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Higher dimensional black holes with a generalized gravitational action
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We consider the most general higher-order corrections to the pure gravity action in D dimensions
constructed from the basis of the curvature monomial invariants of order 4 and 6, and degree 2 and 3,
respectively. Perturbatively solving the resulting sixth-order equations we analyze the influence of the
corrections upon a static and spherically symmetric back hole. Treating the total mass of the system as the
boundary condition we calculate location of the event horizon, modifications to its temperature and the
entropy. The entropy is calculated by integrating the local geometric term constructed from the derivative
of the Lagrangian with respect to the Riemann tensor over a spacelike section of the event horizon. It is
demonstrated that identical result can be obtained by integration of the first law of the black hole
thermodynamics with a suitable choice of the integration constant. We show that reducing coefficients to
the Lovelock combination, the approximate expression describing entropy becomes exact. Finally, we
briefly discuss the problem of field redefinition and analyze consequences of a different choice of the
boundary conditions in which the integration constant is related to the exact location of the event horizon
and thus to the horizon defined mass.
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I. INTRODUCTION

In recent years gravitation theories with higher deriva-
tive terms have attracted a great deal of attention. Indeed,
according to our present understanding the general relativ-
ity is to be treated as the lowest order term of the effective
theory consisting of a series of loop or string corrections.
Typically such corrections are constructed from higher
powers of curvature and their derivatives, and, hence, the
gravitational action I can be written as

I �
Xm
k�0

�kIk; (1)

where Ik for k � 1 is the contribution of operators of
dimension 2k, I0 is related to the cosmological constant
and �k are arbitrary constants. Among the higher curvature
theories a great deal of activity has been focused on the
Lovelock gravity [1]. In this theory, the Lagrangian Lm is
constructed from the dimensionally extended Euler den-
sities of a 2k-dimensional manifold

L k � 2�k�c1d1...ckdk
a1b1...akbk

Rc1d1

a1b1 . . .Rckdk
akbk ; (2)

where the generalized � function is totally antisymmetric
in both sets of indices. A m-th order Lovelock action, Im is
the sum of m� 1 terms given by Eq. (2) of ascending
complexity

Im �
Z
dDx��g�1=2Lm �

Z
dDx��g�1=2

Xm
k�0

�kLk; (3)
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where �k are arbitrary parameters. If the Lovelock action
includes the terms up to Lm, the dimension of the space-
time should satisfy D � 2m� 1.

Varying the action functional Im with respect to the
metric tensor one obtains the equations of motion of pure
gravity, which can be schematically written as

Lab �
1

��g�1=2

�
�gab

Im � 0: (4)

Originally, Lab has been introduced by Lovelock to dem-
onstrate the most general symmetric and divergence-free
second rank tensor, which can be constructed from the
metric and its first and second derivatives. Since the result-
ing equations of the Lovelock gravity involve at most
second derivatives of the metric it avoids some of the
typical problems of the higher curvature theories [2,3].
Specifically, at the classical level, it avoids singular per-
turbations [4–6] which do not approach their Einsteinian
counterparts as the perturbative expansion parameter is set
to zero, and, when linearized, the Lovelock equations are
free of ghosts. Moreover, the higher-order terms appear
quite naturally as the low- energy limit of the string theory
[2,3].

At each order Lk is a linear combination of the basis
curvature invariants with the particular set of coefficients
calculated from Eq. (2). For example, in the first two
(simplest) cases, one has a cosmological constant and the
curvature scalar, for k � 0 and k � 1 respectively. At k �
2 there are three invariants which are combined into the
Gauss-Bonnet term whereas at k � 3 the basis has eight
members.

On the other hand, one may consider the more general
curvature terms, with arbitrary coefficients rather than
-1 © 2006 The American Physical Society
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those inspired by the particular theory. (See for example
[7,8] and references cited therein). In this case, the relation
between dimension of the spacetime and the order of
higher curvature terms retained in the action functional is
lost and the dynamical equations inevitably involve higher
derivatives of the metric. There is nothing wrong in using
such equations, provided only the physical solutions are
selected. However, the expected complexity of the result-
ing equations may be a serious obstacle in this regard.

