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Massless and massive graviton spectra in anisotropic dilatonic braneworld cosmologies
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We consider a braneworld model in which an anisotropic brane is embedded in a dilatonic background.
We find the background solutions and study the behavior of the perturbations when the universe evolves
from an inflationary Kasner phase to a Minkowski phase. We calculate the massless mode spectrum, and
find that it does not differ from what expected in standard four-dimensional cosmological models. We then
evaluate the spectrum of both light (ultrarelativistic) and heavy (nonrelativistic) massive modes, and find
that, at high energies, there can be a strong enhancement of the Kaluza-Klein spectral amplitude, which
can become dominant in the total spectrum. The presence of the dilaton, on the contrary, decrease the
relative importance of the massive modes.
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I. INTRODUCTION

The braneworld scenario, developed starting from the
fundamental work by Randall and Sundrum [1], has re-
ceived an enormous attention in the past years, mostly
because it is possible to generalize it to have interesting
cosmological models (see [2] for a review). The funda-
mental question is hence how these models can be tested,
and if there are signals that could allow us to distinguish
between a braneworld model and a more conventional
four-dimensional cosmological one. Studying the produc-
tion of cosmological perturbations during inflation is a
powerful tool in trying to answer to this question. Indeed
much effort was devoted in building models (see, as an
example [3–11]) so as to solve the perturbation dynamics,
which is in general very hard to deal with.

In this work we develop a gravi-dilaton braneworld with
a nontrivial dynamics on the brane (a lot of papers have
been written generalizing the standard RS solution to a
more general framework in which a scalar field is included,
see for example [12–17]. In particular, following our pre-
vious work [9], we consider a higher-dimensional p-brane
(with p > 3) coupled with a bulk dilaton. If we do not put
matter on the brane, it is possible to solve exactly the
Einstein equations to obtain a Kasner solution, with d
expanding and n contracting dimensions, on the brane
itself. The bulk equation decouples, and is solved by a
warp AdS-like factor, while the dilaton grows logarithmi-
cally as it goes away from the brane.

Turning to study the dynamics of the tensor perturba-
tions, we find that massless and massive modes can be
treated independently, and do not mix. We outline a pro-
cedure that allow us to study the production of the gravi-
tational and of the Kaluza-Klein fluctuations, and calculate
the spectral distribution of these fluctuations, amplified
during an imaginary phase transition from the inflationary
Kasner regime to a simple Minkowski phase. This is done
for the massless mode and for both light and heavy massive
modes with respect to the curvature scale at the transition
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epoch. Our results shows, differently from what happens in
other models present in the literature, that if the transition
occurs at high enough energy, there can be a strong en-
hancement of the contribution of the KK modes, this
should be in principle observable, since, in this regime,
the complete spectrum is found to be quite different from
what would be expected if there were only the conventional
4D graviton. We also find that, on the contrary, the dilaton
effect results in lowering the amplitude of the KK
perturbations.

The paper is organized as follows: in Sec. II we present
and solve the background equations. In Sec. III we study
the perturbation around this background, and define the
action that controls the dynamics of each single mode
(massless and massive) on the brane. Sec. IV outlines
how to develop the canonical analysis of the mode action,
and how to obtain the correct canonical equation that
describes the evolution of the mode during the phase
transition. In Sec. V we obtain the correct expression for
the spectral amplitude, which is specialized for the gravi-
ton in Sec. VI, and for the KK modes in Sec. VII. Finally, in
Sec. VIII we make some considerations on the results
obtained, and draw our conclusions.
II. BACKGROUND SOLUTIONS

Let us consider a model in which a brane is nonmini-
mally coupled to a bulk dilaton �. We work in a
D-dimensional space (D � p� 2), and set the brane fixed
at the origin: XD�1 � z � 0. The action is

S � �
Mp

2

Z
dDx

������
jgj

q
�R� 2�De�1� � gAB@A�@B��

� Tp
Z
dD�1�

�������
j�j

q
e�p�1��2�; (2.1)

where �AB � gAB � nAnB is the induced metric on the
brane, Tp is the brane tension and �D is the bulk cosmo-
logical constant.
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Variation of this action with respect to the metric and to
the dilaton gives the Einstein equations:

GAB �

�
�De

�1� �
1

2
�@c��

2

�
gAB � @A�@B�

�

�������
j�j
jgj

s
Tp
Mp e

�p�1��2��AB��z�; (2.2)

and the dilaton equation:

@A@A�� �1�De�1� � �p� 1��2

�������
j�j
jgj

s
Tp
Mp e

�p�1��2���z�:

(2.3)

These equations, written as above, already include the
Israel junction conditions [18], which can be deduced by
integrating along a small interval across the brane on a
geodesic perpendicular to the brane itself [2,19] (see also
[20]). They read, for the Einstein equations (2.2)

