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Frustrated expectations: Defect networks and dark energy
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We discuss necessary conditions for a network of cosmic domain walls to have a chance of providing
the dark energy that might explain the recent acceleration of the Universe. We derive a strong bound on
the curvature of the walls, which shows that viable candidate networks must be fine-tuned and non-
standard. We also discuss various requirements that any stable lattice of frustrated walls must obey. We
conjecture that, even though one can build (by hand) lattices that would be stable, no such lattices will
ever come out of realistic domain wall forming cosmological phase transitions. We provide some simple
numerical simulations that illustrate our results and correct some misconceptions in the published
literature, but a detailed numerical analysis is left for a companion paper.
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I. INTRODUCTION

A number of observational datasets seem to indicate that
the (local) universe became recently dominated by a dark
energy component whose gravitational behavior is very
similar to that of a cosmological constant. The simplest
explanation for this would be that a cosmological constant
is indeed responsible, but unfortunately the corresponding
value of the energy density is in violent disagreement with
particle physics expectations, and therefore a considerable
effort has been put into finding alternatives.

A remarkable possibility is provided by topological
defects [1]. If our current understanding of particle physics
and unification scenarios is correct, defect networks must
necessarily have formed at phase transitions in the early
universe [2]. Whether or not they are a viable candidate to
explain the observed acceleration will depend on their
detailed dynamics.

It has been shown [3] that a key ingredient is what is
commonly called frustration: in order to accelerate the
universe, which necessarily requires a negative pressure
(more specifically w � p=� <�1=3) the networks must
be frozen in comoving coordinates. In other words, they
must simply be conformally stretched by expansion, and
have arbitrarily small velocities. In this limit cosmic strings
would have w � �1=3 (which would nearly qualify),
though it would be hard to reconcile with observations.
In any case, we will show in Sec. II that no string network
will ever reach this limit. On the other hand, domain walls
in the same limit are expected to have w � �2=3, which
makes them a much more promising candidate.
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It goes without saying that domain walls are cosmolog-
ically quite dangerous, and therefore there are very strin-
gent bounds on them. These have originally been discussed
by Zel’dovich et al. [4] and later extended in various ways
[5–7]. However, it must be pointed out that these bounds
have not been derived from detailed studies of domain wall
dynamics, but rather are based on simple estimates of what
this dynamics should be. The most glaring example is that
it is often implicitly or explicitly assumed that there is
about one domain wall per Hubble volume, which as we
shall see when discussing the wall dynamics in Secs. III
and IV need not be the case—in fact it cannot be the case
for a frustrated network. There are also more detailed but
purely phenomenological analyses of this type of models
[8–10]. (The second of these in fact claims that under
certain fine-tuned conditions on cosmological parameters
frustration may not be needed.) At a qualitative level these
provide useful indications of allowed ranges for cosmo-
logical and model parameters, but again the analyses are
somewhat misled by incorrect assumptions (made by
others) on the dynamical properties of the networks.

By the same token, there is also no thorough study of the
conditions under which domain wall networks may be-
come frustrated. Some relatively low resolution 2D nu-
merical simulations exist [11,12], with mixed results. On
one hand [11] finds that even in nontrivial models (ZN
models with moderate values of N) annihilation processes
can be fairly efficient, so that the networks show no ten-
dency towards frustration. On the other hand, for fairly
large N and suitable choices of initial conditions [12] finds
some hints of the possible formation of a hexagonal-type
lattice, though given the small dynamical range of the
simulations the results should be considered inconclusive.
The fact that the wall velocities are high (assuming they are
being correctly measured [13]) also raises some doubts
about the interpretation of these results. In another context,
-1 © 2006 The American Physical Society
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a study dealing only with compact dimensions [14] also
finds no frustration.

Last but not least, there have been recent attempts to
construct (by hand) plausible domain wall lattices, and
then study their stability [15–17]. Again these can provide
interesting and suggestive results, but of course they fail to
address the key issue of if and how such lattices may
emerge from realistic initial conditions for domain wall
forming phase transitions.