The literature devoted to various aspects of the higher
derivative gravity is vast indeed. As the examples of such
theories one may consider the quadratic or higher-order
gravity (see [9–16] and the references cited therein), and,
when a negative cosmological constant is present, the
Einstein-Hilbert action in D � 5, supplemented with
Riem2 � RabcdR

abcd, which corresponds to an effective
AdS5 bulk action [17].

The foregoing discussion indicates that the analyses can
be carried out in two directions. First, one can construct
and investigate the possible candidate terms that may
appear in Ik, whereas the second direction of calculations
is to apply the thus constructed equations in the particular
context of black hole physics or cosmology with or without
additional matter fields. The latter approach has been
successfully applied in various contexts in Refs. [17–26]
and in the references cited therein.

A few words of comment are in order here. First, it
should be observed that we have no information on m,
i.e., the number of terms that should be retained in Eq. (1).
Second, and that is closely related to the above observa-
tion, it is really desirable and perhaps unavoidable to
construct the solutions of the dynamical equations which
reflect the nature of their derivation. Finally, it should be
observed that because of complexity of the problem the full
system of equations is probably intractable analytically and
one has to construct either approximate solutions or refer to
the numerical methods.

In this note we shall explore the second possibility and
perturbatively solve the equations resulting from the varia-
tion of the D-dimensional action (1) without a cosmologi-
cal constant about the Tangherlini black hole [27,28]. In
doing so the class of solutions are restricted to the admis-
sible ones. We shall assume that the total action functional
I is the sum of the first three nonvanishing terms, Ik,
constructed from the basis curvature invariants. That is,
we assume arbitrary coefficients rather than those inspired
by the particular theory. The results of this paper generalize
results of Lu and Wise [20] and may be though of as a
partial generalization of the analogous results obtained
within the framework of the Lovelock gravity [4,29–32].
II. EQUATIONS

We shall consider the action functional being a sum of
the terms (conventions are Rab � Rcacb � @c�

c
ab, signa-

ture �;�;�;�)
124016
I1 � a
Z
dDx��g�1=2R; (5)

I2 �
Z
dDx��g�1=2�b1R2 � b2RabRab � b3RabcdRabcd�

(6)

and

I3 �
Z
dDx��g�1=2�c1R3 � c2RRbaRab � c3RRab

cdRcd
ab

� c4R
b
aR

d
cRbd

ac � c5R
b
aR

c
bR

a
c � c6R

b
aRbc

deRde
ac

� c7Rab
cdRcd

efRef
ab � c8RceabRaf

cdRbd
ef�; (7)

where a � �16�GD�
�1 and GD is Newton’s constant. That

is, we will restrict ourselves to scalar terms of order 2, 4
and 6 belonging to classes R0

2;1, R0
4;2 and R0

6;3, respec-
tively [8]. In the course of the calculations we shall assume
that the coefficients bi and ck satisfy jbij=a� 1 and
jck=bij � 1 for i � 1; . . . ; 3 and k � 1; . . . ; 8, respec-
tively. The case bi � ci can be easily obtained from the
former one simply by relegating the terms proportional to
bibj from the resulting expressions.

It should be noted that depending on the dimension D
the curvature terms may be subjected to additional rela-
tions [8]. Moreover, for a static and spherically symmetric
line element we have additional vanishing combination of
the elements of the curvature basis with the coefficients
depending on D [7].

Although it is possible to adopt (with small modifica-
tions) the results presented in Refs. [33–35], here we
proceed differently and use the Weyl method [36–38].
The line element describing the static, spherically symmet-
ric D � d� 2-dimensional geometry may by cast into the
form

ds2 � �f2�r�dt2 � h�2�r�dr2 �
�ij � xixj

1� x2 r2dxidxj

i; j � 2; . . . ; d� 1;
(8)

where xi are the coordinates covering maximally symmet-
ric d-dimensional space. The components of Riemann
tensor, the basic ingredients of our calculations, are simply

Rij
km � r�2�1� h2���ki �

m
j � �

m
i �

k
j�; (9)

