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String propagation through a big crunch to big bang transition
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We consider the propagation of classical and quantum strings on cosmological spacetimes which
interpolate from a collapsing phase to an expanding phase. We begin by considering the classical
propagation of strings on spacetimes with isotropic and anisotropic cosmological singularities. We find
that cosmological singularities fall into two classes, in the first class the string evolution is well behaved
all the way up to the singularity, while in the second class it becomes ill-defined. Then assuming the
singularities are regulated by string scale corrections, we consider the implications of the propagation
through a ““bounce.” It is known that as we evolve through a bounce, quantum strings will become excited
giving rise to ““particle transmutation.” We reconsider this effect, giving qualitative arguments for the
amount of excitation for each class. We find that strings whose physical wavelength at the bounce is less
than Vo' inevitably emerge in highly excited states, and that in this regime there is an interesting
correspondence between strings on anisotropic cosmological spacetimes and plane waves. We argue that
long wavelength modes, such as those describing cosmological perturbations, will also emerge in mildly
excited string scale mass states. Finally we discuss the relevance of this to the propagation of cosmological

perturbations in models such as the ekpyrotic/cyclic universe.
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I. INTRODUCTION

Recent ideas have brought about a revival of interest in
the idea that the big bang may not be the beginning of time,
and that the universe could undergo a transition from a
collapsing phase to an expanding phase (referred to as a
“bounce’’). In particular, the ekpyrotic [1] and cyclic [2]
models which make use of this idea have been put forward
as possible alternatives to standard inflationary cosmology.
The cyclic model reinterprets the conventional big bang as
a collision of two orbifold planes in heterotic M-theory [3].
A natural question to ask in any such model is what
happens to cosmological perturbations as we evolve
through the bounce (see [4] for various approaches to
this problem)? If the bounce occurs close to the string
scale, it is important to understand how string scale physics
effects the propagation of cosmological perturbations [5].
This is similar to the trans-Planckian problem in inflation
[6]. In the ekyrotic/cyclic context, scalar and tensor per-
turbations are coherent states of dilatons and gravitons,
respectively. Since the dilaton and graviton are just exci-
tation states of a quantum string, we can gain insight into
what happens for cosmological perturbations by looking
directly at how classical and quantum strings evolve
through the bounce. This allows us to understand the
cosmological implications of the string scale physics.

In the first part of this paper we shall mainly be con-
cerned with the behavior of classical strings near the
bounce. Since we are interested in what happens near the
string scale, where we assume the bounce to occur, we are
in a regime where the strings should be described fully
quantum mechanically. Nevertheless, based on an analogy
with what happens for strings on plane wave spacetimes,
we shall argue that certain qualitative features apparent for
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the classical strings will carry over to the quantum case.
Ultimately this must be checked by explicitly constructing
the conformal field theory that describes this situation.

In Sec. II we consider what happens to the evolution of
classical strings as we get arbitrarily close to the various
types of singularity implied by the low energy supergravity
equations of motion. In practice we expect that when the
spacetime curvature becomes comparable to the string
scale, new physics kicks in which we assume can give
rise to the bounce into an expanding phase. Despite this
it is still interesting to ask what happens to the strings in the
final stages just before the bounce, when the ' expansion
is still approximately valid. Our main point will be that
regardless of what happens at the bounce itself, interesting
physics to be discussed below can occur in this regime.

In the following we shall focus on bounces that occur at
weak string coupling where perturbative string world sheet
methods are appropriate. Cosmological singularities at
weak coupling remain the most promising to understand
since the formalism to describe them exists, whereas far
less is known about strings at strong coupling in the time-
dependent context. Unfortunately little direct progress has
been made on these questions since the string geometry
becomes highly curved and the usual &’ expansion of string
theory breaks down. Thus it is technically far too difficult
to compute the renormalization group (RG) equations
necessary to check the conformal invariance of the string
sigma model.

In this paper we take a more modest approach in order to
gain insight into these questions. We assume the existence
of weak coupling bouncing solutions to the string RG
equations and consider the propagation of strings in the
background of these solutions. In this sense we are using
the strings as probes of the geometry. Although we cannot
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rigorously quantize the string in these backgrounds, we can
anticipate some of the essential physics by making a useful
analogy with strings in plane wave spacetimes and by a
semiclassical treatment. There has been considerable ear-
lier work on the properties of strings on cosmological
spacetimes (for a review of some of this work see [7,8]).
In particular Refs. [9,10] considered the implications of
string propagation on a big crunch/big bang spacetime in
the context of null cosmologies or plane waves where the
string sigma model may be solved exactly. The main con-
clusion of these works are that the strings may emerge from
a bounce in highly excited states. The spacetime interpre-
tation of this phenomena is “particle transmutation,” in
which particles change their mass and spin. We may think
of this as arising from the interaction of incoming particles
with the coherent state of gravitons that make up the
background geometry. As a result a gravitational wave in
the collapsing phase may emerge as a field configuration of
different spin with string scale mass. There has also been
considerable earlier work on the behavior of strings on
cosmological spacetimes focusing principally on expand-
ing ones [11] where it has been observed that the string
modes freeze, i.e. stop oscillating [8,12,13], which is
analogous to the freezing of cosmological perturbations
in inflation or ekpyrosis as their wavelengths cross the
Hubble horizon. More recent work on strings on cosmo-
logical spacetimes has focused on the notion of time-
dependent orbifolds [14—-17], whereby regular manifolds
are identified under boosts or combinations of boosts,
translations and rotations. In the simplest examples these
geometries are regular everywhere except at special points
or subspaces where the manifold is non-Haussdorf. These
constructions often introduce additional complications
such as closed timelike curves, additional noncosmological
regions and their validity as consistent string backgrounds
has been questioned [14,17,18]. It is not clear however
what the study of these special cases implies for the
more generic case where the spacetime curvature blows
up near the singularity and string ' effects become im-
portant. Already from the point of view of low energy
supergravities, these spacetimes are typically unstable
with respect to the formation of Kasner-like curvature
singularities. In the following it is these type of singular-
ities that we shall consider.

We argue that bouncing solutions fall into two classes
from the perspective of string propagation depending on
the nature of the singularity that the bounce regulates. For
isotropic spacetimes, if the singularity occurs at finite
conformal time, then we find that the evolution of strings
is only mildly sensitive to what happens at the bounce. If
however the singularity occurs at infinite conformal time,
then the period of the bounce will be a very long period in
terms of conformal time and the evolution of the strings
will consequently be more sensitive to the bounce.

As the universe collapses, strings describing short wave-
length modes effectively become tensionless and begin to
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move along null geodesics. By short wavelength we mean
modes whose physical wavelength is much less than the
string scale at the bounce. These are the string frame
analogue of trans-Planckian modes [6], except that since
gs < 1, we use the string scale as the relevant cutoff.
Because of the gravitational blueshift and subsequent red-
shift, these may correspond to observable length scales
today. In this regime, the evolution of the string becomes
nearly identical to the evolution of a string on a plane wave
geometry which is constructed by taking the Penrose limit
of the cosmological geometry in the direction that con-
tracts most rapidly. Since the latter are exactly solvable
conformal field theories we may use aspects of this corre-
spondence to anticipate the properties of quantum strings
on cosmological spacetimes. In fact this is closely con-
nected to the null-string expansion [13] which has been
used to study strings on cosmological spacetimes. The fact
that strings become tensionless near the singularity was
used in [13] and more recently in [19] where it was used to
argue that near the singularity, strings may be well de-
scribed by a 1/a’ expansion.