The current report is the first in a series that aims to put
the study of domain wall frustration (or lack thereof) on a
firmer basis. We shall start by making use of a recently
developed analytic model for domain wall evolution [13]
(the basics of which are explained in Sec. III) to derive, in
Sec. IV, very general necessary conditions for frustration.
The apparently innocuous requirements of domination
around the present epoch and small velocities are enough
to show that any candidate networks must be quite unnatu-
rally fine-tuned (in a precisely quantifiable way). After
this ‘‘top-down’’ result we will proceed in Sec. V to discuss
an equally important ‘‘bottom-up’’ one, namely, some
requirements that any stable lattices must obey. A related
analysis is made in [18], where energetic arguments are
discussed for a specific model. The discussion will con-
centrate on the 2D case (which is physically much simpler
than 3D) but some results are expected to be generic.
Finally, in Sec. VI we present a summary of our results.
We will also provide a few very simple numerical illustra-
tions in Sec. V, though we leave an extensive numerical
study for a companion paper.

II. COSMIC STRINGS—A NONSTARTER

Before we focus on domain wall networks, it is worth
starting with a brief note of the case of cosmic strings,
which are sometimes claimed to be able to accelerate the
universe if they are the dominant energy density compo-
nent. Recall that the equation of state of a cosmic string
network depends on its root-mean-squared (RMS) velocity
as [19]

ws �
1
3�2v

2
s � 1�; (1)

so in the limit vs � 0 its correlation length would behave
as

L / a / t: (2)

Notice that there is a crucial point here which is often
overlooked: because one knows that there is a sizable
matter component �m0 � 0:3 whose equation of state is
wm � 0, then in order to accelerate the universe one would
need the dark energy component to have wd & �0:5. Be
that as it may, it has been shown [20] that when a string
network dominates the universe, the behavior of its corre-
lation length and RMS velocity is

L � �t / a1�v2
; (3)
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�2 �
8�G�

3
�1� v2�2; (4)

where � is the string mass per unit length, and

v � const; (5)

while the scale factor evolves as

a / t1=1�v2
: (6)

As expected, the naive solution (2) is recovered for v � 0.
Note that the string correlation length grows as fast as
allowed by causality (this is always the attractor for the
evolution of a string network), but the network is not
conformally stretched (which would be the case only if
v � 0). Since the string velocity does not vanish, the
correlation length grows faster than the scale factor. On
the other hand the effect of the nonzero velocities is to
make a string-dominated universe expand more slowly
than one might naively expect, since some of the energy
of the string network is lost to velocity redshift.

Numerically it is found [20] that

v2
s � 0:17 (7)

for nonintercommuting strings. The velocity is expected to
be smaller, but still nonzero, for the case of entangled
string networks (unlike in the former case, it is not easy
to numerically determine this value). Ancillary evidence
for these results has also been recently discussed in [21].
Hence in a string-dominated universe the string velocity
never becomes arbitrarily small, and a string-dominated
universe will not in any circumstances frustrate or accel-
erate the universe.

Physically, this result is to be expected: string evolution
is a nonequilibrium, irreversible process (cf. string evolu-
tion in a contracting universe [22,23]), and their dynamics
naturally leads them towards relativistic velocities. In other
words, nontrivial mechanisms must be active if they are to
remain nonrelativistic, let alone freeze completely. Note
that friction due to particle scattering, which is the simplest
such mechanism, can only have a limited effect. To some
extent these points will also be relevant for the case of
domain wall networks.

III. DOMAIN WALL EVOLUTION

Domain walls arise in models with spontaneously bro-
ken discrete symmetries [1,2]. The simplest example is that
of a scalar field � with the Lagrangian

L � 1
2�;��;� � V���; (8)

where the potential V��� has a discrete set of degenerate
minima, say for example

V��� � V0

�
�2

�2
0

� 1
�

2
: (9)

By varying the action
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S �
Z
dt
Z
d3x

�������
�g
p

L (10)

with respect to � we obtain the field equation of motion

@2�

@t2
� 3H

@�
@t
�r2� � �

@V
@�

; (11)

where r is the Laplacian in physical coordinates and H �
�da=dt�=a is the Hubble parameter.

In many cosmological contexts of interest, one can
neglect the domain wall thickness when compared to its
other dimensions, and thus treat the wall as an infinitely
thin surface. With this assumption, its space-time history
can be represented by a 3D world sheet x� � x���a�, a �
0, 1, 2. A new action can then be easily derived [1]. In the
vicinity of the world sheet a convenient coordinate choice
is the normal distance from the surface. Noticing that in the
thin wall limit all fields in the Lagrangian should depend
only on this normal coordinate, and integrating out this
dependence, one finds

S � ��
Z
d3�

����
�
p

; (12)

where

�ab � g�	x
�
;ax	;b (13)

is the world sheet metric, with the obvious definition � �
det��ab�, and � is the mass per unit area of the wall. Notice
that this action is proportional to the 3-volume of the wall’s
world sheet, and hence is clearly the analogue of the Goto-
Nambu action for strings.

