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Scattering of cosmic microwave background (CMB) radiation in galaxy clusters induces a polarization
signal proportional to the CMB quadrupole anisotropy at the cluster’s location and lookback time. A
survey of such remote quadrupole measurements provides information about large-scale cosmological
perturbations. This paper presents a formalism for calculating the correlation function of remote
quadrupole measurements in spherical harmonic space. The number of independent modes probed by
both single-redshift and volume-limited surveys is presented, along with the length scales probed by these
modes. In a remote quadrupole survey sparsely covering a large area of sky, the largest-scale modes probe
the same-length scales as the quadrupole but with much narrower Fourier-space window functions. The
largest-scale modes are significantly correlated with the local CMB, but even when this correlation is
projected out the largest remaining modes probe gigaparsec scales (comparable to the CMB at l � 2-10)
with narrow window functions. These modes may provide insight into the possible anomalies in the large-
scale CMB anisotropy. At fixed redshift, the data from such a survey form an E-type spin-2 field on the
sphere to a good approximation; the near absence of B modes will provide a valuable check on systematic
errors. A survey of only a few low-redshift clusters allows an independent reconstruction of the five
coefficients of the local CMB quadrupole, providing a test for contamination in the Wilkinson Microwave
Anisotropy Probe quadrupole. The formalism presented here is also useful for analyzing smaller-scale
surveys to probe the late integrated Sachs-Wolfe effect and hence the properties of dark energy.
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I. INTRODUCTION

Cosmologists are making rapid progress in our under-
standing of the structure of the large-scale Universe. On
the largest scales, the chief source of information is the
cosmic microwave background (CMB) anisotropy and po-
larization, particularly the all-sky data from Wilkinson
Microwave Anisotropy Probe (WMAP) [1–6]. There
have been tantalizing hints of unexpected behavior in the
largest-scale modes of the CMB anisotropy. The COBE
differential microwave radiometers detected a lack of an-
isotropy power on the largest angular scales [7–9], and
WMAP has confirmed this result [1,2,4]. There is evidence
suggesting that these largest-scale modes are inconsistent
with statistically isotropic theories because of correlations
between modes and/or asymmetry between hemispheres
[10–18]; however, there is disagreement over how to in-
terpret these results [14,16,19]. In particular, these results
are subject to the classic problem of a posteriori interpre-
tation of statistical significances: if an unexpected anomaly
is found, and its statistical significance is computed there-
after, one cannot necessarily take the significance at face
value. (After all, in any large data set, something unlikely
is bound to occur.)

The best way to resolve this situation is of course to
obtain a new, independent data set probing the same physi-
cal scales. Unfortunately, large angular scale CMB obser-
vations are already at the ‘‘cosmic variance’’ limit, and
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other independent probes of these ultralarge scales are few.
Observations that may provide independent information on
these scales are therefore of considerable interest. Large
angular scale CMB polarization data provide some relevant
information [20,21], although the number of independent
modes probed is small and the results may depend on the
details of reionization.

The scattering of CMB photons in clusters of galaxies
may shed light on this puzzle. This scattering induces a
polarization signal [22], which is determined by the quad-
rupole anisotropy in the photon distribution at the cluster
location. This ‘‘remote quadrupole’’ signal probes large-
scale modes of the density perturbation field that are differ-
ent from those probed by the local CMB, so by measuring
these remote quadrupoles it may be possible to get around
the cosmic variance limit [23]. It has therefore been pro-
posed that a survey of remote quadrupoles may shed light
on the puzzle of large-scale CMB anomalies [24,25].

The remote quadrupole signals from different clusters
are strongly correlated with each other and with the local
CMB anisotropy [26]. It is therefore not obvious how to
design a survey to obtain the maximum amount of new
information. In addition, we wish to know what physical
scales of perturbation are probed by a given survey; this
will depend on both the redshifts and the angular distribu-
tion of clusters observed. In this article I will develop a
formalism for determining the independent fluctuation
modes that are probed by a survey of remote quadrupoles.
For a survey that sparsely covers a large area of sky, the
largest-scale modes probe comparable length scales to the
-1 © 2006 The American Physical Society
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first few CMB multipoles, with Fourier-space window
functions that are narrower than that of the local CMB.
Determination of these modes may be expected to provide
insight into the interpretation of the possible anomalies in
the large-scale CMB observations. The value of a sparse
large-area survey for this purpose has been noted elsewhere
[24]. This paper provides the first detailed assessment of
the amount of information available in such a survey.