By contrast strings describing long wavelength modes
(cis-Planckian) may no longer be thought of as tensionless
and have a very different behavior. Here we find that the
modes freeze and string excitation only occurs when the
spacetime curvature becomes comparable to the string
scale which we assume to be close to the bounce. The
amount of excitation is independent of wavelength, and so
depending on precisely what happens in the string scale
regime, modes of arbitrarily long wavelength may emerge
from the bounce in highly excited states.

One motivation for this work is the proposal of Ref. [19]
to continue strings and membranes through the collision of
two orbifold planes, which is relevant to the ekpyrotic and
cyclic universe models. Here we shall view things from the
10d string perspective where we see that classical strings
may be continued through the singularity. We anticipate
that short wavelength modes will emerge from the singu-
larity in highly excited states. Cosmologically these modes
are not a problem and they may have interesting conse-
quences such as the formation of small black holes.
However, semiclassical arguments indicate that if the
bounce occurs close to the string scale, even strings de-
scribing long wavelength superhorizon modes will emerge
from the bounce in excited states, having potentially im-
portant implications for the propagation of cosmological
perturbations in the ekpyrotic/cyclic models. Although
these stringy states are short lived because of g, effects,
they will decay back into massless and low mass perturba-
tions and have an indirect effect on the late time cosmo-
logical power spectrum. Since this effect occurs close to
the string scale, semiclassical arguments are not appropri-
ate, nevertheless we anticipate a similar behavior in a full
quantum theory.

We begin in Sec. II with a discussion of classical strings
on cosmological spacetimes and discuss the conditions for

123522-2



STRING PROPAGATION THROUGH A BIG CRUNCH TO ...

the string modes to freeze near the singularity. In Sec. III
we elucidate the connection between strings describing
short wavelength modes and plane waves and in Sec. IV
we discuss the quantum aspect of string mode excitation.
We conclude in Sec. V by connecting these ideas back to
the ekpyrotic and cyclic models.

II. CLASSICAL STRINGS ON COSMOLOGICAL
SPACETIMES

In this section we consider the propagation of classical
strings on isotropic and anisotropic spatially flat cosmolo-
gies. The restriction to spatially flat geometries is for
simplicity and we expect similar qualitative conclusions
in the general case. For the types of bouncing geometries
we consider, the solutions of the leading order in &' string
equations of motion give rise to cosmological singularities.
We have in mind that the singularities are regulated by o’
effects or similar string scale physics. We can learn how
sensitive the propagation of strings is to the regulating
physics of the bounce by looking at the evolution of the
string towards the cosmological singularity. We find that
the behavior splits into two classes. In class I the evolution
of strings is well behaved all the way to the singularity. In
these cases we anticipate that the strings will only be
mildly sensitive to the physics of the bounce. For class 11
spacetimes the evolution of the strings becomes ill-defined
at the singularity. In these cases we anticipate a strong
sensitivity to the physics of the bounce. In order to make
this behavior transparent, we formulate the equations of
motion for a string as a Hamiltonian system. For class I
spacetimes, the position and momentum of the string
(x'(0), P;(0)) are finite at the cosmological singularity.
For class II spacetimes they become ill-defined since
x'(o) becomes infinite. The behavior of classical strings
has also been considered recently in Ref. [20] which takes
a more detailed look at explicitly matching string solutions
across a singularity.

In the rest of the paper we shall use several different time
variables, our conventions are ¢ for conformal time, 7 for
world sheet time, and x° for proper time, except where
otherwise stated. The spacelike world sheet coordinate is
denoted by o.

A. Isotropic case

First let us consider the isotropic case. Our approach
shall closely follow that of Ref. [19]. We begin with the
classical Nambu-Goto action for a string on a fully iso-
tropic FRW spacetime in conformal time coordinates x* =

(t’ })9 g/,LI/ = a(t)27]}1,l/’

S=—u ]dza\/— det(a(t)?1,,0,x* 0 x")

=—u jdzaaz(t)\/— det(7,,0,x*0,x"), (1)
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where u = 1/(2ma’) is the string tension, d*o = drdo,
and for a closed string 0 < o < 277. This is analogous to a
string on Minkowski spacetime with variable tension
w(t) = ua*(t). We may use the world sheet diffeomor-
phism invariance to choose the ““background time” gauge
(world sheet = target space conformal time) = 7. We
may further choose y = X - ¥ = 0.Here A = A ,and A’ =
A . To prove this we choose it to vanish at a given time and
then one can show that the equations of motion imply y =
0. This follows an approach taken in Ref. [21]. The action
is then

S = —,ufdtdo-az(t)l)?’l 1— %3 (2)

and the momentum conjugate to X is,

_ paWIR

P(1, o) 3)

L= [xp?
Defining the Hamiltonian in the usual way

H= f do[P -5 + p@IFW1 - i1 @

= fda\/f’z + wra*(D)|¥ % (5)
we obtain the canonical equations of motion
: P
X = , (6)
\/P2 + wra*(H)|¥?
. 9 2 4 ¥
Pza—( pa F ) )
TN+ a0l P

It is clear that for any FRW spacetime for which the
singularity occurs at finite conformal time, then as a — 0
these equations are well defined and asymptotically we
have

o

. P=0—lil=1, 8)

=4
I

B2
corresponding to a string moving at the speed of light. The
requirement that the singularity occur at finite conformal
time is crucial since the solution asymptotes to

. ., P
X— Xy + 0 9)
32
Py
and so if 7 tends to infinity ¥ would diverge. However, no
other assumption about the behavior of a(t) is necessary.
As an example solution, suppose we compactify on a 78
so that for i = 2...9 we identify x; ~ x; + 276,. Then a

closed string that winds in a time-independent way around
the eight toroidal directions has
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X = X? + ni9,~0', (10)

where 0 = o <27 and n; is the winding number. The
constraint X+ X' =0 implies that x{ =0 and so the
Hamiltonian is

" 2
H= \/P2 + wra*()|¥ > = \/P% + ,u,2a4(t)<Zn,-¢9,-> ,

(11)
and the only nontrivial equations of motion are
P .
X = ‘ ., Pi=0. (12
2
\/P% + #2a4(t)<2_ni0i>
1
Since P, is conserved the solution is formally
t 1
6@ =n() + [ di . (13)
)

\/1 + M204(I)<;”i0i>2/P%

which is a manifestly finite integral for any scale factor a(r)
showing that the classical string behavior for these modes
winding around the 7% is finite.