Rir
jr � �r�1hh0�ji ; (10)

Rtrtr � �f�1h�f0h�0 (11)

and

Rti
tj � �r�1f1h2f0�ji ; (12)

where the prime denotes differentiation with respect to the
coordinate r. Upon inserting the line element into I and
subsequently varying the thus obtained reduced action with
-2
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respect to the functions f and h, one obtains rather com-
plicated system of equations (not displayed here), which
may be further simplified with the substitution

f2�r� � e2 �r�
�

1�
2M�r�

rd�1

�
(13)

and

h2�r� � 1�
2M�r�

rd�1
: (14)

Except for certain combinations of the numerical coeffi-
cients bi and ck leading to the dimensionally extended
Euler densities, the resulting equations of motion are still
too complicated to be solved exactly. Fortunately, one can
easily devise the perturbative approach to the problem,
treating the higher derivative terms as small perturbations.

Now, in order to simplify calculations and to keep
control of the order of terms in complicated series expan-
sions, we shall introduce another (dimensionless) parame-
ter ", substituting bi ! "bi and ci ! "2ci. We shall put
" � 1 in the final stage of calculations. For the unknown
functions M�r� and  �r� we assume that they can be
expanded as

M�r� �
Xm
i�0

"iMi�r� �O�"m�1� (15)

and

 �r� �
Xm
i�1

"i i�r� �O�"
m�1�: (16)

The system of differential equations Mi�r� and  i�r� is to
be supplemented with the appropriate, physically moti-
vated boundary conditions. First, it seems natural to de-
mand

M�r�� �
rd�1
�

2
; (17)

or, equivalently,M0�r�� � rd�1
� =2 andMi�r�� � 0 for i �

1, where r� denotes the exact location of the event horizon.
124016
Such a choice leads naturally to the horizon defined mass,

M H �
d!d

16�GD
rd�1
� : (18)

On the other hand, however, one can relate the additive
integration constant with the total mass of the system as
seen by a distant observer. Indeed, analysis carried out in a
weak field regime indicates that the constant of integration
C is related to the mass M according to the formula

C �
8�GD

d!d
M; (19)

where

!d �
2��d�1�=2

���d� 1�=2�
(20)

is the area of a unit d-sphere. For the function  �r�we shall
always adopt the natural condition  �1� � 0. Since the
results obtained for each set of boundary conditions are not
independent and one can easily transform solution of the
first type into the solution of the second type (and vice
versa), we shall concentrate on the boundary conditions of
the second type. A brief discussion of the consequences of
the boundary conditions of the first type will be given at the
end of the paper.
III. PERTURBATIVE SOLUTION

One expects, on general grounds, that the terms propor-
tional to the coefficients c1, c2, c4 and c5 do not contribute
to the solution. Integration of the zeroth-order equations
yields, as expected, the Tangherlini solution with M0�r� �
C, whereas the first-order equations give

M1�r� � �
2C2b3

ard�1
�d� 2��d� 1� (21)

and  1 � 0. Integration of the second-order equations,
although straightforward, yields much more complicated
results:
M2�r� �
C3�d� 1�

ar2�2d

�
4c3d�5� 8d� 3d2� � 2c6�3� 5d2 � 2d3� � 2c7�10� 16d� 21d2 � 7d3�

�
1

2
c8�2� 25d� 24d2 � 7d3� �

8b1b3

a
�d� 2��d� 1��3d� 5� �

16b2b3

a
�d� 2��d� 1��d� 2�

�
8b2

3

a
�d� 2��4d2 � 19d� 9�

�
�
C2�d2 � 1��d� 1�

ard�3

�
8c3d� c6�2� 3d� � 12c7�d� 1� � 3c8�d� 1�

�
16b1b3

a
�d� 2� �

12b2b3

a
�d� 2� �

32b2
3

a
�d� 2�

�
(22)

and

 2�r� � �
C2�d2 � 1�

ar2d�2

�
4c3d�3� 2d� � 2c6�1� 2d� d2� � 6c7�2� 2d� d2� �

3

2
c8�2� 3d� d2�

�
8b1b3

a
�d� 2��2d� 3� �

8b2b3

a
�d� 2��d� 2� �

8b2
3

a
�d� 2��2d� 5�

�
: (23)
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If bi � ck then the terms involving bi in M2�r� and  2�r�
should be omitted. Note that for D � 4 (d � 2) the func-
tion M1�r� is identically zero, whereas in M2�r� and  2�r�
all the terms proportional to bibj �i; j � 1; 2; 3� are absent.
It is because the Kretschmann scalar, RabcdRabcd, can be
relegated from the action as the functional derivative of the
Gauss-Bonnet term with respect to the metric is zero.