The correlation function of remote quadrupole measure-
ments is quite complicated, depending on both the clusters’
redshifts and their angular separation [26]. At fixed red-
shift, the remote quadrupole is a spin-2 field on the sky, so
it is natural to express it as an expansion in spin-2 spherical
harmonics. Because it is predominantly derived from sca-
lar perturbations, at any given redshift it contains (to a
good approximation) only E modes, with no B contribu-
tion. This should provide a valuable check on systematic
errors in any future survey.

At low redshift, the measurements naturally become
strongly correlated with the local CMB temperature quad-
rupole. As a result, the five coefficients a2m of the local
quadrupole can be measured easily from a survey of only a
few low-redshift clusters [25].

The spherical harmonic basis diagonalizes the angular
correlations, giving a sequence of correlation functions that
depend only on redshift. It is much simpler to determine
and count the independent normal modes in the spherical
harmonic basis rather than in real space. For a survey that
covers only part of the sky, of course, the individual
spherical harmonic coefficients will not be measured.
However, just as in the case of the local CMB we can still
use the spherical harmonic basis to count the number of
modes that can be measured, scaling the results by the
fraction of sky covered.

On smaller scales, a remote quadrupole survey provides
insight into the growth of structure in the recent past
[24,25,27,28]. The remote quadrupole signal, like the local
CMB, contains contributions both from the surface of last
scattering and from the integrated Sachs-Wolfe (ISW)
effect resulting from time variations in the gravitational
potential along the line of sight [29]. (See, e.g., [30] for an
overview of the physics of CMB anisotropy.) Since the
ISW contribution to the remote quadrupole measurements
differs from that of the local quadrupole, it is possible to
extract information about the recent growth of perturba-
tions. The formalism developed in this paper provides a
method of quantifying the amount of extra information that
can be obtained from such a survey.

If a cluster has a peculiar velocity, then there is a kine-
matically induced polarization signal as well as the signal
considered here [31,32]. This kinematic contribution can
be removed through multifrequency observations [27] and
will be ignored in this paper. In addition, we will not
consider the polarization induced by scattering off of dif-
fuse structure [33]; rather, we will envision a survey di-
rected at specific clusters of known redshift.
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This paper is structured as follows: Section II develops
the formalism for calculating the correlation function of
remote quadrupole measurements. Section III shows the
information that can be obtained in hypothetical remote
quadrupole surveys on a shell at a single redshift as well as
in volume-limited surveys, and Sec. IV contains a discus-
sion of the significance of these results. Some more than
usually boring mathematical steps are contained in an
appendix.

II. FORMALISM

A. Remote quadrupole in a single cluster

We will assume a flat spatial geometry and label any
cluster’s comoving position with an ordinary 3-vector r,
with spherical coordinates �r; �r̂; �r̂� defined in some fixed
Earth-centered coordinate system.

For any particular cluster, we will find it convenient to
introduce a second coordinate system, denoted by a prime,
which will have its z0 axis aligned with r̂, the direction
from Earth to the cluster. To be specific, let the primed
coordinate system be obtained from the unprimed by rotat-
ing through an angle �r̂ about the x axis and then by an
angle �r̂ about the (original) z axis, with the third Euler
angle set to zero.

Suppose that an observer in that cluster at the cluster
lookback time measures the CMB anisotropy, conveniently
recording the results using the primed coordinate system:

�T
T
�n̂0� �

X
l;m

alm�r�Ylm�n̂0�: (1)

The quadrupole spherical harmonic coefficients are

a2m�r� �
Z
d3k �2�k; r����k�eik�rY�2m�k̂

0�: (2)

Here �� is the Fourier-space perturbation in the gravita-
tional potential. On the large scales of interest to us, the
quadrupole transfer function contains Sachs-Wolfe and
ISW terms:

�2�k; r� � �
4�
3

�
j2�k��� �rec��

	 6
Z �

�rec

d�0j2�k��� �
0��

@
@�0

�
D��0�
a��0�

��
: (3)

In this expression j2 is a spherical Bessel function, a is the
scale factor normalized to unity today, � � �0 � r is
conformal time (d� � dt=a�t�), �rec is the conformal
time of recombination, �0 is conformal time today, and
D is the matter perturbation growth factor normalized to
unity at high redshift (see e.g., [34]). We assume that the
dark energy is spatially uniform, e.g., a cosmological
constant. In addition, we assume instantaneous recombi-
nation and ignore reionization. Most of the quadrupole
signal seen by observers in the cluster is due to photons
that come from last scattering (just as most of the local
-2
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quadrupole signal is), so neglecting reionization is a good
approximation in this context. On the other hand, we
cannot ignore reionization when considering the correla-
tion between the remote quadrupole signal and the local
CMB polarization quadrupole, as discussed below. We
work in units where c � 1.

The observed cluster polarization signal is proportional
to the m � 
2 spherical harmonic coefficients:

p
�r� � �Q
 iU��r� � Na2
2�r�; (4)

where

N �

���������
3

40�

s
�; (5)

and � is the cluster optical depth. We want to study the
behavior of p
 as a function of cluster position r. Since p

are complex conjugates of each other, we need only com-
pute one of them. Let us focus on p��r�, which we will call
simply p�r� from now on.

The observed signal is

p�r� � Na2�2�r� � N
Z
d3k �2�k; r����k�eik�rY22�k̂

0�:

(6)

Using Eq. (A3), we can write Y22�k̂
0� in the unprimed

coordinate system:

p�r� � N

�������
4�
5

s X2

m��2

��1�m2Y2�m�r̂�

�
Z
d3k �2�k; r����k�eik�rY2m�k̂�; (7)

where 2Y2�m is a spin-2 spherical harmonic.
For a fixed distance r, p is a spin-2 function of direction

r̂, so it is natural to expand in spin-2 spherical harmonics:

p�r� �
X
L;M

pLM�r� 2YLM�r̂�; (8)

with coefficients given by

pLM�r� �
Z
d2r̂ p�r� 2Y

�
LM (9)

� N

�������
4�
5

s X
m

��1�m
Z
d3k �2�k; r����k�Y2m�k̂�

�
Z
d2r̂ 2Y2�m�r̂� 2Y

�
LM�r̂�e

ik�r: (10)

By expanding the exponential in spherical harmonics as
shown in the appendix, we can express the coefficients in
the following form:

pLM�r� � iL
Z
d3k �2�k; r����k�FL�kr�Y�LM�k̂�; (11)
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where

FL�x� �
���������
20�
p X

��L�2;L;L	2

��1����L�=2�2�	 1�

�
2 L �
2 �2 0

� �
2 L �
0 0 0

� �
j��x�: (12)

It is straightforward to check from Eq. (11) that all
coefficients plm�r� are real. In the terminology of CMB
polarization [35,36], this means that the remote quadrupole
data form an E-type spin-2 field at any given distance, with
no B modes. The absence of B modes arises because we
have considered only scalar perturbations as the source of
the CMB quadrupole. If tensor perturbations were in-
cluded, then in principle a B component would arise.
Considering the difficulty of detecting a remote quadrupole
signal at all, the prospect of searching for a subdominant
B-type signal sounds extremely daunting. It is probably
more realistic, therefore, to search for the scalar (E-type)
signal in such a survey, using the predicted absence of B
modes as a check on systematic errors and noise (see
Sec. IV).

B. Correlations between clusters

Suppose that many clusters have been observed at many
different positions ri. To determine the amount of infor-
mation that can be obtained from such a survey, we need to
know the correlations hp�ri�p�rj�i. The full correlation
function depends on the directions as well as the distances
of the clusters [26]. The correlation functions are simpler
to work with in spherical harmonic space, as the orthogo-
nality of the spherical harmonics implies that there are no
correlations between pLM and pL0M0 :

hpLM�r�p�L0M0 �r
0�i � �L�r; r0��LL0�MM0 : (13)

The correlation function is

�L�r; r
0� � hpLM�r�p

�
LM�r

0�i

�
Z 1

0
dk k2 �2�k; r��2�k; r0�FL�kr�FL�kr

0�P��k�;

(14)

where the power spectrum P� is given by

h���k�����k
0�i � P��k��

�3��k� k0�: (15)

On the scales of interest, P��k� / kn�4 where n  1 is the
spectral index.

