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Bayesian model selection analysis of WMAP3
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We present a Bayesian model selection analysis of WMAP3 data using our code CosmoNest. We focus
on the density perturbation spectral index nS and the tensor-to-scalar ratio r, which define the plane of
slow-roll inflationary models. We find that while the Bayesian evidence supports the conclusion that nS �

1, the data are not yet powerful enough to do so at a strong or decisive level. If tensors are assumed absent,
the current odds are approximately 8 to 1 in favor of nS � 1 under our assumptions, when WMAP3 data is
used together with external data sets. WMAP3 data on its own is unable to distinguish between the two
models. Further, inclusion of r as a parameter weakens the conclusion against the Harrison–Zel’dovich
case (nS � 1, r � 0), albeit in a prior-dependent way. In appendices we describe the CosmoNest code in
detail, noting its ability to supply posterior samples as well as to accurately compute the Bayesian
evidence. We make a first public release of CosmoNest, now available at www.cosmonest.org.
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I. INTRODUCTION

The recent three-year results from WMAP [1] have
provided the first firm indications that the spectral index
of primordial density perturbations, nS, differs from the
Harrison–Zel’dovich case nS � 1. The likelihood function
in models with varying nS suggests that nS � 1 is excluded
at around three to four sigma, in cosmologies with no
significant tensor contribution to the microwave anisotro-
pies. However, the WMAP team stress that their result,
based on a chi-squared per degrees of freedom argument,
needs to be checked using the more sophisticated tech-
nique of Bayesian model selection [2–4]. That is the aim
of the present paper, building on our previous analysis of
the WMAP first-year data using our code CosmoNest [5].

We will consider two different scenarios. The first con-
cerns the spectral index alone, under the assumption that
there are no primordial gravitational waves (parametrized
by the tensor-to-scalar ratio r). As there is presently no
indication for gravitational waves, this analysis addresses
the question of whether nS � 1 should be considered part
of the standard cosmological model. Secondly, we consider
the plane of slow-roll inflation models parametrized by nS

and r, representing the simplest class of inflation models
(for an extensive review, see Ref. [6]). This latter analysis
determines the extent to which slow-roll inflation models
have benefitted from the new data.

II. BAYESIAN MODEL SELECTION

One of the most important classes of statistical problems
in science, and particularly in cosmology, is determining
the best fit to data in the case where the underlying model
(i.e. the set of parameters to be varied) is unknown.
Typically, each parameter represents some physical effect
that may influence the data, but one cannot simply include
all possible physical effects simultaneously, as the data
may be insufficiently constraining and all parameters be-
come undetermined and biases get introduced [7]. In the
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Bayesian framework, the solution is model selection sta-
tistics, which set up a tension between goodness of fit to the
data and model complexity. A model selection statistic
does not care about the preferred values of the parameters
defining the model, but is a property of the model itself,
where here ‘‘model‘‘ means both a choice of the set of
parameters to be varied and the prior ranges for those
parameters.

A key application of model selection is to provide a
robust criterion for judging when data requires the addition
of new parameters. Many of the most pressing questions in
contemporary cosmology are of this type, such as whether
the dark energy density evolves with redshift, or whether
primordial gravitational waves exist. For the present data
compilation following the WMAP3 announcement, it is the
spectral index which is placed in the most interesting
position — does WMAP3 convincingly exclude the pos-
sibility that nS is precisely unity, as conjectured by
Harrison and by Zel’dovich [8] long before the inflationary
mechanism was discovered? In model selection terms,
does the improved fit that a varying nS allows justify its
inclusion as an extra variable fit parameter?

One might wonder why we should bother with a model
selection analysis of a result which a parameter estimation
analysis says is already at three to four sigma level. The
answer is that this significance level is exactly where
model selection techniques are at their most crucial. It
has long been recognized in the statistics community that
Bayesian model selection analyses can give results in
contradiction with inferences based on ‘‘number of
sigma’’; this is known as Lindley’s ‘‘paradox’’ [9] and is
nicely summarized by Trotta [10]. Basically, Bayesian
inference is inconsistent with the idea that there is a
universal threshold, such as 95%, beyond which results
should be seen as definitive; instead such a threshold
should depend both on the data properties and the prior
parameter ranges of the models being compared. The
Lindley paradox usually manifests itself for results with
-1 © 2006 The American Physical Society
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significance in the range two to four sigma [10], which as it
happens is exactly where WMAP3 has placed nS.

