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Using a Hamiltonian formulation of the spherically symmetric gravity-scalar field theory adapted to flat
spatial slicing, we give a construction of the reduced Hamiltonian operator. This Hamiltonian, together
with the null expansion operators presented in an earlier work, form a framework for studying
gravitational collapse in quantum gravity. We describe a setting for its numerical implementation, and
discuss some conceptual issues associated with quantum dynamics in a partial gauge fixing.
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I. INTRODUCTION

A complete understanding of the many puzzles related
to black holes, such as entropy [1], Hawking radiation [2],
and the final state question [3], will require a quantum
theory describing gravitational collapse, where both matter
and geometry are fully dynamical. The ideal would be the
ability to follow the evolution of an initial matter-geometry
quantum state to ‘‘black hole formation’’ and beyond. This
goal has been implicit in many works on black hole physics
beginning with Unruh 30 years ago [4], followed a few
years later by work of Hajicek [5]. More recently it has
been emphasized by Isham as one of the motivations for
studying quantum gravity [6]. To date, however, no com-
plete quantum framework is available for studying gravi-
tational collapse of a scalar field.

This paper continues a recent line of work aimed at
developing the tools necessary to realize this ideal. So
far, we have developed the quantum kinematics for spheri-
cally symmetric gravitational systems, in a setting which
leads to a result concerning the resolution of the classical
singularity at the quantum level [7]. Furthermore, we have
proposed how to define a black hole at the quantum level,
without fixing any classical ‘‘horizon boundaries’’ [8].
Finally, we formulated the classical dynamics of black
holes in a framework that results in a true Hamiltonian,
rather than a system with a Hamiltonian constraint [9].

The current paper is concerned with the development of
the quantum dynamics of the gravity-scalar field system in
spherical symmetry. It consists of two main parts. The first
one deals with the conceptual issues connected with the
notion of true dynamics. This is necessitated by the fact
that our treatment of the dynamics is based neither on
Dirac’s constraint quantization, nor on a complete gauge-
fixing, but lies in between those two extremes by employ-
ing a partial gauge-fixing only of time. As this type of
approach has-to the best of our knowledge-not been dis-
cussed before in any detail, we include a careful discus-
sion. The second part is of a more technical nature and
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describes the construction of the Hamiltonian operator
starting from the reduced Hamiltonian derived in [9].

The work is an attempt to complete a proposal for the
quantum theory of the gravity-scalar field system in spheri-
cal symmetry. It provides a calculational framework for
studying gravitational collapse in quantum gravity, which
we hope will lead to a better understanding of Hawking
radiation, and of the final state of gravitational collapse.

The next section discusses some conceptual issues con-
cerning quantum evolution in a setting where only a partial
(time) gauge fixing is utilized. This is followed in Sec. III
by a review of the kinematical framework for quantization
of the 1� 1 dimensional field theory that describes the
gravity-scalar field system. Section IV contains a construc-
tion of the Hamiltonian operator. Since the classical
Hamiltonian contains a square root, we introduce here a
new method of defining the corresponding operator. In
Sec. V we give the action of the Hamiltonian on basis
states, describe how to implement unitary evolution, and
discuss the issue of dynamical singularity resolution. We
conclude in Sec. V with a summary and outlook for nu-
merical implementation.

II. CONCEPTUAL SETTING

There are at least two methods to introduce a notion of
time into a theory with time reparameterization invariance.
The most obvious way is by means of gauge-fixing, where
a suitable function on the classical phase space is taken to
be the time function. Another is the closely related method
of using partial and complete observables [10,11], where a
degree of freedom is chosen as the reference clock, and the
evolution of the remaining degrees of freedom is measured
with respect to that clock.

We have chosen the former since it is closest to the
setting in which the well-known semiclassical results about
black holes have been derived. In earlier work [9] on the
classical theory, we derived a reduced Hamiltonian for the
gravity-scalar field theory in spherical symmetry by per-
forming only a time gauge fixing, and leaving the remain-
ing spatial coordinate freedom untouched. The
Hamiltonian constraint was solved as a strong condition,
-1 © 2006 The American Physical Society
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and a reduced spatial diffeomorphism generator remained
as the only (first class) constraint. Together with the surface
term, this constraint forms the total Hamiltonian. If the
surface term is written as a bulk integral and combined
with the other bulk terms, one can identify the true local
Hamiltonian density and a diffeomorphism generator for
the remaining degrees of freedom.

