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Large scale structure introduces two different kinds of errors in the luminosity distance estimates from
standardizable candles such as supernovae Ia (SNe)—a Poissonian scatter for each SN and a coherent
component due to correlated fluctuations between different SNe. Increasing the number of SNe helps
reduce the first type of error but not the second. The coherent component has been largely ignored in
forecasts of dark energy parameter estimation from upcoming SN surveys. For instance it is commonly
thought, based on Poissonian considerations, that peculiar motion is unimportant, even for a low redshift
SN survey such as the Nearby Supernova Factory (SNfactory; z � 0:03–0:08), which provides a useful
anchor for future high redshift surveys by determining the SN zero point. We show that ignoring coherent
peculiar motion leads to an underestimate of the zero-point error by about a factor of 2, despite the fact
that SNfactory covers almost half of the sky. More generally, there are four types of fluctuations: peculiar
motion, gravitational lensing, gravitational redshift and what is akin to the integrated Sachs-Wolfe effect.
Peculiar motion and lensing dominates at low and high redshifts, respectively. Taking into account all
significant luminosity distance fluctuations due to large scale structure leads to a degradation of up to 60%
in the determination of the dark energy equation of state from upcoming high redshift SN surveys, when
used in conjunction with a low redshift anchor such as the SNfactory. The most relevant fluctuations are
the coherent ones due to peculiar motion and the Poissonian ones due to lensing, with peculiar motion
playing the dominant role. We also discuss to what extent the noise here can be viewed as a useful signal,
and whether corrections can be made to reduce the degradation.
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I. INTRODUCTION

The problem of the cosmological constant, or more
generally dark energy, is one of the deepest problems in
cosmology today. While there are by now multiple lines of
evidence for the existence of dark energy [1], the evidence
from type Ia supernovae (SNe) was historically what con-
vinced a large fraction of the cosmology community that
this enigmatic form of energy should be taken seriously
[2,3]. Upcoming and ongoing SN surveys [4], with vastly
improved statistics, promise to constrain the equation of
state of dark energy to unprecedented precision, thus shed-
ding light on the issue of whether the apparent acceleration
of the universe is caused by the cosmological constant, a
dynamical scalar field or departure from Einstein gravity
[5].

There has been much recent work on projections for the
determination of dark energy properties from these SN
surveys. By and large, they focus on the following aspects
of the error budget: intrinsic statistical error, systematic
error and gravitational lensing-induced scatter (e.g. [6–12]
and references therein). The intrinsic statistical error refers
to the intrinsic spread in SN luminosity even after suitable
standardizing corrections have been applied. It is typical to
assume that the intrinsic spread in magnitude has a (root-
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mean-squared; rms) size of �intr: � 0:1–0:15 for each SN
[13]. This kind of intrinsic statistical error can be beaten
down by having a large number of SNe. There are several
sources of systematic error, such as Malmquist bias, lumi-
nosity evolution, imperfect corrections for dust extinction,
and so on. They are not necessarily diminished by having a
large number of SNe, although a large sample often helps
in identifying and characterizing them. Lastly, gravita-
tional lensing by intervening structures introduces fluctua-
tions in the observed flux of SNe. So far, the focus has been
on how gravitational lensing introduces a Poissonian scat-
ter rather analogous to the intrinsic spread. This kind of
error can likewise be reduced by having a large sample of
SNe [6,12].

The existing discussion can be improved in two ways.
First of all, gravitational lensing by large scale structure
introduces not only a Poissonian scatter to the individual
SN flux, but also correlated flux fluctuations between
different SNe. One can view the correlated fluctuations as
a consequence of the large scale coherence of the interven-
ing structures. Second, large scale structure introduces
fluctuations beyond that captured by gravitational lensing,
and like lensing, these fluctuations have a Poissonian com-
ponent as well as a correlated or coherent component. It is
worth noting that an expression for all the first order
fluctuations in the luminosity distance—first order in met-
ric and energy-momentum perturbations—has been
worked out for quite some time e.g. [15–17] (with minor
-1 © 2006 The American Physical Society
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corrections; see below). The full implications for current
and future SN surveys, however, have not been explored,
with an important exception (pointed out to us by Dragan
Huterer)—Sugiura, Sugiyama & Sasaki [18] computed the
anisotropies (the dipole and beyond) in luminosity distance
and investigated the implications for measurements of the
decceleration parameter q0.

As we will see, to first order, there are four sources of
luminosity distance (or magnitude) fluctuations: gravita-
tional lensing, gravitational redshift, peculiar motion and
an effect akin to the integrated Sachs-Wolfe (ISW) effect.
We will see that for most practical purposes, it is sufficient
to consider gravitational lensing and peculiar motion. They
become important at high (z * 1) and low (z & 0:1) red-
shifts, respectively.

What is particularly interesting, and perhaps surprising,
is that peculiar motion plays a significant role in the
degradation of dark energy errors. There is a widespread
perception that the effects of peculiar motion are negligible
as long as the median redshift is greater than 0.05 or so. Let
us take as an example the Nearby Supernova Factory
(SNfactory; other low redshift surveys include the CfA
Supernova Program, Carnegie Supernova Project and
LOTOSS, see [4]), whose redshift range z � 0:03–0:08
was chosen in the hope of making the effects of peculiar
motion negligible. Such a perception seems at first sight
quite reasonable: typical peculiar velocities are of the order
of 300 km=s, and so the ratio of peculiar flow to Hubble
flow at z � 0:055 is about 300=�3� 105 � 0:055� � 0:02.
Translating this into fluctuations in magnitude (details are
given in x IVA), we have �m� 2:17� 0:02� 0:04, which
is quite a bit smaller than the intrinsic spread in SN
magnitude (0:1–0:15), apparently suggesting we can
ignore peculiar motion (recall that different sources of
errors are to be added in quadrature).

What such an argument misses is that coherent peculiar
flows introduce correlations in magnitude fluctuations be-
tween different SNe. While it is true that peculiar motion
introduces a negligible Poissonian scatter compared to the
intrinsic scatter, the correlated component cannot be
ignored as it turns out. One can intuitively understand it
as follows. As the number of SNe (N) becomes large, the
intrinsic statistical error is beaten down to be quite small in
the usual root-N fashion. Correlated errors, such as that
due to correlated/coherent peculiar flows, are not reduced
by N at all, and so there must be some N beyond which the
correlated errors become dominant. We will see that this is
indeed the case for the SNfactory. Since a low redshift
survey such as the SNfactory plays an important role in
constraining the SN zero-point, dark energy determination
from higher redshift surveys (where peculiar motion is less
of an issue) is affected indirectly by these considerations as
well.

Coherent large scale flows (i.e. bulk flows) have of
course been the subject of research for a long time (see
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[19] for a review). Particularly relevant to our investigation
are discussions of the peculiar velocity monopole, or what
is sometimes referred to as the local Hubble bubble, which
incidentally made use of SNe Ia [20–22]. We will see later
that for a survey like the SNfactory, which covers roughly
half of the sky, fluctuations in the lower velocity multipoles
(the monopole, dipole, etc.) contribute significantly to the
dark energy error budget.

The rest of the paper is organized as follows. In Sec. II,
we set the stage by describing the parameters of interest
and how the fluctuations in magnitude are related to the
parameter errors. Some details on how to go from the
Fisher matrix to actual errorbars of various types are given
in Appendix A. We describe in Sec. III how the average
magnitude in a given redshift bin fluctuates, and how these
fluctuations can be divided into a Poissonian component
and a correlated/coherent component, in effect defining the
magnitude covariance matrix. To keep the discussion sim-
ple, the derivation is relegated to Appendix B. In Sec. IV,
we derive an expression for the first order luminosity
distance fluctuations (Sec. IVA), and work out explicitly
their implications for the magnitude covariance matrix in
terms of the mass power spectrum (Sec. IV B). To keep the
discussion simple in the main body, details of these two
steps are relegated to Appendices C and D. Appendix C
might be interesting to the more theoretically inclined: the
explicit expression given here for the luminosity distance
fluctuation corrects a minor error in earlier expressions in
the literature. Appendix D contains expressions for the
velocity window function for an arbitrary survey geometry
that might be of interest to observers who are interested in
making predictions for their own surveys. In Sec. V, we
finally put everything together to make error forecasts. It
proves illuminating to first focus separately on the contri-
butions to errors from peculiar motion and lensing
(Sec. VA and V B), and in Sec. V C we make forecasts
for a number of ongoing/planned/proposed SN surveys.
The key results are summarized in Fig. 7–9 and Table II.
We conclude in VI with a brief summary of major results
and a discussion of several issues that naturally arise, some
of which are worth exploring further:
(i) w
-2
hether peculiar motion degrades the current con-
straints on dark energy (the answer is: not
significantly);
(ii) h
ow the exact survey geometry impacts dark en-
ergy errors;
(iii) w
hether internal motion that could add to the
peculiar velocity is important (the answer is no);
(iv) th
e issue of systematic errors, and how they might
change our conclusions;
(v) w
hether realistic redshift measurements are accu-
rate enough for us to have to worry about peculiar
velocities (the answer is yes);
(vi) w
hether corrections can be made for peculiar mo-
tion and lensing to reduce the dark energy errors
(the answer is: probably difficult for (the
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Poissonian part of) lensing, but maybe yes for
peculiar motion);
(vii) w
hether the noise that we refer to here from pecu-
liar motion and lensing can in fact be turned into a
useful signal (the answer, for lensing, is that the
signal is not competitive with the lensing of
galaxies).
A comment on our terminology: we refer to the fluctua-
tions of interest in this paper as large scale structure
induced. The term large scale structure should be viewed
as synonymous with departure from homogeneity. Some of
the fluctuations discussed here, such as the Poissonian
lensing scatter, are in fact dominated by structures on
relatively small scales (galactic scales or smaller). Also,
even though much of the discussion in this paper is phrased
in terms of SNe as standard candles, most of our expres-
sions of course apply equally well to any other distance
indicators.

While this paper was in preparation, two preprints [23]
appeared in the electronic archive that partially overlap
with ours, specifically concerning lensing covariance as
noise and signal. See also the preprint by [24] on SN
lensing as a potentially useful signal. There is also a
preprint by [25] that discusses fluctuations of the luminos-
ity distance in general as a useful signal (see also [26]).
II. PRELIMINARIES

The relation between luminosity distance dL and appar-
ent magnitude m is:

 m � 5log10dL �M

� 5 lndL= ln10�M� 2:17 lndL �M; (1)

where M is the magnitude zero-point. Note that it is
customary to define the absolute magnitude as differing
from ourM by some additive constant, whose precise value
depends on the unit used for dL. If we rescale dL by some
multiplicative factor, such as when we switch units or when
we alter the Hubble constant today H0 (e.g. if we express
dL in Mpc=h), the change can be absorbed into the defini-
tion of M. Ultimately, in determining cosmological pa-
rameters from m�z�, the apparent magnitude as a function
of redshift z, we would marginalize over the zero-point M,
which means marginalizing over the absolute magnitude
and H0 at the same time.

What are the cosmological parameters of interest? Here,
we are interested in �de, wpivot and wa, which are, respec-
tively, the dark energy density today (normalized by criti-
cal density), the dark energy equation of state and its
evolution. We use the parametrization proposed by [27,28]:

 w�a� � wpivot � wa�apivot � a�; (2)

where w�a� is the equation of state of dark energy at scale
factor a, wpivot is the equation of state at a � apivot, and wa
is the negative slope �dw=da. The scale factor apivot is
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chosen such that the errorbars on wpivot and wa are un-
correlated. The precise apivot therefore varies from experi-
ment to experiment, but is generally close to but slightly
less than unity. Throughout this paper, we assume a flat
universe, so the matter density �m is not an independent
parameter.

To summarize, given a SN experiment yielding m as a
function of z, we can fit for four parameters: wpivot,wa, �de

andM. Let us label them by p� with � ranging from 1 to 4.
We will mostly marginalize over M since it is not of
cosmological interests. Sometimes we marginalize over
�de as well, usually with a prior. Exactly what prior, if
any, is used will be stated explicited in each worked
example below.

The Fisher matrix is defined by [29]

 F�� �
X
ij

@mi

@p�
~C�1
ij

@mj

@p�
; (3)

where we imagine that the SNe have been binned up in
redshifts labeled by Latin indices:mi refers to the averaged
m for SNe that fall within a redshift bin centered at z � zi.
Here � and � range from 1 to 4, corresponding to the
parameters wpivot, wa, �de and M. The (binned) magnitude
covariance matrix is

 

~C ij � h�mi�mji: (4)

All relevant errorbars related to the four parameters, margi-
nalized or otherwise, with or without prior, can be deduced
from the Fisher matrix F��. For instance, the (rms) error-
bar on wpivot marginalized over everything else with no

prior [30] is given by
����������������
	F�1
11

p
. Further details are given in

Appendix A, especially on how to choose the pivot scale
apivot. One particularly useful fact: as long as apivot is
chosen such that the errors on wpivot and wa are uncorre-
lated, the error on wpivot marginalized over wa is exactly
the same as the error on w setting dw=da to be some fixed
value, say zero [31]. This is true even if there are other
parameters present, such as �de and M. To be precise: the
error on wpivot marginalized over wa and other parameters
(let us call them p3, p4 . . .) is exactly the same as the error
on a constant w marginalized over p3, p4 . . . (see
Appendix A). This fact is useful for comparing our results
with some of those in the literature which often assume a
constant w.

A common alternative parametrization, w �
w0 � w0�z� zpivot�, would result in an errorbar for w0

that is similar to wpivot, and an errorbar for w0 that is
typically about half of that for wa.

Any error projections for surveys necessarily assume a
fiducial model. We will assume throughout a flat cosmo-
logical constant dominated model with matter density
�m � 0:27, dark energy density �de � 0:73, wpivot �

�1 and wa � 0 [32].
-3
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Our next task is to calculate the magnitude covariance
matrix ~Cij.

