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The Mathisson-Papapetrou method is originally used for derivation of the particle world line equation
from the covariant conservation of its stress-energy tensor. We generalize this method to extended objects,
such as a string. Without specifying the type of matter the string is made of, we obtain both the equations
of motion and boundary conditions of the string. The world sheet equations turn out to be more general
than the familiar minimal surface equations. In particular, they depend on the internal structure of the
string. The relevant cases are classified by examining canonical forms of the effective 2-dimensional
stress-energy tensor. The case of homogeneously distributed matter with the tension that equals its mass
density is shown to define the familiar Nambu-Goto dynamics. The other three cases include physically
relevant massive and massless strings, and unphysical tachyonic strings.
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I. INTRODUCTION

The original motivation for introducing strings in parti-
cle physics came from the analysis of meson resonances.
As it appears, the known resonances, characterized by the
angular momentum J and the mass M, follow the pattern
J � �M2 � const, where � is a universal constant. These
are called Regge trajectories.

To explain Regge trajectories, the meson resonances are
viewed as excited 2-quark bound states. It has been shown
then that a relativistic rotating string with light quarks
attached to its ends indeed reproduces the above pattern.
The string is characterized by the tension alone, and has no
other structure. It was realized later that realistic field
configurations with such properties really exist. Such is,
for example, the flux tube solution of Ref. [1].

In what follows, we shall not be concerned with particu-
lar field-theoretical models that accommodate flux tubes,
or any other linelike configurations of fields. We shall
merely assume that such kink configurations exist, and
try to draw from it as much information as possible. In
particular, we want to obtain the world sheet equations of
motion.

Our motivation for considering stringy shaped matter in
curved backgrounds is twofold. First, as we have already
explained, realistic strings (like flux tubes) are really be-
lieved to exist, and to be relevant for the description of
hadronic matter. Second, the basic Nambu-Goto string
action [2,3] is in literature often modified to include inter-
action with additional background fields. Apart from the
target-space metric, the antisymmetric tensor field B���x�
and the dilaton field ��x� are considered [4–7]. While the
spacetime metric has obvious geometric interpretation, the
background fields B���x� and ��x� do not. The attempts
have been made in literature to interpret B�� and � as
originating from the background torsion and nonmetricity,
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respectively [8–12]. It seems to us that string dynamics in
target-spaces of general geometry is worth considering.

Basically, we are interested in the influence of the target-
space torsion on the string dynamics. Our idea is to con-
sider a field-theoretical model that naturally includes tor-
sion (like Poincaré gauge theory of gravity) and find the
equations of motion of a stringy shaped material object.
Hopefully, the effective action of Refs. [4–7] would be
recovered, and the real geometric nature of the background
fields B���x� and ��x� found.

In this paper, we shall restrict our considerations to the
simpler case of purely Riemannian spacetime. Thus, the
geometry is given in terms of the metric tensor alone, and
the dynamics is governed by the Einstein’s equations

R�� �
1
2g��R � 8�GT��: (1)

The stress-energy tensor of matter fields is symmetric,
T�� � T��, and covariantly conserved, r�T�� � 0. In
Riemannian spacetimes, the connection in the definition
of the covariant derivative r�v� � @�v� � ����v� is the
Levi-Civita connection. As a consequence, the stress-
energy covariant conservation law r�T�� � 0 is rewritten
in the form

@��
�������
�g
p

T��� � ����
�������
�g
p

T�� � 0: (2)

This equation will be the starting point in our analysis of
motion of extending objects in curved spacetimes. For
practical purposes, we shall consider extended objects
with the attributes of test bodies. This way, their influence
on the background geometry becomes negligible.

The method we use is a straightforward generalization
of the Mathisson-Papapetrou method for pointlike matter
[13,14]. It boils down to the analysis of the covariantly
conserved stress-energy tensor of matter fields, without
specifying their nature. The basic assumption used is the
existence of a stringlike localized kink solution in a curved
background. Then, the world sheet effective equations of
-1 © 2006 The American Physical Society
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motion are obtained in the approximation of an infinitely
thin string.

Although the case under consideration is a simple one
(torsionless, Riemannian geometry), the resulting world
sheet equations turn out to depend on the internal structure
of the string. This dependence enters the equations of
motion through the effective 2-dimensional stress-energy
tensor of the string. Classifying possible canonical forms
of the stress-energy 2-tensor, we shall discover a specific
distribution of matter characterized by the tension alone.
Its world sheet dynamics is fully determined by the target-
space geometry, and coincides with that of the known
Nambu-Goto string [2,3]. Different matter distributions
will contribute to different world sheet equations, and
different boundary conditions. In particular, if the string
mass is localized in a point, the world sheet turns into a
conventional geodesic line.

The layout of the paper is as follows. In Sec. II, the point
particle is considered as a demonstration of our method and
conventions. The known result is reproduced, but the em-
phasis is put on the fact that the mass parameter transforms
as a 1-dimensional stress-energy tensor. In Sec. III, the
effective world sheet equations are derived from the cova-
riant conservation law of the stress-energy tensor of matter
fields. Instead of the mass parameter in the point particle
case, here, the effective 2-dimensional stress-energy tensor
mab appears to characterize the internal structure of the
string. The world sheet equations imply the covariant
conservation of mab with respect to the induced 2-
dimensional world sheet metric �ab. If the string is open,
the world sheet equations also include some boundary
conditions. Section IV is devoted to the analysis of possible
canonical forms of mab, and to some examples. It is shown
how the assumption of homogeneously distributed matter
with the tension that equals its mass density leads to the
known Nambu-Goto string. As an example, the Nielsen-
Olesen vortex line solution of a Higgs type scalar electro-
dynamics is briefly examined [1]. In Sec. V we give our
final remarks. In particular, we emphasize that the results
we have obtained are easily generalized to hold for any
p-brane in an external Riemannian spacetime.