Fixing only a time gauge raises the question of the extent
to which unambiguous evolution can be achieved in the
quantum dynamics, since evolution still contains a gauge
part manifested in the freedom in the shift function. This
may be seen schematically through the requirement that a
gauge condition such as f�p; q� � 0 be preserved in time.
It leads to the equation

0 � _f �
�
f;
Z
�NH � NaHa�

�
; (1)

which fixes the lapse function N in terms of Na. The latter
remains arbitrary, and must be specified to compute evo-
lution classically or quantum mechanically. This situation
is similar to Yang-Mills theory where the total Hamiltonian
density before gauge fixing and solving the Gauss law is

HYM �
1

2
�E2 � B2� ��iGi; (2)

where �i is the Lagrange multiplier and Gi is the Gauss
law expression.

In contrast the Hamiltonian for our problem (in a fixed
time gauge) contains an additional twist (see below for the
details). Schematically, it is of the form

Hgrav � f��Nr�0; q;�� � NrCr�q;��; (3)

where Cr is the radial diffeomorphism generator, q, �
denote the collection of canonical phase space variables,
and Nr is a lagrange multiplier (the remaining radial
component of the shift function in spherical symmetry).
The similarity between the two cases (YM and gravity) is
the clear separation of the gauge generators from the
‘‘true’’ Hamiltonians. The difference is that the gravity
case contains Lagrange multiplier dependence also in the
first term, but only through its radial derivative.

This poses the conceptual issue of obtaining unambig-
uous evolution, since the gravity reduced Hamiltonian
generates a family of time evolutions for observers speci-
fied by Nr. This freedom is limited to the spatial reference
system only. Once it is fixed so is the clock. This situation
lies in the middle of the two common scenarios in dealing
with Hamiltonian gravity, where either no gauges are fixed,
or all are fully fixed.

We will address this issue in two steps. Firstly, we obtain
an Hamiltonian operator that depends on Nr, determine its
action on basis states, and thereby obtain a prescription for
evolution with any Nr (with the prescribed asymptotic
conditions). This gives a family of evolved states parame-
terized by Nr. A unique evolution is then obtained by
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specifying a specific functional form for this function.
This may be viewed as the quantum analog of evolving
with a fixed shift function.

Secondly, we will not impose the diffeomorphism gen-
erator as a constraint on states a’la Dirac. Rather we will
give prescriptions for obtaining information pertaining to
the collapse problem in a manner which is manifestly
invariant under this symmetry. This means looking at the
dynamics of certain phase space observables, such as null
expansion, as functions of other phase space variables.
Suitable semiclassical states that are peaked on classical
solutions of the radial diffeomorphism constraint will be
used as the physical states.

Taken together, the implementation of these ideas, pro-
vided in the following sections, appears to provide a trac-
table approach to the gravitational collapse problem in
quantum gravity.
III. REVIEW OF THE KINEMATICAL SETTING

Before addressing the issue of quantum dynamics, we
briefly review the quantum kinematical setting, as intro-
duced in [7]. The starting point is a classical field theory in
1� 1 dimensions, characterized by the canonical pairs
�R;PR�, describing the geometry degrees of freedom, and
��;P��, describing a scalar field. The basic variables that
are turned into quantum operators are the smeared fields

Rf �
Z 1

0
Rfdr (4)

and

�g �
Z 1

0
�gdr; (5)

where f and g are suitable test functions. These configu-
ration variables, together with the translation generators

U��PR��r� � ei�PR�r� (6)

and

U��P���r� � ei�P��r�; (7)

form a closed Poisson algebra, and are taken as the basic
variables to be converted into operators. All other operators
are be constructed in terms of these.