In analogy with the velocity-dependent one-scale model
for cosmic strings [24–26], one can obtain a one-scale
model for domain wall evolution. This was derived and
tested against numerical simulations in [13] so here we
simple state the results we shall be using. Let us define a
characteristic length scale,

L �
�
�
; (14)

which is directly related to the average distance between
adjacent walls measured in the frame comoving with the
expansion of the universe. One can then show that its
evolution equation is as follows

dL
dt
� �1� 3v2�HL� cwv; (15)

where cw is a phenomenological parameter measuring the
efficiency of energy losses from the wall network. Here v
is the RMS velocity of the walls, which in turn evolves
according to

dv
dt
� �1� v2�

�
kw
L
� 3Hv

�
; (16)

with kw being another phenomenological parameter related
to the typical curvature of the walls—see [26] for a thor-
123519
ough discussion of the analogous parameter for cosmic
strings. These therefore provide a phenomenological
model for domain wall evolution with two free parameters,
that one can measure from high-resolution numerical simu-
lations [13,27–29].

It is easy to see that, just as for cosmic string networks,
the attractor solution to these evolution equations corre-
sponds to a linear scaling solution

L � 
t; v � const: (17)

Assuming that the scale factor behaves as a / t� the de-
tailed form of the above linear scaling constants is


2 �
kw�kw � cw�
3��1� ��

; (18)

v2 �
1� �

3�
kw

kw � cw
: (19)

As in the case of cosmic strings [20], an energy loss
mechanism (that is, a nonzero cw) may not be needed in
order to have linear scaling. Note that this means that
having nonintercommuting domain walls is by no means
sufficient to ensure a frustrated wall network. Note, how-
ever, that the linear scaling solutions are physically very
different for cosmic strings and domain walls. In the case
of cosmic strings, in the linear scaling phase the string
density is a constant fraction of the background density,
whereas in the case of domain walls we have

�w
�b
/ t; (20)

so the wall density grows relative to the background den-
sity, and will eventually become dominant.

Having said this, note that the scaling behavior will
change as the wall density becomes a significant fraction
of the energy density of the universe, and eventually domi-
nates it. In that case, the evolution equations above must be
solved simultaneously with the Friedmann equation, and
the latter must include the contribution from the domain
wall network itself. These various scaling regimes are fully
discussed in [13]. For our present purposes, we are inter-
ested in the onset of domain wall domination and not in the
domination itself, so the above regime is relevant. In
other words, any domain wall network that might be a
candidate for the dark energy must not be completely
dominating today, but rather be slowly approaching that
stage. Hence the above regime is still the relevant one for
understanding the current properties of the wall network
(such as the separation between the walls or their charac-
teristic velocities).

There is in general, however, an effect which we have
neglected thus far. At early times, in addition to the damp-
ing caused by the Hubble expansion, there is a further
damping term coming from friction due to particle scatter-
ing off the domain walls. Phenomenologically, it can be
-3
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shown [1] that its effect can be adequately described by a
frictional force per unit area

f � �
�
‘f
�v: (21)

In the above we have defined a friction length scale which
we write as

‘f �
�

�T4 ; (22)

where T is the photon temperature and � is a parameter
counting the number of species interacting with the domain
walls. Note that it is clear that they cannot interact strongly
with the photons, baryons, and dark matter, otherwise they
would be ruled out due to the strong cosmological signa-
tures left over on the cosmic microwave background and/or
large scale structure [4–6].