�kAB� � �
1

p

Tp
Mp �e

�p�1��2��AB�; (2.4)

where the square brackets denote the difference between
the left and the right limiting value on the brane:

�f� � � lim
�!0�

� lim
�!0�
�f���; (2.5)

and kAB is the extrinsic curvature on the brane.
To solve the equations we set the following ansatz on the

metric:

ds2 � f2�z��dt2 � a2�t�dx2 � b2�t�dy2 � dz2�; (2.6)

i.e. we allow the metric to be anisotropic, and impose that d
spatial dimensions expand and the other n contract �p �
d� n�. We also impose that the dilaton depend only on the
extra-dimension: � � ��z�. The equations specialize in

�pF0 �
p�p� 1�

2
F2 �

d�d� 1�1

2
H2 �

n�n� 1�1

2
G2

� dnHG �
1

2
�02 ��De

�1�f2 (2.7)

� pF0 �
p�p� 1�

2
F2 � �d� 1� _H �

d�d� 1�

2
H2 � n _G

�
n�n� 1�

2
G2 � �d� 1�nHG �

1

2
�02 ��De�1�f2

(2.8)

� pF0 �
p�p� 1�

2
F2 � d _H �

d�d� 1�

2
H2 � �n� 1� _G

�
n�n� 1�

2
G2 � d�n� 1�HG �

1

2
�02 ��De

�1�f2

(2.9)
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�
p�p� 1�

2
F2 � d

�
_H �

d� 1

2
H2

�
� n

�
_G�

n� 1

2
G2

�

� dnHG � �
1

2
�02 ��De

�1�f2 (2.10)

�00 � pF�0 � �1�De
�1�f2 � 0; (2.11)

where dots (primes) denote differentiation w.r.t. t (z), and
H � _a=a, G � _b=b, F � f0=f. Note that the singular part
is absent in the above equations, because we will take it
into account by satisfying the Israel junction conditions.
Inserting the ansatz (2.6) into (2.4) we get the metric
junction condition:

�f0� � �
1

p

Tp
Mp �e

�p�1��2�f2�

��������z�0
: (2.12)

The dilaton junction condition is obtained directly by
applying on Eq. (2.3) the integration procedure described
above, as in standard one-dimensional quantum mechan-
ics, and it reads

��0� � �p� 1��2

Tp
Mp �e

�p�1��2�f�
��������z�0

: (2.13)

The Einstein equations (2.7), (2.8), (2.9), and (2.10) can
be decoupled, and the time dependence is solved, as in [9],
by the Kasner solution:

a�t� �
�������� tt0

���������
; b�t� �

�������� tt0
���������

;

� �
1�

����������������
n�d�n�1�

d

q
d� n

; � �
1	

����������������
d�d�n�1�

n

q
d� n

;

(2.14)

which can describe a superinflationary solution [21,22] on
the negative branch of the time axis if we choose the minus
sign in � and allow for 2 or more internal dimensions (of
course, in the framework of superstring theory there is
room for up to 5 internal compact dimensions if we want
3 external and one warped of them). So we are left with the
z dependent part of the Einstein equations, which can be
rearranged as

�pF0 � p2F2 � 2�De
�1�f2; �pF0 � pF2 � �02;

(2.15)

and the dilaton Eq. (2.11), which nevertheless depends on
the other equations by means of the Bianchi identities, as
expected.

To solve Eqs. (2.15) we seek for a solution of the form
[14,23]:

f�z� �
�

1�
z
z0

�
	
; ��z� � log

�
1�

z
z0

�



; (2.16)

here z0 is a positive constant (which corresponds to the
AdS length in the usual RS model), and the solutions are
intended to be in the z > 0 region, since we consider a Z2

symmetric background. By inserting these expressions in
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(2.15) and taking into account the Israel junction condi-
tions (2.12) and (2.13) we get the following expressions for
the exponents

	 �
4

p�2
1 � 4

; 
 � �
2p�1

p�2
1 � 4

; (2.17)

and the following relations between the parameters

�2 �
�1

2�p� 1�
;

Tp
Mp �

8p

z0�4� p�2
1�
;

�D � �2
4p�p� 1� � p2�2

1

�z0�4� p�
2
1��

2 :

(2.18)

To get a positive brane tension and a negative bulk cosmo-
logical constant we assume that:

�
2����
p
p <�1 <

2����
p
p : (2.19)

From (2.18) it is easy to get the relation between the brane
tension and the bulk cosmological constant

Tp
Mp
� 4

�����������������������
�2�D

4 p�1
p � �

2
1

vuut ; (2.20)

which is the generalization of the fine-tuning relation in the
standard RS scenario.