B. Classical strings on anisotropic spacetimes

We have seen that on a fully isotropic spacetime, the
evolution of strings remains well defined at a spacelike
singularity. Let us now see how this situation changes on
the more generic case of an anisotropic singularity. We
shall assume that one of the spatial directions contracts
more rapidly than the others

9
ds* = a3(1)(—dr* + dx?) + Z a*(f)dx3. (14)
=

We choose the parametrization so that the a;(z) contracts
faster or the same as a;(¢) as we go towards the singularity,
so that r;(r) = a;(t)/a,(t) tends to infinity or a nonzero
constant (note that some of the directions may be expand-
ing). Similarly it is useful to order the a;’s so that a;
contracts more rapidly or at the same rate as a;,;. Then
following the same procedure as before in the gauge t = 7
and y = a3(t)x - x' + Y ,a*(1)y;y: = 0, which again may
be justified by showing that y = 0, the action is given by

S=- fdtdo-)@/e, (15)

where we have defined

A= ua(® \/Ix’lz + S RO, (16)

e=A / \/1 — P =SR0kk  an
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We find the conjugate momenta
Pl = €X, Pi = erlg)'c,-, (18)

and the Hamiltonian is given by

H=fd0'e

9
1
- f daJP% + w2t + Z(ﬁ”? + M2a§a3|x;|2).
i=2\"1

Clearly if r;(¢) tends to a nonzero constant (as in the
isotropic case) as a;(z) — O then this Hamiltonian is well
defined as above for arbitrary a,(¢) and so the classical
string solutions on this spacetime will be well defined
through the crunch. The qualitative behavior near the
singularity may now be split into 3 classes depending on
the nature of the anisotropic collapse:

ala?—>0 fori=2---,1 19)

2.2

aja; — c¢; = constant for j=1+1,---,J  (20)

aa— o0 fork=J+1,-"",09. 1)

(D) If I = 9 then we find near the singularity assuming
that a; contracts more rapidly than a,

H— [dalp) (22)
with asymptotic equations of motion
. Py . P; 0
Xy =, X; = -
" Corlpl (23)
Pl = Pi = 0

The string stops oscillating in the directions that
contract less rapidly, and temporarily moves at the
speed of light in the directions that contract most
rapidly. Thus it is the directions that blueshift most
rapidly that dominate the behavior near the singu-
larity. More explicitly we find near t = 0

P . R 2 1
x1=x(1)+—0 f X = xh + 2 f_zdt'
|Pol [Pyl J 2

(24)

(D) If I <9 and J = 9 then we find a similar behavior
except now there is an effective mass and so the
string moves at less than the speed of light in the X
directions, as is evident in the equations of motion

Py

xl =
VB S w2

(25)
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P.
X; = ! . (26)

PP+ S w26 P)

(III) If J <9, for at least one direction x; then the
Hamiltonian is well defined only for the modes
for which the associated x) = 0. However for
modes for which the strings oscillate in the x;
directions, the Hamiltonian is dominated by the
direction that expands most rapidly

9
H— [WJM@@)(Z ailxuz),
k=J

the Hamiltonian consequently diverges and so the
evolution of these modes is ill-defined at the
singularity.

C. Kasner versus 2d Milne spacetime

Let us now see how these conditions relate to some
familiar anisotropic cosmological spacetimes. All the
low-energy string theory actions contain the Einstein-
dilaton term

S = 2— fdlox,/_e_zq)(R +40,P94®),  (27)
K1o

where the closed string coupling is g, = ¢® and we have
written the metric in string frame. For simplicity we shall
only be concerned with homogeneous, anisotropic and
spatially flat solutions. It is useful to express the metric as

ds?* = exp(®/2)ds%
9

ds* = exp(<I>/2)<—N2(T)aZT2 + Z a%(T)ezB'dxlz),
=

(28)

where dsZ is the Einstein frame line element, the Einstein
frame scale factor az measures the isotropic expansion and
the B’s which are defined such that 37_, 8; = 0 measure

the anisotropies. The action then takes the form

_ 1 9. 9E aET 2 2
= [ arex N( 78B4 2 c1> +Z(3))

2K10
(29)

Varying with respect to N gives the constraint

2

I

SIS0 2B =0 (0)
E i

and on choosing N = 1 we obtain the equations of motion

d [ 4 dlnag o AP\ _ d (4 dB _,
ﬁ(“’f dT) dT( dT) dT( dT) ‘

3D

PHYSICAL REVIEW D 73, 123522 (2006)

The generic solutions are given by

BT = B + (1 - 5 f;‘) Inf,

(32)
®(T) = ®(1) + AlnT, ag(T) = ag(1)T"?,
with the following constraints
9 9 2
A A
— =1, pP———-——=1 33
Z Z T (33)

We choose to order the p; such that p;.; = p; consistent
with our earlier convention. In the case where A = 0 we
recover the familiar Kasner solutions in the standard pa-
rametrization. If A > 0 the singularity at 7 — 0 occurs at
weak coupling as in the ekpyrotic/cyclic models, i.e. g, —
0[1,2]. If A < 0 the singularity occurs at strong coupling as
in the pre-big bang model [22]. For the pure Kasner
solutions (A = 0) it is easy to see that at least one direction
must always be expanding rather than contracting, imply-
ing that there are no fully isotropic solutions with fixed
dilaton. However, allowing the dilaton to vary, there is then
a nonzero set of solutions in which each direction contracts
or remains of fixed size as the singularity is approached. It
is useful to note that all the string theories have these as
solutions to their leading order in o’ and g, equations of
motion.

We shall intentionally assume that other contributions
such as form fields and curvature terms are subdominant
contributions to the spacetime dynamics. In practice as we
evolve towards the singularity this remains true for part of
the evolution and fails at “Kasner bounces” where these
additional contributions can come to dominate and cause
the system to evolve from one Kasner-like solution to
another [23]. We shall also ignore for simplicity their effect
on the world sheet dynamics. These bounces are respon-
sible for the chaotic behavior associated with spacelike
singularities. Our neglect of this may be justified either
by an additional mechanism such as a w > 1 fluid, whose
attractor behavior suppresses inhomogenities and can re-
move the chaos [24], or by topological restrictions that
allow us to avoid chaotic behavior until we reach the string
regime where the usual analysis breaks down and we may
assume that quantum string effects remove it [25].

Denoting the scale factor that contracts most rapidly by
a; and that least rapidly or that expands most rapidly by ay,
from the previous section we have two conditions for a
well-behaved classical evolution towards the singularity.
The first is that the singularity occurs at finite time in the
natural conformal time associated with a,, i.e. where the
metric is

ds* = aj(—drr +dx}) + ..., (34)

and the second is that a?ad should remain finite at the
singularity. Let us consider what this implies for the ge-
neric curvature singularity. The second condition picks out
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a large class of the Kasner-like solutions for which
p1+ po=0. (35)

In particular if we consider a fully isotropic solution we
have p;, =1/9+A/4 for i=1...9 and A= —4/9.
Solving the Kasner constraint we find A = +4/3 is the
only solution consistent with (35). This solution is pre-
cisely that considered in Ref. [19] as a toy model for the
cyclic universe and may be dimensionally oxidized to
2d Milne X R° in M-theory. The second isotropic solution
which does not satisfy (35) describes a pre-big-bang like
collapse which occurs at large string coupling. Since loop
corrections will inevitably play a significant role in these
examples, and the string approach may well be inappro-
priate we cannot infer anything about these cases with the
current approach.

