
PHYSICAL REVIEW D 73, 124011 (2006)
How to move a black hole without excision: Gauge conditions for the numerical evolution of a
moving puncture

James R. van Meter,1 John G. Baker,1 Michael Koppitz,1 and Dae-Il Choi1,2

1Gravitational Astrophysics Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Rd., Greenbelt, Maryland 20771, USA
2Universities Space Research Association, 10211 Wincopin Circle, Suite 500, Columbia, Maryland 21044, USA

(Received 5 May 2006; published 16 June 2006)
1550-7998=20
Recent demonstrations of unexcised black holes traversing across computational grids represent a
significant advance in numerical relativity. Stable and accurate simulations of multiple orbits, and their
radiated waves, result. This capability is critically undergirded by a careful choice of gauge. Here we
present analytic considerations which suggest certain gauge choices, and numerically demonstrate their
efficacy in evolving a single moving puncture black hole.
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I. INTRODUCTION

Gravitational waveforms from binary black hole merg-
ers can only be obtained through 3D numerical relativity
simulations of the full Einstein equations. Such simula-
tions have proven to be very challenging. Improvements
have often come from new formulations or a new choice of
gauge. For example, a corotating gauge led to the first
evolution of a binary through one full orbit [1] as well as
through a plunge, merger, and ringdown [2].

Recently, the authors of this paper [3] and another
research group [4] independently developed the capability
to numerically evolve freely moving black holes, i.e. black
holes that are in no way fixed to any position in the
computational grid, without using excision techniques for
the black hole interiors. These efforts led to the simulation
of record-breaking numbers of orbits, among other accom-
plishments [5]. Both of these research programs employed
gauge conditions that differed not only from those pre-
scribed in prior literature, but also from each other. A
careful choice of gauge is important, particularly for mov-
ing black holes, as it can determine whether a simulation is
stable or becomes irrevocably corrupted by a runaway
buildup of numerical error. There are various ways in
which a choice of gauge can affect the stability and accu-
racy of a numerical simulation; for example, a poor choice
of gauge might cause large gradients in the fields which in
turn engender large finite differencing error.

In this paper we investigate a group of gauge choices
analytically, and numerically demonstrate their effects on
moving black hole simulations. These gauge choices are
framed in the context of a conventional, 3� 1, conformal
formulation of Einstein’s equations known as the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formula-
tion [6–9]. After a brief exploration of the shortcomings
of a commonly used gauge choice in II, we calculate in
Sec. III A the characteristic speeds for various gauges and
then show the numerical behavior of some of them in
Sec. III B. In Sec. IV we discuss the properties of the
most promising gauge choices and suggest further im-
provements. Conclusions are presented in Sec. V.
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II. ORIGINAL 1�LOG SLICING AND GAMMA-
DRIVER SHIFT CONDITIONS

We consider first a gauge introduced in [10] for evolving
nonmoving punctures without excision:

@t� � �2�K; (1)

@t�
i � 3

4���n0 Bi; (2)

@tB
i � @t~�

i � �Bi; (3)

where � is the lapse, �i is the shift, K and ~�i are the usual
BSSN variables, �4

0 is the initial conformal factor (�4
BL in

[10]), Bi is an auxiliary variable to make the shift equation
first order in time, and � is a constant damping factor. This
gauge has proven to be very effective at evolving a single
nonmoving puncture for arbitrarily long durations, and in
some circumstances it can also be applied to binary punc-
tures. Here the condition on the lapse, a variation of the
Bona-Masso slicing condition [10,11], is the standard
‘‘1� log’’ singularity-avoiding slicing condition. Of par-
ticular interest is the ‘‘Gamma-driver’’ condition for the
shift, which is designed to ultimately ‘‘freeze Gamma,’’ i.e.
drive @t~� to zero as the physics of the spacetime also
evolve towards quiescence.