Just like in the case of cosmic strings [24–26] one can
modify the evolution equations of our one-scale model to
account for this extra friction term. They become

dL
dt
� HL�

L
‘d
v2 � cwv; (23)

dv
dt
� �1� v2�

�
kw
L
�
v
‘d

�
; (24)

where we have defined a damping length scale

1

‘d
� 3H �

1

‘f
(25)

which includes both the effects of Hubble damping and
particle scattering. It is instructive to compare the impor-
tance of both of these terms. At early times particle scat-
tering is always dominant (except if it is completely absent,
that is if the network is totally noninteracting), but the
friction length scale grows faster than the Hubble length
and so eventually particle scattering will become subdo-
minant. The epoch at which the transition occurs depends
both on the parameter � and on the mass scale of the walls,
which we can characterize by the scale � of symmetry
breaking phase transition that produced them,

�� �3: (26)

One can easily find, for �� 1, that friction domination
will end at the epoch of equal matter and radiation densities
for a symmetry breaking scale

�eq � �mPlT
2
eq�

1=3 � 3 GeV (27)

and will end around the present day for

�0 �

�
m2
PlT

5
0

Teq

�
1=6
� 1 MeV; (28)

where T0 and Teq are, respectively, the CMB temperatures
at the present day and at the epoch of equal matter and
123519
radiation densities. Note that the dependence on the pa-
rameter � is weak, and in any case the parameter is quite
tightly constrained (it cannot be much larger than unity).
This coincides with the Zel’dovich bound [4], though we
emphasize that the derivation is different. In particular, the
classical derivation implicitly assumes the linear scaling
solution, which as we saw above is not generically the
case: one defect per correlation volume does not neces-
sarily imply one defect per Hubble volume (this point has
also been made in [15]). In the following section we shall
see that tight constraints apply to the parameters of any
domain wall network if we assume that it becomes frus-
trated and is starting to accelerate the universe.
IV. WALL NETWORK PROPERTIES

If a domain wall network is to provide the dark energy
suggested by observations, there are some obvious and
unavoidable requirements. First, such a network must be
dominating the energy density of the universe around the
present day, so its energy density must be of the order of
the critical density,

�w �
�
L0
� �c �

1

Gt20
; (29)

which provides us with a unique relation between the
energy scale of the defects and the present correlation
length, namely

L0 �
�3

T3
0Teq

: (30)

But there is a further constraint on the physical correla-
tion length today. The dark energy should be approxi-
mately homogeneous and isotropic on cosmological
scales or otherwise that would result in strong (unob-
served) signatures on the cosmic microwave background.
So the product

L0H0 �

�
�

30 MeV

�
3

(31)

must be much smaller than unity. If we say we need

L0 & 1 Mpc� H�1; (32)

then we find again

�< 1 MeV: (33)

Now, recall that the averaged equation of state of a
domain wall network is given by [19]

ww �
1
3�3v

2
w � 2�; (34)

where now vw is the averaged RMS velocity of the domain
wall network. So in order to accelerate the universe with an
equation of state in agreement with observations the wall
velocities must necessarily be quite small. In general, this
means that the network should be friction-dominated,
-4
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which takes us back to the bound (28), which coincided
with (33). However, during friction domination, one also
has [13]

Lv� k‘f � k
�

T4 ; (35)

from which we get at the present day, using the relation
(30),

v� k
Teq

T0
; (36)

and since the velocity must be much less than unity,

k� 10�4: (37)

The only way to avoid this bound is to enforce that one
has a model where there is no friction due to particle
scattering (effectively ‘f � 1). In such a case (30) and
(32) still apply, but instead of being friction-dominated all
the way through to the present day the network would be in
the linear scaling regime. In that case, (35) is replaced by

Lv� kt�
k
H0

; (38)

and again substituting L0 and requiring that the velocity is
much smaller than unity we have

k < L0H0 � 10�4: (39)

Hence we see that the curvature of the domain walls must
unavoidably be very small. Note that for the case of ordi-
nary cosmic strings [25,26] k is a parameter depending on
the string velocity, whose value increases and closely
approaches unity in the limit of small velocities, and it is
expected that the same happens for the simplest domain
wall models. So the only possibly realistic candidates are
nonstandard networks, that is those with junctions where
N > 2 walls intersect.

It is also important to emphasize that for any realistic
network that is becoming the dominant energy component
of the universe around the present day, assuming a constant
equation of state is generically not a good approximation.
Because the network’s equation of state depends on the
network velocity (see Eq. (34)), it will only be constant if
the network is in a linear scaling regime (in which case
w>�2=3) or in the asymptotic limit v � 0. In all other
cases w should be time-varying. Assuming w � const may
therefore be a poor approximation. This is one of the
reasons why currently existing phenomenological analyses
of this class of models [8–10] are only at best qualitatively
accurate, and a more realistic study is called for.