The first condition gives p; <1 and is satisfied for all
the Kasner-like solutions except one (p; = 1, p;»; =0,
A =0), namely, when the string frame metric is
2d Milne X R®

9
ds® = —dx} + xpdx} + N dxd. (36)
i=2

The reason being, in order to put it in the above form we
must redefine x° = —e ™’ with the singularity at r = o so
that

9
ds* = e7¥(=dr* + dx}) + ) dxj, (37)
i=2

giving a; = e ' and ay = 1. However, the associated

Hamiltonian describes evolution in ¢ and the singularity
is no longer located at finite ¢ but rather at t = oo. Thus
although the Hamiltonian remains well defined for all finite
¢ all this shows is that the evolution is well defined before
the singularity.

D. Mode freezing

It is well known that strings on cosmological spacetimes
freeze, i.e. stop oscillating, when the curvature becomes
large due to the cosmological expansion or contraction
[12]. In Ref. [12] this was considered by expanding the
string solutions around a ¢ independent background. Here
we shall consider some exact nonlinear solutions that allow
us to see more precisely the condition for the onset of the
freezing. Once the modes have frozen, the size of the string
scales with the cosmological contraction.

It is simplest to consider an isotropic contraction/expan-
sion, and use the Polyakov form of the string action

s=4 f drdo((92°7 — a()2(08)?).  (38)

Here (0A)> = —(9,A)> + (9,A)%. The equations of mo-
tion for X are
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3(a*(x")ox) = 0, (39)
and the constraints are
(0,5 + (0,2°)* = a*(x)((0,%)* + (9,%)*) = 0

0,x°0,x° — a?(x°)9,%9,% = 0.

(40)
We look for solutions in which x° is independent of ¢ and
SO
22 L Ay s 0
97X +2—09,.x — d;x = 0. 41)
a

We make the ansatz (see Ref. [21] for similar numerical
solutions):

X=Xy +2ma’ 2 d + &(cl sin(no) + &, cos(no)),
(42)

where f satisfies the equation of motion
a%f+n2f—%f=o, (43)

with B¢, ¢, and &, are all mutually orthogonal and &3 =
¢ = 1. Here the integer n is the usual mode oscillator
number. This ansatz is a solution of the equations of motion
and the constraints with x° given by

0 32
_dx =27wa’ p_g + M?(7) (44)
dr a

where we have defined the “mass squared” of the string

state as
f 2
,uz[nzfz + a2<—> } (45)
al.

Do is the comoving momentum so that p,/a is the physical
momentum of the particlelike state that the string de-
scribes. To begin with, let us assume that n? > (2)?, =
so that f ~ ™7, Taklng the solution

M3(7) =

f= (cos(nt) = sin(n7))) (46)

\/—n

we find that M?(7) = M3. In this WKB regime we can view
the string as describing a particle state with physical mo-
mentum p/a and mass M. In the quantum theory we
expect M3 ~ 4n/a’ (for large n where we can neglect the
normal ordering constant), although classically it is con-
tinuous. As the universe contracts and the curvature in-
creases, at some point the modes will stop oscillating and
freeze. The analogue of this is cosmological perturbation
theory is when the modes cross the Hubble horizon.

We have two distinct regimes determined by the magni-
tude of the particle’s momentum, as explained in the
following subsections.
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1. Short wavelengths

As the universe contracts the physical wavelengths blue-
shift and there is always a regime for which Ay =
2ma/|pol < l;//n before the mode freezing sets in
(here [, = \/?). In these cases

0 /
. @ 47)
dr /\phys
For n? > |a ,,/al the solutions of Eq. (43) are oscillatory,
however for n?> < |a ,,/al they freeze. The criterion for
this transition is

n? <la./al = (8,xO7R, (48)

where R, ~ 1//2 is some measure of the curvature in string
frame (not necessarily the Ricci scalar which may vanish).
Consequently this is when

N Agnys = 12/1,. (49)

Since we are assuming /. > [, before the bounce, this will
only occur for physical wavelengths less than the string
scale which is consistent with the original condition
required.

2. Long wavelengths
If Aphys > I;/+/n at the onset of the transition, then

0 M
dx’ _ Mo (50)
dr M
and so the criterion for the transition is
MZR,
n? <la,./a| = :2‘ (51)
which for a quantum string with M3 ~ n/a’ gives
12
n=-. (52)
le

Thus in this case the effect only occurs when I, = [,/./n,
i.e. at the bounce itself. The former momentum dependent
behavior is precisely what we obtain in the case of plane
waves [9] and is consistent with the analogy we shall make
between the two in the following sections. The latter case is
the criterion obtained in [12].

We may now see an important distinction between the
class I and class II geometries. For class I spacetimes the
singularity is at finite conformal time ¢ and the behavior of
the scale factor will typically be a ~ (—¢)? as t — 0. The
ratio of the physical wavelength to the Hubble horizon is

)‘phys — /‘com
H' H!
where H{ = p/t is the comoving Hubble constant. Since
H =1 — 0 as t— 0 the majority of modes are stretched

beyond the Hubble horizon. Consequently A, > I, > [

(53)

phys
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before the bounce. Thus in these cases the strings only
become excited for n ~ [2/12 i.e. at the bounce itself. For
class II geometries the singularity is at infinite conformal
time with typically a ~¢~° where s > 1 as t — +o0. In

these cases
Aphys _ A <_ f) =0

H, 1 com t >
at the singularity. Consequently the majority of modes of
physical interest will all lie within the Hubble horizon at
the bounce.

One issue we have not addressed in the above analysis is
the distinction between the a,,/a <0 behavior and
a,,/a>0.In Ref. [12] the later case was argued to be
more unstable (referred to as a Jeans-like instability). This
is seen in the fact that the function f grows in magnitude as
we approach a(x’) — 0. If a~ 79 then the regime
a,,/a>0 corresponds to ¢ > 1 (and ¢ <0 which does
not correspond to a singularity at finite world sheet time).
In this cases f ~ A7? + B7'79, and it is the second term
that diverges. The distinction between class I and class 11
spacetimes is ¢ < 1/2 and so the unstable cases all corre-
spond to class II geometries, at least for isotropic solutions.
We shall discuss the importance of this for string mode
excitation in section IV. Since the solutions discussed
above are very special one may be concerned that the
transition region inferred from them is not generic.
However, a semiclassical analysis predicts the same be-
havior. Although these solutions may be unstable, the
instability does not set until the transition region and con-
sequently does not affect our estimates of when the WKB
approximation breaks down.

(54)

III. FROM ANISOTROPIC COSMOLOGIES TO
PLANE WAVES

In this section we point out an interesting similarity
between the behavior of strings on cosmological space-
times and plane waves. This connection seems to be most
clear for anisotropic spacetimes in which one direction
contracts more rapidly than the others. In evolving the
strings all the way to the singularity in section II, we
inevitably enter the regime where the strings are effectively
tensionless, i.e. all the massive string states are in the
ultrarelativistic regime pphys 3> Mo, Apnys << L//n. If
the geometry bounces at a given scale /., then in practice
it is only the short wavelength modes for which Ay, ¢ <
l,/+/n which can be treated as tensionless. The fact that
strings become tensionless suggests that the natural expan-
sion parameter should be w, i.e. 1/a’ rather that o' near the
singularity. This idea has been used in [13] and more
recently in [19] in the context of the ekpyrotic/cyclic
universe. If we assume a bounce at the string scale, then
because of the arguments of the previous section it is
actually only a fraction of the modes for which this is a
useful approximation. Furthermore as n becomes large
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this fraction becomes negligible as one may expect.
Nevertheless this is still an interesting regime and in this
section we point out that we anticipate the classical and
quantum behavior of strings in this regime too be well
modeled by strings on plane wave backgrounds.