For n > 0, ��n0 � 0 at the puncture, and thus this spe-
cific gauge will ensure that �i will not evolve there. As the
motion of the puncture is determined by the shift, the
puncture will remain motionless in this gauge since the
shift is initially zero. For black holes that are physically
dynamical the coordinates may become highly distorted.
For example, in the case of binary black holes, the separa-
tion between the black holes as determined by the proper
distance from horizon to horizon in some spatial slice must
decrease with time. This implies that components of the 3-
metric will approach zero between the black holes. Then
the evolved part of the BSSN conformal exponent � must
either approach �1, or components of the conformal 3-
metric ~�ij must approach zero. In the latter case the inverse
3-metric must diverge in order to maintain a unit determi-
-1 © 2006 The American Physical Society
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FIG. 2 (color online). Results of the gauge @t� � �2�K,
@t�

i � 3
4�B

i, @tBi �
_~�
i
� �Bi at time t � 17M. Sharp features

around x � �3M fail to propagate. The conformal metric be-
comes singular by t � 18M.
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nant. Thus, in the fixed puncture approach, arbitrarily
large, ever-increasing fields and gradients around the black
holes seem likely to develop and cause numerical difficul-
ties. Indeed this can be demonstrated even in the case of a
single moving black hole.

We will use as a test case a single black hole, given by
Bowen-York puncture initial data [12] (as computed by the
elliptic solver AMRMG [13]), with unit puncture mass and
momentum such that its physical speed should be half the
speed of light. We evolve this data with our Hahndol
code [9], which uses the usual, conformal BSSN formula-
tion of Einstein’s evolution equations on a cell-centered
numerical grid, with 4th-order spatial differencing and 4th-
order Runge-Kutta time integration. The initial puncture
position is at coordinates (� 3M, 0, 0) (where M is the
puncture mass) and the momentum is in the positive
x-direction. The x-axis is between grid points, which are
a distanced M=16 apart; all data presented here has been
interpolated onto the x-axis for plotting purposes. �i and
Bi are initialized to zero, while the lapse is precollapsed
with the profile ��2

0 as suggested in [10] (and recom-
mended in [4] for moving punctures). The damping pa-
rameter � is 2, unless otherwise stated. We will assess the
performance of each gauge by the evolving behavior of the
quantities �, �x, �, and ~�x;, in particular, the peak in �
will roughly indicate the position of the puncture and any
extreme gradients in ~�x � �@j ~�jx will tend to indicate
problems with the gauge.

In this regard it should be noted that ~�i is completely
controllable by the gauge condition, and so any undesirable
features observed in ~�i are in principle avoidable via a
better choice of gauge. In particular, the specific Gamma-
freezing condition ~�i � 0 may be desirable, as this elliptic
generalization of isotropic coordinates proposed by Dirac
-3
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FIG. 1 (color online). Results of the nonmoving puncture
gauge @t� � �2�K, @t�i �

3
4���n0 Bi, @tBi �

_~�
i
� �Bi at

time t � 17M. The conformal metric becomes singular by t �
18M.

124011
is expected to be nonpathological [14,15]. So, among
hyperbolic Gamma-driving conditions, those that result
in smaller values of ~�i and its derivatives might be
preferred.

In Fig. 1, evolving with the original gauge given in
Eqs. (1)–(3), we see that ~�x grows very large and �
develops sharp features. Shortly thereafter the inverse con-
formal metric diverges, which is our criterion for stopping
the run. This failure motivates investigation of moving
punctures.

If we wish the punctures to move we must allow �i to
evolve freely away from zero and thus we must take the
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FIG. 3 (color online). Results of the gauge @t� � �2�K,
@t�

i � 3
4B

i, @tBi �
_~�
i
� �Bi at times t � 4:5M (top panel)

and t � 30M (bottom panel). The top panel clearly shows the
lapse lagging behind the puncture, while the bottom panel
exhibits noise propagating from the puncture.
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conformal factor out of the shift equation (setting n � 0 in
Eq. (2)). The results, shown in Fig. 2, are not much
improved. The puncture is now free to move but nonpro-
pagating features at x � �3M destabilize the simulation.
Clearly there is a problem with zero-speed modes. The
extended, collapsed region of the lapse points to a particu-
lar difficulty in this regard, and suggests an improvement.

The factor of � in Eq. (2) should also be removed, for
even if it were not precollapsed it would still be driven
nearly to zero around the puncture by the 1� log slicing
condition, and therefore may retard the evolution of �i.
When this factor is removed, the results are not as cata-
strophic as before, but the simulation is plagued with noise.
Figure 3 shows, in particular, a tendency for the minimum
in the lapse to lag behind the puncture position. The above
results suggest that a careful study of the propagation
speeds in this system might be helpful.
III. CHARACTERISTIC SPEEDS

A. Eigenvalue analysis

A potential danger of zero-speed modes is that errors
may couple to them, compound in place, and become
inordinately large. Zero-speed modes seem particularly
hazardous in the case of moving black holes as they may
adversely affect the dynamics by putting a drag on the
puncture motion. In some cases zero-speed modes can also
be a source of instability [16]. So there is good reason to be
aware of such modes.