III. THE MAGNITUDE COVARIANCE MATRIX—
POISSONIAN AND COHERENT COMPONENTS

Let us recall that we have from observations a vector of
numbers: the apparent magnitude mi averaged over red-
shift bin i, with zi being the average redshift of that bin
[33]. As we show in Appendix B, the magnitude covari-
ance matrix is

 

~C ij � h�mi�mji � �ij
��intr:�2 � ��Poiss:

i �2

Ni
� Cij; (5)

where Ni is the number of SNe in the i-th redshift bin, �intr:

is the intrinsic dispersion of SN magnitude which we will
take to be either 0.1 or 0.15 [13], and �Poiss:

i is the
Poissonian dispersion induced by large scale structure for
each SN (note that it depends on i, or the redshift zi, in
general). The intrinsic scatter and the Poissonian large
scale structure induced scatter add in quadrature, and
both scale with 1=Ni as expected i.e. they are both
Poissonian in nature. The symbol Cij quantifies the con-
tribution to ~Cij from correlated/coherent large scale struc-
ture fluctuations, and it does not scale inversely with the
number of SNe. In principle, one should also add to ~Cij a
term that describes systematic errors. We will discuss this
briefly in Sec. VI, but will leave it out for most of our
discussion. We refer toCij simply as the correlation matrix,
to be distinguished from ~Cij which we call the magnitude
covariance matrix i.e. Cij is the non-Poissonian, or coher-
ent, part of ~Cij.

The Poissonian large scale structure induced variance is
simple to write down:

 ��Poiss:
i �2 �

�
5

ln10

�
2 Z dz

�zi
h	�dL�z�


2i �

�
5

ln10

�
2

�h	�dL�zi�

2i; (6)

which follows from Eq. (1). Here, �dL�z� � �dL= �dL�z� is
the fractional fluctuation in luminosity distance due to
departure from homogeneity (i.e. large scale structure)
for an observed redshift z. Note that this is the fractional
fluctuation at one point in the sky i.e. for one SN. The
ensemble average hi is over realizations of the universe.
The integration in the first line of Eq. (6) is over the redshift
bin centered at zi with width �zi. For a sufficiently narrow
�zi, since h	�dL�z�


2i typically varies slowly with z, the
second equality is a good approximation.

The correlated/coherent component concerns �dL in dif-
ferent parts of the sky:

 Cij �
�

5

ln10

�
2 Z dzd2�dz0d2�0

�ziAi�zjAj
h�dL�z;���dL�z

0;�0�i;

(7)
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where we have added an extra argument � or �0 to �dL to
remind ourselves that the fluctuation depends on the red-
shift as well as the angular position. The angular integra-
tion is done over the area of the survey, and in general, the
total area of the survey could be different at different
redshifts, so we allow the area A to carry an index i or j.
The redshift integration is done over the respective
redshift bins. In cases where h�dL�z;���dL�z

0;�0�i
does not vary rapidly over the respective redshift bins
(such as in the lensing contributions to �dL), the expression
above is well-approximated by 	5= ln10
2�AiAj��1�R
d2�d2�0h�dL�zi;���dL�zj;�

0�i.
It is crucial that the Poissonian variance scales as 1=Ni

whereas Cij does not (Eq. (5); this is justified in
Appendix B). Naively one would expect Cij to be quite
small especially if the area Ai or Aj is large. However, for
future surveys where Ni can be quite large, it is entirely
possible for the Poissonian term to be smaller than Cij, as
we will see.

It is also important to emphasize that Cij, even when i �
j, is non-Poissonian, in the sense that i � j only tells us
that we are looking at the same redshift bin, but � (or z) can
still of course differ from �0 (or z0). In other words, when
we talk about correlated/coherent/non-Poissonian fluctua-
tions, we mean fluctuations that are correlated between
different SNe, at different redshifts or different angular
positions or both.

As far as we know, the importance of Cij has been
overlooked in existing error forecasts for SN surveys.
Moreover, the only large scale structure contribution to
the magnitude covariance matrix ~Cij (Eq. (5)) that has been
considered in the context of SN surveys is that from lens-
ing, through the Poissonian term ��Poiss:

i �2 (but see [23] for
preprints that partially overlap with ours concerning corre-
lated lensing fluctuations).

IV. THE LUMINOSITY DISTANCE FLUCTUATION
AND ITS CONTRIBUTION TO THE MAGNITUDE

COVARIANCE MATRIX

Our goal in this section is two-fold. First, we write down
an expression for �dL , the fractional luminosity distance
fluctuation, that is accurate to first order in perturbations.
Second, we work out its two-point correlation and second
moment as they show up in the magnitude covariance
matrix (Eqs. (5)–(7)). The main results are Eqs. (18)–
(23). Readers not interested in details can skip ahead to
Sec. V.

A. The luminosity distance fluctuation

There exist a large literature on the luminosity distance
in a weakly perturbed Friedmann-Robertson-Walker uni-
verse [34]. Sasaki [15] derived the general expressions
using the optical scalar equations, and gave an explicit
integration in the case of an Einstein-de-Sitter universe.
-4



FIG. 1. A schematic Hubble diagram to illustrate the effects of
peculiar motion. The solid line represents the luminosity dis-
tance in a homogeneous universe. Consider a SN represented by
the open square in such a universe. Suppose this SN is given a
peculiar velocity moving away from the observer. This SN
would then be displaced to the position of the solid square—
note that both the redshift and the luminosity distance are
changed. The luminosity distance difference that we are inter-
ested in is �dL�z� � dL�z� � �dL�z�, where z is the actual ob-
served redshift, dL�z� is the actual observed luminosity distance,
and �dL�z� is the luminosity distance given by the solid line, at the
same redshift z. The fractional luminosity distance fluctuation
that we study is �dL � �dL�z�= �dL�z�.
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More recently, Pyne and Birkinshaw [16,17], using a dif-
ferent technique, derived explicit expressions for more
general cases, including a nonflat universe as well as a
universe with dark energy. In Appendix C, we present a
derivation closely following that of [16,17], but somewhat
simplified. The end result differs slightly from [17], but
only in terms that are subdominant compared to the gravi-
tational lensing and peculiar motion terms, and so this
difference has no impact on the main conclusions of this
paper. The origin of the difference is explained in
Appendix C. Relegating the technical details to that
Appendix, let us focus here on a somewhat heuristic but
more intuitive derivation of the dominant terms, those
arising from peculiar motion and lensing.

Recall the following standard relation between the ob-
served flux F and the intrinsic luminosity L, valid for a
universe with or without inhomogeneities [35]:

 F�z� �
L

4��1� z�4
��0

�Ae
; (8)

where �Ae is the proper area of the emitter, ��0 is the solid
angle at the observer subtended by light rays from the
emitter, and z is the observed redshift. The angular diame-
ter and luminosity distances are, respectively, defined to be

 dA �
���������������������
�Ae=��0

q
; dL � dA�1� z�2: (9)

We emphasize again that these expressions are equally
valid in a homogeneous or an inhomogeneous universe.

In a homogeneous universe, the above equations take the
form

 

�F��z��
L

4��1� �z�4	 �dA� �z�
2
�dA��z���e=�1� �z�

�e����z��
Z �z

0
dz0=H�z0� �dL��z�� �dA��z��1� �z�2;

(10)

where the bar on top of quantities reminds us that they are
defined in a homogeneous universe. Here � is the usual
comoving distance in a homogeneous universe, which is an
integral over redshift of the inverse Hubble parameter H,
and �e is the comoving distance to the emitter.

Suppose we perturb such a universe by introducing
peculiar motion, excluding for the moment other possible
sources of fluctuations. This has two effects. First, �z is
Doppler shifted to a new value z:

 1� z � �1� �z��1� ve � n� v0 � n�; (11)

where ve and v0 are the peculiar velocities of the emitter
and the observer, respectively, and n is the unit vector from
observer to emitter. This is accurate to first order in pecu-
liar velocities. Note that the speed of light is set to unity.

The second effect of introducing peculiar motion is to
modify the angular diameter distance. Peculiar motion
modifies ��0 but not �Ae (to first order) in Eq. (9), leading
to
123526
 dA�z� � �dA��z��1� v0 � n�: (12)

Peculiar motion causes ��0 ! ��0�1� 2v0 � n�, which
can be derived by performing boosts.

Making use of Eq. (9), (11), and (12), we therefore have
[36]

 dL�z� � �dL��z��1� 2ve � n� v0 � n�: (13)

It is important to keep in mind that the luminosity
distance fluctuation that concerns us is �dL�z� � 	dL�z� �
�dL�z�
= �dL�z�, where dL and �dL are at the same redshift z.
Figure 1 illustrates this point.

A Taylor series expansion of �dL tells us

 

�d L�z� � �dL��z�
�
1�

�
1�

ae
a0e�e

�
	ve � n� v0 � n


�
: (14)

Note that the scale factor ae, its derivative with respect to
conformal time a0e and the comoving distance �e can be
evaluated at either �z or z: the changes in the expression
above are of second order in the perturbations.

Equations (13) and (14) together imply [37]

 �dL�z;n� � ve � n�
ae
a0e�e

�ve � n� v0 � n�: (15)

This is accurate to first order in peculiar velocities, ignor-
-5
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ing all other possible fluctuations. We have added the
argument n to �dL to emphasize the fact that �dL depends
on direction (or angle) in addition to redshift.

Gravitational lensing modifies the observed flux of an
object without changing its redshift. The gravitational
lensing magnification Flensed=Funlensed is worked out in
many places e.g. [29,38]:

 magnification � 1� 2
Z �e

0
d�
��e � ���

�e
r2����;

(16)

where� is the gravitational potential fluctuation, andr2 is
the Laplacian in comoving space.

The gravitational lensing contribution to �dL is therefore

 �dL � �
Z �e

0
d�
��e � ���

�e
r2����: (17)

In summary, the total peculiar motion and lensing con-
tributions to �dL are

 �dL�z;n� � ve � n�
1

�e

�
a
a0

�
e
�ve � n� v0 � n�

�
Z �e

0
d�
��e � ���

�e
r2����: (18)

To reiterate: ve and v0 are the peculiar velocities of the
emitter and observer, and n is the line-of-sight unit vector
pointing away from the observer (n here plays the role of �
in Eq. (7)); the comoving distance to emitter �e, the scale
factor at emission ae and its derivative with respect to
conformal time a0e are evaluated at redshift z. One can
see from above that for small �e or at a low redshift, the
peculiar motion term proportional to 1=�e becomes im-
portant, while at a large redshift, the lensing term (second
line) is more important. A more rigorous derivation of �dL ,
together with an explanation of why other first order con-
tributions can be ignored, is given in Appendix C.
123526
B. From �dL to the magnitude covariance matrix

Our next task is to compute the second moment of �dL
for Eq. (6), and the two-point correlation of �dL for Eq. (7).
This is carried out in detail in Appendix D. Let us sum-
marize the results here.

From Eq. (6) and (8), it can be shown that

 ��Poiss:
i �2 � ��Poiss:;lens

i �2 � ��Poiss:;vel:
i �2 (19)

 

��Poiss:;lens
i �2 �

�
5

ln10

�
2
�

3H2
0�m

2

�
2 Z �i

0

d�

a2

�
��i � ���

�i

�
2

�
Z d2k?
�2��2

P�k?; a�

��Poiss:;vel:
i �2 �

�
5

ln10

�
2
�

1�
ai
a0i�i

�
2
�D0i�

2

�
Z d3k

�2��3
k2
z

k4 P�k; a � 1�; (20)

where P�k; a� and P�k?; a� represent the mass power spec-
trum at scale factor a and at wavenumber k and k � k?
respectively, kz and k? denote the line-of-sight and trans-
verse components of the wave vector (k? is the norm of the
2D vector k?), D is the linear growth factor and D0 is its
derivative with respect to conformal time, and any quantity
with the subscript i is evaluated at z � zi. The symbol
��Poiss:;lens:

i �2 stands for the Poissonian lensing term that is
often studied: it gives the variance in convergence, up to a
factor of 	5= ln10
2. The term ��Poiss:;vel:

i �2 gives the vari-
ance in luminosity distance due to peculiar motion, up to
the same factor. Note that there is no cross velocity-lensing
term—it vanishes because the lensing projection forces
kz � 0.

Likewise, from Eq. (7) and (18), using the plane-parallel
approximation (more discussion below), we find
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;

(21)

where Clens
ij and Cvel:

ij are the lensing and peculiar motion contributions to the correlation matrix Cij. The window function
for the lensing term Wlens

ij depends on the survey geometry: the integration of � and �0 is over the survey area, which is
allowed to depend on the redshift bin i or j for the sake of generality. The expression given forWlens

ij in terms of the Bessel
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function J1 assumes the survey spans a circular patch on
the sky, with angular radius �max

i or �max
j (i.e. Ai �

���max
i �

2, Aj � ���max
j �

2). The window function for the
peculiar motion term Wvel:

ij depends upon an integration
over the comoving volumes of the redshift bins: Vi and Vj.
The expression given for Wvel:

ij in terms of the Bessel
function and trigonometric functions assumes also that
the survey spans a circular patch in the sky (see
Appendix D for expressions appropriate for more general
geometries). Here ��i and ��j are the widths of the
respective redshift bins in comoving distance. Note also
that Wvel:

ij strictly speaking should have an imaginary part,
which is odd in kz and so integrates to zero. For more
complicated survey geometries, Wlens

ij andWvel:
ij can always

be worked out from the definitions above.
The expressions in Eq. (21) assume small angles or the

plane-parallel approximation. For the lensing term, this is
acceptable since, as we will see, lensing is generally im-
portant only at high redshifts (z * 1) where practical sur-
veys of the future cover a sufficiently small area. However,
for the velocity term, which is generally important at low
redshifts where an ongoing survey such as the SNfactory
covers a large area (almost half of the sky), it is useful to
have an expression that does not assume the plane-parallel
approximation:
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k2 P�k; a � 1�Wvel:
ij �k�

Wvel:
ij �k� �

Z d3xd3x0

ViVj
�k̂ � n��k̂ � n0�e�ik��x�x0�; (22)

where n and n0 are unit vectors pointing in the direction x
and x0, and k̂ is the same for k. Since P�k; a � 1�=k2 does
not depend on direction, one can replace Wvel:

ij �k� by its
average over the solid angle of k:

 Wvel:
ij �k� �

X1
‘�0

�2‘� 1�
�Z �i���i=2

�i���i=2

d�
��i

j0‘�k��
�

�

�Z �j���j=2

�j���j=2

d�
��j

j0‘�k��
�

�

�Z �max
i

0

d� sin�P‘�cos��
1� cos�max

i

�

�

�Z �max
j

0

d�0 sin�0P‘�cos�0�
1� cos�max

j

�
; (23)

where j‘ is the spherical Bessel function, and j0‘ is its
derivative with respect to the argument, and P‘ is the
Legendre polynomial. Note that the survey area Ai �
2��1� cos�max

i � (� ���max
i �

2 only for small �max
i ).
123526
Equation (23) assumes a contiguous and circularly sym-
metric survey geometry. Expressions for a more general
geometry are given in Appendix D (Eq. (D12) and (D13)).