Our conventions are as follows. Greek indices from the
middle of the alphabet, �; �; . . . , are the target-space in-
dices, and run over 0; 1; . . . ; D� 1. Greek indices from the
beginning of the alphabet, �;�; . . . , refer to the spatial
section of the target-space, and run over 1; 2; . . . ; D� 1.
Latin indices a; b; . . . are the world sheet indices and run
over 0, 1. The target-space and world sheet coordinates are
denoted by x� and 	a, respectively. The target-space and
world sheet metric tensors are denoted by g���x� and
�ab�	�, respectively. The signature convention is defined
by 
�� � diag�1;�1; . . . ;�1�, 
ab � diag�1;�1�.
Target-space indices �; �; . . . are lowered and raised by
the target-space metric g�� and its inverse g��, while
world sheet indices a; b; . . . are lowered and raised by the
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world sheet metric �ab and its inverse �ab. Throughout the
paper, we shall restrict our considerations toD � 4, but we
note that all the results remain valid for arbitrary spacetime
dimension.
II. PARTICLE DYNAMICS

We begin with the treatment of a point particle in a
curved background spacetime. The problem was studied
in the early days of relativity by Einstein, Infeld, Hoffman,
Mathisson, Papapetrou, and others [13–18]. Here, we for-
malize the calculations, and adjust the algorithm for the
case of a string in the next section.

A. Stress-energy tensor

We need a general form of the stress-energy tensor,
suitable for the description of a point particle.

Let us introduce a timelike curve x� � z���� in space-
time, with � an arbitrary parameter. We shall consider
spacetimes of topology �� R, where R stands for time,
and � is an arbitrary 3-manifold representing spatial sec-
tions. Both, the spacetime and the curve are supposed to be
nondegenerate and complete. In simple terms, only infinite
curves are considered. This way, the unphysical matter
distributions, such as instantons, are excluded.

In general, the spacetime coordinates x�, and the world
line parameter � are arbitrary. Still, we shall partially fix
this freedom to make the exposition more transparent.
First, the coordinates x� are chosen in accordance with
the demand that equal-time surfaces are spacelike. As a
consequence, our curve intersects these surfaces only once,
and the function z0��� becomes invertible. Second, the time
coordinate x0 � t is chosen to parametrize the curve. The
choice � � t, or equivalently, z0��� � �, puts the con-
straint u0 � 1 to the form of the tangent vector u� �
dz�=d�. Otherwise, it is an arbitrary timelike vector sat-
isfying g��u�u� � u2 > 0.

Next, we expand
�������
�g
p

T���x� into the � function series
around the point ~x � ~z�t�, while treating the time coordi-
nate as a parameter. Using the formula (A1) (case d � 3),
we have:

�������
�g
p

T���t; ~x� �
����
�
p

b���t���3�� ~x� ~z�t��

�
����
�
p

b����t�@���3�� ~x� ~z�t�� � � � � :

Here, � is the induced metric on the curve. It is defined by
ds2 � g���z�dz

�dz� � ����d�2, and is introduced for
later convenience. The coefficients in the expansion are
given by the formula (A2):

����
�
p

b�� �
Z
d3 ~x

�������
�g
p

T��;

����
�
p

b��� � �
Z
d3 ~x�x� � z��

�������
�g
p

T��;
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etc. Note that the coefficients in the expansion equal the
Papapetrou moments M��, M��� etc., as defined in [14].

Now, we introduce the basic assumption about matter. It
is localized around the line z����, i.e. the stress-energy
tensor drops exponentially to zero as we move away from
the line. Of course, this assumption means that field equa-
tions allow solutions of such a type. Field theories that have
such properties are known to exist, but we shall not be
interested in details of particular models.

As a consequence of this assumption, each coefficient
b���1...�n gets smaller as n gets larger. In the lowest ap-
proximation (the so called single-pole approximation), all
b’s except the first are neglected, and we end up with�������

�g
p

T���t; ~x� �
����
�
p

b���t���3�� ~x� ~z�t��: (3)

This equation is not covariant with respect to the target-
space coordinate transformations. To cast it into a cova-
riant form, we add an extra � function and an extra inte-
gration. Thus, we obtain

�������
�g
p

T���x� �
Z
d�

����
�
p

b�������4��x� z����; (4)

which reduces to (3) in the gauge z0��� � �. This form of
stress-energy tensor is covariant with respect to both space-
time coordinate transformations and world line reparamet-
rizations. From the known transformation properties of
T��, we infer the transformation properties of b��. It is a
tensor with respect to general coordinate transformations,
and scalar with respect to world line reparametrizations.
Equation (4) describes matter localized around the line
z����, and in this form, we shall use it to solve the Eq. (2).

B. Equations of motion

We look for the solution of the Eq. (2) in the form (4),
where b����� and z���� are the unknown functions to be
determined. Thus, we obtainZ

d�
����
�
p
	b��@��

�4��x� z� � b�������
�4��x� z�
 � 0:

Viewed as the � function expansion, this equation is de-
coupled into a pair of equations determining z� and b��.
To see this, we multiply the equation with an arbitrary
function f�x� of compact support, and integrate over the
spacetime. The compact support of f�x� allows switching
the order of integrations, which results inZ

d�
����
�
p

�
�b��

@f�z�
@z�

� b�������z�f�z�
�
� 0: (5)

The scalar field f�x� is arbitrary, but the longitudinal
component of the gradient f;� � @f�z�=@z� is not inde-
pendent of f�z�. So, we decompose the gradient f;� into the
parallel and orthogonal components:

f;� � f?� � fku�:

By definition, f?� u� � 0, and the coefficient fk is obtained
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from the identity df=d� � f;�u
�. Thus,

f;� � f?� �
1

�
df
d�
u�:

Now, f�z���� and f?� �z���� are independent and arbitrary.
We arrange (5) as follows:Z
d�
� ����
�
p

b��f?� �
�
d
d�

�
1����
�
p u�b

��
�
�

����
�
p

b������

�
f

�
d
d�

�
1����
�
p u�b

��f
��
� 0: (6)

Each of the three terms in the above equation must sepa-
rately vanish.