A. Semiclassical expansion

The analogy between strings on cosmological space-
times and plane waves in the tensionless regime may al-
ready be seen at the semiclassical level. A similar
semiclassical approach was taken in [26]. Let us expand
the string fluctuations around classical solutions which are
o independent and thus represent particlelike trajectories.
As is usual for the string we have to satisfy the constraint
equation

8ur0:X50.X5 + 80,550 ,x5 = 0. (55)

Together with the equations of motion, these require the
string to move along a null geodesic. Denoting the metric

9
ds* = aj(r)(=dr* + dx}) + D aj(dx;,  (56)
i=2

and the string action (in this section x° denotes conformal
time)

s=-£ / Lorad()(— (0202 + (9x' )

9
+ Z a?(x%)(9x")?, (57)
=

let us consider geodesics in the x; direction. We have
(9,49 = (9,x")* =0, (58)

and so 9,x' = 99,.x° with n = +1 depending on the
direction of the trajectory. Since 9,(a?(x°)d,x°) = 0 our
chosen classical solution is

fa%(xo)dxo = A7+ B

=+ C xX=0 i=2...9. (59

It is convenient to choose coordinates so that C = 0. Then
expanding x* = x%;(7) + Y* to second order we find

S = —% ] Lod(x0)(—(@Y0)? + (9Y'Y)

9
+ 2(a?) 0 Y%(0xL0Y° — ax% oY) + Z a?(x%)(aY")>2.

i=2
(60)
Let us now define u = 1 (x° + nx!) and v = 2(nx! — x%)
and similarly split u = uy + U and v = v + V with the
classical value given by uy = xgl and vy = 0. Then the

above action may be expressed as
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_K

S =
2

/a’zo'Za%(uc])(BUaV) +2d2,0uqdU

9
+ Z a*(uy)(0Y?)> (61)
i=2

This is precisely the same action we obtain if we start with
the following action

9
S = —% de(TZzJ%(u)auav + Za%(u)(&xi)z, (62)
i=

and perform the same quadratic expansion u = uy + U
and v = vy + V. Since we are expanding around a null
geodesic, at leading order in the background field expan-
sion, strings on the metric (56) behave identically to strings
on the metric

9
ds* = 2a3(u)dudv + Z a*(u)dx?. (63)
=

This metric is a plane wave metric. This is closely con-
nected to the fact that the second metric is the Penrose limit
of the first. Writing t = u, x; = u + 2ev and x; = €X;, the
first metric is

9
ds* = €2a2(u)(—du® + d(u + 2edv)?) + Z a*(u)e*dx?
=

9
62[2a%(u)dudv + Z a?(u)dx%:| + 4€*a?(u)dv?,
i=

(64)

rescaling ds?> — ds*/€* and taking the limit € — 0 we
discover the plane wave metric. In the first case we are
expanding around a null geodesic and in the second we are
boosting infinitely along that same null geodesic. Although
slightly different procedures they have essentially the same
outcome.

B. Near the singularity

We have already seen in section II that as we approach
the singularity, classical strings freeze and begin to move
along null geodesics. This fact allows us to make a close
connection between cosmological and plane wave space-
times near the singularity. Consider again the Hamiltonian
for the string in proper time gauge

9
1
H=| daJPf FRaAOE Y (5P el
i

i=2
(65)

Now by definition as we approach the singularity the
Hamiltonian asymptotes to H — [ do|P;| and the leading
order nontrivial dynamics in the ‘““x;” directions can be
found by Taylor expanding the square root in powers of
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1/|P,|. Let us denote H = Hy + H, + ... where

1
H, = Pl+—— 02440 |2
0 fdcr[l il N ai(®)lxyl } (66)

and

H, =[ 2|P | Z( P2+ ,u,zaz(t)azlx’|2> (67)

What is remarkable is that H;, which governs the evolution
in the transverse x; directions is precisely the Hamiltonian
for strings in the plane wave spacetime. Here we identify
|P;| = py (defined in appendix A) where py is the con-
served momentum associated with the null Killing vector
which shall play a prominent role in what follows. This is a
straightforward consequence of the evolution of the string
tending asymptotically to a null geodesic. Then the action
near the singularity is

0 d.xi
i=1

dX1
= [ didopP, =L —(|P|| +
[ o 'y <| (]

9
+y P dt g( +M2a§(r)a,2|x;|2>.
(68)

1
24[ /12
2|P |ILL a]()l-xll

On defining V = x; — nt we get (here n = P, /|P,| and
has the same meaning as in the previous section)

dv 1 O dx
S= [ dtdoP— — 2af()V'P)+ ) P
[ or < <2|P1|Ma1()| |) >,

~3E] Z( P} + wai(atll) (69)

which makes it clear that the momentum conjugate to V is
py = P;. If we consider modes which do not oscillate in
the x; direction we may neglect the second term in the
action and so we have

av. Q. dx
S= | didoP, ==+ P,
[ T ,=Zz Cdt

1 1
2P |Z[5P? + M2a%(t)a%lx§|2} +..., (70
g i

which is precisely the canonical action of a string on a
plane wave spacetime. So it is the modes that do not
oscillate in the x; directions for which the correspondence
holds most closely. There is one important difference,
namely, that in the null case py is o independent and is a
conserved charge of the string associated with the null
Killing vector, whereas in the spacelike case |P,| is in
general o dependent. Nevertheless the dynamics is suffi-
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ciently similar that we expect a close correspondence in the
solutions.

IV. STRING MODE EXCITATION

In the previous section we have seen that there is a close
analogy between strings on anisotropic cosmological
spacetimes and plane waves. Since the latter are exact
conformal field theories we may use this analogy to antici-
pate the properties of the quantum string. In Ref. [9] it was
observed that on plane wave spacetimes there is a new
physical effect not present for strings on Minkowski space-
time; strings may become excited as they propagate in the
time-dependent spacetimes. The physical consequence of
this is particle transmutation [26], a particle of given mass
and spin may emerge as a particle with different mass and
spin. This effect was further studied in [10] and from a
semiclassical perspective in [26]. In appendix A we give a
brief review of some of the properties of plane waves and
the description of string mode excitation. In appendix B we
show that for plane wave solutions, which are conformal
field theories, it is impossible for the Einstein frame to
bounce. We cannot use this to infer anything about cosmo-
logical spacetimes however since the analogy between
them works only for modes for which Ay < I,/+/n. As
n — oo this becomes increasingly difficult to satisfy. The
renormalization group equations depend on the UV prop-
erties of the string and hence on the n — oo behavior.