In a full implementation of Bayesian inference, the key
statistic is the Bayesian evidence E (also known as the
marginalized likelihood), which has the literal interpreta-
tion of the probability of the data given the model [2– 4].
According to Bayes theorem, it therefore updates the prior
model probability to the posterior model probability. It is
simply the average of the likelihood over the prior parame-
ter space. Often, the quantity of interest is the ratio of
evidences of two models M1 and M0, called the Bayes
factor and denoted B10, which indicates how the relative
model probabilities have been updated by the data. The
evidence has been exploited in a range of cosmological
studies [5,10,11].

Computing the evidence is more challenging than cal-
culating parameter uncertainties, as it requires knowledge
of the likelihood throughout the prior parameter volume
rather than only in the vicinity of its peak. So far brute
force methods such as thermodynamic integration, though
accurate, have proved to be computationally very intensive
[12], while approximate information criterion based meth-
ods often lead to results which do not agree and hence can
be ambiguous [7,13]. We have recently developed an im-
plementation of an algorithm due to Skilling known as
Nested Sampling [14], which we call CosmoNest [5],
which is able to carry out such calculations efficiently. It
is a Monte Carlo method, but not a Markov chain one. We
describe the code extensively in Ref. [5] and in the appen-
dices of this article.

In assessing the significance of a model comparison, a
useful guide is given by the Jeffreys’ scale [2]. Labelling as
M1 the model with the higher evidence, it rates lnB10 < 1
as ‘‘not worth more than a bare mention’’, 1< lnB10 < 2:5
as ‘‘substantial’’, 2:5< lnB10 < 5 ‘‘strong’’ to ‘‘very
strong’’ and 5< lnB10 as ‘‘decisive’’. Note that lnB10 �
5 corresponds to odds of 1 in about 150, and lnB10 � 2:5 to
odds of 1 in 13.
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FIG. 1. Marginalized likelihood of nS for WMAP alone
(dashed) and WMAP� all (solid), obtained using CosmoNest.
III. APPLICATION TO WMAP3

Throughout we use a data compilation of the WMAP3
TT, TE and EE anisotropy power spectrum data [1], to-
gether with higher ‘ CMB temperature power spectrum
data from ACBAR [15], CBI [16], VSA [17], and
Boomerang 2003 [18], and also matter power spectrum
data from SDSS [19] and 2dFGRS [20]. Following the
approach of Ref. [21], we use the updated beam error
module, and do not marginalize over the amplitude of SZ
fluctuations. For the higher ‘ CMB data, we neglect those
bands that overlap in ‘ range with WMAP (as in Ref. [1]),
so that they can be treated as independent measurements.

The prior ranges for the other parameters were chosen
as in Ref. [5]: 0:018 � �bh2 � 0:032, 0:04 � �cdmh2 �
0:16, 0:98 � � � 1:1, 0 � � � 0:5, and 2:6 �
ln�As � 1010� � 4:2. Here � is a measure of the sound
123523
horizon at decoupling, and the other symbols have their
usual meaning.

When we quote Bayes factors, modelM0 is always taken
to be the Harrison–Zel’dovich case. We normalize to this
case, which means positive numbers indicate models pre-
ferred against this case.

A. The spectral index

For the spectral index nS, we will throughout assume a
prior range 0:8< nS < 1:2, as in Refs. [5,12]. The model
selection results presented for nS must therefore be under-
stood in light of this prior. As the allowed regions are well
contained within this prior, it is trivial to recompute the
Bayes factor if this range is extended; e.g. if it is doubled
then lnB10 is reduced by ln2 ’ 0:7.