The Hilbert space for the quantum theory is spanned by
basis states of the form��������ei

P
k

akPR�xk�
; e

iL2
P
l

blP��yl�
�
� ja1 . . . aN1

; b1 . . . bN2
i; (8)

where ak, bl are real numbers, and N1 and N2 are positive
integers. The factors of L in the exponents reflect the length
dimensions of the respective field variables. The intuitive
picture is that each basis state ‘‘tests‘‘ the quantum scalar
field at N points in space and the basis of the ‘‘excitation
space‘‘ at each point consists of (generalized) plane waves.
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The inner product is

ha1 . . . aN1
; b1 . . . bN2

ja01 . . . a0N1
; b01 . . . b0N2

i

� �a1;a01
. . .�bN2

;b0N2
; (9)

if the states contain the same number of sampled points,
and is zero otherwise. The action of the basic operators is

R̂ fja1 . . .aN1
;b1 . . .bN2

i�L2
X
k

akf�xk�ja1 . . .aN1
;b1 .. .bN2

i

�̂gja1 .. .aN1
;b1 .. .bN2

i�L2
X
l

blg�yl�ja1 . . .aN1
;b1 . . .bN2

i

(10)

and

dei�jPR�xj�ja1 . . . aN1
; b1 . . . bN2

i

� ja1 . . . ; aj � �j; . . . aN1
; b1 . . . bN2

i

dei�kP��yk�ja1 . . . aN1
; b1 . . . bN2

i

� ja1 . . . aN1
; b1 . . . ; bk ��k; . . . bN2

i

(11)

where aj (resp. bk) is 0 if the point xj (resp. yk) is not part
of the original basis state. In this case the action creates a
new ‘‘excitation‘‘ at the point xj (resp. yk) with ‘‘mode‘‘
��j (resp. ��k). These definitions give the commutator

�R̂f;
dei�PR�r�� � ��f�x�L2 dei�PR�r�: (12)

Comparing with the classical Poisson bracket relation, and
using the Poisson bracket commutator correspondence, it
turns out that L �

���
2
p
lP, where lP is the Planck length. A

similar commutator relation holds for the matter scalar
field.

In this formalism we can also define other operators of
interest. For example for the Hamiltonian, we need opera-
tor analogs of the radial derivatives R0 and �0, and the
square of the momentum P2

�.
Definitions for the operators corresponding to R0 and

other derivatives of fields are obtained by implementing
the idea of finite differencing using the operator R̂f (4). We
use narrow Gaussians with variance proportional to the
Planck scale, peaked at coordinate points rk � �lP, where
0< �	 1 is a parameter designed to sample neighboring
points [12]:

f��r; rk� �
1�������
2�
p exp

�
�
�r� rk � �lP�2

2l2P

�
(13)

Denoting Rf� by R� for this class of test functions we
define

R̂0�rk� :�
1

lP�
�R̂� � R̂0�: (14)

A further motivation of this form is that in the gauge R � r
the corresponding classical expression gives unity in the
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limit �! 0. This definition captures the simplest finite
difference approximation to the derivative at the operator
level. Second derivatives may be similarly defined by
converting a finite differencing scheme into the corre-
sponding operator.

The quantization defined above does not give definitions
for operators corresponding to momenta, since only trans-
lation generators are directly realized as operators at the
first step. This of course is similar to any quantum theory
on a lattice. Operators for momenta can however be real-
ized using the translation generators, for example, by ex-
pressions such as

P̂ �
�

:�
lP

2i�
�Û� � Û

y
�� (15)

and

P̂ 2
�

:�
l2P
�2 �2� Û� � Û

y
�� (16)

These � dependent expressions will be utilized below for
the Hamiltonian operator.