We note that the velocity-dependent one-scale model for
domain walls does not fully take into account the features
of more complex models, since in that case there might be
added contributions (in particular those related with the
dynamics of the junctions). However, one can argue that
the dynamics of these junctions will be reflected in the
evolution of curvature parameter which in our model is
simply a phenomenological parameter characterizing do-
123519
main wall curvature. Hence, we do expect that our simple
one-scale model will also be valid (at least qualitatively) in
the context of these more complex configurations. Be that
as it may, in the next section we shall discuss some prop-
erties of such wall network lattices.

Finally, we note that one of the assumptions in the model
is that the domain wall mass per unit area, �, is fixed. It is
certainly possible to envisage more complex models with
different types of walls with various masses per unit area.
However, we do not expect our conclusions to be modified
even in these more complex scenarios.

V. WALL LATTICE PROPERTIES

In the previous section we have shown that, in order to
be able to provide the dark energy, the curvature of the
domain walls would have to become very small by the
present time. In this section we shall look at geometrical
properties of polyhedrons in order to investigate if
equilibrium flat domain wall configurations can be the
natural result of domain wall network evolution in two
dimensions.

The Poincaré formula relating the number of polyhedron
vertexes (V), faces (F), and edges (E) of genus g surfaces
has the form

V � E� F � 2� 2g: (40)

We shall assume periodic boundary conditions on a two-
dimensional square box and consequently one is effec-
tively considering a surface of genus equal to unity.
Hence Eq. (40) becomes

V � E� F � 0: (41)

We note that our assumption of periodic boundary condi-
tion does not affect our conclusions as long as the size of
the box is big enough.

Let us start by considering the case in which the number
of edges of each polygon, x, and the number of edges, d,
meeting at a vertex are fixed. Let us denote the number of
polyhedron faces by F � Nx. The number of polyhedron
vertices is V � Nxx=d since each polygon has Nx vertices
but each one of them is shared with d� 1 other polygons.
Also the number of polyhedron edges is equal to E �
Nxx=2 since each polygon has Nx edges but each one of
them is shared with another polygon. Consequently, in this
case Eq. (41) becomes

Nx

�
1�

x
d
�
x
2

�
� 0: (42)

This equation has the following solutions (x � 6, d � 3),
(x � 4, d � 4), (x � 3, d � 6). These are the well-known
hexagonal-type lattices with odd Y-type junctions, square
lattices with even X-type junctions, and triangular lattices
with even �-type junctions in two dimensions.

However, in general we do not expect that all the poly-
gons have the same number of edges. Causality constraints
-5



FIG. 2. An illustration of the collapse of three (top) and four
(bottom) edge domains with Y-type junctions. The collapse is
energetically favorable since it leads to a reduction of the total
length of the walls.
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mean that such configurations could not arise directly out
of a cosmological phase transition, though they could
conceivably be generated dynamically (more on this be-
low). Hence, let us consider the more interesting situation
in which d is fixed but x is not. In this case, it is straightfor-
ward to show that

hxi 	

P
1
x�1 xNxP
1
x�1 Nx

�
2d
d� 2

: (43)

It is also easy to show that hxi � 6 if d � 3, hxi � 4 if d �
4, hxi � 3 if d � 6, and hxi ! 2 if d! 1. We will show,
in the following discussion, that these simple geometrical
considerations will be relevant for evaluating the potential
of domain walls as a dark energy candidate.

There are no polygons with two edges. However, the
domains in a realistic domain wall network will not in
general have straight edges and consequently two edge
domains are possible. However, these domains will be
unstable and collapse due to the domain wall curvature
independently of the number of elements meeting at each
junction.

Here, we are implicitly assuming that the energy asso-
ciated with the junctions is negligible which in practice
means that they are free to move. This is a reasonable
assumption, at least for the purposes of the present dis-
cussion. If it were not the case, one would have to take into
account the contribution of the junctions when calculating
the equation of state associated with the domain wall net-
work, and consequently w � p=� would necessarily be
greater than �2=3 even for a fully static configuration.
Such networks would hardly be compatible with observa-
tional bounds.

It is also straightforward to show from a local stability
analysis that three, four, and five edge domains will also be
unstable if only Y-type junctions (d � 3) occur in a given
model. This is a particularly interesting case since one can
FIG. 1. An illustration of the decay of an unstable X-type
junction into stable Y-type junctions. The decay is energetically
favorable since it leads to a reduction of the total length of the
walls (if all have the same tension).