It is possible to obtain a different class of solutions, by
imposing a different ansatz:

f�z� � e�	z=z0 ; ��z� � �

z
z0
: (2.21)

This solution saturates the bound (2.19) �1 � 2=
����
p
p

, and
has the exponents related as follows


 � �
����
p
p

	: (2.22)

The relation between the tension and the cosmological
constant is unchanged

Tp
Mp
�

��������������
�8�D

p
: (2.23)

Nevertheless, in what follows we will only consider the
first kind of solution described above.
III. PERTURBATION EQUATIONS

In this section we are going to derive the equations of
motion for the tensor perturbations of the metric,
��1�gAB � hAB. We set the dilaton perturbation equal to
zero, ��1�� � 0, because it would decouple from the tensor
fluctuations, impose that the perturbation depends on only
the external spatial dimensions and work in the transverse-
traceless gauge:

h0A � haA � hD�1;A � 0; gijhij � rjhi
j � 0:

(3.1)
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The second-order perturbation of the countervariant indi-
ces of the metric and of the dilaton is set to zero as well. To
obtain the expression of the induced metric we use the
equation

gABnAnB � �1

� �g�0�AB � hAB��n
�0�A � ��1�nA��n�0�B � ��1�nB�:

(3.2)

The zeroth-order part of this expression is equal to�1, and
we can ignore orders higher than the first. Then Eq. (3.2)
becomes:

2gABn
�0�A��1�nB � 0 � �

1

f
��1�n5: (3.3)

So the extra-dimensional part of the normal unit vector
vanishes, and therefore the complete vector is left un-
changed as well, ��1�nA � 0. This shows that the induced
perturbed metric is

��1��AB 
 �hAB � hABjz�0: (3.4)

The perturbation equations can be obtained by variating
the action (2.1) perturbed to order h2. After some algebraic
manipulation and making use of the background equa-
tions (2.7), (2.8), (2.9), and (2.10), we find the final form:

��2�S�a� �
Md

4

Z
dd�1xdzadbnfp

�

�
_h2
�a� �

Xd
k�1

�@kh�a��2

a2 � h02
�a�

�
; (3.5)

where we have assumed that the internal dimensions have
been compactified on a compact manifold of size M�n.
This is the action for the single polarization mode: ��2�S �P
�a��

�2�S�a�. The polarization mode h�a� is defined via the

spin 2 polarization tensors, hij � h�a��
�a�
ij which satisfy the

relation: �lk�
k
l � 2�ab. From now on we will omit the

polarization index a. Variation of (3.5) leads to the equa-
tion of motion for each mode of the tensor perturbations,
which is, as expected, the D-dimensional covariant
d’Alembert operator on the background considered:

�h� �dH� nG� _h�
r2

a2 h� h
00 � pFh0 � 0: (3.6)

We now need a prescription to project the perturbation
equations, which is free of singularities, on the brane. This
condition can be obtained by perturbing to the first-order
the Israel junction condition (2.4). Making use of the
particular form of the metric (2.6) we derive the condition:�
�

1

p

Tp
Mp e

�p�1��2�h
���������z�0

�

�
1

f
�h0 � 2Fh�

���������z�0
: (3.7)

To solve the perturbation equations (3.6), we can expand
its solutions on a orthogonal basis of functions of z (the
-3
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precise form of the scalar product, and consequently of the
normalization of the functions, will be discussed shortly):

h�t; xi; z� � v0�t; x
i� 0�z� �

Z
dmvm�t; x

i� m�z�

� h0 �
Z
dmhm: (3.8)

Inserting this expansion in (3.6) and (3.7) leads, respec-
tively, to the two equations (which are valid for both the
massless and the massive modes):

 00m � pF 0m � �m2 m; (3.9)

�vm � �dH � nG� _vm �
r2

a2 vm � �m
2vm; (3.10)

and to the condition

Z
dmvm

�
1

f
� 0m�2F m��

1

p

Tp
Mpe

�p�1��2� m

���������z�0
�0:

(3.11)

Let us now insert the decomposition (3.8) into the action
(3.5). First we consider the zero mode. After integrating by
parts and making use of (3.9) we get

��2�S0�
Md

4

Z
dzfpj 0j

2
Z
dd�1xadbn

�
_v2
0�

Xd
i�1

�@iv0�
2

a2

�
:

(3.12)

So it is clear that the auxiliary field  ̂0 �
�����
M
p

fp=2 0 has
the correct canonical dimension to be normalized to unity

Z
dzj ̂0�z�j2 � M

Z
dzfpj 0�z�j2 � 1: (3.13)

From this we can write down the final form for the action
that describes the evolution of the zero mode

��2�S0 �
Md�1

4

Z
dd�1xad�t�bn�t�

�
_v2
0 �

Xd
i�1

�@iv0�
2

a2

�

�
Md�1

4j 0�0�j
2

Z
dd�1xad�t�bn�t�

�
_�h2
0 �

Xd
i�1

�@i �h0�
2

a2

�
;

(3.14)

and the effective Planck mass of the 4-dimensional effec-
tive graviton can be easily read off to be