Throughout this paper, all results presented come from
using the exact expression for the velocity term (eq. (22))
rather than the small angle approximation for Cvel:

ij (eq.
(21)). It is an interesting question how well the small angle
expression for the velocity term approximates the exact
expression. The answer is: surprising well even for surveys
that cover large portions of the sky. This is discussed in the
context of a concrete example in x VA.

Note that if �max
i or �max

j equals� (i.e. an all sky survey),
only the monopole ‘ � 0 term in Eq. (23) would be non-
zero. More generally, if the SN survey covers large por-
tions of the sky, only the low multipoles would be
significant.

Equations (19)–(23) are the main results of this section.
Their derivation from Eq. (18) is given in Appendix D.
They are to be substituted into Eq. (5) to obtain the
magnitude covariance matrix.

One subtlety: Eqs. (19)–(22) assume the v0 term in
Eq. (18) can be removed, because the observer’s peculiar
motion is fairly well-known from the dipole of the micro-
wave background [39]. However, when the SN is suffi-
ciently close to the observer, care must be taken to take into
account the correlation between ve and v0 in Eq. (18). This
is discussed in Appendix D. For realistic SN surveys, we
have checked that the correlation makes a negligible dif-
ference. An alternative error estimate is to allow v0 to be a
random variable and include its contribution to the vari-
ance of the magnitude fluctuations—doing so would in-
crease the errorbar.

It is worth emphasizing that the above expressions are
derived using linear perturbation theory. For instance, the
velocity terms in Eqs. (19)–(22) assume linear perturbation
growth. This is acceptable for Cvel:

ij (Eqs. (21) and (22))
since the velocity integrals are dominated by large scale
modes for relevant survey areas. This is more questionable
for the Poissonian velocity contribution ��Poiss:;vel:

i �2

(Eq. (19) and (20)), since this depends on the one-point
(small scale) velocity dispersion. However, as we will see
in Sec. VA, the velocity contribution to the Poissonian
term is relatively unimportant compared to the intrinsic
contribution, and it is not necessary to get it exactly right.
To be precise: we will use the linear power spectrum for the
velocity terms (Poissonian and otherwise) throughout this
paper. We use the transfer function from [40], assuming a
scalar spectral index of nS � 0:95, a Hubbble constant of
h � 0:7, a matter density of �m � 0:27, a baryon density
of �b � 0:046, and a normalization of�8 � 0:8 [32]. (Our
fiducial cosmology is always a flat cosmological constant
dominated universe with �de � 0:73; see the end of
Sec. II.)

For the lensing integrals in Eq. (19)–(21), it is not
uncommon to use the nonlinear mass power spectrum in
-7
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the integrands [41], and assume the results are a good
approximation even on small angular scales (a rigorous
justification can be found in [42]). Whether one uses the
linear or nonlinear power spectrum does not matter much
for Clens:

ij (eq. [(21)]) which is dominated by large scale
modes anyway for realistic survey areas. For the
Poissonian lensing term ��Poiss:;lens

i �2 (Eq. (19) and (20)),
the nonlinear mass power spectrum would provide a more
accurate estimate. Moreover, it is possible that the result is
further enhanced (beyond that predicted by the standard
nonlinear mass power spectrum) by the adiabatic contrac-
tion of halos due to the cooling of baryons, presence of
MACHOs, etc. This will be further discussed in x V B.
Throughout this paper, the lensing integrals are always
done using the nonlinear power spectrum prescribed by
[43] (with suitable enhancement for the Poissonian term to
account for plausible effects of the baryons; see below).
FIG. 2. Various contributions to the magnitude covariance
matrix ~C11 (Eq. (5)) for a low redshift SN survey characterized
by one redshift bin with �z � 0:05. The five solid lines show the
coherent/correlated velocity term Cvel:

11 (Eq. (21)) as a function of
the mean redshift z, for a survey area of, from top to bottom,
1000, 5000, 20 000, 20 000b and 41 000 (full sky) square de-
grees. A contiguous circularly symmetric geometry is assumed,
except for the case of 20 000b, which has the 20000 square
degrees split into two patches, one centered at the north pole and
the other south (i.e. a galactic cut of about �30). Note that the
SNfactory (SNf) has a mean z of 0.055 (z � 0:03–0:08), and a
total area of about 20 000 sq. degrees (denoted by the open
square). The dashed line shows the Poissonian velocity contri-
bution (Eq. (20)) to the magnitude covariance matrix:
��Poiss:;vel:

1 �2 divided by N � 300 SNe; note that it is independent
of the survey area, but depends on the mean z. The dotted lines
show the contribution from the intrinsic magnitude scatter:
��intr:

1 �
2=N, where N � 300, and �intr:

1 equals 0.1 for the lower
line and 0.15 for the upper line. Lensing contributions to ~C11 are
negligible at these redshifts.
V. PUTTING EVERYTHING TOGETHER—FROM
LUMINOSITY DISTANCE FLUCTUATIONS TO

ERROR FORECASTS

Our goal in this section is to make error forecasts by
putting together the results from the last 3 sections, encap-
sulated in Eq. (3) for the Fisher matrix, Eq. (5) for the
magnitude covariance matrix , and Eq. (19)–(23) for ex-
plicit expressions for components of the magnitude covari-
ance matrix in terms of the power spectrum (with a small
modification to Eq. (19); see below). It will prove illumi-
nating to first study separately the velocity and lensing
contributions to the covariance matrix, and their effects
on the parameter errors. This is done in Sec. VA and V B.
In Sec. V C, we make error forecasts for several ongoing/
planned/proposed SN surveys, and discuss the relative
importance of the velocity- and lensing-induced luminosity
distance fluctuations.

A. Peculiar motion

Let us consider a survey with only one redshift bin [44]
with a width of �z � 0:05. We are interested in the veloc-
ity contributions to the Poissonian and non-Poissonian
terms in the magnitude covariance matrix (Eq. (5); with
one redshift bin, the covariance matrix is just a number
~C11). Note that at the low redshifts we consider in this
section, the lensing contributions are negligible. The
coherent/non-Poissonian velocity term Cvel:

11 (Eq. (21)) is
plotted as solid lines in Fig. 2. It is shown as a function of
the mean redshift of the survey. In other words, �z is fixed
at 0.05, but the central redshift is allowed to vary, and Cvel:

11
is shown as a function of that central redshift. The various
solid lines span from top to bottom a survey area of 1000 to
41 000 square degrees [45]. A contiguous circularly sym-
metric geometry is assumed, except for the second solid
line from the bottom: it consists of two circular patches one
centered at the north and the other south, with a total area
123526
of 20000 square degrees, in other words, it has a galactic
cut of about �30.

For comparison, we show as a dashed line the Poissonian
velocity term ��Poiss:;vel:

1 �2=N (Eq. (19) and (20)), with N �
300 SNe. Note that this term is independent of the survey
area. We also show as dotted lines the intrinsic Poissonian
term ��intr:

1 �
2=N, for �intr:

1 � 0:1 (lower line) and �intr:
1 �

0:15 (upper line).
The above numbers are chosen for a reason: the Nearby

Supernova Factory (SNfactory) is a survey of about
300 SNe that covers roughly half of the sky (� 20000
square degrees), and is centered around z� 0:055 span-
ning a width of �z� 0:05. (Other similar surveys include
the Carnegie Supernova Project and LOTOSS, see [4].) To
be precise, henceforth, whenever we discuss the SNfactory,
we assume a geometry that coincides with the next to
-8



FIG. 3. The zero-point (M in Eq. (1)) rms error as a function of
survey area (keeping all other parameters fixed). The survey
redshift coverage is fixed: z � 0:03–0:08, and the number of
SNe is 300. The upper pair of solid lines allow for the effects of
peculiar motion, while the lower pair of dotted lines do not.
Within each pair, the upper line uses an intrinsic scatter of
�intr: � 0:15 and the lower one uses �intr: � 0:1. Note that the
SNfactory (SNf) covers half of the sky, which is about 20 000
square degrees.
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bottom solid line of Fig. 2. (The moral of the bottom three
solid lines is that neither the precise area nor the precise
geometry matters much, as long as the survey covers a
significant fraction of the sky and does not have many
holes or edges.) One can see that for these parameters,
the coherent fluctuation term Cvel:

11 is larger than the
Poissonian (intrinsic and velocity) terms, and becomes
even more important if the survey were done at a lower
redshift. The Poissonian velocity term (dashed line), on the
other hand, is always subdominant compared to the intrin-
sic term [46]—this is probably the reason for the common
perception that peculiar motion can be ignored as part of
the error budget for SN surveys. This perception is incor-
rect because it ignores the coherent velocity fluctuations
quantified by Cvel:

11 (solid lines).
It is useful to understand qualitatively why the different

contributions to ~C11 depicted in Fig. 2 take the values they
do. The contribution from the Poissonian intrinsic scatter is
the simplest: 0:12=300 or 0:152=300 giving 3:3� 10�5 or
7:5� 10�5 (dotted lines). The contribution from the
Poissonian velocity term is also easy to understand. At
low redshifts, the term �Poiss:;vel:

1 (Eq. (20)) is roughly
2:17� v=�cz� where v is the typical peculiar velocity (�
300 km=s) and cz is the Hubble flow. For instance, at z �
0:055, this amounts to �Poiss:;vel:

1 � 0:04, and therefore
��Poiss:;vel:

1 �2=300� 5� 10�6 (dashed line). For the non-
Poissonian velocity term Cvel:

11 (Eq. (22)), let us focus on the
case corresponding to the SNfactory, with a total area of
20 000 square degrees and a mean redshift of z � 0:055
(the lowest black line). The large survey area means that
the window functionWvel:

11 �k� is dominated by the low order
multipoles (Eq. (23)). Let us consider the monopole ‘ � 0,
which picks out k� 0:005 h=Mpc corresponding to a
mean distance of ����� 200 Mpc=h. The integral
over power spectrum (second line of Eq. (22)) can there-
fore be approximated by 4�kP�k�=�2��3 evaluated at k�
0:005 h=Mpc, giving roughly 4 �Mpc=h�2. The prefactors
in the first line of Eq. (22) equal ��2:17�2 � �1=0:055�2 �
�0:5=3000�2 �h=Mpc�2, where we have made use of the fact
that D0 is roughly half the inverse Hubble radius
�0:5=�3000 Mpc=h� (recall that the speed of light is set
to one). Putting all these together yields Cvel:

11 � 2� 10�4.
A low redshift survey such as the SNfactory provides an

important anchor for surveys at higher redshifts in that it
helps determine the zero-point M (Eq. (1)). As we will see,
combining high redshift SN surveys with a low redshift
survey such as the SNfactory often reduces the error on the
equation of state of dark energy by a factor of about 2. It is
therefore important to ask: to what extent does peculiar
motion, particularly coherent peculiar motion, increase the
projected error on M from a survey like the SNfactory?

Figure 3 provides the answer. The dotted lines show the
errorbar on M (keeping all other parameters fixed [47])
from a survey of 300 SNe that spans z � 0:03–0:08, ignor-
ing peculiar motion i.e. only the intrinsic magnitude scatter
123526
is taken into account: the upper dotted line is for an
intrinsic scatter of �intr: � 0:15, and the lower dotted line
is for �intr: � 0:1. With only the intrinsic scatter taken into
account, the error on M is independent of survey area. The
solid lines show the same, except this time including
peculiar motion induced fluctuations. As before, the upper
line of the pair uses �intr: � 0:15 and lower line uses
�intr: � 0:1. (At these redshifts, other sources of large scale
structure fluctuations such as lensing are negligible.) For a
survey like the SNfactory (� 20000 square degrees), one
can see that peculiar motion increases the error on M by
about a factor of 2, depending on the intrinsic scatter
assumed. This result makes good sense because we can
see from Fig. 2 that including the coherent velocity con-
tribution Cvel:

11 raises the total magnitude covariance by a
factor of 3–4. The lesson: peculiar velocity has a signifi-
cant impact on the determination of the SN zero-point from
a low redshift anchor.

Note that in all our computations of the coherent/corre-
lated velocity term Cvel:

ij , we use the exact expression that
allows for large angles (Eq. (22)). We find that using the
plane-parallel approximation (Eq. (21)) leads to an under-
estimate of Cvel:

ij by only about 10%, even for a survey with
high sky coverage like the SNfactory.

Figure 2 might give one the impression that one is better
off moving the low redshift anchor to a higher z where the
peculiar motion induced magnitude fluctuations are
-9
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smaller, largely because the ratio of peculiar velocity to
Hubble flow is smaller. However, to measure the equation
of state wpivot accurately, it is advantageous to have a long
lever arm in redshift. In other words, a large redshift span
(from the low redshift anchor like the SNfactory to a high
redshift SN survey) is preferable—recall that the discov-
ery of cosmic acceleration comes from comparing the low
redshift part (z & 0:1) of the Hubble diagram with the high
redshift part (z� 1). From this point of view, it is not
immediately obvious that moving the low redshift anchor
to a higher z actually helps. Figure 4 addresses this
question.

The solid lines show the marginalized error on wpivot

when a high z SNAP-like survey of 2000 SNe (see Table I
for details) is combined with a low z survey of 300 SNe,
width �z � 0:05 and a mean z as shown on the x-axis
(with a geometry like that used for the SNfactory, see
Fig. 2). A prior of rms ��de � 0:03 is assumed. The two
solid lines are for a low z survey area of 1000 (upper) and
20 000 (lower) square degrees, respectively. They allow for
FIG. 4. Marginalized error on wpivot as a function of the mean
redshift of a low z survey of 300 SNe, with �z � 0:05. The
upper panel assumes an intrinsic magnitude dispersion of
�intr: � 0:15, and the lower panel uses �intr: � 0:1. Here, it is
assumed the low z survey is combined with a high z SNAP-like
survey whose parameters are kept fixed (see Table I). The solid
lines show the error on wpivot when peculiar motion induced
fluctuations (dominated by the coherent ones) are taken into
account: the upper solid line is for a low z survey area of 1000
square degrees and the lower one is for 20000 square degrees.
The dotted line shows the same when peculiar motion is ignored,
hence the result is independent of survey area. For comparison,
the horizontal dashed line shows the error on wpivot if one uses
only the data from the high z SNAP-like survey. Gravitational
lensing is taken into account in all cases above. A prior of
��de � 0:03 (flat universe) is assumed.