Qualitative understanding of our results can be obtained
from studying the marginalized distributions for nS, shown
in Fig. 1, obtained using CosmoNest. For reasons ex-
plained later, we did not include marginalization over the
SZ effect in obtaining these likelihoods, which shifts them
somewhat towards nS � 1 as compared to those of the
WMAP team [1]. A rapid guide to the expected result
can be obtained by employing a gaussian approximation
to the marginalized posterior distribution for nS. As shown
by Trotta [10], the Bayes factor can be computed in this
approximation as a function of �, being the ‘‘number of
sigmas‘‘ of the putative detection, and the information
content I � log10��nS=�̂� which measures the reduction
of the allowed parameter volume between the prior and
posterior (where �nS is the prior width and �̂ the standard
deviation of the posterior). For WMAP3 alone and our
choice of prior � ’ 2:3 and I ’ 1:4. Employing Eq. (18)
of Ref. [10] yields the estimate lnB10 � 0:4, i.e. the vary-
ing nS model is preferred but only very mildly. However,
this expression assumes that the gaussian form holds quite
far into its tail, which may not be valid, and so we proceed
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TABLE I. Evidence differences for the different models and
different data sets, as discussed in the text.

Datasets Model lnB10

WMAP only HZ 0:0
nS 0:34� 0:26

WMAP � all HZ 0:0
nS 1:99� 0:26

nS � r (uniform prior) �1:45� 0:45
nS � r (log prior) 1:90� 0:24

1http://lambda.gsfc.nasa.gov
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to results from the full numerical calculation (which we
anyway had to do to obtain these marginalized likelihoods
as a by-product, as explained in Appendix B).

Using CosmoNest, we ran the Harrison–Zel’dovich
(HZ) and spectral index cases (nS) to find the difference
in evidence for WMAP3, with and without the external
CMB and large-scale structure data sets. We found that
using WMAP alone, lnB10 � 0:34, in agreement with the
estimate above. However, when the extra data sets are
included, lnB10 � 1:99, which is substantial but not strong
evidence for the necessity of nS as an extra parameter. The
results are given in Table I.

The difference of 1.65 in lnE between the two datasets
can be understood simply from the marginalized likeli-
hoods shown in Fig. 1. Although the curves are similar
near the peaks, and the maximum likelihood value has
shifted only by about 0:005, the difference in the mean
and more importantly the variance have a large effect in the
tails. The probability of the nS � 1 value is about 4 times
smaller in the WMAP� all case, which would, all else
being considered equal, translate into a change of 1:4 in
lnE explaining most of the difference. Nevertheless, this
shift is not particularly significant on the Jeffreys’ scale.

B. The inflationary plane

A nonzero value of nS � 1 is commonly interpreted as a
strong indication in favor of inflation. However slow-roll
inflationary models predict not just a nonzero nS � 1, but
also a nonzero value for the tensor-to-scalar ratio r. A
proper model comparison motivating inflation should
therefore examine not the spectral index model but the
two-parameter extension of HZ into the nS –r plane.
There is no simple way to make an estimate of the outcome
in this case.

At this point we run into the issue of the choice of prior
for r. While it is uncontroversial to choose a uniform prior
for nS, whose value is more or less known, r is instead a
parameter whose order-of-magnitude is currently unknown
(sometimes called a ‘‘scale‘‘ parameter). We will consider
two possibilities. The first, Case 1, is that r has a uniform
prior in the range 	0; 1
, which is the assumption used by
Spergel et al. [1] for parameter estimation. The second,
Case 2, considers the Jeffreys’ prior which states that for
scale parameters the prior should be uniform in ln�r� rather
123523
than r. For the problem to be well-defined this needs to be
cut off at both ends. We use the same upper limit, and as a
lower limit take the smallest conceivable inflation scale of
the electroweak scale, which would yield r� �1=2=m2

Pl �
10�34 (where � is the energy density). The prior range is
therefore �80 � lnr � 0. Results are shown in Table I.