Md�1
P �

Md�1

4j 0�0�j
2 ; (3.15)

as in ordinary RS scenario [1,9].
Now we turn to study the massive modes. Again, after a

little algebraic manipulation, we arrive at
124015
��2�S � ��2�S0 �
Md

4

Z
dmdm0

Z
dzfp m m0

�
Z
dd�1xadbn

�
_vm _vm0 �

Xd
i�1

�@ivm@ivm0 �

a2

�m2vmvm0
�
: (3.16)

In this case the auxiliary fields with the correct canonical
dimension are  ̂m � fp=2 m, which satisfy a
Schrödingerlike equation

 ̂ 00m �
�
m2 �

�
p2

4
F2 �

p
2
F0
��
 ̂m � 0; (3.17)

and therefore they can be normalized as a complete set of
orthonormal solutionsZ �1

�1
dz ̂m ̂m0 �

Z
dzfp m m0 � ��m�m0�: (3.18)

By making use of this relation in (3.16) we finally find that
the action (3.5) can be though as the sum of the massless
mode action with an infinite set of massive actions, one for
each single massive mode:

��2�S � ��2�S0 �
Z
dm��2�Sm: (3.19)

The massless mode action ��2�S0 of (3.14) can be inter-
preted as the 4-dimensional graviton, while the form of the
massive mode action is

��2�Sm �
Md

4j m�0�j2
Z
dd�1xad�t�bn�t�

�

�
_�h2
m �

Xd
i�1

�@i �hm�2

a2 �m2 �h2
m

�
: (3.20)

From (3.20) we can deduce the value of the generalized
‘‘Planck mass’’ for each mode as the coefficient that multi-
plies the mode action:

Md
m �

Md

4j m�0�j
2 : (3.21)

At this stage, two remarks are in order. The first is that
the massive mode action does not contain terms that couple
the massive modes to each other, i.e. each KK mode is
‘‘free’’ with respect to interaction with the others. This is
due to the fact that the perturbation Eq. (3.6) decouples (at
least in the first-order approximation), and so that we can
treat the two equations (3.10) independently, and the Israel
junction condition (3.11) can be satisfied for each massive
mode independently, as we will do in Sec. VII (this is not
true in general, see for example [10] in which a similar
method lead to an action for the modes which contains
coupling terms). Moreover, it is worth to stress that the
massive mode action is not adimensional, since it has the
dimension of a length, ���2�Sm� � �M�1�. This is of course
-4
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a consequence of the fact that the spectrum of the KK
modes is continuous, and indicates that physical quantities
will be obtained by integrating over a suitable mass inter-
val. But, formally, for what concerns the manipulation to
obtain the massive mode spectrum, we will treat (3.20) as a
genuine canonical action. Nevertheless, the important re-
sult here is that modes do not mix and can be treated
separately.
IV. CANONICAL ANALYSIS OF THE PERTURBED
ACTION

To calculate the spectrum of the fluctuation, we need to
put the actions (3.14) and (3.20) in a canonical form. In
order to do this we will adopt the conformal time to
describe the evolution of the system, (from now on a dot
will denote derivation with respect to �):

d� �
dt
a�t�

; (4.1)

and introduce the pump field

�0��� �

������������
Md�1

2

s
1

 0�0�
a�d�1=2�bn=2;

�m��� �

�������
Md

2

s
1

 m�0�
a�d�1=2�bn=2:

(4.2)

Through the pump field it is possible to introduce the
canonical field1

um��; xi� � �m��� �hm��; xi�: (4.3)

In terms of this canonical field the action can be expressed
in a normal form (valid both for m � 0 and for m � 0):

��2�Sm�
1

2

Z
ddxd�

�
_u2
m�

Xd
i�1

�@ium�
2�

� ��m
�m
�m2a2

�
u2
m

�
:

(4.4)

This form for the action makes it possible to adopt the
standard quantization procedure: we promote um to opera-
tors and impose the canonical commutation relations
among the fields and their conjugate momenta �m��; xi� �
_um��; xi�:

�u0��;x�; u0��;x0�� � ��0��;x�; �0��;x0�� � 0

�um��;x�; um0 ��;x0�� � ��m��;x�; �m0 ��;x0�� � 0

�u0��;x�; �0��;x0�� � i�d�x0 � x�

�um��;x�; �m0 ��;x0�� � i��m�m0��d�x� x0�;

(4.5)

we then express them in terms of their Fourier components:
1We stress again that the canonical field for the massive modes
actually does not have a canonical dimension.
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um��; xi� �
Z ddk

�2��d=2
�um;k���am�k�eik�x

� u
m;k���a
y
m�k�e�ik�x�

�m��; x
i� �

Z ddk

�2��d=2
� _um;k���am�k�e

ik�x

� _u
m;k���a
y
m�k�e�ik�x�:

(4.6)