Figure 1 shows the correlation functions �l for several
values of l. In calculating the ISW integral and in convert-
ing from distance r to redshift z, a flat Friedmann-
Robertson-Walker cosmology with �m � 0:3 and �� �
0:7 was assumed. The results are normalized to WMAP on
large angular scales. At low l, the correlations are ex-
tremely broad, meaning that even a survey covering a
wide range of distances will contain few independent
modes per �l; m�, as we will see in Sec. III B.
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FIG. 2 (color online). Correlation functions �?l for l � 2. In
the left panel, only the correlation with the local temperature
quadrupole has been projected out. In the right panel, the
correlation with the polarization quadrupole has been removed
also.

FIG. 1 (color online). Correlation functions �l for l � 2, 3, 4,
20.
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Remote quadrupole measurements are in general corre-
lated with the local CMB anisotropy and polarization. To
assess how much independent information is contained in
the remote measurements, we need to know how strong
these correlations are. Let us begin by considering corre-
lations with the locally measured temperature anisotropy.
If the anisotropy spherical harmonic coefficients are alm,
then the cross correlation is

	L�r� � hpLM�r�a
�
LMi (16)

�
Z 1

0
dk k2 �2�k; r��L�k; 0�FL�kr�P��k�; (17)

where �L is the appropriate transfer function.
If we wish to study only the information in a remote

quadrupole data set that is independent of the local anisot-
ropy, then we should project the mode coefficients onto the
space orthogonal to that probed by the local CMB:

p?LM�r� � pLM�r� �
	L�r�
CL

aLM; (18)

where Cl � halma
�
lmi is the usual CMB angular power

spectrum.
We can define a correlation function 	EL and perform a

similar projection to remove the portion of the signal that is
correlated with the CMB polarization anisotropy coeffi-
cients aElm. (There is no significant correlation with the
B-type CMB polarization.) In performing this projection,
it is important to include the effects of reionization, as most
of the low-l polarization signal comes from post-
reionization scattering.

Figure 2 shows the correlation functions �?l correspond-
ing to the projected coefficients p?lm for l � 2. As we will
see, the difference between �l and �?l decreases at higher
l’s. In performing the projection, the Universe was as-
123517
sumed to have completely reionized at z � 11, but the
results do not depend strongly on the details of reioniza-
tion, unless there was considerable patchiness on large
scales.

The root-mean-square (r.m.s.) power due to all modes at
a given l is

pl�r� �

�����������������������������
2l	 1

4�
�l�r; r�

s
; (19)

and similarly for p?l . As Fig. 3 indicates, the quadrupole
l � 2 dominates the unprojected power at low redshift, but
power shifts to smaller angular scales (higher l) as the
redshift increases. At l � 2, the projected power is much
less than the unprojected power at all redshifts: the modes
p2m are strongly correlated with the local temperature
quadrupole at low z and with the polarization quadrupole
at high z. Modes with l > 2 are comparatively weakly
correlated with the local signals over some redshift ranges.

All correlation functions except �2 go to zero as z, z0 !
0. This is expected: at low redshift, the remote quadrupole
p�r� contains precisely the same information as the local
quadrupole coefficients a2m, so it must transform as a
quadrupole itself. Indeed, it is straightforward to check
from Eq. (11) that

plm�r� ! N

�������
4�
5

s
alm�l2 as r! 0: (20)

The real space correlation functions are computed easily
from the spherical harmonic space functions. The correla-
tion between remote quadrupole signals of two clusters at
locations r1, r2 is

hp�r1�p�r2�i �
X1
L�2

2L	 1

4�
�L�r1; r2�PL�r̂1 � r̂2� (21)

using Eqs. (8) and (13) and the spherical harmonic addition
theorem. Similarly, the correlation between a remote quad-
rupole measurement p�r1� and the local CMB ��T=T��r2�
is
-4



FIG. 4 (color online). Window functions. The quantity W2
l =k,

which is proportional to the mean-square power in multipole a
given multipole, is shown for a survey at z � 2 for l � 2 (solid
curve), 3 (dashed curve), and 4 (dotted-dashed curve). In each
case, the left (thicker) curve is the window function for the total
signal plm, and the right (thinner) curve is the window function
for p?lm. All functions are normalized to integrate to one. The
bars above each window function show the 25th, 50th, and 75th
percentiles. The bars at the top of the plot indicate the percentiles
for the l � 2 and l � 10 multipoles of the local CMB anisotropy.