Finally, let us note that the background independent (ie.
metric free) quantization outlined here is not the same as
the one for the scalar field reported in [13,14], where the
basic variables used are the integral of the scalar field
momentum over space

R
� P�, and the exponential of the

scalar configuration ei��. The present approach has the
advantage that it is fairly straightforward to write a local
Hamiltonian density operator using the translation and �0

operators. A further technical point of difference, apart
from the choice of basic variables, arises from the fact
that R and� are scalars, and PR and P� are scalar densities
of weight 1. This means that the functions f in (4) and the �
in (6) are scalar densities of weights 1 and�1 respectively.
These combine to give eigenvalues of R̂f and �̂f that are
scalars. In contrast, for the quantization studied in [13,14],
it is the space-integrated momentum density that is diago-
nal; this is the direct analog of the surface integrated
densitized dreibein in loop quantum gravity.

This ends our review of the kinematical setup. Our goal
in the next section is to define the Hamiltonian operator for
the collapse problem on this Hilbert space.
IV. HAMILTONIAN

The classical Hamiltonian in a time gauge fixing corre-
sponding to flat spatial slicing given was derived in [9].
The classical phase space before gauge fixing has an extra
pair of canonical variables ��; P��, with the spatial metric

ds2 � �2dr2 � R2d�2: (17)

The condition � � 1 is second class with the Hamiltonian
constraint, which is solved classically for the conjugate
momentum P�. This leads to the reduced Hamiltonian
-3
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HG
R �

Z 1
0
��Nr�0P� � N

r�PRR
0 � P��

0��dr

�
Z 1

0
�Nr�0�RPR �

�������������������������
�RPR�

2 � X
q

�dr

�
Z 1

0
Nr�PRR0 � P��0�dr; (18)

where Nr is the remaining (and still arbitrary) nonzero
component of the shift function Na after imposing spheri-
cal symmetry,

X � 16R2�2RR00 � 1� R02� � 16R2H�; (19)

and

H� �
P2
�

2R2 �
R2

2
�02: (20)

The Hamiltonian (18) is obtained by writing the surface
term in the reduced action as a bulk integral and combining
terms. It gives the time-gauge fixed evolution equations for
the fields R�r; t� and ��r; t�, and their canonical conju-
gates. Our main goal in this paper is to construct the
corresponding operator.

Let us write the first part of the Hamiltonian density
(excluding the radial diffeomorphism term) as

HG
R � h1 �

���������������������������������������
h2

1 � h
2
2 � h

2
3 �R

q
� h1 � A (21)

where we have defined

h1 � PRR; R � �16R2�2RR00 � 1� R02� (22)

h2
2 � 8P2

�; h2
3 � 8R4�02: (23)

There are two ways to construct an operator correspond-
ing to a square root. One approach is to find the eigenvalues
of its argument and work with the corresponding basis of
eigenvectors. The operator can then be defined as the
square root of the eigenvalues if the spectrum is positive
semidefinite. A potential alternative is to see if the square
root operator can be defined using Dirac’s idea.

In this procedure an operator for the classical function

H �
������������������
p2
i �m

2
q

�i � 1 
 
 
 3� is constructed by writing

Ĥ � �ip̂i � �m using anticommuting matrices �i, �,
such that Ĥ2 � �p̂2

i �m
2�I, where H2 defined by matrix

multiplication. This works because the momentum com-
ponents p̂i commute. This is not true for the elements hi in
the argument of our Hamiltonian, so Dirac’s trick cannot
be used, at least in its basic form.

There is the additional problem that the term R, which
is the Ricci scalar, is not a squared quantity, and so can be
negative. (In the gauge R � r this term vanishes since we
are using the flat slice asymptotic conditions [9].) R̂ is
however diagonal in the basis since the operator analogs of
the fields R, R0 and R00 are all diagonal [8]. Therefore at
least for the subset of states where its eigenvalues �R are
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positive we can define an operator ĥ4 whose eigenvalues
are

�������
�R

p
. We will return to this issue below after describing

an approach to address the square root problem. For now,
and the following discussion, we define

h2
4

:�R: (24)

The idea is to obtain a definition of the square root part Â
of the Hamiltonian operator by working in a larger Hilbert
space

H �H Kin � V; (25)

for some V to be specified, and writing

Â � ĥk �ek; (26)

where the ĥk act in H Kin, and the �ek act in V. The key
requirement is that the action of Â in H must be such that