The line element (8) with (21)–(23) provides the most
general solution to the problem. Since the partial results
referring to a particular dimension and/or the concrete
form of the action exist in the literature, it is worthwhile
to compare them with our solution. ForD � 4 our solution
reduces to that which can be easily constructed by integrat-
ing equations derived by Lu and Wise [20]. Similarly,
retaining in the action functional (7) only the term propor-
tional to c7 and making substitutions C � M=M2

P, a �
M2
P=16� and c7 � �=M2

P, where MP is the Planck mass
and � is a coupling constant, one obtains results presented
in Ref. [21], however, with one reservation: We have not
observed any difference between the values of the radii at
which g00 and g11 vanish, that is, of course, in concord with
the general form of the adopted line element.

Before proceeding further let us compare our solutions
to the analogous solutions of the Lovelock gravity. First, let
us introduce a � �1, bi � �2

~bi and ci � �3~ci, where �2

and �3 are the numerical coefficients that stand in front of
the Gauss-Bonnet and the third-order term of the Lovelock
Lagrangian, whereas ~bi and ~ck are the coefficients that give
rise to the Lovelock terms. Numerically one has ~b1 �
~b3 � �~b2=4 � 1 and ~c1 � 1, ~c2 � �12, ~c3 � 3, ~c4 �
24, ~c5 � 16, ~c6 � �24, ~c7 � 2, ~c8 � �8. Inserting the
above coefficients into the solution, after massive simpli-
fications, one obtains h2�r� � f2�r� (or, equivalently
 �r� � 0) and

h2�r�� 1�
16�GDM

d!drd�1
�4096

�3G3
DM

2

d2!2
dr

2d �2

	

�
1�512

�2G2
DM

d!drd�1
�d�2��d�1�

�
�d�2��d�1�

��365536
�4G4

DM
3

d3!3
dr

3d�1
�d�4��d�3��d�2��d�1�:

(24)

On the other hand, although the action of the Lovelock
gravity looks rather complicated it is possible to construct
an exact solution describing static and spherically symmet-
ric configuration [29–31]. Such a solution can be found,
after the substitution f2 � h2 � 1� r2F�r�, by solving for
real roots of the m-th order polynomial equation

Xm
k�0

ĉkF
k �

2C

rd�1;
(25)

where the coefficients ĉi are given by
124016
ĉ 0 �
�0

a
1

d�d� 1�
; ĉ1 � 1 (26)

and

ĉ k �
�k
a

Y2k
n�3

�d� 2� n� for k > 1: (27)

Note that if the cosmological constant is taken to be zero
then �0 � 0. Finally, assuming �2 � b� " and �3 � c�
"2 and expanding Eq. (25) in powers of ", one easily
reproduces Eq. (24).

IV. TEMPERATURE AND ENTROPY

The approximate location of the event horizon of the
black hole solution derived in the previous section is given
by

r� � �2C�1=�d�1� �
d� 2

a
b3�2C��1=�d�1�

�
1

a
�2C��3=�d�1�

�
c3�d

2 � 1�d�
1

2
c6�d

2 � 1��d� 1�

�
1

2
c7
2� �d� 1��5d� 4�d� �

1

8
c8�10� 13d

� 12d2 � 5d3� �
2

a
�b1b3 � b2b3��d

2 � 1��d� 2�

�
1

2a
b2

3�d� 2��4� 6d� 13d�
�
: (28)

For D � 4, the first-order terms are absent and one easily
reproduces Lu-Wise result

r� � 2GM
�

1�
�

G3M4

�
6c3 � 5c7 �

3

2
c6 � c8

��
: (29)