123526
all sources of magnitude fluctuations we have discussed:
peculiar motion, gravitational lensing and intrinsic scatter
(the upper panel is for �intr: � 0:15 and the lower panel
uses �intr: � 0:1). One can see that the optimal mean
redshift for the low z survey is about 0.08. However, as
long as the mean redshift is above 0.06 or so, the precise
redshift does not appear to matter much. The upturn of the
error at z & 0:06 is due to coherent peculiar motion as
discussed before (Fig. 2). The flatness of the solid lines at
z * 0:06 is due to the rough cancellation of two opposing
effects mentioned above: a higher redshift (for the low
redshift anchor) is good for suppressing peculiar motion
induced fluctuations while a lower redshift is useful for
creating a long lever arm. The SNfactory has a mean
redshift which is sufficiently close to optimal that it is
probably not worth moving it to a higher redshift where
observations are more challenging.

The dotted line shows the error on wpivot for exactly the
same set up as above but with peculiar motion ignored (the
result is independent of the survey area of the low z
survey). One can see that by ignoring peculiar motion,
one might reach the erroneous conclusion that the
SNfactory should be moved to a lower redshift. We em-
phasize that it is the coherent peculiar motion that matters
here—the Poissonian velocity-induced fluctuations are
simply too small to be of consequence (see Fig. 2). For
comparison, we also show in Fig. 4 with a horizontal
dashed line the error on wpivot if one uses only the data
from the high z survey. The difference between the dashed
line and the solid/dotted lines illustrates the benefit of
having a low z anchor.

Rather similar conclusions are reached about the optimal
redshift of the low z anchor when we examine the impact
on the error of wa, or when we combine the low z survey
with other high z surveys e.g. those in Table I.
TABLE I. A summary of survey parameters we study in this
paper. Each set of parameters are supposed to mimic, but not
necessarily exactly match, actual SN surveys that go by these
names [4]. For instance, the (flat) redshift distributions almost
certainly differ from the actual ones-hey are chosen for simplic-
ity. For JEDI and SNAP, the redshift distribution is taken from
[10], scaled to the appropriate number of SNe. For some surveys
not included in this table, such as the Carnegie Supernova
Project and CfA Supernova Program at low redshifts and the
LSST and Pan-STARRS at high redshifts, see [4].

Survey No. of SNe Area (sq. deg.) Redshift Dist.

DES 1900 40 0.2–0.8 flat
ESSENCE 200 12 0.2–0.8 flat
JEDI 14 000 24 0.1–1.7 [10]
SDSSII 200 250 0.05–0.35 flat
SNAP 2000 15 0.1–1.7 [10]
SNfactory 300 20000 0.03–0.08 flat
SNLS 600 4 0.2–0.8 flat
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FIG. 5. Various lensing contributions to the magnitude covari-
ance matrix (Eq. (5)). Upper panel: the solid lines show the non-
Poissonian lensing term Clens

ii (Eq. (21)) as a function of z � zi
for a survey of 1, 5 and 15 square degrees (top to bottom); the
dotted line shows the Poissonian lensing term 2� ��lens

i �
2=N

(Eq. (5) and (20)), for N � 100; for reference, the dashed lines
show the expected contribution from intrinsic scatter ��intr:�2=N,
for �intr: � 0:15 (upper line) and 0.1 (lower line). Lower panel:
the normalized lensing correlation across redshifts i.e.
Clens
ij =	Clens

ii Clens
jj 


1=2 as a function of z � zi, for three different
values of zj: 0.045, 0.95 and 1.95.
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B. Gravitational lensing

Here, we are interested in the relative importance of the
Poissonian and non-Poissonian lensing-induced fluctua-
tions, ��Poiss:;lens

i �2 and Clens
ij . The latter has been largely

overlooked in error forecasts for SN surveys. As we will
see, unlike the case of peculiar motion, it is the Poissonian
term that is important for lensing. Because this term is
sensitive to small scale fluctuations, as mentioned in
x IV B, we always use the nonlinear mass power spectrum
to compute all lensing quantities.

To facilitate comparison with previous treatments of the
Poissonian lensing fluctuations, we introduce one modifi-
cation to our previous expressions: replace Eq. (19) by

 ��Poiss:
i �2 � 2��Poiss:;lens

i �2 � ��Poiss:;vel:
i �2: (24)

The boost factor of 2 appears to be necessary to roughly
reproduce the results of [12] who used a halo approach
instead of following a power spectrum approach like we
do. (The results of [12] are about 2–3 times higher than
ours without the boost factor.) In other words, [12] effec-
tively used a different power spectrum from ours.
Physically, such a boost could arise from nongravitational
physics (recall that the nonlinear power spectrum we use
[43] arises purely from gravitational instability). For in-
stance, the adiabatic contraction of dark matter halos due to
the radiative cooling of baryons can enhance the power
spectrum on small scales [48]. There could even be a
significant population of MACHOs which can lens the
SNe (see e.g. [12]). On the other hand, there is at least
some evidence suggesting that Cold Dark Matter models
might overpredict the amount of small scale structure. The
precise boost factor is therefore a bit uncertain. The choice
of 2 is somewhat arbitrary, but it seems prudent to include
some enhancement of power due to well-motivated physi-
cal effects [48]. Ultimately, high redshift SNe themselves
will tell us what the right level of Poissonian lensing
fluctuation is. In any case, the boost leads to a more
conservative errorbar. Throughout this paper, Eq. (24) is
used in place of Eq. (19) when making error forecasts.

It is interesting to note that if the small scale power
spectrum has a shape similar to that seen in N-body simu-
lations [43], the integral for ��Poiss:;lens

i �2 (Eq. (20)) is
dominated by k� 10 h=Mpc. This coincides with the scale
where the adiabatic contraction of halos due to baryon
cooling, in some sense the most plausible nongravitational
effect, is expected to become important [48]. On larger
scales, gravity is almost certainly the only significant
shaping force of large scale structure. This is why no boost
factor is necessary for the non-Poissonian lensing term
Clens
ij (Eq. (21)).
Figure 5 shows the relative importance of the Poissonian

and non-Poissonian lensing terms. The upper panel shows
with solid lines the non-Poissonian lensing term Clens:

ii
where we have divided the redshift into bins of �z � 0:1
each [49]. The term Clens:

ii depends on survey area, and we
123526
show from top to bottom the result for 1, 5, and 15 square
degrees. The dotted line shows the Poissonian lensing term
2��Poiss:;lens

i �2=N, where one can think of N � 100 as the
number of SNe in a redshift bin. For comparison, we show
with dashed horizontal lines the Poissonian term due to
intrinsic scatter ��intr:�2=100, with the upper line using
�intr: � 0:15 and the lower line using �intr: � 0:1. The
number of N � 100 is somewhat arbitrary but it roughly
corresponds to the number of SNe per redshift bin of 0.1 in
a survey like SNAP, which also has an area of around 15
square degrees (Table I).

What can we conclude from Fig. 5? From the upper
panel, one can see that lensing begins to be of comparable
importance to the intrinsic scatter when the redshift climbs
above 1 or so. Moreover, unless the survey area is quite
small (less than �1 square degree), the non-Poissonian
lensing term is small compared to the Poissonian lensing
term at redshifts where they matter. From the lower panel,
we can see that there is a significant amount of lensing-
induced correlations between different redshifts. However,
because Clens

ii is small to begin with (compared to
2��lens

i �
2=N), we do not expect these cross-redshift corre-

lations to hugely impact dark energy errors from SN sur-
veys. We have verified this to be the case.
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FIG. 6. Similar to Fig. 5, except that the survey area is 24
square degrees, and N � 700, numbers that are motivated by
JEDI (think of N as roughly the number of SNe per �z of 0.1).

FIG. 7. The degradation in the marginalized error on the
equation of state wpivot for several high redshift SN surveys,
each used in conjunction with the SNfactory as a low redshift
anchor. (The error on wpivot is marginalized over wa, �de and M;
because of our choice of the scale factor pivot, this is identical
with the error on a constant equation of state, marginalized over
�de and M; see Sec. II.) Degradation refers to the fractional
increase in the rms marginalized error on wpivot due to large scale
structure induced fluctuations i.e. degradation �
�wpivot=�w

intr:
pivot � 1, where �wintr:

pivot allows for only the intrinsic
scatter while �wpivot takes into account both the intrinsic scatter
and large scale structure. The division of each histogram into
black and white regions show how much of the degradation is
due to lensing (black) and how much due to peculiar motion
(white). The upper panel uses 0.1 for the intrinsic scatter �intr:,
while the lower panel uses 0.15. In all cases, except JEDI, the
lensing degradation is completely dominated by Poissonian
lensing fluctuations. For JEDI, the black-filled portion is the
degradation due to Poissonian lensing fluctuations and the black-
hatched portion is the additional degradation due to non-
Poissonian/coherent lensing fluctuations. A prior of ��de �
0:03 (flat universe) is assumed.
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The above conclusion about the relative importance of
non-Poissonian and Poissonian lensing terms is subject to
changes in survey parameters, however. Figure 6 is similar
to Fig. 5, except that the number of SNe per redshift bin is
increased to 700, as motivated by the ambitious SN survey
JEDI. (The area is also slightly increased to 24 square
degrees from the 15 square degrees of SNAP, though that
has a minor impact relatively speaking.) One can see that
the non-Poissonian and the (boosted) Poissonian lensing
terms are here of comparable importance at the redshifts
where they matter (z * 1).

C. Error forecasts: Peculiar motion versus lensing

We are finally ready to make error forecasts for several
examples that approximate ongoing/proposed SN surveys.
They are described in Table I. Note that the adopted
parameters by no means exactly match those of actual
surveys that go by those acronyms, but they should be
close. Also, except for the SNfactory (see Fig. 2), we
assume the area listed for each survey is over a contiguous
region, and, for simplicity, consists of a circular patch on
the sky. (We will have more to say later on the implications
of the exact survey geometry.) See [4] for further details on
these surveys, and others we have not worked out explic-
itly. Our procedure, simply put, is: we put Eq. (24) and
Eq. (20)–(23) for the large scale structure induced magni-
tude fluctuations into Eq. (5) and (3) for the Fisher matrix,
and obtain the relevant dark energy errors.

For readers interested in the bottom line, Fig. 7 and 8 are
in some sense the most important figures of this paper.
They show the degradation in the marginalized error on
wpivot for several high redshift SN surveys, each used in
123526
conjunction with the SNfactory as a low redshift anchor.
Degradation refers to the fractional increase in error. It is
defined as �wpivot=�w

intr:
pivot � 1, where �wintr:

pivot is the rms
error when only the intrinsic scatter is included, and �wpivot

is the rms error when all sources of fluctuations
(intrinsic� lensing� velocity) are included (full histo-
gram, including both black and white portions), or when
only intrinsic� lensing fluctuations are included (black
portion of the histogram). In other words, the white (black)
portion of the histogram tells us the degradation due to
peculiar motion (lensing). In all cases other than JEDI, the
lensing fluctuations are completely dominated by the
Poissonian ones (the ones that are customarily considered).
For JEDI, the black-filled portion represents the degrada-
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FIG. 8. Same as Fig. 7 except that no prior on �de is assumed,
though the universe is still flat. FIG. 9. Projected (68.3%) errors for SNAP � SNfactory for

three different combinations of sources of noise: intrinsic scatter
only (dotted lines), intrinsic scatter � large scale structure
induced fluctuations (solid lines), and intrinsic scatter � large
scale structure � systematic error (dashed lines). The upper
panel shows the errors for �de and wpivot marginalizing over
the derivative wa � �dw=da and the zero point M, assuming a
flat universe but no prior on �de. The lower panel shows the
errors for wa and wpivot marginalizing over the dark energy
density �de and the zero-point M, assuming a flat universe
and a prior of ��de � 0:03. Here, w � wpivot � wa�apivot �

a�, where apivot is chosen to make the errors on wpivot and wa
uncorrelated (see Sec. II). Note that �wa � 2�w0, where w0 is
another common parametrization of the evolution of the equation
of state: w0 � dw=dz. In both panels, �intr: � 0:1 is used. The
degradation in errors due to large scale structure is primarily due
to coherent peculiar motion and Poissonian lensing fluctuations
(see Fig. 7 and 8). The systematic error is assumed to be �sys: �
0:02�1� z�=2:7 [50]. It appears the degradation due to large
scale structure and that due to systematic error are comparable.
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tion when intrinsic� Poissonian-lensing fluctuations are
included, and the black-hatched portion represents the
additional degradation when non-Poissonian/coherent
lensing fluctuations are taken into account. The error on
wpivot here is obtained by marginalizing over wa, �de and
M (as discussed in Sec. II and the Appendix A, this is
identical to the error on a constant equation of state,
marginalized over �de and M). A prior of rms ��de �
0:03 is assumed for Fig. 7, while no such prior is used for
Fig. 8. A flat universe is assumed in both cases. The upper
panel uses an intrinsic scatter of size �intr: � 0:1, and the
lower panel uses �intr: � 0:15. An important conclusion:
the general trend is for surveys that have a higher statis-
tical power to suffer more degradation, and in most cases,
peculiar motion dominates the degradation (white portions
of the histograms).

Figure 9 shows the error contours for the example of a
SNAP-SNfactory combination. The dotted contours in-
clude the intrinsic scatter only, while the solid contours
include both the intrinsic scatter and large scale structure
(velocity� lensing) fluctuations. The dashed contours are
for the case where some level of systematic error (�sys �
0:02�1� z�=2:7 [50]) is included on top of intrinsic plus
large scale structure fluctuations. One can see that a sys-
tematic error of this size degrades the determination of
wpivot to a degree that is comparable to large scale structure
(see the end of this section for more discussion). Note that
this figure uses �intr: � 0:1; for �intr: � 0:15, the con-
straints would be worse.