The third term gives no contribution to the world line
equations. Indeed, the world line is assumed to be infinite,
and the function f to have compact support. As a conse-
quence, the corresponding boundary integral vanishes.

The second term gives the world line equations in the
form

d
d�

�
1����
�
p u�b

��
�
�

����
�
p

b������ � 0: (7)

Viewed as an equation for z����, it contains the undeter-
mined coefficients b�����.

In the first term, we decompose b�� into the parallel and
orthogonal components with respect to the second index:

b�� � b��? � b
�u�;

where b��? u� � 0. Then, vanishing of the term b��f?� for
every f?� implies b��? � 0, and consequently,

b�� � b�u�:

As b�� is a symmetric tensor, b�u� must equal b�u�, so
that b� / u�. Therefore,

b�� � mu�u�; (8)

where m��� is an arbitrary coefficient. We see that, up to a
multiplicative term, b�� is fully determined by z����.

We can now substitute (8) into (7) and obtain

d
d�
�
����
�
p

mu�� �
����
�
p

m����u
�u� � 0: (9)

This is our final, covariant world line equation. It contains
the undetermined m���, but this coefficient is constrained
by the very same equation. Indeed, the projection of (9) on
the tangent vector u� can straightforwardly be brought to
the simple form

d
d�
�m�� � 0: (10)

We see that m� is a constant of motion, and consequently,
it can easily be eliminated from the world line equations. In
fact, using the proper distance s to parametrize the curve
(which is equivalent to fixing the gauge � � 1), we get
-3
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m � const, and restore the standard geodesic equation

d2z�

ds2
� ����

dz�

ds
dz�

ds
� 0:
C. Discussion

The world line equations we have obtained are mani-
festly covariant with respect to both general coordinate
transformations and world line reparametrizations. The
quantities b��, u�, and m, besides being spacetime tensors
(second rank tensor, vector, and scalar, respectively), are
also tensors with respect to the reparametrizations �0 �
�0��� (scalar, vector, and second rank tensor, respectively).
In particular,

m0��0� �
d�0

d�
d�0

d�
m���:

Thus, m transforms as a second rank contravariant tensor
with respect to world line reparametrizations. This gives us
the idea that m can be viewed as an effective one-
dimensional stress-energy tensor of the pointlike matter.
In support of this interpretation, note that the earlier estab-
lished conservation of m�, as given by (10), can be rewrit-
ten as

r�m � 0; (11)

where r� stands for the one-dimensional, Riemannian
covariant derivative (r�v � @�v� �v, where � is one-
dimensional Levi-Civita connection). Thus, our coefficient
m can really be viewed as an effective, covariantly con-
served one-dimensional energy-momentum tensor. In this
respect, m should be considered the particle mass.

The results of this section can be summarized as follows.
The stress-energy conservation Eq. (2) is applied to a
linelike distribution of matter. In the lowest approximation,
such matter distribution is covariantly described by (4),
with z���� and b����� the unknown functions. We found
that (a) the world line, parametrized by the proper distance
s, satisfies the geodesic equation

d2z�

ds2
� ����

dz�

ds
dz�

ds
� 0;

and (b) the stress-energy tensor takes the form

�������
�g
p

T���x� � m
Z
dsu�u���4��x� z�s��;

with m a constant interpreted as the particle mass.
The above results are obtained in the lowest approxima-

tion in the � function expansion. If, however, the second
term (pole-dipole approximation), or higher order terms
were included, the world line equation would depend on
the internal structure of the particle. In particular, the
particle angular momentum would couple to the spacetime
curvature, giving deviations from the geodesic trajectory.
The analysis of the higher order particle moments has
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extensively been done in the literature (see, for example
[14]). Here, we just prepare the setting for the study of
string dynamics in the next section.
III. STRING DYNAMICS

The calculations presented in the previous section are
well known, and there are papers [19,20] that generalize
the procedure to include torsion, and explore modifications
that it brings to the theory. However, this research has been
focused on the particle case, and we want to address the
problem of finding equations of motion of an extended
object, such as a string. In this section, we generalize the
Papapetrou method to linelike matter, and present the
results.

A. Stress-energy tensor

As in the particle case, we begin with the stress-energy
covariant conservation law in the form (2).

In contrast to the particle, the string is an extended, one-
dimensional object whose trajectory is not a world line, but
rather a two-dimensional world sheet M. Let us introduce
a two-dimensional surface x� � z��	a� in spacetime,
where 	0 and 	1 are the surface coordinates. We shall
assume that the surface is everywhere regular, and the
coordinates 	a well defined. As in the particle case, we
shall consider only time-infinite string trajectories. This
means that every spatial section of the spacetime has non-
empty intersection with the world sheet. As for the inter-
section itself, it is supposed to be of finite length. Thus,
only closed, or finite open strings are considered. In the
conventional parametrization, 	0 � � goes from minus to
plus infinity, while 	1 �  takes values in the interval
	0; �
. In this parametrization, the world sheet boundary
is defined by the coordinate lines  � 0 and  � �.

In what follows, we shall frequently use the notion of the
world sheet coordinate vectors

u�a �
@z�

@	a
;

and the world sheet induced metric tensor

�ab � g��u
�
a u�b:

If the world sheet is regular, and the coordinates 	a are well
defined, the two tangent vectors u�0 and u�1 are linearly
independent. The induced metric is assumed to be non-
degenerate, det��ab� � 0, and of Minkowski signature
��;��. With this assumption, each point on the world
sheet accommodates a timelike tangent vector. This is
how the notion of the timelike curve is generalized to the
two-dimensional case. In what follows, we shall also dis-
cuss the situations in which this assumption is violated on
the world sheet boundary.