As is well-known, the Hawking temperature, T, can be
easily calculated from the metric tensor without referring
to the field equations. The standard method of obtaining T
relies on the Wick rotation. The Euclidean line element has
no conical singularity provided the time coordinate is
periodic with a period P given by

P � 4� lim
r!r�
�gttgrr�1=2

�
d
dr
gtt

�
�1
: (30)

Its reciprocal is identified with the black hole temperature,
which, in the case on hand, reads

T�
d�1

4�
�2C��1=�d�1� �

�d�2��d�1�d
4�a

b3�2C�
�3=�d�1�

�
d�1

4�a
�2C��5=�d�1�

�
�
c7

2
�d�4�
2��d�2��d�1�d�

�
c8

8
�d�4�
4��d�5��d�1�d�

�
b2

3

2a
�d�2�2�4�7d�4d2�

�
: (31)

It should be noted that the Hawking temperature does not
-4
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depend on b1, b2, c3 and c6. This behavior can be traced
back to the possibility of removing curvature terms pro-
portional to this very coefficients by means of the appro-
priate field redefinition. Such a redefinition certainly
modifies equations of motion of the test particles but
should not modify the temperature, which, in turn, is to
be measured at infinity. On the other hand, the horizon
defined mass leads to the expression for temperature which
depends on the full set of parameters. The reason is that the
horizon defined mass is not the mass measured at infinity.
We shall return to this problem later.

From Eq. (31) one sees that the heat capacity CBH �
@M=@T calculated for the Tangherlini black hole is given
by

CTBH � �
d!d

4GD

�
d� 1

4�T

�
d

(32)

and is always negative. That means that for d > 1 such a
black hole is thermodynamically unstable, i.e., it increases
its temperature when radiating. On the other hand, for T �
1 the higher derivative corrections can modify this behav-
ior, and, depending on the signs and values of the coupling
constants they can give a nonnegative contribution to the
total heat capacity as can be easily inferred from

CBH � CTBH � �CBH; (33)

where

�CBH �
!d

4aGD
�d� 3��d� 2�d2

�
d� 1

4�T

�
d�2

b3

�
d!d

8aGD
�d� 5��d� 4�

�
d� 1

4�T

�
d�4

	

�
1

a
�d� 2�2�d� 1�2b2

3

�
1

4

8� 4�d� a��d� 1�d�c7

�
1

4

4� �d� 5��d� 1�d�c8

�
: (34)

It should be noted, however, that the validity of Eq. (34) has
its limitations. Indeed, for small black holes the effect of
the back reaction should be taken into account and the
perturbative approach fails to be accurate. Similarly, since
the black hole is treated as a system to which a thermal
description applies, one must require that the change of the
Hawking temperature caused by the emission of a single
quantum of radiation is small. As discussed in Ref [39,40]
the condition for the thermal description to be self-
consistent is

�������� @T
@M

��������� 1: (35)

Now, making use of (31) one has
124016
@T
@M

�
4GD

d!d
�2C��d=d�1�

12GDb3

ad!d
�2C���d�2�=�d�1�d�d�2�

�
10b2

3

a2d!d
�d�2�2�4d2�7d�4��2C���d�4�=�d�1�

�
5

2ad!d
�d�4�
4�d3�3d2�2d�2�c7

��d3�6d2�5d�4�d8��2C���d�4�=�d�1�; (36)

and, therefore, one concludes that mini black holes violate
the condition (35). On the other hand, for sufficiently
massive black hole the first term in the right hand side of
the above equation is dominant, and, consequently, the
thermal description as well as the perturbative approach
is legitimate. Such black holes are, however, thermody-
namically unstable and their qualitative behavior is similar
to Schwarzschild black hole. Inclusion of the cosmological
constant, angular momentum or electric charge changes
the situation dramatically.