Â 2 � ĥkĥl	
klI; (27)

where 	kl � diag�� ���� and I is the identity operator
in the space V. All other operators Ô acting in H Kin are
extended to H by the identity action in V. Since the hk do
not commute, this means that the operators �ek must satisfy

�e k �el � 	klI: (28)

That no such operators exist for any space V may be seen
by the following argument. Let j ki be a complete set of
normalizable states, and let us assume that operators sat-
isfying (28) exist. Then we are led to contradictions such as

1 � h j i � h j� �e1�2j i � h j �e1� �e4�2 �e1 i

� h j �e1 �e4
X
k

j kih kj �e
4 �e1j i � 0: (29)

There is a way out of this situation if we demand the
weaker condition that

h�jÂ2j�i � h�jĥkĥl	klj�i; (30)

for every j�i 2H that is of a form specified below. The
basic idea is to introduce a four-dimensional Euclidean
vector space V and consider its decomposition into or-
thogonal subspaces

V � �kVk (31)

k � 1 
 
 
 4. Let us denote by Pk the projection operators
onto these subspaces. By definition the Pk satisfy PkPl �
Pk�kl. Now define operators �ek by

�e k � Pk (32)

for k � 1, 4, and

�e k � iPk (33)

for k � 2, 3. These give

Â 2 � ĥkĥl �ek �el � ĥkĥlPk	kl (34)
-4
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Consider now the action of Â2 on states j�i of the form

j�i � j ij
i (35)

where j i 2H Kin,

j
i �
X
k

j
ki; (36)

and the j
ki denote the basis of V corresponding to the
decomposition into the Vk. The result is

Â 2j�i �
X
k;l

�ĥlĥkj i�Plj
ki �
X
k

�ĥkĥkj i�j
ki: (37)

From this it is evident that (30) holds. Finally, we still need
a refinement to get a self-adjoint Â. To do this we define the
operators ĥ2 and ĥ3 such that they have the property

ĥ y2 � ĥ2 ĥy3 � ĥ3: (38)

These ensure that the square root operator Â in the ex-
tended Hilbert space is self-adjoint.

The last issue to address is the definition of the operator
corresponding to R (the Ricci scalar) in Eq. (22). This
contains derivatives of R which are defined by the finite
difference operators introduced in [8]. Since these are
diagonal on basis states, so is R̂. Now, in the gauge R �
r, which fixes the shift vectorNr to be proportional to 1=

���
r
p

everywhere, the Ricci scalar vanishes. Our Hamiltonian is
not in this coordinate gauge (which is still free), but as
alluded to in Sec. II, the idea is to evolve quantum states
with this choice of lapse function, with initial states for
which the values ak of the radial field R are distributed
linearly with the graph points rk, ie. ak  rk. This guaran-
tees that the eigenvalue of R̂ vanishes, at least initially.
However it will not remain so because the Hamiltonian
contains terms with PR, which is represented by the op-
erator

P̂ R�rk� :�
1

2i�
�ei�PR�rk� � e�i�PR�rk��: (39)

The translation operators on the r.h.s. act to shift excita-
tions at the point rk which result in the eigenvalue �R of R̂
being moved from zero at the selected point. However this
move is very small since 0< �	 1. Because of this we
define the action of ĥ4 by

ĥ 4j i �
����������
j�Rj

q
j i; (40)

where j i is a basis state. This definition makes the as-
sumption that, starting from a basis state with �R � 0, the
deviation from zero after the action of P̂R is positive.

This completes our prescription for the Hamiltonian
operator for the scalar field collapse problem. With each
of its constituents well defined, it is straightforward to
compute its action on a basis state. The fact that this can
be done in contrast to the case for full gauge fixing [3]
represents some progress which we anticipate will lead to
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concrete calculations for quantum collapse. A strategy to
do this is presented in the next section.