We shall restrict our considerations to 4-dimensional
spacetimes. As before, we expand the stress-energy tensor
-4
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into a � function series around the world sheet. The pro-
cedure is basically the same as in the particle case, the only
difference being in the use of ��2� instead of ��3� functions.
In the single-pole approximation, we drop all the terms in
the expansion except the leading one. In this approxima-
tion, the stress-energy tensor contains no �-function de-
rivatives. Similar to the particle case, the covariantization
is achieved by employing two more � functions, and two
more integrations. Thus, we obtain a covariant expression
for the stress-energy tensor:

�������
�g
p

T���x� �
Z
d2	

��������
��
p

b���	���4��x� z�	��: (12)

The coefficients b�� transform covariantly with respect to
both, target-space and world sheet reparametrizations.

B. Equations of motion

Using the ansatz (12) in the Eqs. (2) yieldsZ
d2	

��������
��
p

	b��@��
�4��x� z� � b�������

�4��x� z�
 � 0:

The left-hand side of this equation is almost in the form of
the �-function series. To make use of this, we multiply the
equation with an arbitrary function f�x� of compact sup-
port, and integrate over the spacetime. The compact sup-
port of f�x� allows switching the order of integrations.
Using partial integration in the first term, we getZ

d2	
��������
��
p

�
�b��

@f�z�
@z�

� b�������z�f�z�
�
� 0: (13)

The scalar field f�x� is arbitrary, but the projection of the
gradient f;� � @f�z�=@z� on the world sheet is not inde-
pendent of f�z�. So, we decompose the gradient f;� into the
parallel and orthogonal components:

f;� � f?� � f
k
aua�:

By definition, f?� u�a � 0, and the coefficients fka can be
expressed through @f=@	a � f;�u

�
a. Thus, we have:

f;� � f?� �
@f
@	a

ua�:

Now, f and f?� are mutually independent on the world
sheet. We arrange (13) as follows:Z
M
d2	

� ��������
��
p

b��f?� �
�
@
@	a
�
��������
��
p

b��ua��

�
��������
��
p

b������

�
f�

@
@	a
�
��������
��
p

b��ua�f�
�
� 0: (14)

Owing to the arbitrariness and mutual independence of f
and f?� , each of the three terms in the integrand of the
above equation must separately vanish.

The third term is a two-divergence, and by Stokes theo-
rem, reduces to a line integral over the boundary @M. It
must vanish for any choice of the function f evaluated on
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the boundary, and therefore, implies the boundary condi-
tion ��������

��
p

b��ua�naj@M � 0: (15)

Here, na is the outward directed normal to the boundary
@M. If the boundary line 	a � 	a�&� is parametrized by
some parameter &, the normal will take the form

na � "ab
d	b

d&
; (16)

where "ab is the antisymmetric Levi-Civita tensor. The
boundary conditions (15) do not appear if the string is
closed. In that case, @M � ;, and the third term of
Eq. (14) identically vanishes.

The vanishing of the second term in (14) yields the world
sheet equation

@
@	a
�
��������
��
p

b��ua�� �
��������
��
p

b������ � 0: (17)

It generalizes the particle world line Eq. (7). As an equa-
tion for z��	�, it should be supplemented by appropriate
constraints on the unknown coefficients b��.

Finally, consider the first term. First, we split b�� into
the parallel and orthogonal components with respect to the
second index:

b�� � b��? � b
�au�a;

where b��? ua� � 0. Vanishing of the term b��f?� for every
f?� implies b��? � 0, and we are left with

b�� � b�au�a:

Again, we make use of the symmetry of the stress-energy
tensor, and obtain

b�au�a � b�au�a :

This means that b�a is a linear combination of vectors u�a ,
and consequently,

b�� � mabu�a u�b: (18)

Here, mab�	� are arbitrary coefficients. They transform as
scalars with respect to spacetime diffeomorphisms, and as
components of a contravariant symmetric second rank
tensor with respect to the world sheet reparametrizations.
Apart from arbitrariness in mab, b�� is fully determined by
u�a , which are, in turn, fully determined by z��	�. The
boundary conditions (15) now read��������

��
p

mabnbu
�
a j@M � 0; (19)

while the world sheet equation (17) takes the form

@a�
��������
��
p

mabu�b � �
��������
��
p

mabu�au�b�
�
�� � 0: (20)

The world sheet equations can be written in a manifestly
covariant way. To this end, we make use of the total
covariant derivative ra, which acts on both, spacetime
-5
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and world sheet indices:

rbv
�a � @bv

�a � ����u
�
bv

�a � �acbv
�c:

Here, �acb is the induced connection on the world sheet. In
the absence of torsion, it is defined in terms of �ab via the
known Christoffel formula. With this definition, the met-
ricity condition is satisfied for both metric tensors,

ra�bc � 0; rag�� � 0;

and (20) is rewritten as

ra�m
abu�b � � 0: (21)

[The equivalent covariantization in the particle case could
be achieved by employing the one-dimensional induced
connection � � �1=2���d�=d��.] Viewed as an equation
for the string trajectory, this equation contains the un-
known coefficients mab. It can be shown, however, that
mab are not fully arbitrary. Instead, they are constrained by
the same Eq. (21). To see this, we project (21) on uc�, and
obtain

ramac �mabuc�rau
�
b � 0: (22)

The second term is shown to identically vanish, and we end
up with

ram
ac � 0: (23)

Thus, mab is a covariantly conserved, symmetric world
sheet tensor. As such, it is seen as the effective two-
dimensional stress-energy tensor of the string.