The metric of the plane wave in cosmological form is

9
ds* = 2a3(u)dudv + Z a*(u)dx?, 71)
i=

and may be converted to the more familiar Brinkmann
form by defining U = [ a3(u)du, X; = a;(u)x; and simi-
larly V = v — 13, %2 X? so that

ds?* = 24Uav + ¥ U200 + ax2. (72)
Using the notation of appendix A, the string mode func-
tions satisfy

G+ n2y - (%)Zku(%w —0. (1)

where k;; = a; yy/a;. This may be thought of as a non-
relativistic scattering problem, where the last term is the
scattering potential and n” plays the role of the energy. In
Ref. [9] a generic argument for the behavior of the modes
was given based on the dimensionless ratio ne;u/py
- is the maximum value of /[k;[. If n > py/ue;

then the scattering potential is small and the Born approxi-
mation may be used. The Bogoliubov coefficients describ-
ing the amount of mode excitation are given by

where

n >M (74)

wa'py) n

,32 = _ilgii<
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where k;; is the Fourier transform of k;; and they have the
form

2 1 A
3;~Mexp(— ne ) (75)

ne; ma'py

Associated with each direction we may define a curvature
scale or Hubble horizon as

1 . 4
— = (“ ) — a8 (76)
a

l
I aa; i

Translating into our previous notation we find that in the
regime n > py/ue€; is equivalent to

N << 2/ min(lL), (77)

phys

where min(/%) is the minimum curvature length and Ay is
the wavelength at the time the maximum curvature is
reached, i.e. at the bounce. If the bounce occurs at the
string scale then this requires Apyys <K< [ /n. However the
plane wave analogy is only valid if A,y >> [;/+/n and so
this result is not appropriate. We may improve on this
analysis by considering semiclassical perturbations around
classical configurations describing massive states [26],
however it is straightforward to see intuitively how the
result will behave from the analysis of section IID.
When Ay >> [./+/n up until the bounce, then the crite-
rion for the modes to freeze is I. = [,//n. The Bogoliubov
transformation is associated with the onset of the freezing,
i.e. when the WKB approximation breaks down. Thus we
anticipate that in this regime the $’s to behave as

I le

Tl exp( b/n ls>’ (78)
where a and b are dimensionless coefficients of O(1).
Strictly speaking this is too simplistic since unlike for
plane waves, in the cosmological case the different coor-
dinates of the string interact and it is no longer appropriate
to think of independent Bogoliubov coefficients for each
direction X'. This interaction will spread out the amount of
excitation between the different excited states. However, in
terms of estimating the overall amount of excitation, it is
likely that (78) gives a reasonable estimate of the proba-
bility to excite a mode n. This falls of only as an exponen-
tial of /n is because we have assumed the mass of the
string increases as /n. This result shows that the amount of
mode excitation on a cosmological spacetime will in gen-
eral be greater than that anticipated for their plane wave
counterparts, where the fall off is exp(—nApylL/ 2)). In
the latter case even for n ~ 1 and /. ~ [, for modes whose
wavelengths are much greater than the string scale, this
amplitude is exponentially small. However, in the cosmo-
logical case for Ay, > I;/+/n we expect no suppression
for large wavelength modes, and we expect an O(1) proba-
bility of excited states at all wavelengths. There may
however be an additional suppression, for instance if the

By ~a
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coefficient b turns out to be reasonably large. This depends
on precisely what happens at the bounce, thus it is con-
ceivable that depending on the string scale physics this
effect could be significantly suppressed or enhanced.

At small wavelengths Ay << [/+/n we may trust the
analogy with plane waves. In Ref. [9] a WKB approxima-
tion was use to study the regime n < py/ue; ie.
NAphys <K /1. assuming that the time-dependent plane
wave regime was bounded by two regions of Minkowski
spacetime. In the present context this approximation is not
valid. However, we may now use the intuition developed in
Sec. II, to see what happens in each class. A given mode
will freeze when Appy = I2/nl.. which occurs at a curva-
ture scale I\ > [ /\/n. Consequently this will occur well
before the bounce, in the regime in which the collapse is
governed by the low-energy supergravity equations. Once
the modes have frozen they track the contraction and
subsequent expansion of the scale factor

. 1
Yt = Cra; + Cya; f?dr. (79)

l

For class I spacetimes in which the integral is finite as a; —
0 the subsequent evolution is largely independent of how a;
is regulated near the bounce. For class II spacetimes the
integral is divergent as a; — 0 and so will be strongly
sensitive to the manner in which it is regulated, i.e. pre-
cisely what happens at the bounce. In practice this means
that the Bogoliubov coefficients in the regime Ay, <
l,/+/n are largely insensitive to €;/I. whereas for class II
spacetimes they are strongly sensitive.

We may construct a toy analytic model of a bouncing
spacetime as follows: Consider a solution in which for the
different regions of U, a(U) takes the form

alU) =(=U)" U= —¢ (80)

) cosh(%)

all) =« coshg

—e<U<eg (81)

a(U) =U" U= e (82)
where gtanhg = v. This describes a scale factor which
contracts as a power law, bounces and then expands as a
power law. We can distinguish the different class by the
power v. In this example » < 1/2 corresponds to class I
spacetimes and v > 1/2 to class II spacetimes. The factor
of cosh(g) in the intermediate solution arises by ensuring
that a(U) and a'(U) are continuous at U = *e.

A solution which describes an incoming positive fre-
quency mode as u — —oo takes the form
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P (1) = \/—nTH(Vlll/z(nT), U= —¢
= C,eVva/ew’—n® 4 C o=/ pva/en)—n e <<

= a\/——mHilll/z(nT) + B\/——MHSBI/Z(nT), U=e
(83)

The constants C;, C,, a, 8 may be determined by match-
ing the field and its derivative at u = *e. On computing
the full expression for the Bogoliubov coefficients we find
that for » < 1/2 in the limit ne/pyu — 0

By — —icot((v — 1/2)m),

which is precisely the result obtained by matching the field
and its momentum conjugate at the singularity according to
the prescription of Sec II. Note that this is independent of n
and Ay and is inevitably of O(1). The same argument
applied to the case v > 1/2 gives the diverging behavior

(84)

. o’ 1-2v
B~ (T2 (85)
ne
This becomes arbitrarily large at wavelengths A, ¢ <

I,/n assuming a string scale bounce. Note that the two
qualitative behaviors are not distinguished according to
whether a yy/a>0 or ayy/a<0 as considered in
[9,12] since these regimes correspond to ¥ > 1 or v <0
and 0 < v <. It appears then than the Jeans-like insta-
bility is less important that whether the spacetime belongs
to class I or class II. In this sense then we find that even at
the quantum level the two classes of spacetime are distin-
guished by the sensitivity of the string propagation to the
bounce.

V. IMPLICATIONS FOR EKPYROTIC/CYCLIC
MODELS

Let us now consider the implication of these results for
realistic cosmologies that incorporate the idea of a bounce
such as the ekpyrotic and cyclic universe models. The issue
we need to address is what does the excitation of strings
imply for the propagation of cosmological perturbation
through a string scale bounce. Cosmological perturbations
on bouncing universes have been considered in several
different ways in the literature [4]. Here we shall be con-
cerned with what happens as the perturbations evolve
through the bounce. A gravitational wave (tensor perturba-
tion) is a coherent state of gravitons. The results of the
previous section imply that if certain conditions are met,
there is significant probability that an incoming graviton
emerges from the bounce as an excited string state. In field
theory terms, the incoming gravitational wave perturba-
tions become converted into the perturbations of several
string scale mass fields. A similar story holds for scalars
and one thus ends up with nonadiabatic perturbations.
However, in a short time scale these will decay back to
low mass/massless perturbations. It may be possible to
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model this process by an effective action including the
excited string states and various interactions between
them and the massless states. This would allow us to get
a better handle on how the cosmological power spectrum is
modified by this intermediate string regime. However,
recent work [27] suggests that a field theory approach
may not be an adequate description. If this is the case,
then only a fully string calculation of the propagation
of cosmological perturbations will resolve this issue. At
the present time this seems to be beyond the current
technology.