For Case 1, CosmoNest calculations indicate lnB10 of
�1:45. The large amount of unused prior parameter space
in the nS –r plane means that this model is somewhat
disfavoured as compared to HZ.

For Case 2, a calculation is not in fact really necessary,
since the vast majority of the prior space lies in the region
where r is observationally negligible, and hence generates
the same likelihood as a model where the spectral index
alone varies. We confirm this explicitly by computing
evidence over a limited range �5< lnr < 0 and extrapo-
lating the result down to lnr � �80.

We conclude therefore that the evidence in the infla-
tionary plane does carry significant prior dependence,
bracketed by the values we have found under Case 1 and
Case 2. Given the present shape of the likelihood, the
evidence for the inflation model will not be as large as
for the spectral index model under any prior choice, and
may be significantly less. For a uniform prior on r, the
inflation model is actually rated below Harrison–
Zel’dovich.

C. Systematic effects

The evidence computation we have described takes into
account only statistical uncertainties. However one should
also consider the possible effect of systematic uncertain-
ties, and there are some indications that these are present at
a level which would have some impact on our conclusions,
despite the very careful job that the WMAP team have
done. We highlight some of these issues here.

There is some effect from the precise choice of dataset
used. All the dataset combinations quoted in Ref. [1] give
very similar constraints on nS, though none corresponds
precisely to the dataset compilation we are employing.
Curiously though, the dataset WMAP� all on the
LAMBDA archive,1 which adds two supernovae datasets
to our compilation, gives an nS value about one-sigma
lower than any other dataset quoted, which would be
expected to lead to a stronger result for the Bayes factor.
However it is puzzling that this data compilation gives a
lower nS (and optical depth �) than do any of the separate
datasets from which it is compiled.

There is some uncertainty in how to treat the Sunyaev–
Zel’dovich effect and gravitational lensing. The WMAP
team allow only for the former, while Lewis has argued
[22] that the two effects are of the same order, and nearly
cancel, at least as regards their effect on nS, and that it is
better to ignore both than to include only one. Accordingly
-3
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we have not included the SZ correction, which increases nS

as compared to the WMAP3 analysis.
Another subtlety concerns the modelling of the beam.

As discussed in Ref. [21] there are different options for
doing this, which appear to have a slight effect on the
constraint on nS. We have followed the procedure de-
scribed in that paper, rather than that of the main
WMAP3 papers [1].

Yet more uncertainty surrounds the modelling of the
recombination process. According to Ref. [23], inclusion
of additional two-photon decays leads to significant differ-
ences as compared to the standard RECFAST treatment
used in the WMAP papers. If confirmed, this is perhaps not
too important for WMAP, but would certainly matter at
Planck sensitivity (Antony Lewis, private communication).

Also, the reionization optical depth � and nS are corre-
lated. The constraint on � comes mainly from the estimate
of the power in the low ‘ multipoles of CMB polarization.
Substantial foregrounds are present in polarization data, so
that their removal using just the frequency information
gathered by WMAP can be tricky. Foreground subtraction
uncertainties could therefore affect � and hence nS.

Finally, we note that the inclusion of Lyman alpha power
spectrum data (not used in the WMAP3 papers) seems to
have a marginally significant effect. According to the
analysis of Ref. [24], inclusion of this data shifts nS up-
wards by around one-sigma while leaving the uncertainty
unchanged. Similar results are obtained in Ref. [25] though
the trend is less clear as they round their quoted results at
the second decimal place.

While individually none of the above would have a very
major effect on model selection conclusions, that there are
so many clearly urges caution in interpretting a result
whose statistical significance remains rather marginal.
IV. CONCLUSIONS

We have carried out a Bayesian model selection analysis
of WMAP3 data, as advocated by the WMAP team. We
have found that WMAP3 data do indeed give support for a
varying spectral index when combined with other data,
with the Bayes factor compared to the Harrison–
Zel’dovich spectrum being approximately lnB10 � 2.
According to the Jeffreys’ scale, this should be regarded
as significant, but neither strong nor decisive. It corre-
sponds to probabilistic odds of about 8 to 1 against the
Harrison–Zel’dovich model (i.e. the chance that nS is equal
to one is about that of tossing a coin 3 times and them all
being heads). WMAP3 alone does not provide any dis-
crimination between the models.