For readers interested in further details, Table II displays
error forecasts for all interesting parameters for various
combinations of surveys, assumptions and priors. There are
several interesting points to be made.
123526
(i) T
-13
he prior of ��de � 0:03, which is often assumed
in the literature, makes quite a difference to the
projected errors on the equation of state wpivot and
its slope wa (Eq. (2)), especially for the smaller
surveys—those with a narrower redshift range and
fewer SNe.
(ii) T
he addition of a low redshift survey like the
SNfactory generally improves the errorbars signifi-
cantly, the more so for surveys with less statistical
power.
(iii) A
s mentioned in Sec. II, the error on wpivot, margi-
nalized over the slope wa, dark energy density �de

and the zero-point M, is exactly equal to the error
on a constant equation of state, marginalized over
�de andM (this is the result of an optimally chosen
scale factor pivot). This is relevant especially for



TABLE II. Marginalized 1� errors for different combinations of surveys and assumptions. The survey parameters are taken from
Table I (SNf here stands for the SNfactory). The descriptions in parentheses, ’all’, ’intr’, ’sys’, ’sys2’ refer to the sources of errors that
are included in the forecasts-all’ means including all sources of random fluctuations intrinsic-scatter� lensing� velocity, ’intr’ means
including only the intrinsic scatter, and ’sys’ and ’sys2’ mean systematic error (see text for details). The errorbar on each parameter is
obtained by marginalizing over all the other parameters (altogether, there are four: wpivot, wa, �de and the zero-point M; see x II).
Those errorbars with the description ’prior’ assume a prior of rms ��de � 0:03, while those denoted with ’no pr.’ assumes no such
prior. For each entry, we give two numbers in the form x=y, where x assumes the intrinsic scatter has a size of �intr: � 0:15 and y
assumes �intr: � 0:1. Note that in cases where the errorbars are sufficiently large, the Fisher matrix analysis likely breaks down. The
above numbers are rounded-off at two significant figures. A flat universe is assumed throughout.

Survey �wpivot (prior) �wa (prior) �M (prior) �wpivot (no pr.) �wa (no pr.) ��de (no pr.) �M (no pr.)

DES� SNf (all) 0:085=0:079 0:69=0:57 0:021=0:018 0:17=0:14 4:9=3:5 0:47=0:33 0:027=0:023
DES� SNf (intr) 0:073=0:061 0:60=0:46 0:013=0:009 0:13=0:09 4:5=3:0 0:44=0:29 0:018=0:012
DES (all) 0:11=0:01 1:4=1:0 0:064=0:044 0:36=0:25 17=12 1:4=0:9 0:23=0:15
DES (intr) 0:11=0:10 1:4=1:0 0:063=0:042 0:35=0:23 17=11 1:3=0:9 0:22=0:15
ESSENCE� SNf (all) 0:094=0:087 1:5=1:1 0:024=0:021 0:36=0:26 14:0=9:6 1:4=1:0 0:043=0:033
ESSENCE� SNf (intr) 0:084=0:075 1:4=1:0 0:017=0:011 0:34=0:23 13:6=9:1 1:3=0:9 0:038=0:025
ESSENCE (all) 0:19=0:15 4:2=2:9 0:20=0:13 1:11=0:76 54=37 4:2=2:9 0:69=0:47
ESSENCE (intr) 0:18=0:14 4:1=2:8 0:19=0:13 1:1=0:72 52=35 4:1=2:7 0:68=0:45
JEDI� SNf (all) 0:041=0:032 0:46=0:41 0:013=0:011 0:042=0:033 0:76=0:60 0:042=0:033 0:017=0:013
JEDI� SNf (intr) 0:032=0:021 0:41=0:32 0:010=0:007 0:032=0:022 0:60=0:40 0:033=0:022 0:011=0:008
JEDI (all) 0:046=0:035 0:52=0:46 0:018=0:014 0:048=0:036 0:99=0:73 0:052=0:039 0:025=0:018
JEDI (intr) 0:041=0:028 0:50=0:42 0:017=0:013 0:042=0:028 0:90=0:60 0:046=0:031 0:024=0:016
SDSSII� SNf (all) 0:12=0:10 5:7=4:0 0:039=0:031 1:6=1:1 101=69 15=10 0:092=0:067
SDSSII� SNf (intr) 0:105=0:081 5:4=3:6 0:031=0:021 1:5=1:0 99=66 15=10 0:085=0:057
SDSSII (all) 0:17=0:12 8:0=5:4 0:081=0:056 2:3=1:6 145=97 21=14 0:20=0:14
SDSSII (intr) 0:17=0:12 7:8=5:2 0:078=0:052 2:2=1:5 143=95 20=14 0:20=0:13
SNAP� SNf (all) 0:069=0:058 0:57=0:52 0:018=0:015 0:079=0:063 1:5=1:2 0:09=0:07 0:022=0:019
SNAP� SNf (intr) 0:054=0:038 0:53=0:46 0:011=0:008 0:06=0:04 1:32=0:88 0:078=0:052 0:014=0:009
SNAP� SNf (all� sys) 0:075=0:067 0:60=0:55 0:018=0:016 0:090=0:077 1:8=1:5 0:11=0:09 0:022=0:020
SNAP� SNf (intr� sys) 0:061=0:049 0:56=0:50 0:012=0:008 0:073=0:056 1:6=1:2 0:10=0:08 0:015=0:010
SNAP� SNf (all� sys2) 0:081=0:074 0:63=0:59 0:020=0:018 0:101=0:089 2:0=1:7 0:12=0:10 0:025=0:023
SNAP� SNf (intr� sys2) 0:071=0:062 0:59=0:55 0:015=0:013 0:086=0:073 1:8=1:5 0:111=0:093 0:019=0:016
SNAP (all) 0:101=0:078 0:70=0:62 0:038=0:028 0:121=0:087 2:6=1:9 0:14=0:10 0:066=0:046
SNAP (intr) 0:096=0:069 0:68=0:60 0:037=0:026 0:110=0:074 2:4=1:6 0:122=0:082 0:063=0:042
SNLS� SNf (all) 0:089=0:084 0:98=0:75 0:022=0:019 0:24=0:18 8:2=5:7 0:81=0:56 0:032=0:026
SNLS� SNf (intr) 0:077=0:069 0:89=0:64 0:014=0:009 0:21=0:14 7:9=5:3 0:78=0:52 0:025=0:017
SNLS (all) 0:14=0:12 2:5=1:7 0:114=0:078 0:64=0:44 31=21 2:4=1:7 0:40=0:27
SNLS (intr) 0:13=0:11 2:4=1:6 0:11=0:07 0:62=0:42 30=20 2:4=1:6 0:39=0:26

LAM HUI AND PATRICK B. GREENE PHYSICAL REVIEW D 73, 123526 (2006)
the smaller surveys—they produce only weak con-
straints on the variation ofw, which is why the error
on w generally projected for these surveys assumes
no variation with z. Our marginalized error on
wpivot can be compared directly against these fore-
casts. Note, however, that our error on �de, margi-
nalized over wpivot, wa and M, is generally larger
than the error on �de, marginalized over a constant
equation of state and M.
(iv) S
everal surveys have a rather similar redshift cover-
age of z� 0:2–0:8: DES, ESSENCE and SNLS. On
their own, without the addition of the SNfactory,
one can see that the large scale structure fluctua-
tions make little difference to the errors (compare
‘‘all’’ with ‘‘intr’’). This is because peculiar motion
is only important for z & 0:1 and lensing is impor-
tant only for z * 1. It is with the addition of the
123526-14
SNfactory (which is useful because it improves the
errors quite a bit) that peculiar motion has an
impact.
(v) L
arge scale structure fluctuations generally have a
larger impact (fractionally) on the errors for larger
surveys, a point already illustrated in Fig. 7 and 8.
(vi) F
or the most part, we have so far focused on
statistical errors. This is in part because the level
of systematic errors is uncertain, depending on the
precise capabilities and operational details of the
respective experiments. To get some idea of how
systematic errors might change our conclusions, we
try two different prescriptions for the systematic
error: one from [10] �sys: � 0:02� �z=1:7�, and
the other from [51] �sys: � 0:02� �1� z=2:7�
(see [50] on redshift binning). They behave simi-
larly at high z, but the latter implies a larger system-
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atic error at low z. We apply these to SNAP �
SNfactory in Table II, with the former prescription
labeled as ‘‘sys’’ and the latter labeled as ‘‘sys2’’.
The general conclusion is that systematic error
contributes to a degradation that is comparable to
large scale structure. This is illustrated in Fig. 9:
compare the increase in error for wpivot from the
dotted to solid contours against that from the solid
to dashed contours.
VI. DISCUSSION

Let us summarize the main lessons.

(i) L
arge scale structure induced magnitude fluctua-

tions have a significant impact on dark energy
measurements from a whole array of ongoing or
future SN surveys. For instance, the degradation,
due to large scale structure, in the error for the
equation of state wpivot ranges from 10% to 60%
depending on surveys and assumptions (Fig. 7 and
8). It appears difficult to measure from SNe alone
the equation of state to better than about 7%–10%
(depending on assumptions), unless one has a sur-
vey considerably more ambitious than SNAP �
SNfactory (see Fig. 9 and Table II).
(ii) O
f all possible large scale structure fluctuations, the
dominant ones are due to peculiar motion and
gravitational lensing. Peculiar motion is important
at z & 0:1 (through a low redshift anchor such as
the SNfactory) while lensing dominates at z * 1.
The impact of peculiar motion is mainly through
coherent/correlated large scale flows (Fig. 2) while
the impact of lensing is mainly through Poissonian
fluctuations (Fig. 5). The Poissonian fluctuations
can be reduced by increasing the number of SNe,
while the coherent ones can only be suppressed by
increasing the survey area. When a high redshift
(z * 0:1) survey is combined with a low redshift
anchor (z & 0:1), we find that peculiar motion
mostly dominates over lensing as a source of error.
(iii) W
hat does the above mean for survey designs? As
has been emphasized in the literature (e.g. [4]), a
low redshift anchor such as the SNfactory is very
useful for reducing the eventual dark energy errors
from a high redshift SN survey. For such a low
redshift survey, one might have hoped to reduce the
coherent peculiar motion induced fluctuations by
either increasing the survey area or moving it to a
higher redshift. All else being equal, neither will
improve appreciably the precision on dark energy
determination. The SNfactory already covers half
of the sky; going to full sky will not reduce the
errors significantly. For instance, combining SNAP
with an all-sky version of SNfactory instead of the
half-sky one that we have been assuming, the
marginalized error for �wpivot would improve by
123526-15
only about 1%. Furthermore, moving SNfactory to
a higher redshift, while useful in reducing peculiar
motion induced fluctuations, shortens the lever arm
that the combination of a high redshift survey and a
low redshift anchor offers. The net effect is that
moving the low redshift anchor to a higher redshift
actually does not reduce the error on the equation of
state wpivot appreciably (Fig. 4).
(iv) H
ow about survey designs for a high redshift sur-
vey? For a high redshift survey (considered on its
own) that does not extend beyond z� 1 (e.g. DES,
ESSENCE and SNLS all cover roughly z�
0:2–0:8), neither peculiar motion nor lensing con-
stitutes significant sources of errors. The only way
to reduce dark energy errors is to increase the
number of SNe, and suppress systematic errors.
The precise survey area is of little importance for
such a survey, as long as it is not too small (too
small meaning 1 square degree or less, see Fig. 5).
(Of course, peculiar motion does play a role in the
eventual errors once one combines such a high
redshift survey with a low redshift anchor, which
as emphasized above, is generally a good idea.) For
a high redshift survey that extends beyond z� 1,
gravitational lensing becomes a non-negligible
source of errors. But because lensing’s impact is
mainly through the Poissonian fluctuations it intro-
duces, increasing survey area (such as for SNAP) is
not really necessary. The only instance in which a
case can be made for increasing survey area is
JEDI, which has a sufficiently small Poissonian
error (due to its large number of SNe) that coher-
ent/correlated lensing fluctuations actually play a
role (see Fig. 7 and 8).
Our investigations in this paper naturally raise a number
of questions and issues, some of which we address briefly
here, and some require further research.
(1) P
erhaps the most natural and interesting question is
whether current constraints on dark energy, which
typically come from some combination of high and
low redshift SNe (z * 0:1 and & 0:1), are already
affected by peculiar motion. The short answer is: not
very much. This is because the current number of
low redshift SNe used (typically several 10’s) is
sufficiently small that the Poissonian error (due to
simply intrinsic scatter) is quite a bit larger than the
coherent velocity error. This can be inferred from
Fig. 2: raising the dotted lines by a factor of �10
(due to dropping the number of SNe from 300 as in
the figure to �30) means the Poissonian intrinsic
scatter constitutes a larger source of error than co-
herent peculiar motion (solid lines). Note that this
argument assumes the existing low redshift SNe are
selected from a large area of the sky e.g. [52] (so that
it is the lowest few solid lines of Fig. 2 that is
relevant). The conclusion could be quite different
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if this assumption does not hold. We urge SN experi-
ments to clearly state the survey areas of their differ-
ent samples (especially the low z samples) when
publishing their results.
(2) I
n our forecasts for a selection of representative SN
surveys (Table I), we have assumed simple geome-
tries—a contiguous circular region on the sky for
the high z surveys, and two separate patches (one in
the north and one in the south) for the SNfactory.
Realistic surveys are bound to be more complicated
in shape, possibly with many holes or gaps. The
exact geometry affects the size of the coherent
fluctuations but not the Poissonian ones. Since for
the most part the only coherent fluctuations we need
worry about are those due to peculiar motion which
is important only at low z’s, it is mainly the exact
geometry of something like the SNfactory that con-
cerns us. It is therefore worth repeating our calcu-
lations for the actual geometry of the SNfactory,
including possible extra gaps for instance. For this
purpose, we have given sufficiently general expres-
sions for the relevant window functions (Wlens