For the purpose of investigating characteristic speeds, a
simple yet revealing method of analysis is to linearize the
equations, assume plane-wave solutions, and solve for the
eigenmodes of the resulting algebraic system. With the
gauge conditions described above, the BSSN equations
can be linearized about flat space as follows.

_a � �2�0K; (4)

_B i �
_~�
i
; (5)

_b i � 3
4�

p
0B

i; (6)

_� � �1
6��0K � @ibi� � �k0@k�; (7)

_K � �@i@ia� �
k
0@kK; (8)

_h ij � �2�0
~Aij � @ibj � @jbi �

2
3�ij@kb

k � �k0@khij;

(9)

_~Aij � ��@i@ja�
1
2�0@k@khij �

1
2�0@i~�

j � 1
2�0@j~�

i

� 2�0@i@j��TF � �k0@k ~Aij; (10)

_~� i � �4
3�0@iK � @k@kbi �

1
3@i@jb

j � �k0@k
~�i; (11)
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where a � �� �0, bi � �i � �i0, hij � ~�ij � �ij, and
the damping term on Bi has been dropped as it should
not affect the real part of the characteristic speeds. The
lapse and shift are assumed to have constant, zeroth order
terms �0 and �i0, respectively, which conveniently allows
us to capture essential effects of the lapse factors and the
advection terms without making the eigenvalue problem
intractable.

For spatial variation only in one dimension, with no
initial transverse components, and assuming plane-wave
solutions, the above system of equations can be written in
the form:

@tjui � ikMjui; (12)

where

jui �

â
B̂
b̂
�̂
K̂
ĥ
Â
�̂

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ei�kx�!t� (13)

with â, B̂, b̂, �̂, K̂, ĥ, Â, and �̂ the constant amplitudes of a,
Bx, bx, �, K, hxx, ~Axx, and ~�x respectively, and M �

0 0 0 0 � 2
ik�0 0 0 0

0 0 4ik
3 0 4

3�0 0 0 ��0

0
3�p0
4ik 0 0 0 0 0 0

0 0 �1
6 ��0 � 1

6ik�0 0 0 0
�ik 0 0 0 ��0 0 0 0

0 0 �4
3 0 0 ��0 � 2

ik�0 0
�2ik

3 0 0 �4ik
3 �0 0 � ik

2�0 ��0 �2
3�0

0 0 4ik
3 0 4

3�0 0 0 ��0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

:

(14)

The eigenvalues of M are 0, ��0, ��0 � �0, ��0 �

�0, � 1
2�0 �

1
2

���������������������
�2

0 � 8�0

q
, � 1

2�0 �
1
2

���������������������
�2

0 � 8�0

q
,

� 1
2�0 �

1
2

���������������������
�2

0 � 4�p0
q

, and � 1
2�0 �

1
2

���������������������
�2

0 � 4�p0
q

. If jvi
is the eigenvector associated with eigenvalue v, and the
covector hvj is defined such that

P
vjvihvj � I, then the

eigen decomposition of M allows the system of evolution
equations to be written as a series of advection terms, each
associated with a characteristic velocity equal to one of the
eigenvalues:

@tjui �
X
v

v@xjvihvjui: (15)

The inner product with hvj gives:

@thvjui � v@xhvjui: (16)

Now we are interested in slow-speed modes. Note that
although �i is typically initialized at zero, with the
-3



TABLE I. Effect of various advection terms in the shift equa-
tions on the presence of undesirable eigenspeeds. ‘‘Y’’ or ‘‘N’’
indicates whether each advection term is included or not, re-
spectively, in Eq. (18) or Eq. (20). 0, �p, or�i indicates whether
the resulting linearized equations have a zero-speed mode, an
�-speed mode, or an exponentially growing mode, respectively.
The lapse is assumed to be advected as in Eq. (17); otherwise an
additional �-speed mode would appear in every case.

