stabilized extra dimensions: b � e� �

1=
�������
j�j

p
! 1. A model with such an asymptotic growth

at late times may still be of interest if the growth is
sufficiently slow and the size b does not reach detectable
values by now.

Let us check whether it is possible to describe the
modern state of the Universe by an asymptotic form of
the solution for �! 0 as a spatially flat cosmology with
the 4D Einstein-frame metric

d~s2
4 � dt2 � aE

2�t�d~x2; (40)

where aE is the Einstein-frame scale factor. Two indepen-
dent components of the Einstein-scalar equations for ��t�
FIG. 1. The potential VEin��� for d1 � 3, c � 0:3 in the range
�>�5=3, where F0�R�> 0, for a few values of � (indicated
near the curves). The dashed line (� � 1) shows a minimum at
� � 0. The values of ’ are expressed in the units mD � 1.
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and aE�t� are

��� 3
_aE

aE

_� �
2�

d1 � 1
e�d1�;

3
_aE

2

aE
2 �

1

4
d1�d1 � 1� _�2 ��e�d1�:

(41)

We seek their solution at large t in the form

aE�t� / t
p; e�  �t=t��

q; p; q; t� � const> 0;

(42)

and find that such a solution does exist with

p � 3h; q � 2=d1;

h :�
�������������������������
�d1 � 1�=d1

q
; �t2� � h2�9h� 1�:

(43)

Passing over to the Jordan frame with

ds2
4 � d�2 � a2���d~x2 �

1

f
d~s2

4; (44)

due to F0�0�  1, we can put simply f � ed1�  �t=t��
2.

We obtain

t=t� / e�=t� ; a��� / e�3h�1��=t� ; b��� / e2�=�d1t��:

(45)

The external scale factor a��� grows exponentially,
which conforms to modern observations if one properly
chooses the constants. The internal scale factor b��� grows
much slower for sufficiently large d1, but the volume factor
�bd1 grows approximately at the same rate as a���, which
means that, e.g., the effective gravitational constant will
change too rapidly, at nearly a Hubble rate, contrary to
observations. We conclude that the model with �! 0 at
late times is not very promising.

We have also tried to find minima of the potential in
another region, where F0 < 0, in a wide range of the
parameters c and �.

Some examples of the behavior of the potential for the
specific value c � 1:5 are shown in Fig. 2. Potentials with
�< 0 show minima with Vmin > 0, so that �eff > 0, which
should lead to cosmological models with de Sitter external
space and stable extra dimensions. Such models again
correspond to �< 0, i.e., hyperbolic extra dimensions.
By fine tuning of the initial constants c and � we can
obtain the presentday values of the cosmological
parameters.

As in Fig. 1, we also find a minimum at � � 0, whose
properties have already been discussed.

We see that the behavior of the system is drastically
different in different ranges of � and depends on the
numerical values of the initial parameters. We also confirm
that gravity alone can stabilize the size of extra dimen-
-7



FIG. 4. VEin��� for cubic gravity with d1 � 3, c � �1. Lines
are labeled by values of the parameter C. Again F0���> 0 near
the minima.

FIG. 2. The same as in Fig. 1 but with c � 1:5. The minima of
V��� are situated in the range �<�1=3, where F0 < 0.
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sions, without need for introducing other fields with spe-
cific forms of potentials. Positive values of the effective
cosmological constant �eff (vacuum energy density) were
found in the range where F0 < 0. This is a feature of
quadratic gravity only: as will be seen in the next section,
e.g., for cubic gravity one may have �eff > 0 where
F0 > 0.
V. OTHER THEORIES

A. Cubic gravity

The cubic theory of gravity with

F�R� � R� cR2 � CR3 (46)

is another example of curvature-nonlinear gravity for
which Eqs. (16) and (17) may be applied. The shape of
FIG. 3. The potential VEin for cubic gravity with d1 � 3 and
c � 2. The curves are labeled by values of the parameter C. Note
that F0���> 0 near the minima.
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the potential appears to be very sensitive to the values of
the parameters c and C. This property may be used to
adjust the potentials in such a way that its minimum in
the Einstein frame will lead to an extremely small but
positive value of �eff in the Jordan frame, and it turns
out that, unlike quadratic gravity, this can be achieved in
the range where F0 > 0. Examples of such a behavior are
shown in Fig. 3. Thus cubic gravity can in principle lead to
an appropriate description of our Universe with compact
and stable extra dimensions. At large times, when the
influence of matter may be neglected compared to the
effective cosmological constant, we shall obtain de Sitter
expansion of the three observable dimensions.