ij and
Wvel:
ij ) in Eq. (21) and (22), and in Eq. (D12) and

(D13) in Appendix D. Note that gaps almost always
increase the importance of coherent fluctuations
because of the introduction of high k modes. For
the high redshift surveys that extend beyond z� 1,
it would be useful to check that a realistic survey
geometry does not make the coherent lensing fluc-
tuations much more important (though we do not
expect this to happen, as long as the survey area
exceeds �1 square degree). For high z surveys that
stay within the redshift range 0:1 & z & 1, neither
velocity nor lensing fluctuations are expected to be
important (unless the number of SNe is much larger
than what has been considered), and so the survey
geometry has a relatively minor impact.
(3) W
e have largely ignored internal motion in our
discussions of velocity-induced fluctuations. By in-
ternal motion we mean the motion of the SNe within
galaxies, for instance due to the virialized motion of
the SN progenitors, or even due to the orbital motion
of the SN itself within the binary system that is its
progenitor. Such motion could contribute to the
overall peculiar velocity of the SNe. Ignoring inter-
nal motion is justified by the fact that in practice the
redshifts are assigned based on the redshifts of the
host galaxies. Even in exceptional cases where the
hosts are too faint to obtain reliable redshifts, such
internal motion is not expected to be correlated
between SNe in different galaxies, and so our cal-
culation of the coherent/correlated velocity fluctua-
tions remains valid. Internal motion can certainly
increase the Poissonian velocity fluctuations.
However, typical virialized motion is of the order
of a few hundred km=s, similar to the typical large
123526-16
scale flow velocity, and so the Poissonian velocity
fluctuations remain subdominant (Fig. 2). Also, the
orbital motion internal to the binary progenitor is
too slow to be of significance (see e.g. [53]).
(4) O
ur main focus in this paper is on statistical errors:
from intrinsic scatter and from large scale structure
induced fluctuations. We have investigated the ef-
fect of systematic error in some simple examples
(see Table II, entries for ’SNAP� SNf (all� sys)’
and ’SNAP� SNf (all� sys2)’, and the associated
discussion at the end of x V C; see also Fig. 9)—we
show that even in the presence of systematic error of
the assumed magnitudes, large scale structure fluc-
tuations remain a non-negligible source of errors for
dark energy measurements. It would obviously be
useful to investigate this further and explore a wider
range of systematic errors suitable for each SN
experiment.
(5) A
n implicit assumption in our calculations is that
the redshift measurements of low z SNe are suffi-
ciently accurate for us to worry about their peculiar
motion in the first place. Existing low z measure-
ments typically report an accuracy of �z�
0:001–0:002 (e.g. [54]). The spectral instrument of
the SNfactory has a resolution of 1200, correspond-
ing to �z� 0:001. (Note that the actual redshift
accuracy is likely to be better than the instrumental
spectral resolution, so this is a conservative esti-
mate.) Translating into velocities, we are talking
about a velocity of 300–600 km=s, or a magnitude
fluctuation of �m� 0:04–0:08 (for z� 0:05). This
is still smaller than the intrinsic magnitude scatter
that we assume: �intr: � 0:1 or 0.15. The redshift
uncertainty adds to the Poissonian scatter, and our
range of 0.1 to 0.15 can be thought of as accounting
for this possibility already. It is important, however,
that the redshift measurements do not suffer from a
systematic bias (that affects all SNe in the same
way). From Fig. 2, it can be seen that a systematic
bias of �z� 0:0003 or 100 km=s (at z� 0:05)
would have a comparable effect as coherent peculiar
motion.
(6) A
n interesting question is: to what extent can cor-
rections be made for the velocity and lensing fluc-
tuations? For instance, one could imagine using
galaxy weak lensing maps to correct for the magni-
fication of SNe. This has been shown to be not
viable, or not sufficiently accurate to be useful, by
[55]. This is because galaxy weak lensing maps
typically tell us the magnification on scales larger
than are relevant for the Poissonian part of SN
lensing. (These maps can be useful for correcting
the non-Poissonian/coherent part of SN lensing, but
this part of lensing is not very important for most SN
surveys anyway.) More recently it was argued by
[56] that corrections for (the Poissonian part of) SN
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lensing can be made by modeling foreground gal-
axies as isothermal spheres or generalizations
thereof. One should keep in mind that the
Poissonian lensing fluctuations are sensitive to
structures on relatively small scales (k *

10 h=Mpc), and a smooth halo profile does not
necessarily capture all the relevant fluctuations.
For instance, in the case of strong lensing, substruc-
tures are often invoked to explain the observed flux
ratios [57]. Most of the high z SNe will not be
strongly lensed, but a similar lesson applies here.
Moreover, using the foreground galaxies to make a
magnification correction inevitably involves as-
sumptions about bias: how galaxies trace mass. As
can be seen from Fig. 5,�lens=

����
N
p
� 0:01 for SNe at

z� 1:5 and N � 100 (per �z of 0.1, as appropriate
for SNAP for instance). For the lensing correction to
be useful, it should therefore satisfy two criteria:
first, the correction should be more accurate than 0.1
(in magnitude) per SN; second, it should not intro-
duce a systematic bias that is larger than 0.01 (in
magnitude; magnitude fluctuation � magnification
fluctuation). Even if the first can be achieved, the
second seems challenging.
How about corrections for velocity fluctuations?
Here, the situation is slightly different: what needs
to be corrected is the coherent part (i.e. large scale),
not the Poissonian part, of the fluctuations. Roughly
speaking, we need to know the low order multipoles
of the peculiar flow at the redshift of e.g. the
SNfactory (z� 0:055). One option is to use peculiar
velocity surveys (such as from the SNe themselves),
but it should be kept in mind that to disentangle the
Hubble flow from say the monopole, one needs a
survey that has the same sky coverage as the
SNfactory, but is deeper. This requires considerable
resources. Another option is to use the galaxy spatial
distribution as a guide, i.e using mass conservation
to relate peculiar velocity to the galaxy overdensity.
Such a procedure of course suffers from the uncer-
tain biasing relation between galaxies and mass.
Note also that one needs a galaxy survey that is
deeper than the SNfactory to define the correct
mean galaxy density. (For a recent paper that exam-
ines the peculiar motions predicted by the PSCz
survey, see [58]; it focuses on peculiar flows at
slightly lower redshifts than we need.) Whether
either option allows us to take out the effect of
bulk flows to sufficient accuracy is a question we
would like to address in the future.
(7) A
nother natural and interesting question is: to what
extent can the noise here, due to lensing and peculiar
motion, be viewed as a useful signal? In the case of
lensing, the issue is discussed in several recent
papers [23,24,59–61]. In general, it is difficult for
SNe to be competitive with galaxies as the sources
123526-17
for weak gravitational lensing experiments. Con-
sider for instance the measurement of the conver-
gence power spectrum: the shot-noise in the case of
SNe is ��intr:�2=�4n� (the factor of 4 comes from
�m�2	 where 	 is convergence), while the shot-
noise in the case of galaxies is ��
�2=�2n� (the factor
of 2 comes from the use of two components of shear
to estimate 	). Here the intrinsic magnitude scatter
�intr: is roughly 0.1–0.15, the shape noise �
 is
about 0.3, and the surface density n is approximately
0.04 per square arcminute for SNe (taking numbers
from SNAP), while n�30 per square arcminute for
a typical weak lensing galaxy survey. The shot-noise
from SNe is simply too big compared to that from
galaxies. Nonetheless, the lensing of SNe is free
from certain systematic errors that might affect the
lensing of galaxies, such as intrinsic alignment, and
so the SN method still provides a useful, though not
terribly stringent, consistency test.
How about the SN peculiar motion as a signal? For some
of the earlier work on this issue, see e.g. [22,54,62,63].
Among the different methods for measuring peculiar ve-
locities (see [19] for a review), SNe Ia constitute the most
accurate distance indicator on an object by object basis.
For instance, SNe Ia yield distances with an error of
�5%–7%, while Tully-Fisher distances are typically un-
certain at the 15%–20% level. On the other hand, Tully-
Fisher galaxy catalogs (e.g. [64]) typically have signifi-
cantly more objects than SN surveys, and therefore have
perhaps more statistical power. Yet, SN surveys might
suffer less from systematic errors that seem to have
plagued at least some Tully-Fisher galaxy catalogs (e.g.
[65]), and SN surveys generally go deeper. It remains an
interesting question to what extent competitive cosmologi-
cal constraints can be obtained from the peculiar motion of
SNe. We hope to explore this in the future.
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APPENDIX A: ON ERRORBARS

Let us briefly describe how to go from the Fisher matrix
to errorbars by giving some examples. Labeling the pa-
rameters wpivot, wa, �de and M as p1 to p4, the (rms)
errorbar on wpivot marginalized over everything else with

no prior is given by
����������������
	F�1
11

p
. If a prior on �de is desired,
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say with rms ��de � 0:03, the marginalized errorbar on

wpivot is equal to
�����������������������������
	�F�G��1
11

p
, where G is a diagonal

matrix with all zero-entries except for G33�1=0:032. On
the other hand, the error on wpivot keeping everything else

fixed is
�������������
1=F11

p
, which is generally smaller than the margi-

nalized error
����������������
	F�1
11

p
. For instance, in this paper, we have

occasion to study
�������������
1=F44

p
, the error on M keeping every-

thing else fixed.
It is also useful to elaborate the nature of the pivot in the

parametrization: w�a��wpivot�wa�apivot�a�. Suppose
we start with choosing apivot�1, and from the Fisher
matrix, after appropriate marginalization over �de and M
(with or without prior), arrive at a covariance matrix for the
errors on wpivot and wa of the form: Q11�h�w2

pivoti, Q12�

Q21�h�wpivot�wai and Q22�h�w2
ai. For instance, if we

marginalize over both �de and M with no prior, one can
obtain Q from inverting the full Fisher matrix: Q11�
	F�1
11, Q12�	F

�1
12 and Q22�	F
�1
22. In general, the

choice of apivot � 1 would not lead to a vanishing Q12.
Choosing a different apivot from the original apivot � 1
corresponds to a simple linear transformation on the pa-
rameters wpivot and wa. Our goal is to choose a new apivot

such that the errors on wpivot and wa are uncorrelated. This
can be accomplished by choosing apivot�1�Q12=Q22.
With this choice, the resulting error onwpivot (marginalized

over wa) becomes
�������������������������������
Q11�Q2

12=Q22

q
, while the error on wa

(marginalized over wpivot) remains the same i.e.
��������
Q22

p
. It

can be shown that this marginalized error on wpivot is ex-
actly the same as the error on w if dw=da were fixed (to be
zero) [31]. This is easiest to see if there are only two
parameters involved: wpivot and wa. With our choice of
apivot, Q is turned diagonal and so is its inverse (the Fisher
matrix). In such a case, marginalization over wa is equiva-
lent to fixing wa (to be zero for instance). It is straightfor-
ward to generalize this to the case of more parameters (e.g.
including �de and M). In other words, the error on wpivot,
marginalized over wa, �de and M, is exactly the same as
the error on a constant equation of state, marginalized over
�de and M. This is a useful fact to know because some ex-
periments quote errors on w assuming a vanishing dw=da.

For completeness, the following relation is useful: the
background dark energy density scales with redshift as � /
�1� z�3�1�wpivot�wa� exp	�3waz=�1� z�
 for the parametri-
zation w�a� � wpivot � wa�1� a�. This follows from en-
ergy momentum conservation d��a3� � �Pd�a3�, and
P � w�a��.

APPENDIX B: THE MAGNITUDE COVARIANCE
MATRIX I—GENERALITIES

Our goal is to derive Eq. (5) for the magnitude covari-
ance matrix ~Cij, as well as Eq. (6) and (7) for its individual
components.
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The average magnitude mi from a redshift bin i is:

 mi �
1

Ni

X
a

m0
a�ai; (B1)

where Ni is the number of SNe in that bin, m0
a denotes the

magnitude of individual SN labeled by a (instead of the
averaged magnitude as in mi), �ai equals 1 if SN a falls
within bin i and vanishes otherwise. The summation of a is
over all SNe in one’s survey. Note Ni �

P
a�ai.

From above, we have

 

~C ij � h�mi�mji �
1

NiNj

X
a;b

h�m0
a�m

0
bi�ai�bj: (B2)

The summation over a and b can be split into two terms:
a � b and a � b. The a � b term gives:

 

1

NiNj

X
a

h��m0
a�

2i�ai�aj �
�ij
N2
i

X
a

h��m0
a�

2i�ai: (B3)

The magnitude variance of an individual SN, h��m0
a�

2i, has
two contributions, one from intrinsic variations and the
other from large scale structure induced fluctuations. We
usually treat the intrinsic part as independent of a.
Therefore, we have

 �ij
1

N2
i

X
a

h��m0
a�

2i�ai � �ij
��intr:�2 � ��Poiss:

i �2

Ni
(B4)

where ��intr:�2 is intrinsic, and ��Poiss:
i �2 is due to structures.

The latter is defined to be

 ��Poiss:
i �2 �

1

Ni

X
a

h��m0
a�

2iPoiss:�ai; (B5)

which can be approximated by taking the continuum limit:

 ��Poiss:
i �2 �

�
5

ln10

�
2 Z dz

�zi
h	�dL�z�


2i: (B6)

This last expression makes use of the fact that �m0 �

�5= ln10��dL for the large scale structure fluctuations
(Eq. (1)), and that h	�dL


2i depends on redshift but not
angular position.

Equation (B4) reproduces exactly the Poissonian terms
in Eq. (5), while Eq. (B6) matches Eq. (6).

It remains to study the a � b contribution to Eq. (B2).
Once again, making use of �m0 � �5= ln10��dL for the
large scale structure induced fluctuations, we can approxi-
mate this by taking the continuum limit:

 

1

NiNj

X
a�b

h�m0
a�m

0
bi�ai�bj �

�
5

ln10

�
2 Z dzd2�dz0d2�0

�ziAi�zjAj

�h�dL�z;���dL�z
0;�0�i:

(B7)

There is no need to zero out the z � z0 and � � �0 con-
tributions in the above integrals because they are vanish-
-18
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ingly small. The expression above matches the non-
Poissonian term Cij in Eq. (5) and (7).

If one wishes, one can add a term, in addition to those in
Eq. (B6) and (B7), to h�mi�mji accounting for systematic
errors.

APPENDIX C: LUMINOSITY DISTANCE IN A
PERTURBED FRW UNIVERSE

Our aim is to derive an expression for the luminosity
distance fluctuation that is accurate to first order, and show
that among all first order terms, those in Eq. (18) dominate
in realistic applications. The derivation follows closely the
one given by Pyne & Birkinshaw [16,17]. The final ex-
pression agrees with that of [17] in the case of an Einstein
de-Sitter universe. It also agrees with the earlier result from
Sasaki [15] who also gave an explicit expression for an
Einstein de-Sitter universe. It disagrees slightly with [17]
for a more general universe, but only in terms that are
subdominant compared to the lensing and velocity terms
kept in Eq. (18). The origin of this difference is discussed
below.

For simplicity, we assume a flat universe. The metric in a
convenient gauge, the conformal Newtonian gauge, takes
the form [66]:

 ds2 � a2

�
��1� 2��d�2 � �1� 2��

X
i

�dxi�2
�

� a2	��1� 2��d�2 � �1� 2���d�2 � �2d�2�
;

(C1)

where � is the scalar perturbation which is also the gravi-
tational potential, � is the conformal time, a��� is the scale
factor, xi is the Cartesian comoving coordinate (i � 1, 2,
3), � is the radial comoving distance, and d�2 is the usual
angular part of the metric. We ignore vector and tensor
fluctuations and assume zero anisotropic stress.