The operators fam�k�g can be made to obey a canonical
oscillator algebra

�a0�k�; a0�k0�� � �a
y
0 �k�; a

y
0 �k

0�� � 0

�am�k�; am0 �k0�� � �a
y
m�k�; aym0 �k

0�� � 0

�a0�k�; a
y
0 �k

0�� � ��k� k0�

�am�k�; a
y
m0 �k

0�� � ��m�m0��d�k� k0�;

(4.7)

and therefore they can be interpreted as a set of creation-
annihilation operators, provided the wave functions
fum;k���g satisfy the equation (which has, again, a
Schrödingerlike form)

�u m;k��� �!2
m;k���um;k��� � 0; (4.8)

where we have denoted

!m;k��� �

������������������������������������������������
k2 �m2a2��� �

��m���
�m���

s
�

���������������������������
k2 � Vm;k���

q
;

(4.9)

and they are normalized according to the Wronskian con-
dition (as expected)

um;k��� _u
m;k��� � u


m;k��� _um;k��� � i: (4.10)

We should stress that, even if the massive fields um (with
m � 0) do not have the correct canonical dimension,
�um� � �M

�d�2=2��, this discrepancy is compensated by
the dimension of the creation-annihilation operators, as
can be deduced from (4.7). So the mode coefficients um;k
still have the proper canonical dimension of quantum
mechanical wave functions: �um;k� � �M��1=2��. This will
be important when we will need to normalize the initial
fluctuations, as we will do in the next section.

V. DERIVATION OF THE SPECTRUM

The aim of this section is to calculate the spectral
distribution for both the massless and the massive gravita-
tional modes, using the actions developed in the last sec-
tion. Hence, let us imagine a phase transition in which the
universe evolves from the inflationary regime described by
the Kasner solution presented in Sec. II to a simple final
Minkowski era. Since we are interested in models which
have 3 external dimensions, from now on we will assume
d � 3. Moreover, to have an inflationary expanding initial
phase, we need, as observed before, 2 or more internal
dimensions. For the sake of simplicity we will take the
value n � 2, but the consideration we will make can be
-5
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easily extended to a different number of internal dimen-
sions. The phase transition will be analyzed by making use
of the sudden transition approximation (see, for example,
[24]), so that the geometry changes instantaneously at the
conformal time ��1. This approximation gives reliable
results only if the frequency of the amplified modes is
much lower than the transition velocity, which is estimated
by the curvature scale at the end of inflation H1 �
1=�1a1 � k1=a1 � k1 (of course a1 � a���1� � 1). For
this reason, H1 represent a cutoff frequency.

In this framework, the Bogoliubov coefficients that de-
scribe the transformation from the jini to the jouti states
can be obtained simply by imposing continuity of the
Fourier coefficients um;k and their time derivative at the
transition time ��1. This procedure is nevertheless effec-
tive only if we have an unambiguous way to normalize the
jini functions to pure positive norm states. This is indeed
what happens in our case, since it is easy to see that the
background solutions, written in conformal time, are

a��� �
�
�
�
�1

� ��
; b��� �

�
�
�
�1

�
��

�� �
�

1� �
; �� �

�
1� �

;

(5.1)

with the parameters � and � given in (2.14) and since, if
we want an inflationary solution, we have that 	��� van-
ishes as �! �1. On the other side, the expression for the
pump field during the Kasner regime is (note that it is
independent from the number of internal and external
dimensions)

�0��� �

������������
Md�1

2

s
1

 0�0�

�����������
�
�
�1

s
;

�m��� �

�������
Md

2

s
1

 m�0�

�����������
�
�
�1

s
;

(5.2)

but the ratio ��m=�m has of course always the same behav-
ior, like ��2. So the whole potential Vm;k��� goes to zero at
the infinite past, and in this limit the mode equation re-
duces to that of a massless noninteracting field, �um;k �
k2um;k � 0. Moreover, as explained in Sec. IV, the dimen-
sion of the mode coefficient is the same as expected, so we
can guess the correct initial expression for it:

um;k��� �
1�����
2k
p e�ijkj�: (5.3)

With this in hand, what we need to do is to find a
complete solution for (4.8) fixing the free parameters in a
suitable way to match the asymptotic solution (5.3), and
then to solve the linear system

u�in�m;k���1� � 	m�k�u
��out�
m;k ���1� � 
m�k�u

��out�
m;k ���1�

_u�in�m;k���1� � 	m�k� _u��out�
m;k ���1� � 
m�k� _u��out�

m;k ���1�;

(5.4)
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to find the Bogoliubov coefficient 
m�k�. Here u��out�
m;k and

u��out�
m;k are, respectively, the positive and negative fre-

quency eigenfunctions in the Minkowski phase. The
Bogoliubov coefficient represent the amount of particle
created by the gravitational fields in the mass interval
�m;m� dm�. From this we can get the energy density
per logarithmic interval unit for each mode:

d
0�k�
d logk

�
k4

�2 j
0�k�j
2; (5.5)

d
m�k�
d logk

�
k3

�2

�����������������
k2 �m2

p
j
m�k�j

2dm: (5.6)