The range of positive curvature, �> 0, appears to be of
lesser interest. It also contains minima but only with
Vmin < 0, see Fig. 4. The states in such minima are meta-
stable (since the minima are only local), so that such a
space would have a finite lifetime. The latter, however,
could be made arbitrarily long by choosing the parameters.

B. Extensions

The method discussed above allows considering wider
classes of Lagrangians. Let us briefly demonstrate this by
adding terms proportional to the Ricci tensor squared
RABR

AB and the Kretschmann scalar K � RABCDR
ABCD.

By common views, these and other high-order curvature
terms appear due to quantum corrections, and it seems
natural to include them on equal footing with cR2. Now
the action has the form

S �
V �d1�

2ß2

Z
d4x

�����
4g

q
ed1��R� cR2 � c1RABRAB

� c2K� 2��; (47)

where the internal variables have been integrated out in full
-8
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analogy with Eq. (5). For the metric (1), it is easy to obtain
expressions for RABRAB and K:

RABR
AB � �R�� �R�� � 2d1

�R��B
�� � e�4� �Rab �Rab

� 2e�2� �R�h����� d1�@��
2�

� d1���� d1�@��
2�2; (48)

K � �K�g� � 4d1B��B
�� � e�4� �K�h�

� 4e�2� �R�h��@��2 � 2d1�d1 � 1���@��2�2: (49)

In the slow-change approximation, in the same manner
as in Sec. II, we obtain the 4D effective Lagrangian�����

4g
q

L �
�����
4g

q
ed1��R4�1� 2c�� ��� ctot�2 � 2�

� �1� 2c��f1 � 2c1���

� 2�c1d1 � 2c2��@��
2� (50)

with

ctot � c�
c1

d1
�

2c2

d1�d1 � 1�
:

The conformal mapping (11) leads, after some calcula-
tions, to the Einstein-frame Lagrangian (15) with the ki-
netic and potential terms

KEin��� � K�2�Ein��� �
c1 � c2

2��1� 2c��
; (51)

VEin��� � �sign�1� 2c��
�

j�j
d1�d1 � 1�

�
d1=2

�
ctot�

2 ��� 2�

�1� 2c��2
; (52)

where the term K�2�Ein��� is taken from (39).
The presence of the parameters c1 and c2 adds freedom

in choosing the shape of the potential. The kinetic term
also acquires a more complex form which could signifi-
cantly affect the field dynamics. Thus, as shown in
Ref. [12], zeros of the kinetic term can represent stationary
values of �. It means that a field could be captured in the
vicinity of such points in addition to minima of the poten-
tial. An analysis of kinetic terms like (51) could lead to
possibilities of interest, and we hope to return to this point
in our future work.
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VI. CONCLUDING REMARKS

We have shown that multidimensional gravity alone,
even without any fields of nongeometric origin and with
a very simple choice of the geometry, can be a basis for
rather complicated phenomena. The assumption on non-
linearity of gravity, used in this study, inevitably follows
from quantum corrections to the Einstein gravity and must
be taken into account for completeness.

We have introduced the slow-change approximation in
nonlinear multidimensional gravity, making the analysis
easier. This approximation proves to be valid for a wide
variety of phenomena where the curvature and energy
scales are far from Planckian (though Planckian in a multi-
dimensional sense, which may mean scales different from
those known in four-dimensional physics).

Using some simple examples of nonlinear gravity with
an arbitrary number of extra dimensions, we have obtained
an effective scalar field with quite a complex form of the
potential. The kinetic term is also nontrivial and adds
complexity to the effective field dynamics. The potentials
possess minima, both stable and metastable, thus stabiliz-
ing the size of extra dimensions. Some of them seem quite
promising for the description of the present state of the
Universe with a small positive effective cosmological con-
stant and stable and small enough extra dimensions.

A problem that could not be solved in this paper is that of
choosing the observational conformal frame, which is a
necessary step in confronting the theory to observations.
For our numerical estimates we identified the initial (fun-
damental) and observational frames. One should, however,
bear in mind that it is not the only possible choice, and the
right one should follow from a full underlying theory.

The precise number of extra dimensions d1 was not very
important in our study, and we used the only value d1 � 3
in numerical calculations, though the method is valid for
arbitrary d1. This number may prove to be more essential
in more complex geometries and nonlinear gravity
theories.

One of the possible applications of this method is the
brane world scenario, where, in particular, it opens a direct
way of obtaining a stabilizing radion potential instead of
postulating it.
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