We will take the path of first working out the angular
diameter distance, and then using the general relation
Eq. (9) to obtain the luminosity distance.

The null geodesics can be most easily worked out by
ignoring the factor of a2 in ds2, since it is just an overall
conformal factor. For such a metric (ds2=a2), the affine
connection components are

 �0
00 � �;� �0

ij � ��;��ij �0
0i � �i00 � �;i

�i0j � ��;��ij �ijk � ��ij�;k � �ik�;j � �jk�;i:

(C2)

We use Latin indices to denote the spatial components.
Note that even though we work out the null geodesics in the
rescaled metric ds2=a2, all subsequent manipulations (i.e.
subsequent to Eq. (C5)) are done with the original metric
ds2.

Let  be the affine parameter, and let us split the photon
path into background and first order pieces:
123526
 ��� � ���� � ����; xi�� � �xi�� � �xi��:

(C3)

The zero-order background solution is just a straight line

 ���� � �0 � ; �xi�� � ni; (C4)

where �0 is the conformal time today, and ni is a unit
vector pointing away from the observer. Note the slightly
strange choice of the sign for : it increases as one traver-
ses backward in time along the path of the photon. The
choice is perfectly acceptable since the geodesic equation
is invariant under a sign flip for .

The first order geodesic equation can be integrated to
give

 ���� � 2
Z 

0
d0�� 2

Z 

0
d0�� 0��;�

�xi�� � �2
Z 

0
d0�� 0�	@i � ninj@j
�

� 2
Z 

0
d0�� 0��;�n

i;

(C5)

where we have chosen the boundary conditions �xi�0� �
���0� � d�xi=d�0� � 0, with  � 0 denoting the loca-
tion of the observer. The condition on the photon direction
at the observer (dxi=d�0� � d �xi=d�0� � ni) implies
d��=d� 2� vanishes at the observer by nullness of
the geodesic. Note for objects with Latin (spatial) indices,
we are being cavalier about their placement upstairs or
downstairs: e.g. ni � ni is the � � i-th component of n�.

Note that the photon 4-momentum in the original metric
ds2 is given by

 k� �
1

a2

dx�

d
: (C6)

The factor of 1=a2 is necessary because the affine parame-
ter was chosen in the rescaled metric ds2=a2. See [67] for
a proof.

We are interested in a cone of light emanating from the
observer back towards the emitter i.e. the observer is
located at the tip of the cone. Suppose the center of this
cone points in the (fiducial) direction �n (at the observer). A
photon moving along this direction follows a geodesic
described by the above Eqs. (C4) and (C5), with n � �n.
Consider a photon moving along the surface of this cone
i.e. its path direction at the observer differs slightly from
the fiducial direction, say n � �n� �n. Such a photon
follows a geodesic also described by Eq. (C4) and (C5),
but with n � �n� �n.

Our strategy is to work out x��� for these two paths
which tells us how the light cone gets deformed as moves
away from zero (the observer) and allows us to compute
the angular diameter distance.
-19
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Let us define the deviation w�:

 w��; �n� � x��; �n� �n� � x��; �n�

�

�
@x��;n�
@nj

�
n� �n

�nj; (C7)

where we have added the argument n to x� to remind
ourselves that these are geodesics that start out at the
observer with a particular direction.

We are interested in the area spanned by w� at the
emitter. More precisely, it is the area in a two-dimensional
space perpendicular to both k� (for the fiducial ray) at the
emitter and the four velocity of the emitter. Let us define a
projection operator H�

� [16] that projects onto this space:

 w�? � H�
�w

�: (C8)

Suppose for simplicity that �n � �0; 0; 1� i.e. points in the
x3 direction. Then �n points in the x1 � x2 plane. One can
parametrize it by

 �n � �� sin ; � cos ; 0�; (C9)

where  can take any value from 0 to 2�, and � basically
defines the size of the light cone at the observer’s position
(though the observer sees a light cone with a different size
if she/he has a nonzero peculiar velocity; see below).

Now, consider how w�? varies as we vary  :

 w�? � H�
�

�
@x��;n�
@n1

�
n� �n

� sin 

�H�
�

�
@x��;n�
@n2

�
n� �n

� cos : (C10)

In the two-dimensional space where w�? lives, this traces
out an ellipse. In other words, w�?w?� as a function of  
can be rewritten in the form p2sin2� �  0� � q

2cos2� �
 0� where p and q are the lengths of the major and minor
axes. The area of such an ellipse is �pq. Relating p and q
back to the quantities in Eq. (C10), it can be shown that the
area of the light beam at the emitter is
 

�Ae � ��2�	w�?
1	w?�
1	w
�
?
2	w?�
2

� �	w�?
1	w?�
2�
2�1=2; (C11)

where we have defined

 	w�?
1 � H�
�

�
@x��;n�
@n1

�
n� �n

	w�?
2 � H�
�

�
@x��;n�
@n2

�
n� �n

:

(C12)

Eqs. (C11) and (C12), together with the geodesics
worked out earlier, allow us to compute the light beam
area at the emitter. One fact simplifies the calculation a bit:
the quantities 	w�?
1	w?�
1, 	w�?
2	w?�
2 and 	w�?
1�
	w?�
2 can be computed accurately to first order by just
using the zero-order H�

�. The zero-order H�
� for our
123526
choice of coordinates is simple, it is diagonal: H�
� �

diag�0; 1; 1; 0�. To see this, note that the only possible place
where we might care about the first order part of H�

� is
when it is contracted with the zero-order part of
	@x��;n�=@n1
 or 	@x��;n�=@n2
, which is simple:
�0; ; 0; 0� or �0; 0; ; 0� (see Eq. (C4)). This means the
only part of the first order piece of H�

� that we care about
is H�

1 or H�
2. Moreover, in the quantities of interest such

as 	w�?
1	w?�
1 �
H�

�	@x
��;n�=@n1
H�

�	@x
��;n�=@n1
g��, suppose

we are interested in the contribution from the first order
piece of the first H�

�—then only the zero-order pieces of
the other terms need to be considered, and to zero-order,
both H�

� and g�� are diagonal (and H�
� �

diag�0; 1; 1; 0�). The upshot is that the only first order piece
of H�

� that we need to worry about is H1
1, H2

2, H1
2 or

H2
1. It can be shown explicitly that the first order correc-

tions to these vanish. Further discussions can be found in
[16].

Putting everything together, we can substitute the zero-
order H�

� and the geodesic solution from Eq. (C4) and
(C5) into Eq. (C12), and get:
 

	w1
?
1��2

Z 

0
d0��0��;3�2

Z 

0
d0��0�0�;11

�2
Z 

0
d0��0��;�

	w2
?
1�	w

1
?
2��2

Z 

0
d0��0�0�;12

	w2
?
2��2

Z 

0
d0��0��;3�2

Z 

0
d0��0�0�;22

�2
Z 

0
d0��0��;�: (C13)

One useful tip in deriving the above is to remember that �
in the integrands is not only an explicit function of 0, but
also an implicit function of n (i.e. @��0�=@ni � 0�;i�0�
to first order). The result above can be put into Eq. (C11) to
obtain the area at emission:

 �Ae � ��2a2
e�1� 2�e�2

e

�
1� 4

Z e

0
d0

e � 
0

e
	��;3

��;�
 � 2
Z e

0
d0
�e � 0�0

e
	�;11 ��;22


�
;

(C14)

where e is the affine parameter at the emitter, and all
quantities with a subscript e are evaluated at emission.

To find the angular diameter distance, we also need to
know the solid angle of the beam according to the observer.
If the observer does not have peculiar motion, the answer is
simple: from Eq. (C9), the solid angle is obviously ��2. If
the observer has peculiar motion, the solid angle can be
obtained by performing a simple boost:
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 ��0 � ��2�1� 2v3
0�; (C15)

where v3
0 is the line-of-sight component of the observer’s

peculiar velocity i.e. dx3=d�.
With the above two equations, all ingredients are in

place to write down the angular diameter distance and
therefore also the luminosity distance (Eq. (9)):

 dL�e� � aee�1� ze�2
�
1��e � v3

0

� 2
Z e

0
d0

e � 
0

e
	��;3 ��;�


�
Z e

0
d0
�e � 0�0

e
	�;11 ��;22


�
: (C16)

We also need an expression for 1� ze, the observed
redshift of the emitter. This can be obtained from the ratio
	k�u�
e=	k�u�
0, where k� is the photon momentum in
Eq. (C6) and u� is the 4-velocity of the emitter/observer:
u� � dx�=d� � 	�1���=a; v=a
. Therefore

 1� z�e� �
1

ae

�
1� 	�� v3
e0 � 2

Z e

0
�;�d

0

�
;

(C17)

CORRELATED FLUCTUATIONS IN LUMINOSITY . . .
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where 	Q
e0 for some quantity Q is defined to be Qe �Q0,
the difference at emission and observation.

Ultimately, we are interested in the luminosity distance
fluctuation �dL � 	dL�e � �e� �

�dL�e�
= �dL�e�,
where �dL is the luminosity distance in an unperturbed
universe, and �e is chosen such that 1� z�e � �e� �
1� �z�e� with �z being the redshift in the unperturbed
universe (see Fig. 1).

From Eq. (C17), it can be shown that to first order

 

1�z�e��e�� 	1� �z�e�

�
1�

�
a0

a

�
e

�
�e

�2
Z e

0
�d0 �2

Z e

0
�e�

0��;�d
0

�

�	��v3
e0�2
Z e

0
�;�d0

�
: (C18)

To derive this, it is useful to remember that the scale factor
for affine parameter e � �e is equal to a evaluated at the
time ���e � �e� � ���e�, accurate to first order. The
scale factor evaluated at ���e� is of course equal to 1=	1�
�z�e�
.

Similarly, from Eq. (C16), one can show that
 

dL�e � �e� � a	 ���e�
	1� z�e � �e�

2e

�
1�

�
a0

a

�
e

�
�e � 2

Z e

0
�d0 � 2

Z e

0
�e � 

0��;�d
0

�
��e � v

3
0

�
�e
e
� 2

Z e

0
d0

e � 
0

e
	��;3 ��;�
 �

Z e

0
d0
�e � 

0�0

e
	�;11 ��;22


�
: (C19)

Choosing �e such that 1� z�e � �e� � 1� �z�e� in Eq. (C18), and noting that �dL�e� � a	 ���e�
	1� �z�e�
2e,
we finally have from Eq. (C19):

 

�dL�z� � v3
e ��0 � 2�e � 2

Z e

0
d0�;� �

ae
ea

0
e

�
	�� v3
e0 � 2

Z e

0
d0�;�

�
� 4

Z e

0

d0

e
�

�
Z e

0
d0
�e � 

0�0

e
	�;11 ��;22
 � 2

Z e

0
d0

e � 
0

e
�;�; (C20)

where z is the observed redshift in the perturbed universe. All quantities with subscript e are to be evaluated at e;
evaluating them at e � �e instead would only make a difference to �dL to second order.

It is useful to rewrite the expression above in the following form:

 �dL�z;n� � ve � n�
1

�e

�
a
a0

�
e
�ve � n� v0 � n� �

Z �e

0
d�
��e � ���

�e
r2���� ��e �

1

�e

�
a
a0

�
e
��e ��0�

� 2
Z �e

0

d�
�e
���� �

Z �e

0
d�
��e � ���

�e
�00��� � 2

Z �e

0
d�

�e � �
�e

�0��� �
2

�e

�
a
a0

�
e

Z �e

0
d��0���; (C21)
which is accurate to first order in fluctuations, and we have
switched from �n pointing in the x3 direction to allow it to
point anywhere (and we have relabeled �n! n). Note that
�0 � �;�, �00 � �;�� and a0 � a;�. The argument � (ra-
dial comoving distance) of ���� is supposed to remind us
that � in general depends on position, as well as, implic-
itly, time i.e. under the line-of-sight integrals, ���� should
be evaluated at position � and at a time when a photon is
supposed to reach �. Symbols with subscript e denote
evaluation at the time of photon emission and symbols
with subscript 0 denote evaluation today. One manipula-
tion we have done is to replace �;11 ��;22 in the inte-
-21
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grands by r2���;33 and use @=@x3 � d=d0 � @=@�.
Also, we have replaced e by �e where �e is the zero-order
comoving distance to the emitter. Doing so is justified
because fluctuations in �e make a difference to the final
expression above only to second order. To be precise:

 �e �
Z z

0
dz0=H�z0�; (C22)

where z is the observed redshift in the perturbed universe
(same z as the argument of �dL in Eq. (C21)).

The above expressions (Eq. (C20) and (C21)) are con-
sistent with eq. (5.16) of Sasaki [15], who gave an explicit
expression for an Einstein-de-Sitter universe (adopting
��0 � 0 in [15]). Pyne & Birkinshaw’s [17] eq. (32) can
be most readily compared with our Eq. (C20). The two are
identical, except that [17] did not have the last term on the
right-hand side of our expression:

 2
Z e

0
d0

e � 0

e
�;� (C23)

It takes a little bit of work to trace back the origin of the
difference. Everything up to (and including) the expres-
sions for dL and the redshift, Eq. (C16) and (C17), appears
to be consistent with [17] (e.g. our Eq. (C14) and (C15) are
consistent with their Eq. (2) and (4)). Where we start to
differ appears to be in working out how a	��e � �e�
�
�e � �e� is related to a	 ���e�
e (see eq. [9] of [17]).
We believe the correct relation (to first order) is

 a	��e��e�
�e��e��a	 ���e��e�

����e�
e�1��e=e�

�a	 ���e�
e

�
1�

�
a0

a

�
e

�	���e���e
�
�e
e

�
:

(C24)

The combination ���e� � �e is equivalent to ��e �
�e� � ���e�, which was referred to as �� in [17], let us
denote this as ��PB. Eq. (9) of [17] can be written as
 

a	��e � �e�
�e � �e� � a	 ���e�
e

�
1�

�
a0

a

�
e

� ��PB �
�zPB

e

�
; (C25)

where �zPB was defined in eq. (6) of [17] as �zPB �
x3�e � �e� � �x3�e� � �x3�e � �e� � �x3�e� �
�x3�e�. Using Eq. (C4) and (C5), we can see that �zPB �

�e � �x
3�e� and �x3�e� � �2

Re
0 d0�e � 

0��;�.
The issue is that [17] appears to have wrongly used �zPB

instead of �e as it should be (compare Eqs. (C24) and
(C25)), and the two differ by �x3�e�, which leads to
exactly the difference of 2

Re
0 d0�e � 

0�=e�;� in
�dL . The source of the error in [17] seems to be confusion
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in the definition of what they refer to as re. According to an
earlier paper by the same authors [16], re should be equa-
ted with r�e�where r is the comoving radial distance in an
unperturbed, rather than a perturbed, universe (see Eqs. [6]
and [29] of [16]). (Note that our  convention is opposite in
sign from that in [16]: we have �xi � ni while they effec-
tively have �xi � �ni, setting their 0 � 0.)