We close with a discussion of the quantization choices,
or ambiguities, inherent in the steps outlined here. Firstly,
let us note that the general procedure used in obtaining the
square root operator is new. The only other possible ap-
proach is to seek the spectrum of the argument of the
square root, which given its form appears a formidable
task. If this could be done, it would represent another,
possibly physically distinct, choice of Hamiltonian for
this problem. This circumstance would be analogous to
the Dirac and Klein-Gordon Hamiltonians. Secondly, h1

contains products of noncommuting operators so a choice
must be made for its operator version. The natural one is to
take the symmetric product �RPR � PRR�=2. Finally, the
only other ambiguity in the definition of the Hamiltonian is
in the choice of ‘‘lattice’’ parameter �. It is natural to also
use the same parameter in the Gaussian smearing functions
used in operators such as R̂f. In implementing evolution
numerically, the goal of course is to ensure that physical
results do not depend on this parameter. Like any numeri-
cal computation, one would like to see that the evolution of
a fixed initial state leads to a convergent answer for the
final state after a fixed number of time steps. This means
that when the computation is repeated for successively
smaller values of �, the answers for evolved physical
variables have asymptotic ‘‘continuum’’ values.
V. QUANTUM EVOLUTION

In classical numerical simulations of scalar field col-
lapse the general approach is to start with initial data
representing a shell of scalar field, and to evolve it using
some choice of lapse and shift functions [15]. At each step
of the simulation an ‘‘apparent horizon’’ check is made as a
criterion for black hole formation. This is a null geodesic
trapping condition at each step or leaf of the evolution. In
spherical symmetry the goal is to find the outermost radial
location on each leaf where the condition is satisfied. The
evolution of this location is taken to represent the dynami-
cal boundary or horizon of the black hole.

There are at least two concrete versions of what is a
dynamical horizon. The first was formulated by Hayward
[16]. In addition to the usual criteria for null geodesic
expansions, this work consists of additional conditions
designed to distinguish future, past, inner and outer local
horizons. The second [17] lifts some of these conditions,
and points out that the resulting definition of dynamical
horizon allows a nice formulation of local flux laws. The
common and minimal feature of both definitions are the
conditions

�� � 0; �� < 0 (41)

where �� are the in(out)going null geodesic expansions.
Equivalent information is captured in the observable
-5
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����, which goes from negative to positive as a dynamical
black hole boundary is crossed.

With the Hamiltonian operator defined in the last sec-
tion, and the operator analogs of the null expansion opera-
tors given in [8], we are in a position to give a procedure for
a quantum collapse calculation. This involves specifying
(i) initial states, (ii) an evolution procedure, and (iii) a
quantum test for black hole formation.

The first question is what are suitable initial states. The
basis states represent values of the scalar field ��r; t� and
the radial field R�r; t� at a set of discrete coordinate points
r1 
 
 
 rk, which is a sample of the half line. As such these
states may be compared with the discrete data for a clas-
sical numerical simulation. This suggests the use of ‘‘pro-
file’’ states where we take, for example, the scalar field
excitations to have a gaussian profile, and the radial ex-
citations to be linearly distributed. Another possibility is
the use of suitable coherent [18] or other form of semiclas-
sical states that are peaked at classical configurations.
These would be infinite linear combinations of basis states,
and so computation with them would be more involved,
especially in the present field theory setting.

The second step is the implementation of evolution.
Rather than constructing a finite evolution operator by
exponentiation of the Hamiltonian, which is very cumber-
some, it is more suitable to implement repeated infinitesi-
mal evolution using a suitable scheme. The simplest
possibility

j it��t � �I � i�tĤ�j it (42)

is not unitary. However there are unitary schemes available
for this purpose. One example is based on the well-known
Crank-Nicholson method, where the Schrodinger equation
in discrete time ( labeled by n) is written as

i
�t
�j in�1 � j in� �

1

2
�Ĥj in�1 � Ĥj in�: (43)

This leads to the manifestly unitary (but implicit) evolution
scheme given by�

1�
i
2

�tĤ
	
j in�1 �

�
1�

i
2

�tĤ
	
j in (44)

Since Ĥ depends also on the free (classical) function Nr, so
does the evolved state j in�1. This function must be fixed
(with the fall off condition Nr  1=

���
r
p

) to get a unique
evolution [9]. The simplest choice is to take this form for
all points rk in the chosen initial state.