The entropy of the black hole may be calculated using
various method. Two techniques, however, are especially
well suited for calculations of the entropy in the higher
derivative theories. One of them is the Wald’s Noether
charge approach [41,42] whereas the second one is based
on the field redefiniton [43,44]. Here we shall follow the
approach, in which S is given in terms of the surface
integral over the event horizon [42,43,45]:

S �
1

4GD
AH � 4�

Z
H

@L
@Rabcd

~gac~gbd

��������
�d�g

q
ddx; (37)

where ~gab denotes the metric in the subspace orthogonal to
the event horizon, and, in the case on hand, L is the sum of
the Lagrangians given by Eqs. (6) and (7). It should be
noted that to calculate the entropy to the required order it
suffices to retain in the line element the terms which are
linear in ".

The calculation of S consists of three steps. First, it is
necessary to express the line element in terms of r�, which
can be easily achieved by inverting relation (28). Simple
calculations yield

C�
1

2
rd�1
� �

b3

2a
�d� 2��d� 1�rd�3

� �
1

a2 �d� 2��d� 1�

	 �d2� 1��b1b3� b2b3� 3b2
3�r

d�5
�

�
1

2a
�d� 1�2�d� 1�

�
c3d�

c6

2
�d� 1�

�
rd�5
�

�
1

4a
�d� 1�c7
2� d�d� 1��4� 5d��rd�5

�

�
1

16a
�d� 1�c8
10� d�13� 12d� 5d2��rd�5

� : (38)

Equally well one may calculate M�r� using the boundary
conditions of the first kind (17) and take the limit as r!
1. Further, one has to calculate
-5
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Jabcd �
@L

@Rabcd
(39)

remembering that Jabcd shares all symmetries of the
Riemann tensor. Finally, performing simple integration
(which actually reduces to the multiplication of the result
by the factor !dr

d
�), after some algebra, one gets the

desired result:

S �
AH
4Gd

� 4�!drd�"��2b1R� 2b2�pqRqp

� 4b3Rtr
tr�jH � 4�!dr

d
�"

2fc3Riem2

� c6
2�Rtrtr�2 � Rpi
qjRqj

pi� � 12c7�Rtrtr�2

� 3c8
Rti
tjRrj

ri � �Rtr
tr�2�gjH � �. . .�; (40)

where ellipsis denote the terms which are omitted as they
will not contribute to the result. All quantities are to be
calculated at the event horizon and summation is assumed
over repeated indices: p, q � 0, 1 �t; r� and i, j�2...d�1.

Now we are ready to calculate the entropy of the black
hole described by Eqs. (13) and (14) with (21)–(23).
Substituting formulas collected in Appendix into Eq. (40)
one has

S�
rd�!d

4GD
�

1

2aGD
b3�d� 1�drd�2

� !d

�
!dr

d�4
�

2a2GD
�d� 2��d� 1�d�d� 1��b1b3� b2b3� 3b2

3�

�
d�d� 1�

4aGD
!dr

d�4
�

�
d�d� 1�c3�

1

2
�d2� 1�c6

� 3d�d� 1�c7�
3

4
�d� 1�2c8

�
: (41)

As expected, the higher-order corrections to the action
modify the standard relation between S and the area of
the event horizon which is valid only for the Einstein
gravity.

The entropy can also be calculated employing the first
law of thermodynamics

M � TdS�
X
i

�idQi; (42)

where �i are the chemical potentials corresponding to the
conserved charges Qi. Making use of Eq. (42) one has

S �
Z
T�1dM� S0 �

Z
T�1

�
@M
@r�

�
Qi

dr� � S0; (43)

where the integration constant S0 does not depend on r�,
but possibly depends on the coupling constants and the
spacetime dimension. It should be noted that in the present
approach it is necessary to retain in the line element all the
terms proportional to "2 also. After some algebra one
obtains the expression describing the entropy, which for
S0 � 0 coincides with the one given by Eq. (41).
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The integration constant can be determined from the
physical requirement that the entropy vanishes when the
horizon radius shrinks to zero [32,46]. For the Lovelock
theory it has been shown that this condition leads to the
results which are identical with those obtained within the
framework of the Euclidean approach. For d > 4 this
procedure gives S0 � 0.