FIG. 3 (color online). The r.m.s. signal per multipole. The
upper panel shows the signal in modes l � 2 (solid curve), 3
(dashed curve), and 4 (dotted-dashed curve) as a function of
redshift. The bumps at z & 0:5 are due to the ISW effect. In each
case, the three curves from top to bottom are the total signal, the
result of projecting out the correlation with temperature quad-
rupole, and the result of projecting out both temperature and
polarization. The lower panel shows the signal as a function of l
for redshifts z � 0:1 (solid curve) 1 (dashed curve), and 2
(dotted-dashed curve). The upper curve is total signal, and the
lower curve is the result of projecting out the correlations with
local temperature and polarization.
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hp�r1���T=T��r̂2�i �
X1
L�2

2L	 1

4�
	L�r1�PL�r̂1 � r̂2�: (22)

Once the initial investment of calculating the l-space cor-
relation functions has been made, these formulas allow
rapid calculation of real-space correlations.

III. SCALES PROBED BY REMOTE QUADRUPOLE
SURVEYS

A. Survey at a fixed redshift

We next examine the length scales probed by the various
multipoles, assuming an all-sky survey has been used to
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estimate the coefficients plm at some fixed redshift. We can
write the signal as

p2
l �r� �

Z
dk k2 P��k�W2

l �k; r�; (23)

with Wl�k; r� � 2l	1
4� �2�k; r�Fl�kr�. Since P� / k

�3, the
quantity W2

l =k is proportional to the power per wave
number interval dk. Similarly, we can define a window
function for the quantity p?l that results from projecting
out the part of the signal that is correlated with the local
CMB.

The first few window functions are shown in Fig. 4 for
z � 2. Window functions corresponding to both pl and p?l
are shown. The range of scales probed by the various
window functions are indicated with horizontal error
bars, and for comparison the ranges corresponding to the
local CMB power spectrum C2 and C10 are also indicated.
Because of the ISW effect, the local CMB window func-
tions are quite broad.

The first few unprojected modes probe scales as large as
the CMB quadrupole but with narrower window functions.
As noted earlier, these are significantly correlated with the
local CMB polarization multipoles. Nonetheless, consid-
ering the likelihood that large-angle CMB polarization
multipoles may be contaminated by foregrounds or sys-
tematic errors, the unprojected modes will still provide
valuable new information on the largest-scale perturba-
tions in the Universe, or at least test our understanding of
large-angle polarization data. (The remote quadrupole sur-
-5



FIG. 5 (color online). The r.m.s. signal vs effective length scale. The upper plots are for a survey at z � 2, and the lower plots are for
z � 3. On the left the total signal pl is shown, and on the right is the projected signal p?l . The horizontal error bars indicate 25th, 50th,
and 75th percentile contributions to the signal. Multipole l increases from left to right within each plot. The dashed bars at the bottom
indicate the window functions for the local CMB anisotropy at l � 2 and l � 10; the vertical position of these bars is arbitrary.
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vey will of course be susceptible to systematic errors and
foregrounds as well, but the susceptibility will be different
from that of the local polarization multipoles.)

The projected modes probe smaller scales, but they are
still in the gigaparsec range, comparable to the first 10 or so
CMB multipoles, and in some cases have narrow window
functions. In practice, the projected modes at l � 2 (p?2 )
are unlikely to be reliably measured, because the correla-
tions are so strong, but projected modes with l � 3 will
allow us to probe these large scales.