These expressions should be normalized with their respec-
tive coupling constants (3.15) and (3.21). Note that the
different dimension of the spectral distributions are bal-
anced by the different dimension of the massless and the
massive coupling constants, and this explains the quanti-
zation procedure with the ‘‘odd’’ dimensions of Sec. IV.
Then the massive spectrum should be integrated over all
masses (eventually one can be interested in the contribu-
tion of a particular mass interval). To obtain a dimension-
less quantity, we then choose to normalize the spectral
distributions just obtained to the scale curvature H1 at the
end of inflation. The spectral distribution can be therefore
cast in its final form:

��k� � �0�k� ��KK�k�; (5.7)

with

�0�k� �
k4

�2H2
1M

2
P

j
0�k�j2; (5.8)

�KK�k� �
Z
dm�m�k�

�
Z
dm

k3

�2H2
1M

3
m

�����������������
k2 �m2

p
j
m�k�j2: (5.9)

In the next sections we will apply this procedure to derive
explicitly the spectral amplitudes.
VI. SPECTRAL DISTRIBUTION FOR THE
MASSLESS MODE

The equation for the Fourier modes (4.8) in the massless
case specializes in

�u0;k �

�
k2 � 1

4�2

�
u0;k � 0; � <��1;

�u0;k � k
2u0;k � 0; � >��1;

(6.1)

so the jini solution which asymptotically tends to (5.3), and
the jouti solutions are
-6
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u�in�0;k �

�����������
�
4
j�j

r
H�2�0 �k��; u��out�

0;k �
e�ik������

2k
p ;

u��out�
0;k �

eik������
2k
p ;

(6.2)

where H�2�0 is the Hankel function of the second kind. This
gives, for the Bogoliubov coefficient 
, the expression


0�k� �

��������������
�

32k�1

s
eik�1�2k�1H

�2�
0 �k�1� � i�2H

�2�0

0 �k�1�k�1

�H�2�0 �k�1���: (6.3)

The expression in square brackets can now be approxi-
mated for small values of the argument of the Hankel
functions, since our approximation is valid if k�1 � 1,
and the leading term is logarithmic. So the energy density
(5.5) takes the form2

d
0

d logk
�
H4

1

8�3

�
k
k1

�
3
log2 k

k1
: (6.4)

The next step is to solve Eq. (3.9) for the massless mode.
Its general solution can be written as3

 0�z� � c0 � c1
z0

1� 5	

�
1�

z
z0

�
1�5	

; (6.5)

but the normalization condition (3.13) imposes c1 � 0, so
the only acceptable solution is the constant one  0�z� � c0.
The free parameter c0 can be calculated using (3.13) as
well, so we get

 0 �

���������������������
�

1� 5	
2Mz0

s
: (6.6)

Finally, the expression for (5.8) is

�0�k� �
1

8�3

�
H1

MP

�
2
�
k
k1

�
3
log2 k

k1
; (6.7)

M2
P �

z0M3

2��1� 5	�
; (6.8)

MASSLESS AND MASSIVE GRAVITON SPECTRA IN . . .
2In plotting the spectrum we do not need to use the approxi-
mation. Actually, in the forthcoming calculations, we heavily
rely on numerical computations.

3We recall that, in what follows, the numerical values are only
valid in d � 3 and n � 2 dimensions.
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and it is plotted in Fig. 1 for different values of the
parameters z0H1 and 	.
VII. THE KK SPECTRUM

First of all we will evaluate the massive coupling con-
stant. In order to do this we have to solve Eq. (3.17) for
m � 0. Using the background solutions (2.16) it is easy to
see that this equation is again a Bessel-like equation of the
form:

 ̂ 00m �
�
m2 �

5	�5	� 2�

4

1

�z� z0�
2

�
 ̂m � 0; (7.1)

and its general solution can be written as

 ̂m�z� �
�������������
z� z0

p
�c1�m�J��m�z� z0��

� c2�m�Y��m�z� z0���; (7.2)

where J� and Y� are of course the Bessel functions of the
first and of the second kind, and the parameter � is related
to the dilaton coupling constant by the relation:

� �
1� 5	

2
: (7.3)

The constants c1 and c2 are fixed by using the junction
condition (3.11) and the normalization condition (3.18).
From the junction condition we get, using some algebraic
properties of Bessel functions

c2 � �
J��1�mz0�

Y��1�mz0�
c1: (7.4)

From the second one, using the orthonormality relation of
Bessel functions,4 we get

c1�m� �
����
m
p Y��1�mz0��������������������������������������������������

J2
��1�mz0� � Y

2
��1�mz0�

q : (7.5)