The entropy as given by Eq. (41) is expressed in terms of
the exact location of the event horizon, r�, and therefore it
depends on the full set of the coupling constants. However,
according to our previous discussion, one can easily reduce
their number by a suitable choice of representation. Indeed,
expressing the entropy in terms of the total mass as seen by
a distant observer (or, equivalently, C) reduces the number
of remaining coupling constants to three. To demonstrate
this, let us substitute r� given by Eq. (28) into Eq. (41) and
retain the terms up to second order in ". After some
rearrangement, one obtains

S �
!d

4GD
�2C�d=�d�1� �

"!d

4aGD
�2C��d�2�=�d�1�d2b3

�
"2!d

8aGD
�2C��d�4�=�d�1�

�
c7�2� 2d� 3d2 � d3�

�
1

4
c8�4� 5d� 6d2 � d3� �

1

a
b2

3�d� 2�2�1� 2d�
�
:

(44)

The entropy described by the above equation depends only
on b3, c7 and c8 as expected.

Now, let us compare (44) with the analogous result
constructed by Lu and Wise [20]. Putting in (44) d � 2
and GD � G, one has

S � 4�GM2 � 64�2"b3 �
2�2

G2M2 �4c4 � c8�"
2: (45)

Inspection of (45) shows that it contains the term propor-
tional to b3, which is absent in the Lu-Wise paper. This can
be easily understood as Lu and Wise ignored the Gauss-
Bonnet term, which, in four dimensions, does not affect
black hole solution of the field equations. It affects, of
course, the action itself and consequently the entropy,
leading to appearance of a constant term in S that is
independent of M.

Finally, let us restrict values of the coefficients to its
Lovelock combinations. After some manipulations it could
be shown, that (41) reduces to a simple expression

S �
rd�!d

4GD�1

�
�1 �

2�2

r2
�

d�d� 1�

�
3�3

r4
�

d�d� 3��d� 2��d� 1�
�
; (46)

which is identical with the exact result obtained from a
general formula [32,47]
-6
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S �
!dr

d
�

4GD

Xm
n�1

nd
d� 2� 2n

ĉn�r�2
� �

n�1 (47)

for m � 3.
V. FINAL REMARKS

So far we have considered the boundary conditions of
the second type only. Now, we shall briefly examine ap-
propriate solution constructed with the aid of the condi-
tions (17) and  �1� � 0. Since both solutions are not
independent one can treat the solution of the one type as
the useful check of the other. Before we proceed further let
us analyze some general features of the function M�r�.
Nature of the problem and our previous analysis suggests
that the solution has the form

M�r� � ~M�r� � C1; (48)

with ~M�1� � 0 and ~M�r�� � rd�1=2� C1, and, conse-
quently, the total mass of the system as seen by a distant
observer, M, can be obtained from

M�1� � C1 �
8�GD

d!d
M; (49)

where C1 is expressed, by construction, in terms of the
exact location of the event horizon. One expects, therefore,
that C1 � C, where C is given by Eq. (38), and this equal-
ity can be treated as a consistency check. Repeating cal-
culations order by order with the new boundary conditions,
after some algebra it can be shown that the function M�r�
can be written as

M�r� � �
b3

2a
�d� 2��d� 1�

r2d�2
�

rd�1

�
b2

3

a2 �d� 2�2�d� 1�2
r2d�4
�

rd�1

� A1�r�
r2d�2
�

rd�3
� A2�r�

r3d�3
�

r2d�2
� C1; (50)

where C1 is given by Eq. (38),

A1�r� �
�d� 1��d� 1�2

a

�
�2dc3 �

1

4
�2� 3d�c6

� 3�d� 1�c7 �
3

4
�d� 1�c8

�

�
�d� 2��d� 1��d� 1�2

a2 �3b2b3 � 4b1b3 � 8b2
3�;

(51)

and
124016
A2�r��
�d�1�

a

�
c3

2
d�d�1��3d�5��

c6

4
�d�1��3�3d

�2d2��
c7

4
�10�16d�21d2�7d3�

�
c8

4
�2�25d�24d2�7d3�

�

�
1

a2 �d�2��d�1�
2b2b3�d�1��d�2�

�b1b3�d�1��3d�5��b2
3�9�19d�4d2��: (52)