Case # ��j@jB
i ��j@j~�

i ��j@j�
i ‘‘bad’’ speeds

1 N N N 0, �p

2 N N Y 0
3 N Y N �p=2

4 N Y Y �p

5 Y N N 0
6 Y N Y �i
7 Y Y N �p

8 Y Y Y none
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FIG. 4 (color online). Results for the gauge @t� � �2�K �
�j@j�, @t�i �

3
4�B

i, @tBi � @t~�
i � �Bi (Case #1 in Table I

with p � 1) at time t � 14M. Nonpropagating features are
evident around x � �3M. The conformal metric becomes sin-
gular by t � 15M.
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Gamma-driver condition it evolves rapidly and signifi-
cantly enough from zero that we do not classify �0 as a
slow mode (since we are interested in moving punctures,
�i is generally nonvanishing). In addition to the obvious
zero-speed mode there are two modes that approach zero in
the limit where �0 approaches zero. If j�0j 	 j�0j then

� 1
2�0 �

1
2

���������������������
�2

0 � 8�0

q
and� 1

2�0 �
1
2

���������������������
�2

0 � 4�p0
q

become
approximately 4�0=�0 and 2�p0=�0, respectively. In the
full nonlinear system, the 1� log slicing condition will
collapse � nearly to zero in a finite region around the
puncture (where �i will be nonzero for a moving punc-
ture). Modes which propagate at a speed approximately
proportional to a positive power of� for small �, which we
will refer to as �-speed modes, are thus of potential con-
cern. In particular, late in the evolution of black hole
binaries there will emerge a significant, stationary region
in which the lapse has collapsed nearly to zero, in which
�-speed modes are effectively zero-speed modes.

The eigencovector for v � � 1
2�0 �

1
2

���������������������
�2

0 � 8�0

q
in-

volves only the fields a and K, is relatively independent
from the other fields, and easy to fix, so we will address it
first. This �-speed mode can be understood also in the
context of the original nonlinear equations by noting that �
couples with K to give a wave equation such that the speed
of fluctuations of the lapse goes to zero when the lapse
itself goes to zero. It is particularly egregious when the
lapse couples to an �-speed mode, as once it collapses
nearly to zero it will tend to get ‘‘stuck’’ there. But this can
be remedied in a natural way simply by adding an advec-
tion term as follows,

_� � �2�K � �j@j�; (17)

which will modify the principal part of its wave equation
such that when � goes to zero its speed will go to �. Note
that Eq. (17), first used for moving punctures in [4], is
consistent with the original Bona-Mass family of slicing
conditions [11].

The eigencovector for � 1
2�0 �

1
2

���������������������
�2

0 � 4�p0
q

is more
complicated, involving not only a but several other fields
as well. It turns out that advecting the lapse will not remove
this mode. But noting that this eigenfield involves bx, and
that the equation for bx is conspicuously absent an advec-
tion term, an obvious stratagem is to advect the original �i

as follows:

_� i � 3
4B

i � �j@j�
i: (18)

Finally, Eq. (16) for the eigenvalue v � 0 yields

@t�B
x � ~�x� � 0: (19)

This equation, a trivial consequence of the original
Gamma-driver condition, immediately suggests a simple
modification. The most natural way to remove this zero-
speed mode is to advect it at � speed by modifying the _Bi
124011
equation thus:

@tBi � @t~�
i � �j@j�Bi � ~�i� � �Bi: (20)

It turns out that the��j@jBi term alone will not suffice, as,
for example, it might introduce an exponentially growing
mode. Meanwhile the ��j@j~�

i term alone adds another
�-speed mode to the system.

The foregoing analysis suggests the addition of four
advection terms to the gauge equations, as indicated in
Eqs. (17), (18), and (20). The lapse equation is relatively
independent of the others: if it is advected then a particular
�-speed mode is removed, and if it is not advected then this
particular �-speed mode remains. But the three advection
terms suggested for the shift equations are strongly inter-
-4
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FIG. 5 (color online). Results for the gauge @t� � �2�K �
�j@j�, @t�i �

3
4B

i, @tBi � @t~�
i � �Bi (Case #1 in Table I with

p � 0) at time t � 30M. The evolution appears smooth.
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FIG. 7 (color online). Results for the gauge @t� � �2�K �
�j@j�, @t�i �

3
4�, @tBi � @t~�

i � �j@jB
i � �Bi (Case #5 in

Table I with p � 0) at time t � 30M. The feature around x �
�2M does not propagate.
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dependent, so their combined effects are not so obvious
and it is instructive to consider which undesirable modes
result from which combinations of these three terms. The
possible combinations and their resulting ‘‘bad’’ speeds are
summarized in Table I. Here we see that for p > 0, only
when all the above advection terms are included will the
system be free of slow-speed and exponentially growing
modes; while for p � 0, the ��j@j~�

i term remains criti-
cal. In the case will all advection terms: ��0, ��0,

��0 � �0, ��0 � �0, ��0 �
������
�p0

q
, ��0 �

������
�p0

q
,

��0 �
���������
2�0

p
, ��0 �

���������
2�0

p
(where ��0 is listed twice

because it is now associated with two distinct
eigenvectors).
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FIG. 6 (color online). Results for the gauge @t� � �2�K �
�j@j�, @t�i �

3
4 , @tBi � @t~�

i � �j@j~�
i � �Bi (Case #3 in

Table I with p � 0) at time t � 30M. ~�x continues to grow
larger and its gradient steeper.
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B. Numerical tests

Evidence of the slow-speed modes found in the linear-
ized analysis can often (but not always) be found in simu-
lations of the full nonlinear system. Note that zero-speed
modes only represent a potential danger. In some cases
errors may not couple to these modes even though they
exist in the equations.

Here we provide a few examples of the cases given in
Table I. Figure 4 represents Case #1 with p � 1, which is
predicted to have a zero-speed mode and indeed manifests
a nonpropagating feature at x � �3M. On the other hand,
Case #1 with p � 0, also predicted to have a zero-speed
mode, belies no indication of it in Fig. 5, instead appearing
quite smooth. In this case, evidently, the zero-speed modes
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FIG. 8 (color online). Results for the gauge @t� � �2�K �
�j@j�, @t�

i � 3
4� �

j@j�
i, @tB

i � @t~�
i � �j@jB

i � �Bi

(Case #6 in Table I with p � 0) at time t � 10M. The noise
in ~�x grows exponentially. The conformal metric becomes
singular by t � 11M.
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FIG. 9 (color online). Results for the gauge @t� � �2�K �
�j@j�, @t�i �

3
4�B

i � �j@j�i, @tBi � @t~�
i � �j@j�Bi �

~�i� � �Bi (Case #8 in Table I with p � 1) at time t � 30M.
Aside from the sharp features in ~�i, which do not grow signifi-
cantly in time, the propagation is nonpathological.
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do not couple significantly with the other fields. In Fig. 6
the spike in ~�x, which becomes steeper in time as the ‘‘tail’’
in ~�x grows, is apparently unrelated to slow-speed modes
as none are predicted in this Case #3 with p � 0. For a
longer evolution this growing gradient in ~�x can be ex-
pected to adversely affect the constraints. In Fig. 7 the tail
in ~�x and, in particular, the nonpropagating bend in the tail
around x � �2M seems to be evidence of the zero-speed
mode predicted for Case #5. In Fig. 8, noise in ~�x grows
exponentially, as expected for Case #6. And finally,
Case #8, depicted in Figs. 9 and 10, is demonstrated to
be free of slow-speed modes whether p � 0 or p � 1.
(Although the former appears much smoother, perhaps
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FIG. 10 (color online). Results for the gauge @t� � �2�K �
�j@j�, @t�i �

3
4B

i � �j@j�
i, @tBi � @t~�

i � �j@j�B
i � ~�i� �

�Bi (Case #8 in Table I with p � 0) at time t � 30M. The
evolution is very smooth.
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because the eigenspeeds��0 
 1 allow faster propagation
of error away from the puncture than ��0 


������
�0
p

.)
IV. PROPERTIES OF THE ‘‘CLEANEST’’ GAUGES

Of all the combinations suggested in Table I, two dis-
tinguish themselves in numerical tests as conducive to
particularly smooth propagation of the moving black
hole. These gauges are Case #8 with p � 0, which we
will refer to as the ‘‘shifting-shift case’’:

@t�
i � �j@j�

i � 3
4B

i; (21)

@tB
i � �j@jB

i � @t~�
i � �j@j~�

i � �Bi; (22)

and Case #1 with p � 0, which we will refer to as the ‘‘-
nonshifting-shift’’ case:

@t�i �
3
4B

i; (23)

@tBi � @t~�
i � �Bi: (24)

The efficacy of Eqs. (23) and (24) in evolving moving
punctures was originally demonstrated in [4,17].
Apparently the zero-speed mode is not problematical in
this case. Regarding the shifting-shift condition, Eqs. (21)
and (22), we have recently used it successfully in the stable
evolution of two equal mass black holes through 5.5 orbits.
This latter gauge has also been recommended for the strong
hyperbolicity it brings to the BSSN equations [18,19],
suggesting it may be a more robustly stable choice than
Eqs. (23) and (24). Nevertheless for the single black hole
simulations represented by Figs. 5 and 10, the results from
these two gauge choices are very similar.