123519
show using local energy considerations that in models with
more than two vacua, if all the domain walls connecting the
various vacua have equal energies then only Y-type stable
junctions would form (see Fig. 1). Higher-order junctions
are unstable and very quickly decay into Y junctions. A
good illustration of this point is the ‘‘pentahedral‘‘ model
discussed in [15]. The author erroneously claims that this a
candidate for frustration with X-type junctions, when in
fact it will form Y-type junctions. This can easily be
checked numerically, and so can the fact that even if one
constructs (by hand) a box with X-type junctions these will
quickly decay into Y-type junctions.

Figure 2 shows various polygons formed by walls with
equal tension. Note that in both cases, x � 3 (top) and
x � 4 (bottom), the total length of walls decreases.
Consequently, the polygons will tend to collapse thus
minimizing their potential energy. On the other hand in
Fig. 3, for x � 6, the length remains constant and both
configurations have the same energy. Hence, given that
d � 3 implies hxi � 6, the only possible equilibrium con-
figuration with only Y-type junctions is a hexagonal-type
lattice (otherwise unstable two, three, four, and five edge
domains would occur).

Although hexagonal lattices with Y-type junctions allow
for locally confined energy conserving deformations,
FIG. 3. An illustration of two different six-edged polygons
with Y-type junctions of walls with the same tension. Both
configurations have the same energy.
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FIG. 4. An illustration of the collapse of a four-edged polygon
in the case where two of the surrounding domains are on the
same vacuum state. The collapse leads to a reduction of the
number of edges of contiguous domains.

FIG. 6. An illustration of the collapse of two Y-type junctions
into one X-type junction. The thickness of the traces indicates
the tension strength. If the thick wall has a tension larger than
twice that of the lower tension ones the collapse must happen.
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Hubble damping may prevent the collapse of such configu-
rations (even if they are perturbed) and consequently one
should not completely discard them on this basis. However,
we do not expect that hexagonal lattices will be an attractor
for the evolution of domain wall network simulations.
Although a four edge domain is unstable in this context,
its collapse will modify the properties of its four contig-
uous domains with EI, EII, EIII, and EIV edges. If we
assume that the first two will join, as happens in the
example given in Fig. 4, the resulting domain will have
EI � EII � 4 edges while the other two will have EIII � 2
and EIV � 2 edges after the collapse of the four edge
domain. The production of three hexagons as a result of
the collapse of a four edge domain is improbable since it
would require EI � EII � 10 and EIII � EIV � 8.

Of course, in a model with a very large number of vacua
the probability that two nearby triple wall junctions will
annihilate can be made arbitrarily small. In fact as the
number of vacua increases, the probability that the con-
figuration shown in Fig. 5 occurs becomes much greater
than the one given in Fig. 4. Still, the collapse of unstable
domains with two, three, four, and five edges will always
result in a decrease in the number of edges of some of the
contiguous domains. Again, we do not expect that a
domain wall network in two dimensions will naturally
evolve towards a hexagonal lattice from realistic initial
conditions.

Also, no equilibrium configurations exist with d > 6.
This means that if we started with a domain wall network
with d > 6 unstable two edge domains would necessarily
be present and consequently the number elements meeting
FIG. 5. An illustration of the collapse of a four-edged polygon
in the case where all the surrounding domains are on different
vacuum states and the domain walls all have the same tension.
Again, the collapse leads to a reduction of the number of edges
of contiguous domains.
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at a junction will often have to be reduced to a number
smaller than 6. Hence, we anticipate that odd Y-type and/or
even X-type junctions will be generic even in models
where the number of elements meeting at a junction is
allowed to be greater than four.

We have seen that in a model where all the domain walls
connecting the various vacua have the same tension, it is
not expected that a frustrated domain wall network will
naturally occur. However if we relax this assumption we
are adding a different source of instability since the walls
with higher tension will tend to collapse thus increasing the
dimensionality of the junctions which, in turn, will lead to
the production of further unstable two edge domains. This
is clearly illustrated in Fig. 6 which shows the collapse of
two Y-type junctions into one X-type junction which must
necessarily occur if the thick wall has a tension larger than
twice that of the lower tension ones.