The third step is to implement a test for black hole
formation at each time step of the evolution. As mentioned
above, the minimum requirement for this is that we must
have operators corresponding to the null expansions. A
prescription for constructing these were given in [8]. In
addition we require this test to be invariant under the
remaining radial diffeomorphism constraint. This is
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achieved, for example, by looking at the quantities
h���rk; t����rk; t�i as functions of hR�rk; t�i, where the
expectation values are in the state arrived at by stepwise
evolution from some initial state. The resulting curve is
radial diffeomorphism invariant, and its intersection with
the hR̂i axis gives the location and size of the evolving
horizon. It is the dynamics of this curve which is of interest
for black hole formation and subsequent evolution at the
quantum level.

There are many other useful diffeomorphism invariant
quantities of interest that can be computed at each time
step. Two examples are the scalar field configuration
h��rk; t�i, and a curvature measure such as h�̂�rk; t�i (the
trace of the ADM momentum) [7], both viewed as func-
tions of hR̂�rk; t�i.

The second and third steps are to be repeated for mul-
tiple time steps to extract time dependent profiles of the
functions of interest, such as the ones just mentioned. It is
in this manner that physical information about collapse
may be obtained in the kinematical Hilbert space after
fixing the time gauge classically. Although evolution is
with respect to a fixed Nr so that the evolved states depend
on it, the physical information contained in the suggested
functions is independent of the coordinate points rk: radial
diffeomorphisms act to shift the points rk to r0k without
changing the values of the field variables.
VI. DYNAMICAL AVOIDANCE OF THE
SINGULARITY

In earlier work we gave a construction of an operator
corresponding to the classical variable 1=R that is bounded
on the Hilbert space we are using for the quantum theory
[7]. This result has the direct consequence that curvature
singularities in spherical symmetry are avoided. This is
because phase space variables that classically diverge at
the singularity do so as positive powers of 1=R. The
corresponding quantum operators are constructed as prod-
ucts of the 1=R operators, and so are also bounded. This
does not involve the Hamiltonian in any way so the result
may be viewed as kinematical singularity avoidance. In
this section we show, using the construction of the
Hamiltonian operator given above, that inclusion of dy-
namics does not alter this result.

The fundamental question here is whether quantum
evolution remains well-defined through the region of high-
est curvature, or whether it stalls or breaks down there.
Classically dynamics is encoded either in (i) the
Hamiltonian constraint, or (ii) a Hamiltonian derived
from a partial (time) gauge-fixing, or (iii) a Hamiltonian
derived from a complete gauge-fixing as in [4]. Although
our work is concerned with the second case, we will look at
the issue of singularity avoidance from all three points of
view. Let us consider first the Hamiltonian constraint. Its
classical expression is
-6
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Because of the 1=R factors, it is divergent at the points r
where R � 0. Upon quantization these factors turn into
bounded operators as shown in [7]. From this result, and
the form of the basic quantum operators it is clear that the
quantum Hamiltonian constraint has finite action on all
states, including those for which the eigenvalue of R̂f is
zero. The action of the constraint operator on a state with
maximum eigenvalue of the 1=R operator gives a linear
combination of basis states that contain shifts in excitation
values of the fields generated by the action of the corre-
sponding momentum operators (39). It is not difficult to see
that due to this, each of the states in the linear combination
correspond to a lower eigenvalue of the 1=R operator. Thus
in this sense a time step ‘‘evolution’’ by the action of the
Hamiltonian constraint on a state of maximum value of
curvature gives a new state in which its expectation value is
lower than the maximum.

Consider next the fully reduced Hamiltonian that was
found in [4]
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where

S��r� �
P2
�

8r3 �
r�02

2
: (47)

This is clearly divergent at r � 0. As r is a parameter rather
than a configuration field variable, quantization of the
totally reduced theory cannot resolve the singularity at
the quantum level.