For these two gauge choices, we now consider varying
the damping parameter, which has up to now been set to
� � 2. By moving toward �! 0 Eqs. (21) and (22)
appear a little closer to realizing a ‘‘Gamma-freezing’’
condition. Indeed, with � � 0, we find that the black holes
come closer to realizing the physically expected velocity.
Both the shifting-shift and nonshifting-shift gauge options
with � � 0 have proven to allow stable evolutions of a
single black hole. In Fig. 11 we find that in both cases
setting � � 0 results in significantly smaller values for ~�i,
meaning a closer approximation to the Dirac gauge.
Further, we comment that we have observed numerically
that for �> 0, ~�i appears to show very slow linear growth
in time, whereas for � � 0, ~�i appears to be bounded.
Comparing the shifting-shift and nonshifting-shift options
with � � 0 we now find more noticeable differences in ~�i,
with our recommended shifting-shift option giving a
smoother result with ~�i holding closer to zero near the
puncture.

These two gauges share an additional feature in com-
mon, which is that either Eqs. (23) and (24) or Eqs. (21)
and (22) can be integrated to give the relation
-6
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i (Case #1 with � � 0) and for

the gauge @t� � �2�K � �j@j�, @t�
i � 3

4B
i � �j@j�

i,
@tB

i � @t~�
i � �j@j�B

i � ~�i� (Case #8 with � � 0) at time t �
10M. In the shifting-shift case (Case #8) ~�x is smaller and
smoother around the puncture than in the nonshifting-shift
case (Case #1).
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Bi � ~�i � 4
3��

i (25)

since Bi � ~�i � �i � 0 initially. This fact, also evident
numerically (Fig. 12), suggests substituting for Bi in the
evolution equation for�i, to obtain (in the case of Eqs. (21)
and (22))

@t�i �
3
4
~�i � �j@j�i � ��i: (26)

Figure 13 demonstrates that the resulting shift condition,
Eq. (26), can be evolved numerically to yield the same
stable, smooth simulation as with the analytically equiva-
lent condition, Eqs. (21) and (22), used previously. Similar
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3��

x with the
gauge @t� � �2�K � �j@j�, @t�i �

3
4B

i � �j@j�
i, @tBi �

@t~�
i � �j@j�B

i � ~�i� � �Bi at time t � 15M. The difference
between the two curves is within 10�11.

124011
success should also be obtainable without the �j@j�i term.
Dispensing with the Bi evolution equation results in a
slightly more efficient numerical implementation, and
also guarantees removal of the zero-speed mode associated
with Bi.

Finally it may be noted that when � � 0 and ~�i ! 0,
Eq. (26) (and Eqs. (21) and (22)) admits a ‘‘shock’’ solu-
tion of the form �x� x0�=�t0 � t�. This represents the non-
linear tendency of this equation to advect large magnitudes
of the shift faster than smaller magnitudes, which for
negative values and a positive slope can lead to a vertical
slope. However, as @t~�

i depends on derivatives of �i, ~�i is
unlikely to vanish when those derivatives become large.
Numerically �i has proven to be very well behaved so ~�i

evidently acts as an effective ‘‘shock absorber,’’ at the
expense of not vanishing entirely.
V. CONCLUSIONS

We have investigated gauge conditions that are appro-
priate for the moving puncture approach to black hole
simulations. Potential hazards from zero-speed or slow-
speed modes have been identified, a methodology for
analytically exploring various gauge choices has been
presented, and a gauge free of slow-speed modes has
been recommended. Several gauges were also studied
numerically and two gauges distinguished themselves as
particularly well adapted to smooth black hole motion. In
both cases we have suggested a simplification of the shift
evolution equations, as well as explored the possibility of
eliminating a traditional damping term to better realize a
Gamma-freezing condition. We found that eliminating this
damping term on the shift does indeed minimize ~�i and
yield smooth evolutions, more so with the addition of our
recommended shifting-shift terms, and warrants further
-7
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experimentation. We intend to investigate this �! 0 limit
more thoroughly in future work.
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