Equation (C21) has quite a number of terms. They can
be loosely divided into four categories: peculiar motion
(first two terms on the left), gravitational lensing (third
term), gravitational redshift (fourth, fifth, and sixth terms)
and integrated Sachs-Wolfe (the last three terms). This
division is loose in a number of ways. For instance, some
of what we call the integrated Sachs-Wolfe terms (those
that involve integrals over time derivatives of �) can
actually be physically ascribed to gravitational lensing.
We call the third term the gravitational lensing term mainly
because the literature often uses it as the only contribution
to the lensing convergence. The fourth and fifth terms,
what we call gravitational redshift terms, obviously mirror
those for peculiar motion i.e. Doppler shift, but the sixth
term has no Doppler analog.

Fortunately, for most applications we can confine our
attention to the peculiar motion and lensing terms (first two
lines). This is because we are generally interested in fluc-
tuations on scales smaller than the horizon—the high
redshift SN surveys generally cover a small fraction of
the sky while the low redshift surveys, even though they
cover a significant fraction of the sky, do not extend out to a
sufficient depth to be sensitive to horizon scale fluctua-
tions. In other words,H=k is a small number whereH is the
Hubble constant, and k is the wavenumber of interest
(strictly speaking, the correct quantity to look at is aH=k,
but here a� 1). For instance, the term involving �00 is
obviously smaller than the lensing term involving r2� i.e.
�00=r2�� �H=k�2 � 1. The rate of change of �, if non-
zero, should be of the order of the inverse Hubble time
�H. Similarly, terms like

R
d��0,

R
d��0��e � ��=�e, orR

�d�=�e are at most of the order of �, which in turn is
smaller than v. The latter holds because v� �k=H�� (for
a� 1), from gravitational instability.

This is why for the purpose of this paper, we can con-
sider only the peculiar motion and lensing contributions to
the luminosity distance fluctuation. This justifies the use of
Eq. (18).
APPENDIX D: THE MAGNITUDE COVARIANCE
MATRIX II-EXPLICIT EXPRESSIONS IN TERMS

OF THE MASS POWER SPECTRUM

Our main task here is to derive explicit expressions for
the lensing and velocity contributions to the (binned) mag-
nitude covariance matrix, including both the Poissonian
and non-Poissonian terms i.e. Eqs. (19)–(23). At the end of
this Appendix, we will also give expressions for the veloc-
-22
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ity window function that are useful for more general survey
geometries.

Let us work in the plane-parallel (small angle) approxi-
mation first. We will generalize some of the relevant terms
to large angles later.

The starting point is the luminosity distance fluctuation
�dL given in Eq. (18). We substitute this into Eq. (6) and (7)
to compute ��Poiss:

i �2 and Cij. Let us first study the lensing
contributions. The expressions are, up to normalization
factors, identical to those worked out in the lensing com-
munity for convergence variance (e.g. [29,38]), and so our
derivation here is very brief. From Eq. (18), using Limber’s
approximation and Poisson’s equation, it can be shown that
 

h�dL�zi;���dL�zj;��ilens � �3H2
0�m=2�2

Z min��i;�j�

0

d�

a2

�
��i � ���

�i

��j � ���

�j

�
Z d2k?
�2��2

P�k � k?; a�

� e�ik?������
0�; (D1)
where �i and �j are the radial comoving distances
(eq. [(C22)]) to redshifts zi and zj respectively, and
P�k; a� is the mass power spectrum at a scale factor a
corresponding to when the photon is at distance �. Here
k? is the projection of k onto the plane perpendicular to
the line of sight.

It is simple to set � � �0 and i � j in the above ex-
pression and show from Eq. (6) that
 

��Poiss:;lens
i �2 �

�
5

ln10

�
2
�3H2

0�m=2�2
Z �i

0

d�

a2

�

�
��i � ���

�i

�
2 Z d2k?
�2��2

P�k � k?; a�;

(D2)
provided the redshift bin width is not too large. This
reproduces the lensing part of the Poissonian variance in
Eq. (20).

We can similarly substitute Eq. (D1) into Eq. (7) to
obtain the lensing term in the non-Poissonian correlation
matrix in Eq. (21). In doing so, it is useful to remember that
Eq. (D1) is a slow function of zi and zj, and the averages
over redshifts within the respective bins in Eq. (7) can
safely be replaced by the middle values, provided the
redshift bins are not too large. It is also useful to note
that for a survey that spans a (not too large) circle on the
sky with angular radius �max

i (area Ai):
123526
 Z d2�
Ai

e�ik?��� �
1

���max
i �

2

Z �max
i

0
�d�

Z 2�

0
d�e�ik?�� cos�

�
2

�k?��max
i �

2

Z k?��max
i

0
dxxJ0�x�

�
2J1�k?��max

i �

k?��
max
i

: (D3)

The velocity analogs of the above can be derived by
using mass conservation (to linear order):

 �0 � �r � v (D4)

where � is the density fluctuation ��=�. This tells us that
in linear theory and Fourier space: vj�k� � i�D0=D��
�kj=k2���k�, where D is the linear growth factor and D0

is its derivative with respect to conformal time. Therefore,
we have
 

hv3�x1�v3�x2�i �
Z d3k

�2��3
�kz�

2

k4 D01D
0
2P�k; a � 1�

� e�ik��x1�x2�; (D5)

where we have adopted the z (or third) direction as the line-
of-sight direction. The derivatives of the growth factor D01
and D02 are evaluated at redshifts corresponding to the
positions x1 and x2.

The velocity two-point correlation above, together with
the relation between v and �dL in Eq. (18), and the relation
between �Poiss:

i and �dL in Eq. (6), gives us the velocity
contribution to the Poissonian magnitude variance, if we
set x1 � x2:
 

��Poiss:;vel:
i �2 �

�
5

ln10

�
2
�

1�
ai
a0i�i

�
2 Z d3k

�2��3
�kz�2

k4

� �D0i�
2P�k; a � 1�; (D6)

which is consistent with Eq. (20). Note that as in the case of
lensing, we assume that the redshift bin is sufficiently
narrow that factors like a, �, D and so on do not vary
much across the bin, and so one can use their values at the
center of the bin (i.e. at z � zi) to substitute for what
should strictly speaking be bin-averages. In deriving the
above, we have ignored the v3

0 term in the luminosity
distance fluctuation (Eq. (18)): �dL � v3

e � �a=a0=��e�
�v3

e � v3
0� (ignoring the lensing term for now). This is

justified to the extent that our peculiar motion is fairly
well constrained by the microwave background dipole, and
so one could eliminate its influence on luminosity distance
measurements. The other extreme would be to allow v3

0 to
be a stochastic variable just like v3

e in which case the
velocity contributions to the magnitude variance would
be even higher than our estimate. There is one more
subtlety: even in the case where v3

0 is known precisely,
our computation of ��Poiss:;vel:

i �2 is strictly speaking only
approximate. We have essentially computed 	5= ln10
2�
	1� �a=a0=��e
2h�v3

e�
2i, whereas the correct thing to do is
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to compute 	5= ln10
2	1� �a=a0=��e

2	h�v3

e�
2jv3

0i �
hv3

ejv
3
0i

2
, because there is some correlation between v3
0

and v3
e (hv3

ejv
3
0i is the expectation value of v3

e given v3
0). If

the emitter and the observer are sufficiently far apart,
h�v3

e�
2jv3

0i � h�v
3
e�

2i. The term hv3
ejv

3
0i

2 for Gaussian ran-
dom fluctuations is equal to 	hv3

ev
3
0i=h�v

3
0�

2i
2�v3
0�

2.
Approximating �v3

0�
2 by h�v3

0�
2i, one can see that our

computation of ��Poiss:;vel:
i �2 should be fairly accurate if

hv3
ev

3
0i

2=	h�v3
0�

2ih�v3
e�

2i
 � 1. We have checked that in
all cases we have considered in this paper, the corrections
due to the correlation between ve and v0 are negligible.
Similar, but slightly modified, arguments apply to the non-
Poissonian velocity terms (e.g. the monopole and so on)
considered below. The relevant quantity in that case is
h	v�xi� � x̂i
	v0 � x̂i
ih	v�xj� � x̂j
	v0 � x̂j
i=	h	v�xi� � x̂i
�

	v�xj� � x̂j
ihv0 � v0i
, where xi and xj are to be averaged
over redshift bins i and j respectively; we have checked
explicitly that this is also � 1 for all cases of interest in
this paper.

The velocity contribution to the non-Poissonian correla-
tion matrix Cvel:

ij can be worked out in an analogous man-
ner, and one arrives at Eq. (21). As before, we have made
use of the fact that quantities like a, D, � and so on vary
slowly across the redshift bin (but not quantities such as
eik�x). The window function given in Eq. (21) is for vol-
umes that are top-hat in the z-direction and circular in the
transverse direction. Note that if i � j, strictly speaking
the window function Wvel:

ij should have an imaginary piece
proportional to i sin	kz��i � �j�
, but such a piece does not
contribute to the Fourier integral because it is odd in kz.

The reader might wonder whether there should also be a
cross-term that involves the product of velocity-induced
and lensing-induced fluctuations. Such a term is in princi-
ple possible, but the lensing projection sends kz to zero
(Limber approximation) while the velocity contribution is
proportional to kz, making the cross-term identically zero.
(A similar statement holds even in the large angle case
studied below: essentially, the cross velocity-lensing term
would involve an integral of j‘�k�� over a large distance �,
making it very small.)

Finally, for realistic applications, we need to generalize
the above discussion for velocities to large angles. This is
because low redshift SN surveys, where peculiar motion
(but not lensing) is important, typically cover a significant
fraction of the sky. A more general version of Eq. (D5) is

 

h	v�x1� � x̂1
	v�x2� � x̂2
i �
Z d3k

�2��3
�k � x̂1��k � x̂2�

k4

�D01D
0
2P�k; a � 1�

� e�ik��x1�x2�; (D7)

where x̂1 and x̂2 are unit vectors pointing towards the
positions x1 and x2. It is straightforward to show that
Eq. (22) follows from the above expression plus Eq. (7)
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and (18). It takes a little more work to derive the velocity
window function Wvel:

ij given in Eq. (23) for a circularly
symmetric survey. The definition given in Eq. (22) can be
written as:

 

Wvel:
ij �k� �

1

�2
i��i��i

Z �i���i=2

�i���i=2
�2d�d�e�ik�xk̂

� x̂
1

�2
j��j��j

Z �j���j=2

�j���j=2
�02d�0d�0eik�x

0
k̂ � x̂0;

(D8)

where ��i, ��j are the radial widths and ��i and ��j

are the solid angles.
A useful expansion of the plane wave is:

 e�ik�x �
X
‘;m

4���i�‘j‘�k��Y‘m�k̂�Y�‘m�x̂�; (D9)

where j‘ is the spherical Bessel function and the Y‘m are
spherical harmonics. From this, one can see that

 e�ik�xk̂ � x̂ �
X
‘;m

4���i�‘�1j0‘�k��Y‘m�k̂�Y
�
‘m�x̂�; (D10)

where j0‘ is the derivative of j‘ with respect to its argument.
Looking at Eq. (22), one can see that eventually we

integrate Wvel:
ij �k� over k with other functions of k (but

not of k̂). In other words, we can replace Wvel:
ij �k� by its

average over the solid angle of the wave vector. One can
then take advantage of the fact thatR
d�kY�‘m�k̂�Y‘0m0 �k̂� � �‘‘0�mm0 . The integration over

the solid angle d� of the survey can be done quite easily:

 

Z
d�Y‘m�x̂� �

Z
d�Y‘0�x̂��m0

� 2�

���������������
2‘� 1

4�

s Z �max
i

0
d� sin�P‘�cos���m0:

(D11)

The solid angle ��i equals 2��1� cos�max
i �. Putting all

these together yields Eq. (23) for the velocity window
function Wvel:

ij , which is valid for a contiguous, circularly
symmetric survey.

A slightly more general situation is one where the survey
is divided into several different patches, but each patch
retains azimuthal symmetry (i.e. each patch spans from
� � 0 to � � 2�; we assume there is no danger of con-
fusing the azimuthal angular coordinate � with the metric
fluctuation �). This is precisely the kind of geometry we
have adopted for the SNfactory, which consists of two
patches, one centered at the north pole and the other at
the south pole. For a survey like this, generalizing Eq. (23)
a little bit, the velocity window function should be:
-24
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 Wvel:
ij �k� �

X1
‘�0

�2‘� 1�
�Z �i���i=2

�i���i=2

d�
��i

j0‘�k��
�

�

�Z �j���j=2

�j���j=2

d�
��j

j0‘�k��
�

�

�R
i d� sin�P‘�cos��R

i d� sin�

�

�

�R
j d�

0 sin�0P‘�cos�0�R
j d�

0 sin�0

�
; (D12)

where the symbol
R
i denotes integration over the patches
123526
that belong to the ith redshift bin. For instance, if one has a
survey that covers all sky aside from a galactic cut of
�30,

R
i should represent an integration of � from 0 to

�=3, and from 2�=3 to �. Equation (D12), in place of
Eq. (23), is what we use to obtain predictions for the
SNfactory.

Generalizing further, suppose one has a survey where for
each angle �, the azimuthal angle � spans �min��� to
�max���. We will further give �min and �max superscripts
i or j to denote the fact that these ranges can even vary
depending on the redshift bin under consideration. It can be
shown that the velocity window function is given by:
 

Wvel:
ij �k� �

X1
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�2‘� 1����1
i ���1

j

�Z �i���i

�i���i=2
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��i
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��j
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���Z
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Z
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j
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�
� 2
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1

m2

�Z
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d� sin�Pm‘ �cos���sinm�i

max � sinm�i
min�

�
Z
j
d�0 sin�0Pm‘ �cos�0��sinm�j

max � sinm�j
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Z
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��
; (D13)

where

 ��i �
Z
i
d� sin���i

max ��i
min� ��j �

Z
j
d� sin���j

max ��
j
min� (D14)

and Pm‘ denotes the associated Legendre polynomial.
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