C. Discussion

The Eq. (19) represents a valid form of the boundary
conditions, irrespective of the world sheet parametrization
used. Even the situations in which the coordinates 	a are
not well defined on the boundary are included. If every-
where regular coordinates 	a are used, the coordinate
vectors u�a are linearly independent, and the boundary
conditions (19) reduce to��������

��
p

mabnbj@M � 0: (24)

This form of boundary conditions can further be simplified
by employing the standard parametrization 	0 � �, 	1 �
. In these coordinates, the boundary is defined by  � 0,
 � �, the n0 component of the normal (16) vanishes, and
the boundary conditions take the simple form��������

��
p

ma1j�0;� � 0: (25)

Although the metric �ab is assumed nondegenerate in the
interior of the world sheet, we shall retain the term

��������
��
p

in
the above formula to allow violations of this assumption on
the boundary. This way, we prevent losing some important
solutions of the world sheet equations. In particular, the
known Nambu-Goto dynamics belongs to this class of
solutions.
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The boundary conditions obtained in this section are
naturally associated with the familiar Neumann boundary
conditions of the conventional string theory. This is a
consequence of the fact that only ‘‘freely falling’’ strings
in an external gravitational field are considered. In the
standard variational approach, they are obtained by allow-
ing free variation of the string boundary. The alternative
choice is to use Dirichlet boundary conditions, which are
defined by imposing additional constraints on the variation
of the string boundary. Precisely, the string ends are at-
tached to an external p-brane, which (partially or fully)
fixes their trajectories.

In our approach, this situation is unsatisfactory, as the
interaction of the string with the p-brane violates the
covariant conservation of the stress-energy tensor at the
string ends. We could, of course, impose these constraints
by hand, but the natural way to incorporate Dirichlet
boundary conditions within our approach is to consider
the p-brane and the attached string as a single object
moving in an external gravitational field. Although such
complex matter configurations are interesting by them-
selves, we do not study them in the present work.
Instead, we consider a string that interacts only with the
spacetime geometry. This means that the string ends have
nothing else to interact with, which in turn explains why
the derivation of the equations of motion yields precisely
the Neumann boundary conditions.

The results of this section can be summarized as follows.
We considered the stress-energy conservation Eq. (2), and
looked for a solution describing a stringlike distribution of
matter. In the lowest approximation (an infinitely thin
string with no structure in the transverse direction), the
stress-energy tensor has the form (12), with z��	� and
b���	� the unknown functions. We have found that
(a) the string dynamics obeys the equation

ra�m
abu�b � � 0;

and (b) the world sheet stress-energy tensor mab is cova-
riantly conserved

ramab � 0:

Further, (c) the endpoints of an open string are subject to
the boundary conditions��������

��
p

ma1j�0;� � 0;

and (d) the target-space stress-energy tensor in this ap-
proximation has the form

�������
�g
p

T���x� �
Z
d2	

��������
��
p

mabu�a u�b�
�4��x� z�	��:

As opposed to the particle case, the dynamics of a
stringy shaped matter generally depends on its internal
structure. Indeed, the two-dimensional stress-energy con-
servation ramab � 0 has no unique solution. There is a
-6
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variety of possibilities to choose mab, each leading to a
different string dynamics.

Notice, however, that there exists a geometric solution
analogous to the one-dimensional m / ��1. It has the form
mab / �ab, and defines a string trajectory in full analogy
with the geodesic line. In fact, this particular choice ofmab

yields the string dynamics familiar from the literature: the
obtained world sheet equations and boundary conditions
coincide with what we get by varying the standard Nambu-
Goto action. In the next section, we shall classify possible
canonical forms of mab, and explore their influence on the
string dynamics. We shall also give some examples to
illustrate the feasibility of stringlike solutions in ordinary
field theories.

Let us note, in the end of this section, that the particle
equations have the same form as those of a string. Indeed,
if the indices a; b; . . . are restrained to take only one value,
say 0, the world sheet equations will get the form of a
geodesic equation. This is not a coincidence. In fact, it is
possible to extend the whole discussion to a very general
case of a p-brane moving in a D-dimensional curved
spacetime. The equations of motion, boundary conditions,
and the covariant conservation of the effective mass tensor
mab are virtually the same, the only difference being in the
dimensionality of the world sheet. The p-brane world sheet
coordinate indices a; b; . . . take the values 0; 1; . . . ; p,
while spacetime indices �; �; . . . range through
0; 1; . . . ; D� 1.
IV. INTERNAL STRUCTURE OF THE STRING

As we have seen in the previous section, the world sheet
equations depend on the type of matter the string is made
of. To completely characterize the string trajectory, we
need the type and distribution of its mass tensor mab. In
this section, we shall classify possible canonical forms of
mab, and provide some illustrative examples.

A. Canonical forms of the mass tensor

In this section, we shall analyze the eigenproblem of the
two-dimensional mass tensor mab. The analogous 4-
dimensional analysis has been done in [21], and the reduc-
tion to two dimensions is straightforward.

The eigenproblem of mab in a general world sheet with
metric �ab, is defined by the equation

mabeb � �ea;

where ea � �abeb. The existence of nonvanishing eigen-
vectors ea is guaranteed by the condition det	mab �
��ab
 � 0. It is rewritten as the quadratic equation

�2 �ma
a�� � det	mab
 � 0;

with the discriminant

� � �ma
a�

2 � 4� det	mab
:
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Because of the indefiniteness of the metric, three cases
are possible: �> 0, � � 0, and �< 0. The eigenvectors
can be either timelike, spacelike or null. The mass tensor
mab cannot always be diagonalized.

Let us analyze the behavior of mab in the vicinity of a
point on the world sheet. We shall use such 	a coordinates
which ensure �ab � 
ab, and �abc � 0 in the chosen
point. If we write mab in a matrix form as

mab �
� �
� p

� �
;

we see that � represents energy density along the string, �
is the energy flux, and �p is the string tension. The
components of the stress-energy tensor are subject to the
physical condition that energy flux must not exceed the
energy density: � � j�j. Otherwise, matter would travel
faster than light [21]. This must be satisfied in every
reference frame, which can be shown to imply the general
conditions on the components of mab:

�� p � 2j�j; � � p: (26)

Now, we proceed to examine the cases where diagonal-
ization is, or is not, possible, and to give physical
interpretation.

1. Case �> 0

In this case, one can employ a Lorentz transformation
that brings mab to a diagonal form:

mab �
��1� 0
0 ���2�

 !
; ��1� � ��2�;

where ��1� and ��2� are the eigenvalues of mab. This means
that there exists a rest frame, where the energy flux is zero,
� � 0, and matter does not move. This is the case for the
usual massive matter.