The ekpyrotic/cyclic models are based on the collision
of orbifold planes (end of the world branes) in heterotic
M-theory. Since g, — 0 as the orbifold planes approach,
we expect 10d heterotic string methods to be appropriate.
In the simplest models of these collisions, the CY moduli
are assumed to be stabilized from the 11d perspective.
Consequently in 10 dimensions the string frame metric
will contract isotropically

ds* = a}(—d? + d¥* + dsiky), (86)
where dsZy is the Calabi-Yau metric. As the geometry
collapses, modes are pushed outside the horizon
(Aphys JH™! — 00). When the string frame curvature be-
comes of order R, ~ 1/a’ we can no longer trust the low-
energy supergravity. Nevertheless if modes have become
excited already before this scale then these will have some
impact on the late time phase. In this model long wave-
length perturbations are generated by modes which have
crossed the horizon in the collapsing phase. Thus these will
have Ap,, > [ at the bounce. For these wavelengths we
may expect to excite with a probability of O(1) the first few
excited string states n = 1, 2... at all wavelengths A, ¢ >
l,. The arguments of the previous section seem to indicate
that this probability is independent of wavelength. This is
interesting since it suggests that the momentum depen-
dence of the incoming perturbation spectrum will be un-
changed, although the amplitude will be. However, this
depends on precisely how the excited states decay back to
the massless/low mass states. The momentum indepen-
dence is likely to be a result of the fact that long wave-
length modes have already frozen in (in the usual
spacetime sense) before we reach the bounce and so all
spatial derivatives of the fields may be neglected. This is
connected with the usual ultralocal behavior near cosmo-
logical singularities [23].

The caveat in these conclusions is that as we have seen,
for modes with A,y > [ they become excited when the
curvature scale is close to the string scale and it is precisely
in this regime that string &’ corrections kick in and we can
no longer trust the preceding analysis. Whether the string
excitation remains significant or is somehow suppressed
would require a deeper understanding of the string scale
physics, however we feel that qualitatively the resulting
physics will be similar. As well as particle transmutation,
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we also expect particle/string creation on cosmological
spacetimes. Generic estimates of string production have
been given in [28] in an effective field theory approach and
more specifically for the ekpyrotic/cyclic in Ref. [19] via
an instanton approach. The validity of both these calcula-
tions in the string regime is unclear [27], and more work
needs to be done on understanding these effects and the
implications of the backreaction of created particles.

In the regime A,y << [ things are under better control
since the strings become excited before we reach the string
scale. Our analysis suggests a significant amount of exci-
tation of the string at very short wavelengths. Since this
effect occurs well before the string scale we expect this
result to be largely unmodified by the physics of the
bounce. Cosmologically these modes are far less of a
problem. Again we anticipate they will decay in the ex-
panding phase and may give rise to small scale density
perturbations or the formation of small black holes which
would ultimately radiate away.

In Ref. [19] a proposal was made to match strings and
membranes across the collision of two orbifold planes in
heterotic M theory. From the 10d perspective these wind-
ing modes correspond to strings, and the fact that the
strings may be continued across the singularity is simply
a consequence of the fact that a? ~ (—¢) as t — 0~ and so
this geometry corresponds to a class I spacetime for which
we may directly match the comoving position and momen-
tum of the string across the singularity. If we evolve the
strings all the way up to + = 0 as advocated in Ref. [19],
then we find that all the modes of the string freeze and
begin to move at the speed of light at the collision. If we
consider the Penrose limit of this geometry, so that a2 ~
(—u), we may exactly solve the classical and quantum
string mode functions all the way up to the singularity,
and directly match them across into the expanding phase.
As in the cosmological case, the classical solutions are
well-behaved and no problem arises in the prescription.
However, in the quantum case, although there is no tech-
nical problem with matching the position and momentum
operators, on calculating the Bogoliubov coefficients we
find that the 3, s are constants and independent of n, i.e.
each mode on the string is excited with equal probability.
Since there are an infinite number of modes on the string,
the total excitation of the string and its mass are infinite and
so the S-matrix theory breaks down. What this shows is
that even when the classical behavior of strings is well
behaved, the quantum behavior may be pathological.
Whether this remains true in the cosmological case is not
clear without a rigorous quantization, but in the previous
sections we have argued that very similar physics takes
place.

VI. SUMMARY

We have seen that generic (an)isotropic spatially flat
cosmological singularities may be divided into two classes
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from the perspective of the propagation of classical strings.
In class I, the strings are well behaved all the way to the
singularity. In class II they become ill-defined at the sin-
gularity. We have seen that part of this feature remains in
the quantum theory, at least with regards to the excitation
of string modes, but that the situation is more subtle and
depends on the momenta of the string states. Quite inde-
pendently of whether the singularity is resolved by a
bounce or some other string scale state, the distinction
between the world sheet string physics of the two classes
deserves further exploration. We have reconsidered the
issue of string mode excitation (particle transmutation)
through a bouncing cosmology. We have argued that the
amount of mode excitation depends qualitatively on
whether the string describes a short or long wavelength
mode, in comparison to the string scale at the bounce. In
the former case the physics is well under control and a
close analogy may be made to strings on plane wave
spacetimes. For long wavelength modes things are less
well under control since the excitation occurs in the stringy
regime near the bounce. Nevertheless taking the semiclas-
sical arguments seriously suggests that modes of all wave-
lengths will emerge in mildly excited states which would
have important cosmological implications. A better under-
standing of the string scale regime must be developed in
order to fully understand the cosmological implications of
the bounce.
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APPENDIX A: PROPERTIES OF PLANE WAVES

Plane wave spacetimes are special cases of pp-wave
spacetimes which have the general form

ds*> = 2dUdV + K(U, X)dU? + dX? (A1)

where K is an arbitrary function of U. A review on the
significance of p p-waves for spacelike singularities can be
found in Ref. [29]. Plane wave spacetimes are special
symmetric solutions for which K(U, X) = k;;(U)X'X/.
We can generalize the pp-wave solutions to include a
nonzero Kalb-Ramond field. If we assume B® has the
form

B, = B,(U, X) (A2)

with all other components vanishing, then the leading order
in o’ renormalization group equations are reduce to

1

1 2 2 2 —
— 3 V2K — SHY, + 2030 = 0 (A3)
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aiHij = O, (A4)

with H;j = 9;B; — 9,;B; and Hp,) = 4 H;;HY. If we make
the further ansatz B; = — 1 H,;(U)X/, then the string sigma
model is conformally invariant to all orders in a'. This is
simply because for this form, B? contributes a quadratic
term in X' to the string action. Again specifying K =
k;;(U)X'X/ these define the so-called H p p-waves.