In computing our numbers, we have assumed throughout
that the prior model probabilities are equal, so that models
are regarded as equally likely before the data came along.
Anyone who prefers to make an alternative assumption is
welcome to do so, and can readily follow the consequences
using the evidence numbers we have supplied. For in-
123523
stance, a perfectly plausible standpoint might be that since
inflation is a physical model, its predictions should be
taken more seriously than pure HZ which is motivated
only by symmetry considerations. Hence its prior model
probability should be greater, perhaps tipping the post-data
odds decisively against HZ. Readers are quite welcome to
take that viewpoint, but should bear in mind that their
conclusion then derives from a mixture of the data and
their prior prejudice. From the data alone, the situation
remains to be decisively resolved.

In a companion paper [26], we forecast the abilities of
the Planck satellite to resolve this situation, in light of the
WMAP3 results.
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APPENIX A: THE NESTED SAMPLING
ALGORITHM

Our implementation of the Nested Sampling algorithm
is described in Ref. [5]. To summarize, the algorithm (as
first developed in Ref. [14]) recasts the problem of calcu-
lating the evidence as a one-dimensional integral in terms
of the remaining prior mass X, where dX � P��jM�d�. So
the integral is transformed

 E �
Z
L� ���p� ���d ��! E �

Z
L�X�dX (1)

where L�X� is the likelihood P�Dj�;M�. The algorithm
samples the prior a large number of times, assigning a
‘‘prior mass‘‘ probabilistically to each sample. The
samples are ordered by likelihood, and the integration
follows as the sum of the sequence,

 E �
Xm
j�1

Ej; Ej �
Lj
2
�Xj�1 � Xj�1�: (2)

The scheme is illustrated in Fig. 2.
In order to compute the integral accurately the prior

mass is logarithmically sampled. We start by randomly
placing N points uniformly in the prior space, where in a
typical cosmological application N � 300. We then itera-
tively discard the lowest likelihood point Lj, replacing it
with a new point uniformly sampled from the remaining
prior mass (i.e. with likelihood > Lj). Each time a point is
discarded the prior mass remaining Xj shrinks by a factor
that is known probabilistically, and the evidence is incre-
mented accordingly. In this way the algorithm works its
way towards the higher likelihood regions.
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FIG. 2 (color online). Schematic of the Nested Sampling al-
gorithm.
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As the remaining prior mass shrinks by orders of mag-
nitude, the challenging part is to find an efficient way to
draw new points from the remaining prior volume. We do
this by using the N � 1 remaining points at each stage to
define an ellipsoid that encompasses the extremes of the
points and is aligned with their principal axes. The ellip-
soid is expanded by a constant enlargement factor, in order
to allow for the iso-likelihood contours not being exactly
elliptical, as well as to take in the edges. New points are
then selected uniformly within the expanded ellipse until
one has a likelihood exceeding the old minimum.

The process is terminated when the integral has been
computed to desired accuracy (see Ref. [5]). In the end the
evidence contributed by the N � 1 points remaining is
added to the accumulated evidence.

The method is general, and the effects of topology and
dimensionality are implicitly built into it.

APPENDIX B: COSMONEST

The Cosmological Monte Carlo code (CosmoMC) de-
veloped by Lewis and Bridle [27] was created to perform
an exploration of the cosmological parameter space,
through the Monte Carlo Markov Chain process (for an
overview of MCMC methods see Ref. [28]). While it is
most commonly used with the Metropolis–Hastings algo-
rithm, other sampling algorithms (such as Gibbs Sampling
and Slice Sampling) can easily be implemented. The
Nested Sampling algorithm can be considered as just an-
other Monte Carlo sampling algorithm. The important
difference is that the generation of a chain, which in this
case is not a Markov chain, is ancillary to its primary
purpose of calculating the evidence accurately.
123523
The Cosmological Nested Sampling code (CosmoNest)
we have developed is an additional module that works as
part of CosmoMC.