Finally, let us consider the Hamiltonian whose quantiza-
tion is the subject of this paper. Firstly, an inspection of the
classical reduced Hamiltonian (18) shows that, unlike the
Hamiltonian constraint, it has no manifestly divergent 1=R
factors. This surprising feature is just a consequence of the
time gauge fixing, and concomitant strong solution of the
Hamiltonian constraint. (If one continues the reduction
process further by the gauge choice R � r, the divergence
reappears via the shift function, which is proportional to
1=

���
r
p

[9]. This becomes the source of the divergence at r �
0 in the fully reduced Hamiltonian.) Secondly, the
Hamiltonian operator has well-defined action on basis
states, and evolution does not stall on states with maximum
eigenvalue of the 1=R operator. Rather, it gives a linear
combination of states each of which has a lower eigenvalue
of this operator (for the same reason as for the action of the
Hamiltonian constraint discussed above). In closing this
section, we compare the above scenario for dynamical
124007
singularity resolution with the cosmological case studied
in [19,20], and the Schwarzschild black hole studied in
[21]. In both these cases the systems are finite dimensional,
unlike the model in this paper. In the first case, the action of
the Hamiltonian constraint on a basis state gives a finite
difference equation with coefficients such that action on
the state of zero volume gives a bounce. In the second case
the interior (Kantowksi-Sachs) and exterior of the
Schwarzschild spacetimes are quantized with appropriate
matching at the event horizon, which is taken as the
fundamental classical dividing line. Our perspective is
that these cases are quite different from the matter coupled
case we treat here. In particular, with nonvanishing matter
fields, the extended Schwarzschild spacetime does not
arise, so quantizing it to discuss singularity resolution is
not relevant for the quantum treatment of the collapse
problem.
VII. DISCUSSION

We have constructed the quantum Hamiltonian for the
spherically symmetric system of gravity coupled to a scalar
field in a fixed time gauge. Together with earlier papers [7–
9], this work completes the construction of a quantum
theory for studying the gravitational collapse of a scalar
field in spherical symmetry. We are now in a position to
address the questions surrounding black holes that have
been generally acknowledged to find a resolution only
within a full quantum treatment.

Any application of our formalism to a given physical
situation will require a choice of initial state. As all the
black holes that have been detected so far have macro-
scopic size, the first task is to determine how to represent
what we know as a classical black hole in the quantum
theory. This obviously calls for a construction of the semi-
classical sector, including the search for suitable semiclas-
sical states. This will be the subject of a future publication
[22]. Once the issue of what initial state to take has been
settled, one can then investigate the quantum time evolu-
tion of the system.

Among the problems of physical interest is the evolution
of a quantum state that satisfies the quantum horizon con-
ditions. One would like to know how this evolution de-
pends on the matter part of the state, and how the horizon
grows or shrinks. An indispensable tool for such questions
will be the null expansion operators which were con-
structed in [8], which serve as horizon finders. It should
be pointed out that, even if one does not subscribe to the
exact definition of the horizon of a black hole proposed in
[8], these operators would still play an important role in
any other approach to a quantum description of black hole
horizons.

Perhaps the most interesting questions to address in this
framework are whether and how Hawking radiation arises,
and what is the end point of collapse. A preliminary
investigation [23], indicates that the end result of gravita-
-7
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tional collapse is a Planck size remnant. This appears to be
intimately connected with the existence of an upper bound
on curvature, which in turn has an appealing intuitive
analogy with Fermi pressure; whereas the latter can be
ultimately overcome by gravitational forces, the former
cannot since it is a fundamental quantum gravity effect.
It represents the ultimate limit to which matter can be
compactified. Finally, as time evolution in our setting is
unitary, one can surmise already at this point that the
solution to the so-called information loss paradox is that
there has never been a paradox in the first place.

Apart from applications, another potential line of inves-
tigation is to improve on the framework developed here.
One of the questions here concerns time gauge fixing.
There are of course many other choices, so it would be
124007
useful to see if there are others that might lead to simpler
reduced Hamiltonians. One possibility is to look at only the
time gauge fixing used in [4], without fixing the radial
gauge R � r. Another approach to the same issues using
the connection-triad variables is being developed by
Bojowald and collaborators [24]. This work offers a par-
allel approach in the loop quantum gravity program.
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