One of the interesting aspects about these null space-
times is the apparent reduction of constraints in compari-
son to the spacelike cases. For instance, there is no
nontrivial equation of motion for ®(u) since

Ob = (9P)> =0 (AS)

are automatically satisfied since gy = 0. This gives us
freedom to choose k;;(U), and we may still satisfy the
renormalization group equations by taking the dilaton to
satisfy (A3). This should be contrasted with spacelike
cosmologies, where we have an additional equation for
¢ (7). This extra freedom can be understood in terms of
the differing nature of the Cauchy problem. In the space-
like case, a surface ¢t = constant is a Cauchy surface,
whereas in the null case ¥ = constant is not a complete
Cauchy surface and we must impose additional data on say
a V = constant hypersurface to completely specify the
solution. It is this additional freedom that allows us free
choice for k;;(U) or equivalently ®(U).

These geometries are known to be exact conformal field
theories provided the Eq. (A3) is satisfied. In the case of
plane waves this may be shown by an exact calculation of
the path integral [30], however it may equivalently be seen
to arise from the fact that all higher order contractions of
the Riemann tensor and with the dilaton and Kalb-Ramond
3-form flux vanish, and so the usual a’ corrections to the
leading supergravity equations of motion vanish [9].

1. Calculation of S-matrix

The action for the string on a plane wave metric in
Brinkmann form is

S = —% fd%n“”(zaaUabv +9,X0,X'
+ ki (U)X'X79,U0,U). (A6)

From the equation of motion 949,U = 0 we may set U =
27ra’ py T giving the action

S = fd20'<_Pv6¢V -
~ k(2

and so the equation of motion for the X' are

©lE

<T’ab aaxiabxi

(A7)
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. . 2 .
P2X1 — X1 — (@> k,-,-<& r)X‘ 0, (A%
" w

where we assume k;; is diagonal or has been diagonalized.
The general solutions to this equation may be expressed as

. L . 1 N1/2
Xi = Xid' + (2mwa!)Pja [ —dU — 1(%)
ai

o0

XD

m=—o00,%#0

L9

i
(ﬂ yiemimo 4 Sm %e"m‘f), (A9)
m m

such that ¢ ,, = (i,)* and

- . 2 .
i+ ety = (O k(PN = 0. (a10)
w w
To quantize the system we replace (X{, Pi, &, &, py) by
operators and the canonical commutation relations imply
[XE)J P{)] = 1511 [ami’ anj] = [di’n: &{l = 6m+n5ij,
(Al1)

where we have chosen the normalization so that

(Y — W) = 2m. (A12)
We now face an ambiguity in the choice of positive fre-
quency modes ¢, for m > 0 which exactly parallels the
ambiguity in the choice of vacuum that arise in quantum
field theory on a curved spacetime. As U — 00 we expect
i, = Ae” ™" + Be'™ and so we naturally define an “in”
and “out” vacuum by the requirement that the modes are
positive frequency in the past and future

in,i

lim g’ (7) = e, (A13)
lim yin™(7) ~ e, (Al4)

As in quantum field theory on a curved spacetime, there
will be a Bogoliubov transformation between the in and out
states

in, i out, i

m = amlpgzm’i + Butm (A15)
Given a state |i, in) which lies on the Fock space built on
the vacuum [in) and a state |j, out) similarly defined we
may construct the S-matrix

S = {j, outli, in). (A16)
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2. Physical implication of Bogoliubov transformations

In quantum field theory on curved spaces, the
Bogoliubov coefficients measure the number of particles
seen by an out observer in the in vacuum. Specifically if
Noy(k) = b;(rb « 1s the number operator for an out observers

definition of particles, then
(in|Now (K)lin) = 1B(K)I*.

The total number of particles seen by an out observer is

(A17)

NG = |B(K)I>. (A18)

(2 )3
In the present context the interpretation is similar. The |in)
state may be viewed as a squeezed state [31,32]

1
) = [0 = b exp<_§7nblb—n>|0m>, (A19)

where v, = — B,/ a;. So the |in) state is a superposition of
excited |out) states
> bl bt bt

|out). (A20)

Note that we always apply the creation operators in pairs.
Now in the context of strings

out ~out
a_p T a—_y,
_n bin =

n n

for n > 0.

b = (A21)

Thus

i = [0 = i ) exp(

i,out ~iout
2 7n Ay @y >|OUt>

(A22)

and so we always excite an equal number of left and right
movers relative to the |out) state, this is necessary in order
to conserve world sheet momentum. If the plane wave
geometry is asymptotically Minkowski as U — *oo, then
we may use the standard definitions for physical states in
the asymptotic regimes. For an out observer the mass of the
string states is measured by

9 00
My =4 nibiibi, — 8, (A23)
=2 n;=—00,#0
and so
9 00 -
(inlMZliny =43 S nlp )P -8 (A24)
i=2n;=—00,#0

Consequently if the B’s are large, the out observer mea-
sures a large mass for the string in accordance with its
interpretation of the string as a superposition of massive
excited states. If (in|M2,lin) is significantly large, this
suggests that the excited strings could significantly back-
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react on the geometry. This has been used as a criterion to
asses whether string propagation across null singularities
makes sense at the quantum level [9,10].

APPENDIX B: EINSTEIN FRAME
AND A NO-BOUNCE THEOREM

For plane waves of the form k;;(U) = a/a;8;; (in this
section ' = d;,) the renormalization group equations for

the string are

1 1

DR
T a4

Let us denote a; = a,ef' = agePie®* such that 3,8, =
0. Here a, and ag are the string and Einstein frame scale
factors defined by the 8th root of the spatial volume
element in each frame. After some rearrangements we
find the equations in Einstein frame to be

HY) + 2020 = (B1)

in

o (B2

_ _ > 2 2
H), = (cb’ + 4Hp)? — 2 Z,B’

where Hy = a;/ag is the Einstein frame Hubble factor in
u time. Consequently

H,=0 (B3)
and so it is impossible for the Einstein frame scale factor to

undergo a regular bounce. This is a null version of the
theorem for spatially flat FRW spacetimes that states

. M?
H=—74(p+p)50. (B4)

However, while the latter is only a statement about
Einstein’s field equations, the former is a statement about
the string RG equations to all orders in «'. In fact there is a
subtlety here, there are solutions in which a reverses from
expansion to contraction such as a(U) = U or more gen-
erally when a;, — U + aU? as U — 0. We evade the theo-
rem because a(U) passes through zero where H is infinite.
If the x; are noncompact then these are completely regular
solutions, and their existence arises because in this case
there is not a physical expansion or contraction associates
with the change in ag(U), in fact we may change coordi-
nates to a frame in which the new scale factor is expanding
when aj, is contracting. If the x; are compact then these
solutions are generalized orbifolds of the type considered
in [14]. It is known from the case considered in [14] that
divergences arise in the string S-matrix. These were further
connected to a gravitational instability in [17]. We may
note that these higher dimensional orbifolds also satisfy the
criteria discussed for the formation of black holes suggest-
ing that the perturbative S-matrix will also be ill-defined in
this higher dimensional setup.
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