Finally we can write the properly normalized solution of
(7.1)
 ̂ m�z� �
���������������������
m�z� z0�

q �Y��1�mz0�J��m�z� z0�� � J��1�mz0�Y��m�z� z0����������������������������������������������������
J2
��1�mz0� � Y

2
��1�mz0�

q : (7.6)
Now we turn to consider Eq. (4.8). Actually it is very
hard to solve in its complete form, so the best we can do is
to seek for particular limits in which the equation simplifies
a little. As already pointed out, in the phase transition we
considered, an energy scale naturally emerges, i.e. the
curvature scale at the end of the inflationary epoch. In
order to have a complete understanding of the effects of
the KK modes, we will study what happens to lighter or
heavier modes as regards to this curvature scale. Firstly, we
4See, for example, the classical electrodynamics textbook by
J. D. Jackson.

-7



0 0(a) (b)

FIG. 1. The spectral amplitude of the massless mode. In figure (a) the spectrum is evaluated at 	 � �1 and for z0H1 � 7 (dashed
line), z0H1 � 20 (dotted line) and z0H1 � 50 (dashed-dotted line). In figure (b) the spectrum is evaluated at z0H1 � �7 and for
	 � �1 (dashed line), 	 � �5 (dotted line) and 	 � �8 (dashed-dotted line).
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limit our attention to modes that are lighter than the curva-
ture scale at the end of inflation, m� H1. In this case we
can neglect the mass term in (4.9), so that the mode
equation reduces to the same as obtained for the massless
mode, Eq. (6.1). It is easy to see that even if the jouti
solutions are massive waves, the spectral distribution re-
mains unchanged, as in Eq. (6.4). So, the only contribution
to the integral, which must be calculated from m � 0 to
m � H1, comes from the massive coupling constant. The
integration leads to a change of the mass parameter that
controls the normalization of the spectral amplitude, while
the shape of the spectrum remains unchanged. We get

�light�k� �
Z H1

0
dm�m�k� �

1

2�3

�
H1

M


�
2
�
k
k1

�
3
log2 k

k1
;

(7.7)
M2

 �

�Z H1

0

dm

M3
m

�
�1
�
M3

4

�Z H1

0
dmj m�0�j

2

�
�1
: (7.8)
(a)

FIG. 2. The spectral amplitude of light KK modes. As before, in (a
line), z0H1 � 20 (dotted line) and z0H1 � 50 (dashed-dotted line). T
spectrum is evaluated at z0H1 � �7 and for 	 � �1 (dashed line),
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In Fig. 2 it is shown a numerical estimate of the behavior of
the spectrum for different values of the parameters.

Next, we try to solve (4.8) for the heavy modes. To do
this, we use a WKB-like approximation for the mode
function um;k [25,26], which can be written as

u�in�m;k ’
1�������������������

2!m;k���
q exp

�
�i

Z �
d�0!m;k��0�

�
: (7.9)

This approximation is valid if the variation of the fre-
quency is small with respect to the frequency itself. More
precisely, as explained in [25], one must have.

� �
3

4

_!2
m;k

!4
m;k

�
1

2

�!m;k

!3
m;k

� 1: (7.10)

Since the parameter � grows monotonically in time, we
only need to check where our approximation is valid at the
transition epoch �1, and we are guaranteed that it holds
(b)

) the spectrum is evaluated at 	 � �1 and for z0H1 � 7 (dashed
he three curves overlap, so that they are quite confused. In (b) the
	 � �5 (dotted line) and 	 � �8 (dashed-dotted line).
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(b)(a)

FIG. 3. The spectral amplitude of the heavy KK modes. As for the other figures, plot (a) represents the spectrum evaluated at
	 � �1 and for z0H1 � 7 (dashed line), z0H1 � 20 (dotted line) and z0H1 � 50 (dashed-dotted line). Again, overlapping of the
curves do not permit to distinguish them. Plot (b) represents the spectrum evaluated at z0H1 � �7 and for 	 � �1 (dashed line),
	 � �5 (dotted line) and 	 � �8 (dashed-dotted line).
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always before that time.5 It is not difficult to see that
j����1�j � 1 if ma1 � k1, which is exactly the regime
we wish to investigate. This is not an unexpected result,
since it is known [27] that this approximation works better
if the transition is adiabatic, so that the variation of the
curvature is slow with respect to the energy. But this means
that the sudden transition approximation is no longer valid.
Nevertheless, we could still get clues on the form of the
spectrum by analytically continuing the function !m;k and
by evaluating the integral in (7.9) on a suitable path. We
consider a semicircle on the upper half-plane. Its radius
should be chosen to be greater than �1 to stay in the region
in which the WKB approximation is valid, but not too big,
since we expect the mass term to be dominant with respect
to the pure frequency term k2. In this regime the function
!m;k can be approximated as