Hence, although we have not presented a rigorous for-
mal proof, we conjecture that it is unlikely that two-
dimensional domain wall network evolution from realistic
domain wall forming phase transitions will ever produce a
frustrated network. Our analysis can only be fully applied
to domain walls networks in two dimensions. However,
some of our results can also be generalized to three dimen-
sions, at a cost of a much greater complexity. It is not clear
that the increase in the number of degrees of freedom
which occurs when we go from two to three dimensions
will help frustration and consequently we believe that
our simpler analysis in two dimensions is a crucial step
in accessing domain walls networks as dark energy
candidates.

Finally, we illustrate our results with two simple numeri-
cal examples. The stability of simple examples of triangu-
lar, hexagonal, and square domain wall lattices in 2D was
studied by analytic means in [15–17], specifically by look-
ing at their macroscopic elastic properties. The authors
assess the stability of various lattice configurations and
find that some of them are stable. Here, we confirm using
numerical simulations that there are certain lattice configu-
rations which are indeed stable even against large defor-
mations. In Fig. 7 we show a field theory numerical
simulation in the matter-dominated epoch for a perturbed
square lattice with even X-type junctions. As expected the
network evolves towards the minimum energy equilibrium
-7



FIG. 7. The evolution of a perturbed square lattice with even
X-type junctions in a matter-dominated universe. The top left
panel is the initial configuration. From left to right and top to
bottom panels the horizon is approximately 1=256, 1=20, 1=10,
and 1=5 of the box size, respectively. The lattice stabilizes in the
right bottom panel configuration.
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configuration. The evolution of a perturbed hexagonal
lattice with odd Y-type junctions in the matter-dominated
epoch is shown in Fig. 8. As it was mentioned before this is
the only possible equilibrium configuration if only Y-type
junctions are permitted. Although in [15–17] the authors
claim that a hexagonal lattice with Y-type junctions is
unstable, the expansion of the universe will damp the
FIG. 8. The evolution of a perturbed hexagonal lattice with odd
Y-type junctions in the matter-dominated epoch. The top left
panel is the initial configuration. From left to right and top to
bottom panels the horizon is approximately 1=256, 1=10, 1=5,
and 2=5 of the box size, respectively. The lattice stabilizes in the
right bottom panel configuration.
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domain wall velocities which may drive the network to-
wards an equilibrium configuration (as shown in Fig. 8).
We have performed a similar simulation in Minkowski
space and in that case the configuration is always unstable.
This is to be expected since no damping mechanism oper-
ates in this case. These results clearly indicate that the
crucial question is not the existence of specific stable
lattice configurations but whether any of these can be the
natural result of domain wall network evolution from
realistic initial conditions. A more detailed numerical
analysis of these issues will be left for a forthcoming
publication.
VI. CONCLUSIONS AND OUTLOOK

We have studied necessary conditions for a network of
cosmic domain walls to become frustrated, and thereby
have a chance of accounting for the dark energy. We have
made use of simple analytic tools to derive a strong bound
on the wall curvature, which implies that any candidate
network must be considerably fine-tuned. We have also
considered various simple lattice properties in two spatial
dimensions, and used energy considerations to obtain a
number of requirements that any stable lattice of frustrated
walls must obey. Although the extrapolation of some of the
results of the latter analysis to the case of three spatial
dimensions is nontrivial, it is clear that some general trends
will remain.

Several key points emerge from our analysis, each of
which will be considered in detail in forthcoming work.
First, there is some model dependence involved, which is
to be expected given the whole zoo of existing models.
Some of these have been studied in the past, but others
remain unexplored. Second, energy considerations are the
main driving mechanism for the evolution of wall networks
with junctions, though topological arguments also play a
role. An example of the power of these mechanisms is the
simple yet crucial result that in models with more than two
vacua, if all the domain walls connecting the various vacua
have equal energies then only Y-type stable junctions
would form. As we have pointed out above, this point
has been overlooked in some of the existing literature.

Last but not least, the difference between designer con-
ditions (that is, lattice configurations built by hand) and
conditions that might possibly arise as the outcome of
domain wall forming phase transitions cannot be overem-
phasized. In this regard, even the presence or absence of
expansion can have nontrivial effects. Our results lead us to
conjecture that, even though one can build (by hand)
lattices that would be stable, no such lattices will ever
come out of realistic domain wall forming cosmological
phase transitions. If so, then defect networks are ruled out
as an explanation for the dark energy. We shall explore this
conjecture, in particular, through detailed numerical analy-
sis, in a companion paper.
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