Figure 5 shows the r.m.s. power pl and p?l per multipole,
plotted against the effective scale for each multipole. In
interpreting this plot, bear in mind that each point repre-
sents the r.m.s. signal from all 2l	 1 modes at a given l.

In order to measure the quantities p?l , in principle we
need an all-sky cluster survey, knowledge of the local CMB
anisotropy and polarization spherical harmonic coeffi-
cients, and knowledge of the correlation functions 	l�r�
and 	El �r� in order to project out the local contribution. In
practice, of course, difficulties are likely with all of these.
Section IV contains some discussion of how to mitigate
these problems. For the moment, observe that information
on large physical scales is found at large angular scales. We
must survey a large fraction of the sky if we want to address
the puzzles in the large-scale CMB with this technique.
However, note that at redshifts z � 2-3 the signal drops
fairly rapidly as a function of l. This is good news: it means
that a relatively sparse survey can measure the low-l
modes without excessive contamination from small angu-
lar scales.
123517
B. Volume-limited survey

In the previous subsection, we considered surveys at a
fixed redshift. We now imagine a volume-limited survey
out to some maximum redshift zmax. Let us continue to
assume an all-sky survey, so that it is natural to think of the
survey in spherical harmonic space. In this case, our survey
provides estimates of each of the functions plm�r� at mul-
tiple values of r.

For each l, we can enumerate a list of signal-strength
eigenmodes  nl that are solutions to

Z zmax

0
�l�r; r0� nl�r0�r02dr0 � �nl nl�r�: (24)

The mode functions  nl�r� 2Ylm�r̂� form an orthonormal
basis, which we can use to express the signal p�r�. The
mean-square signal in each mode is the eigenvalue �nl, so
these modes provide a useful guide to tell us where the
signal is strong.

For each mode, we can calculate a window function and
hence assign a range of wave numbers probed as we did for
the surveys at fixed redshift. Results are illustrated in
Fig. 6.

As one would expect, the mode with highest signal at
each l corresponds to a simple weighted average of plm as a
function of r with positive weight everywhere. The next
mode is essentially a difference between low and high-
redshift signals, and subsequent modes contain more radial
oscillations. As Fig. 6 indicates, only the first couple of
modes are likely to be measurable at any given �l;m�. Once
-6



FIG. 6 (color online). The r.m.s. signal vs effective length scale. The upper panels show the results of a survey out to a maximum
redshift of 2, and the lower panels are for a maximum redshift of 3. The total signal pl is plotted on the left, and the projected signal p?l
is on the right. The horizontal axis indicates the length scales of each mode as in Fig. 5. Solid bars are the highest signal-strength
eigenmode as a function of l. The dashed bars are the second mode for each l, and the dotted-dashed bars are the third mode. Multipole
l increases from left to right within each category. The long-dashed bars at the top indicate the window functions for the local CMB
anisotropy at l � 2 and l � 10; the vertical position of these bars is arbitrary.
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again, the l � 2 modes are strongly correlated with the
local CMB polarization. Assuming the large-angle CMB
polarization has been well measured, they provide rela-
tively little new information; modes with l � 3 are the
richest source of independent data on large-scale perturba-
tions. On the other hand, if the first few CMB polarization
multipoles are uncertain due to foregrounds or systematic
errors, then the l � 2 modes of a remote quadrupole survey
may help to fill in this gap.

A comparison of Figs. 5 and 6 shows that significantly
more large-scale information can be obtained from a
volume-limited survey than from a survey on a shell.
There is, of course, an obvious price to pay: many more
clusters must be observed to estimate all these modes.

IV. DISCUSSION

We have seen that an all-sky survey can probe the
gigaparsec-scale Universe, measuring fluctuation modes
that are independent of the local CMB. In surveys at red-
shifts around 2–3, the large angular scale modes provide
data on perturbations on the same length scales as the first
few CMB multipoles, but with quite narrow window
functions.

The results shown in the previous section were for an
idealized survey: in addition to full sky coverage, the local
CMB anisotropy coefficients alm and the cross correlations
	l�r�, as well as the corresponding quantities for polariza-
tion, were assumed to be known in order to compute the
123517
projected signal p?lm. We must ask what happens if these
assumptions are replaced by more realistic ones. The most
complete way to answer these questions would be to
assume a precise survey geometry and compute the result-
ing Fisher matrix. We will not perform such a detailed
analysis here; we can, however, make some general
observations.