!m;k��� ’ ma��� �
k2

2ma���
�

1

2ma���

��m
�m

; (7.11)

and has, as one could expect, the form of the nonrelativistic
energy for a massive particle, plus a term that describes the
direct interaction between the particle and the background
geometry, which however is negligible. Note that, in the
approximation (7.11) !m;k has only a singularity at the
origin, so we can actually shrink the radius of the integra-
tion path till R ’ �1 without changing the result of the
integration [26]. It is not difficult to see that the square
modulus of the Bogoliubov coefficient is given by

j
m�k�j
2 � exp

�
2 Im

�Z
d�!m;k���

��
: (7.12)
5To be more precise, � actually reaches a maximum, but well
after the transition time.
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The integral is easy to solve if we make use of the approxi-
mation (7.11), so we get

j
m�k�j2 � exp
�

2 sin� ��
�

ma1

k1�1� ���
�

k2

2ma1k1�1� ���

�
k1

8ma1�1� ���

��
; m� H1: (7.13)

This expression can now be inserted in (5.9) to obtain the
final form for the Kaluza-Klein spectrum. The integral in
this case runs from m � H1 to infinity.

�heavy�k� �
Z �1
H1

dm
k3

�2H2
1M

3
m

�����������������
k2 �m2

p
j
m�k�j

2:

(7.14)

Of course this integration can only be carried out numeri-
cally. The result is presented in Fig. 3 for the same values
of the parameters z0H1 and 	 used in the previous
computations.
VIII. COMMENTS AND CONCLUSIONS

In this paper we have presented a simple model in which
a brane coupled with a bulk dilaton evolves from an initial
inflationary Kasner phase to a final Minkowski era. Then
we have studied the evolution of the tensor perturbations
on this background, paying particular attention to their
normalization to an initial state of vacuum fluctuation.
We have found that the massless and the massive modes
can be treated independently, and we have evaluated (an-
alytically where it was possible, numerically elsewhere)
the spectrum of the tensor perturbations for the massless
mode (to be identified with the graviton) and for both the
ultrarelativistic and the nonrelativistic massive modes. Of
-9



(a) (b)

FIG. 4. Plot (a) shows the behavior of r with respect to z0H1 for the three values of 	 used elsewhere: 	 � �1 (dashed line),
	 � �5 (dotted line) and 	 � �8 (dashed-dotted line). Plot (b) is complementary to the first one, and shows the behavior of r with
respect to 	 for the three different values of z0H1 � 7 (dashed line), z0H1 � 20 (dotted line) and z0H1 � 50 (dashed-dotted line).
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course the total spectrum an observer would detect should
be approximatively the sum of the three.

The behavior of the plot we presented suggests some
comments: As widely expected, the relative importance of
the KK corrections on the total spectrum grows as the AdS
curvature increase,6 because [4,5,19] deviations from clas-
sical general relativity become more and more relevant as
the energy increase. On the other hand the coupling be-
tween the dilaton and the brane has an opposite effect. In
fact, as �1 approaches its limiting value 2=

����
p
p

[see
Eq. (2.19)], the massive perturbations are highly sup-
pressed. We can have a better understanding of the relative
importance of the contribution of the KK modes by defin-
ing the ratio:

r �
�KK

�0 ��KK
; (8.1)

and by plotting its behavior with respect to the two pa-
rameters we are interested in. This is done in Fig. 4.

As we can see, the KK contribution is very low at small
values of z0H1 but rapidly increases to become completely
dominant in the high energy regime, differently from what
happens in other models present in the literature [5–7,11].
Of course, this effect could in principle be relevant in
6Note that we have chosen to normalize the spectrum to the
end of inflation curvature, so that an increase of the AdS
curvature actually corresponds to an increase of the curvature
scale at which the transition occurs. This is the reason because it
seems that the massless mode spectrum is influenced by the
change in z0 and the KK spectrum is not.

124015
observational tests concerning the amplification of tensor
perturbation during inflation. Actually, since the spectrum
obtained in our simple evolution model increases with the
frequency, it is not difficult to tune the free parameters so as
to satisfy COBE and pulsar constraints. Moreover, the
relevance of the massive modes contribution can be low-
ered by the presence of the dilaton. In fact, at relatively
high energies, the effect of the bulk gravitons can be very
strong if the dilaton is absent or weakly coupled, but
becomes negligible as the coupling increases. This indi-
cates that, even at high energies, the enhancement of the
amplitude of the KK spectrum can be ‘‘cured’’ by a suit-
able choice of the coupling parameter, leading to a spec-
trum that is quite similar to the 4-dimensional one.

The decisive test for models with strong production of
KK modes will be the future detection of stochastic gravi-
tational waves at gravitational antennae. For this purpose,
more accurate and realistic models are needed, in which
the presence of matter on the brane is taken into account,
and a smooth transition from the inflationary to the stan-
dard cosmological evolution is considered. It will be sub-
ject of forthcoming papers to investigate which features of
the simple model under discussion can be generalized to
these more realistic models.
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