Similar calculations carried out for the function  �r� yield

 �r� �
2

a2 �d� 2��d� 1��d� 1�
b2b3�d� 2�

� b1b3�2d� 3� � b2
3�2d� 5��

r2d�2
�

r2d�2

�
�d� 1��d� 1�

a

�
c3d�3� 2d� � c6�1� 2d� d2�

�
3

2
c7�2� 2d� d2� �

3

8
c8�2� 3d� d2�

�
r2d�2
�

r2d�2
:

(53)

Since, by assumption, the radius of the event horizon is
treated as the exact quantity now, the thus derived line
element may be easily employed in construction of the
entropy. First, observe that the Hawking temperature cal-
culated with the aid of the Eq. (30) is given in terms of r�
and depends on all relevant coefficients. On the other hand
the relation (31) is independent of b1, b2, c4 and c5. This
behavior can be ascribed to the possibility to remove the
dependence of the line element on this very coefficients at
the expense of modifications of the equations of motion of
test particles. Indeed, it could be demonstrated that by
means of the field redefinition of the form

gab ! gab � "A
�1�
ab � "

2A�2�ab; (54)

where

A�1�ab � q�1�1 Rgab � q
�1�
2 Rab (55)

and

A�2�ab � q�2�1 R
2gab � q

�2�
2 RRab � q

�2�
3 gabRcdefR

cdef

� q�2�4 gabRcdR
cd � q�2�5 RacR

c
b � q

�2�
6 RacdeRb

cde;

(56)

one can remove all the terms in the action except these
proportional to the parameters b3, c7 and c8. The coeffi-
cients q�1�i and q�2�k can be determined by solving, at each
order of the expansion, the appropriate systems of equa-
tions. As the result of the field redefinition (54), one obtains
two additional terms R�R and Rab�Rab, which can also
be removed from the action functional. It should be noted,
however, that such terms appear naturally in the effective
-7
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action of the quantized massive fields in a large mass limit
[48–50].

The geodesic equation after the field redefinition be-
comes

d2xi

ds2 � �ijk
dxj

ds
dxk

ds
� "gim

�
A�1�mk;j �

1

2
A�1�jk;m

�
dxj

ds
dxk

ds

� "2gim
�
A�2�mk;j �

1

2
A�2�jk;m

�
dxj

ds
dxk

ds

� "2A�1�im
�
A�1�mk;j �

1

2
A�1�jk;m

�
dxj

ds
dxk

ds
� 0; (57)

where s is the affine parameter of the original metric. Now,
one can repeat the arguments of Ref. [20]. Both M and T
can be measured at infinity and do not depend on the
particular form of the equations of motion. Consequently,
the temperature mass relation is independent of the re-
moved terms. However, to determine the radius of the
event horizon one performs local measurements and the
equations of motion of test particles are important.

It could be easily seen that, as expected, the entropy is
precisely the same for both choices of boundary conditions
and is described by the formula (41). Since the calculations
for both types of the boundary conditions have been carried
out independently, this equality may be regarded as the
additional consistency check.
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APPENDIX

In this Appendix we list some formulas used in Sec. IV.
The expansions of the components of the Riemann tensor
and some of its contractions up to the first order in ", which
are necessary in calculation of the entropy, are given by

Rti
tj � Rri

rj

� �
�d� 1�

2r2
�

�ji � "b3
�d� 2��d� 1��d� 1�

2ar4
�

�ji

�O�"2�; (A1)

Rij
kl �

1

r2
�

��ki �
l
j � �

l
i�
k
j� �O�"

2�; (A2)

Rtr
tr �

d�d� 1�

2r2
�

� "b3
3�d� 2��d� 1�d�d� 1�

2ar4
�

�O�"2�;

(A3)

Rtt � Rrr � �"b3
�d� 2��d� 1�d�d� 1�

2ar4
�

�O�"2� (A4)

and

R � �"b3
�d� 2��d� 1�d�d� 1�

2ar4
�

�O�"2�; (A5)

where i, j, k, l � 2; . . . ; d� 1.
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