Conditions (26) are now rewritten as ��1� � j��2�j, which
means that the energy density � is always positive, and
exceeds the absolute value of the tension. The string tra-
jectory equations in the vicinity of the chosen world sheet
point can further be simplified by using a local inertial
frame in the target-space: g�� � 
��, ���� � 0. Then,
the world sheet equations mabrau

�
b � 0 reduce to

�
@2z�

@�2 � p
@2z�

@2 � 0:

If the string tension is positive, p < 0, we may rewrite this
as

@2z�

@�2
�!2 @

2z�

@2 � 0; (27)

where! �
��������������
�p=�

p
is the wave speed of the familiar wave

equation. The conditions (26) enforce � >�p, wherefrom
!< 1. Thus, the speed of sound along the string is less
than that of light, as expected for ordinary massive matter.
-7
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The world sheet metric �ab is assumed to be everywhere
nondegenerate, including the boundary itself. In this case,
the boundary conditions (24) reduce to

��1�n0j@M � ��2�n1j@M � 0; (28)

which means that at least one of the eigenvalues must
vanish. The physical condition ��1� � j��2�j then singles
out ��1� � 0, ��2� � 0, and consequently,

mabj@M �
� 0
0 0

� �
;

with the interpretation that the tension �p vanishes on the
string ends. The conditions (28) also imply n0 � 0, which
means that the boundary coincides with a coordinate line
 � const. Thus, the form (25) of the boundary conditions
could have been used, too.

2. Case � � 0

In this case, there exists a boost that brings mab to the
form

mab �
��� �
� ����

� �
:

Here, � is the single eigenvalue, and the Lorentz invariant
sign of� defines three subcases:�> 0,� � 0 and�< 0.
The conditions (26) reduce to � � 0 and � � 0, which
excludes the third possibility �< 0 as nonphysical. Thus,
every nontrivial mab is the sum of matrices corresponding
to the cases � � 0, �> 0 and � > 0, � � 0. Let us
discuss these two situations.

In the case � � 0, �> 0, the only eigenvector of mab is
lightlike, and no rest frame exists. The situation is inter-
preted as that of a massless matter. In the four-dimensional
electrodynamics, for example, we can consider electric and
magnetic fields of equal intensity, E � B, and perpendicu-
lar to each other, ~E � ~B � 0. In a suitable reference frame,
the stress-energy tensor has the form

T�� �

E2 E2 0 0
E2 E2 0 0
0 0 0 0
0 0 0 0

0
BBB@

1
CCCA:

Such is, for example, a linearly polarized plane wave
propagating in the x direction. Its stress-energy tensor
belongs to the class under consideration, with � � E2.

The boundary conditions (24) reduce to

��n0 � n1�j@M � 0;

wherefrom n0 � n1. Thus, the normal to the boundary is
lightlike, and the definition (16) implies the same for the
boundary itself. We see that the boundary cannot coincide
with the coordinate line  � const, which is the reason we
could not use the boundary conditions in the form (25).
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The case � > 0, � � 0. Here, the eigenvalue � is de-
generate, and the two eigenvectors can be chosen to be
spacelike and timelike, respectively. The mass tensor is not
only diagonal, but proportional to the metric: mab � �
ab.
This can covariantly be written asmab � ��ab, and defines
the known Nambu-Goto string. The energy density � is
positive, and equal to the tension:

� � �p:

The equations of motion are precisely the minimal-surface
equations. In a local inertial frame, they reduce to the wave
equation

@2z�

@�2
�
@2z�

@2 � 0;

which is a special case of (27), with! � 1. Thus, the speed
of sound in the string equals the speed of light. No con-
ventional elastic material exhibits such a behavior.

In the local inertial frame (�ab � 
ab), the only appro-
priate form of boundary conditions is (19). Indeed, it
reduces to

nau�a j@M � 0;

which shows that the coordinate vectors u�a are not linearly
independent. Thus, the inertial frame is necessarily degen-
erate at the boundary. The best we can do is to Lorentz
rotate the normal na to achieve n0 � 0, and bring the
boundary conditions to the conventional form u�1 � 0. If,
on the other hand, we insist on using regular parametriza-
tion of the world sheet, we must leave the inertial frame.
Only then, we can use the form (25) of the boundary
conditions, and obtain��������

��
p

�a1j�0;� � 0: (29)

We see that the world sheet metric at the boundary is
degenerate. A careful analysis of the conditions (29) yields
the solution

�ab �
0 0
0 �11

� �

at  � 0 and  � �. In particular, �00 � g��u
�
0 u

�
0 � 0,

which means that the world sheet boundary is lightlike.
This is the familiar result of the Nambu-Goto dynamics:
the string ends move with the speed of light.

The boundary conditions we have derived are the famil-
iar Neumann boundary conditions. They are the conse-
quence of the ‘‘free falling’’ character of the string
motion, and are obtained automatically in our approach.
In contrast, the Dirichlet boundary conditions demand the
string ends to be attached to an external p-brane, as ex-
plained in Sec. III C.

In both � � 0 cases we have considered, the string ends
move with the speed of light. There is a difference, how-
ever, in the behavior of the induced metric �ab. In the
-8
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massless case, the metric is regular at the boundary (� �

0), while in the Nambu-Goto case, it is degenerate (� � 0).
In geometric terms, the world sheet either intersects the
target-space light cone, or just touches it. Both world
sheets are regular 2-dimensional surfaces, though.

3. Case �< 0

In this case, there exists a boost that brings mab to the
form

mab �
�0 �00

�00 ��0

� �
:

Here, the two eigenvalues are complex-conjugate, ��0� �
�0 � i�00 and ��1� � �0 � i�00. The corresponding eigen-
vectors are also complex.

The conditions (26) are in contradiction with the above
form of mab. This means that they are never satisfied, as
one can always find a reference frame where energy flux
exceeds the energy density. Thus, the case is unphysical,
corresponding to matter whose speed exceeds the speed of
light.