A. Evidence evaluation

CosmoMC has a ‘‘memory‘‘ of only one point: the
algorithm needs only to know where it is in order to decide
where to go next. CosmoNest needs to know about the
point it is discarding, but must also hold in its memory all
the other N � 1 live points, as well as knowing how far
through the prior mass X it has progressed and what value
of the evidence (E) it has accumulated. The output of a
CosmoNest run consists of the set of discarded minimum
likelihood points, along with their X value, their likelihood,
and total accumulated evidence to that point.

CosmoMC runs multiple chains for two purposes: in-
creasing the speed of generating samples, and as a way of
estimating the extent to which the chains have explored the
parameter space (the Gelman–Rubin statistic). Here we
run multiple iterations of CosmoNest to obtain an estimate
of the uncertainty in the computed evidence.

B. Posterior samples

The sequence of discarded points from the Nested
Sampling process is similar to the Markov chain produced
by an MCMC process with one important difference: the
MCMC points are sampled from the posterior whereas the
Nested Sampling points are sampled from the prior with a
known distribution in X. With the appropriate weightings,
the ‘‘chain‘‘ of discarded points (distributed uniformly in
lnX) plus the remaining live points (distributed uniformly
in X within the remaining volume) can be used to construct
the posterior probability distribution of the parameters, as
outlined in Ref. [14].

To summarize, from Bayes’ theorem

 p��jD� �
L�Dj������

E�D�
; (3)

where p��jD� is the posterior probability of a parameter
point � given dataD, L is the likelihood and� the prior. So
for an element i in the chain of discarded points, the
posterior weighting is

 pi �
Liwi
E

; (4)

where wi �
1
2 �Xi�1 � Xi�1� is the prior mass associated

with that particular point. The N � 1 points finally remain-
ing also need to be included to avoid undersampling the
center of the distribution. They are taken as uniformly
sampling the remainder of the prior space.

Figure 3 shows as an example of the posterior weights
assigned in a particular run. The early points have negli-
gible weight as their likelihood is low, and the late ones
-5



FIG. 3. The posterior weights pi assigned to each point in one
of our HZ runs. The x-axis is the element number in the chain,
and the vertical dashed line indicates where the live points start
to be used. This transition could be shifted to the right by running
the code for longer so as to generate a longer chain of discarded
points.
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because the prior mass wi per point becomes small. We see
that in this case the live points have to be included to
properly sample the center of the distribution. The frac-
tional contribution from live points can be reduced by
running the code for longer. The structure of these weights
should be contrasted with Metropolis–Hastings where all
samples have integer weights (values greater than one
accruing when new samples are rejected and instead the
original sample duplicated).

Using this method we can reconstruct the posterior
samples and compare to similar results from standard
Metropolis–Hastings MCMC. We illustrate this in Fig. 4.
Posteriors obtained from the two methods are in good
agreement.

C. The information

The informationH is defined as (minus) the logarithm of
the amount the posterior is compressed inside the prior
[14]. It is easy to compute from the posterior samples once
the evidence has been calculated:
 H �
Z

ln
�
dP
dX

�
dP �

Z E
L

ln
�
E
L

�
dX: (5)
3 3.1 3.2 3.3

log[1010 A
s
]

FIG. 4. Posterior samples from Nested Sampling (solid) com-
pared to MCMC (dashed), for a �CDM HZ model using
WMAP3 data only.
The uncertainty on a single estimate of the evidence is
dominated by the Poisson uncertainty in the number of
steps (replacements) to reach the bulk of the posterior. This
is given by �2�E�  H ln	�N � 1�=N
. For the priors we
have been considering H ’ 10, and given our choice of N,
this uncertainty turns out to be 0.15 to 0.2.
123523-6
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D. Public code release

The CosmoNest code is now freely available for public
use, and can be downloaded from www.cosmonest.org. Its
123523
use requires a working installation of the CosmoMC pack-
age of Lewis and Bridle [27].
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