To summarize, the eigenvalue problem we have consid-
ered brought about three possible cases: (a) the case �> 0
describes massive matter, (b) the case � � 0 combines
massless matter with matter of Nambu-Goto type, and
(c) the case �< 0 represents unphysical, tachyonic matter.

B. Inhomogeneous example

Let us consider a string characterized by a highly in-
homogeneous distribution of matter. Take the radical situ-
ation when all the mass is localized in one single point. In
the lowest approximation, the mass tensor mab is chosen in
the form

��������
��
p

mab �
Z
dsbab�s���2��	� ��s��; (30)

where bab�s� are some parameters, and 	a � �a�s� is a line
on the world sheet, parametrized by the proper distance s.
As a consequence, the corresponding tangent vector va �
d�a=ds has unit norm: �abvavb � 1. The world line equa-
tion is expected to be found by the analysis of the corre-
sponding world sheet equations.

Our strategy is the same as that of Sec. II, the only
difference being the dimensionality of the target-space
(there 4, here 2). Therefore, we start with the conservation
lawramab � 0, and apply the ansatz (30). The result is the
exact analogue of the 4-dimensional case: bab / vavb, and
the world line is a world sheet geodesic

dva

ds
� �abcv

bvc � 0: (31)

The question is if this particular world sheet geodesic is
also a spacetime geodesic, as one would expect. The
answer is affirmative. To see this, we first note that the
world line tangent vector ~v is also tangent to the world
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sheet and the spacetime. Its spacetime components v� can
be expressed in terms of the world sheet components va as
follows:

v� �
dz����s��

ds
�
@z����
@�a

d�a�s�
ds

� u�a va:

The spacetime proper distance s is, of course, the same as
the world sheet proper distance. To check if our line is a
spacetime geodesic, we use v� � u�a va and (31) to find
that

dv�

ds
� v�v��� � vavbrau

�
b :

Now, the world sheet equationsmabrau
�
b � 0, and the fact

that mab, when calculated on the line 	a � �a�s�, is pro-
portional to vavb lead us to

dv�

ds
� ���v

�v � 0:

This is a spacetime geodesic equation, as we expected.

C. Nielsen-Olesen vortex line

In our second example, we shall evaluate the stress-
energy tensor of the known Nielsen-Olesen vortex line
field configuration [1]. We start with the Higgs type of
Lagrangian in Minkowski spacetime:

L � �1
4F��F

�� � 1
2�r����r

���� � ����� � a2�2;

where r�� � �@� � ieA���. It was shown in [1] that the
corresponding field equations allow for a static, axially
symmetric solution localized around the z-axis. In polar
coordinates �x � � cos’; y � � sin’�, and the time gauge
A0 � 0, the solution has the form

~A � A~e’; � � j�je�i’;

where A and j�j are functions of � only, and ~e’ stands for
the unit vector in the ’ direction. The unknown functions
A��� and j�j��� are determined by the field equations. Far
from the vortex core (z-axis), the Nielsen-Olesen solution
rapidly approaches the vacuum

A � �
1

e�
; j�j � a: (32)

It is characterized by the absence of electromagnetic field,
~B � ~E � 0, and represents the true vacuum of the theory.
In the core, when �! 0, the solution approaches the false
vacuum

A �
B
2
�; j�j � 0; (33)

with constant magnetic field ~B � B~ez, and vanishing elec-
tric field ~E � 0.

As we do not know the exact analytic form of the
Nielsen-Olesen vortex line solution, we shall approxi-
-9
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mately view it as follows. Let us define the parameter ‘ to
measure the vortex width. In the region 0  �  ‘, we
assume the false vacuum solution (33), while outside that
region, the solution is taken to be that of the true vacuum
(32):

0  �  ‘: A �
B
2
�; j�j � 0;

� > ‘: A � �
1

e�
; j�j � a:

The continuity of the function A��� requires the magnetic
field to satisfy B � �2=e‘2. In the limit ‘! 0 (stringlike
solution), B! 1, but the magnetic flux retains the con-
stant value �2�=e.

Now, we are ready to evaluate the stress-energy tensor

T�� � F��F
�
� � �r�����r����

� � 
��L;

where indices in round brackets are symmetrized. A simple
calculation shows that it vanishes outside the vortex core,
T�� � 0 if � > ‘, while in the core, 0  �  ‘, it has
diagonal form with

T00 � �T33 �
2

e2‘4 � �a
4;

T11 � T22 �
2

e2‘4 � �a
4:

In the limit ‘! 0, the vortex solution looks like an infinite
string whose world sheet coincides with the t-z plane.
Using the parametrization 	0 � t, 	1 � z, the world sheet
coordinate vectors become u�0 � ��0 , u�1 � ��3 , and the
induced metric �ab reduces to 
ab. We see that the stress-
energy tensor can be written in the form (12) with

b�� � �‘2T��:

To obtain a valid string solution, we must get rid of the
undesirable tension in the transverse direction. To this end,
we adjust our free parameters to obey the constraint

�a4 �
2

e2‘4 ; (34)

whereupon T00 � �T33 � 4=e2‘4 remain the only non-
vanishing components of the stress-energy tensor. Now,
our b�� takes the form (18) with

mab � m
ab; m �
4�

e2‘2 : (35)

This is exactly the form of mab that defines Nambu-Goto
string. It is easy to check then that t� z plane satisfies the
world sheet equations (21).

Let us note in the end that our approximation is in good
agreement with the analysis of Nielsen and Olesen [1].
They found the range of parameters that enables their
vortex solution to be viewed as Nambu-Goto string. In
our notation, �� e2 � �a‘��2 � 1, and m� a2. This
agrees with both our constraint (34) and our Eq. (35). In
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particular, we see that the coupling constant emust be very
large (of the order ‘�1) to ensure finite tension in the limit
‘! 0.
V. CONCLUDING REMARKS

The analysis in this paper concerns the dynamics of
realistic material strings in curved backgrounds. In the
simple case we have considered, the background geometry
is Riemannian, defined in terms of the metric tensor alone.
The dynamics of geometry and matter fields is governed by
the Einstein’s equations.

In the specific setting considered, we assume the exis-
tence of a stable stringlike kink configuration. The type of
matter fields involved is not specified. We only assume that
matter fields are sharply localized around a line, while
geometry itself is not. For practical reasons, the matter
fields are considered weak enough to have negligible in-
fluence on the background geometry. This way, the target-
space metric is attributed the properties of an external field,
insensitive to string dynamics.

The method used is, basically, the Mathisson-
Papapetrou method for pointlike matter [13,14] general-
ized to linelike configurations. We make use of the fact that
every exponentially decreasing function can be written as a
series of derivatives of Dirac � function. The Mathisson-
Papapetrou multipole moments are then obtained as the
coefficients in the expansion. We use this method to ex-
pand the covariantly conserved stress-energy tensor of
matter fields. The world sheet equations are obtained in
the lowest order—the approximation of an infinitely thin
string.

The results of our analysis can be summarized as fol-
lows. The dynamics of a stringy shaped matter in torsion-
less spacetimes generally depends on the internal structure
of the string. The coefficients mab entering the world sheet
equations are the components of the covariantly conserved
effective 2-dimensional stress-energy tensor of the string.
As opposed to the point particle case,mab cannot generally
be eliminated by world sheet reparametrizations. The di-
versity of possible forms ofmab has been analyzed with the
emphasis on two questions. The first is the question of
homogeneity of matter distribution along the string. The
second is the classification of possible canonical forms of
mab.

The possibility of unevenly distributed matter was dem-
onstrated in an extreme case. If all the matter is localized in
one point on the string, it was shown that the world sheet
equations boil down to the geodesic equation, as expected.

We have also examined the possible canonical forms of
mab. The most interesting is the case of homogeneously
distributed matter whose tension equals its mass density. In
this case, the known Nambu-Goto string dynamics is dis-
covered. To demonstrate that such kink configurations are
indeed possible, the Nielsen-Olesen vortex line solution of
-10
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a Higgs type scalar electrodynamics is given as an
example.

Before we close our exposition, let us mention that our
main result can easily be generalized to include arbitrary
p-brane distribution of matter. The corresponding world
sheet equations are of the same form

ra�m
abu�b � � 0;

but this time a; b � 0; 1; . . . ; p, and mab is the covariantly
conserved �p� 1�-dimensional energy-momentum tensor
of the brane. Obviously, the diversity of possible forms of
mab is bigger than in the string case. The known minimal-
surface equations are obtained formab / �ab, where �ab is
the induced world sheet metric.

Let us say in the end that these are just preliminary
results before we address the more important problem of
string dynamics in general backgrounds with torsion.
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APPENDIX: SERIES EXPANSION IN � FUNCTION
DERIVATIVES

Here, we develop a formalism to expand a given func-
tion into a series of derivatives of Dirac � function. After
that, we give an intuitive interpretation of the result, and
associate it to the well-known multipole expansion in
electrodynamics.

Consider a real valued function f�x�, and write its
Fourier integral

f�x� �
Z
dk~f�k�eikx:

We can expand ~f�k� into the power series around k � 0,

~f�k� �
X1
n�0

ank
n;

and rewrite the function f�x� as

f�x� �
X1
n�0

an
Z
dkkneikx:

The integral on the right-hand side is evaluated by means
of the identity Z

dkeikx � 2���x�;

which gives Z
dkkneikx � 2���i�n

dn

dxn
��x�:

Therefore, the function f�x� can be expanded into an
infinite series of derivatives of Dirac � function as follows:
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f�x� �
X1
n�0

bn
dn

dxn
��x�:

The coefficients bn are given by

bn �
��1�n

n!

Z
dxxnf�x�;

and are usually called nth order moments of the function
f�x�. The coefficients bn are well defined if the function
f�x� decreases faster than any power of x. In particular, the
exponentially decreasing function has well defined � func-
tion expansion.

The above procedure can easily be extended to include a
higher dimensional case. Given a function f�x� �
f�x1; . . . ; xd�, and a point z � �z1; . . . ; zd�, one can expand
f�x� via the general formula

f�x� �
X1
n�0

b�1...�n@�1
. . . @�n

��d��x� z�: (A1)

Here, ��d��x� z� is a d-dimensional � function, @� �
@=@x�, and the indices �i take values from 1 to d. The
corresponding formula for the coefficients reads:

b�1...�n �
��1�n

n!

Z
ddxf�x�

Yn
i�1

�x�i � z�i�: (A2)

The intuitive interpretation of the expansion (A1) goes
as follows. Suppose a function f�x� is localized around the
point z, and is rapidly approaching zero as one moves away
from z. If we observe the function from a distance, we can
approximate it with the � function, which is the first term
in (A1). As we get closer to z, we see more ‘‘structure’’ in
f�x�. In the formalism, this is described by higher order
terms in (A1). The better localized the function f�x�, the
less significant is the contribution of higher order terms.

As an example, consider electrostatic charge density
�� ~x� of a localized source. Expanding it with respect to ~x �
0, one gets the first two coefficients:

n � 0: b �
Z
d3x�� ~x� � Q;

n � 1: ~b � �
Z
d3x~x�� ~x� � � ~p:

We recognize Q and ~p as the total charge and the electro-
static dipole moment of the source. So, we can write the
expansion as

�� ~x� � Q��3�� ~x� � ~p � ~r��3�� ~x� � � � � :

The electrostatic potential ’� ~x� is calculated from

’� ~x� �
Z
d3y

�� ~y�
j ~x� ~yj

;

whereupon the well-known multipole expansion in electro-
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dynamics is obtained [22]:

’� ~x� �
Q
r
�
~p � ~x

r3 � � � � :
124013
This example illustrates the use of the �-function ex-
pansion, and clarifies what type of approximation is done
when one ignores all but the n � 0 term in the expansion.
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