In a survey that covers a fraction of the sky fsky, only

band powers with width �l� f�1=2
sky can be recovered, not

individual multipoles. Furthermore, the lowest-l modes
cannot be recovered at all. For the goal of probing the
largest scales, therefore, large sky coverage is essential
independent of the choice of redshift. A survey with fsky �

0:1, for instance (4000 square degrees) would be able to
recover only a single mode in the l � 2-3 band.

On the other hand, the power drops fairly rapidly as a
function of l, so contamination of the low-l modes from
high-l power is modest. In other words, in order to probe
large scales, we should survey as much sky as possible, but
the survey can be sparse.

Next, let us consider uncertainties in projecting out the
local CMB contribution (i.e., going from plm to p?lm). For
all l > 2, this projection is subdominant to the primary
signal over some range of redshifts, so independent infor-
mation should be obtainable from these modes.

The l � 2 modes are a different matter, as the correla-
tions are extremely strong there. As Fig. 3 indicates, the
projected coefficients p?2m are much smaller than the un-
-7
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projected coefficients p2m at all redshifts. At low redshift,
the culprit is the temperature quadrupole, while at high-
redshift p2m becomes very strongly correlated with the
polarization quadrupole. To put the situation pessimisti-
cally, accurate extraction of p?2m�r� may never be feasible.
To extract information about large-scale perturbations that
is independent of the local CMB, we will look to modes
plm with l � 3 (or, in the case of a partial-sky survey, by
modes that cover the largest available angular scales but
are orthogonal to the quadrupole).

A more optimistic interpretation is that measurement of
p2m at a couple of different redshifts can allow us to
determine the local CMB temperature and polarization
quadrupole coefficients (that is, the 5 coefficients a2m
and the 5 coefficients aE2m). Since direct measurements of
these coefficients may be contaminated by foregrounds or
systematic errors (especially in the case of polarization),
such an independent determination of these coefficients
will be important in assessing the significance of the
large-scale anomalies in the CMB. Furthermore, by mea-
suring p2m as a function of redshift, we may be able to test
our theoretical predictions of the cross correlation func-
tions 	2, 	E2 , thus providing a probe of the recent ISW
effect.

A common question is whether a remote quadrupole
survey can ‘‘beat cosmic variance.’’ The answer depends
on precisely what we mean by this phrase. Figure 7 pro-
vides one possible answer. The figure shows the cumula-
tive number of independent modes on scales larger than a
given value for ideal all-sky surveys out to a specified
redshift. All of the signal eigenmodes are included in this
count. The number of modes contained in the all-sky CMB
temperature anisotropy data (without polarization) is
FIG. 7 (color online). The cumulative number of modes as a
function of scale. From bottom to top, the solid curves show
predictions for surveys with zmax � 1, 2, 3. The dashed curve
shows the number of modes probed by the local CMB anisot-
ropy, and the dotted curve shows the results of a hypothetical
remote quadrupole all-sky survey out to z � 1.
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shown for comparison. Although a survey that went all
the way out to z � 1 would ‘‘beat’’ the local CMB,
realistic surveys never do. The amount of new information
can be comparable, however, on some scales. In particular,
the number of new modes obtainable by a remote quadru-
pole survey in the range k� 0:002h=Mpc is about the
same as that contained in the local CMB (because the
slopes of the cumulative curves in Fig. 7 are about
the same there). Considering the unsettled state of our
understanding of gigaparsec-scale perturbations and the
hints that something surprising may be going on there, it
is clear that there is valuable information to be gained.

This article has focused primarily on the largest-scale
information contained in remote cluster surveys. The for-
malism described here is also useful for surveys designed
to probe the ISW effect [24,25,27,28]. Such surveys pro-
vide a powerful probe of the recent growth of structure and
hence may shed light on the nature of dark energy and the
growth of structure. Because the ISW effect is most im-
portant at low redshift (see Fig. 3), such a survey will be
quite different from those considered here: the best ap-
proach appears to be a denser survey of a smaller area of
the sky at low redshift. In planning a survey to probe the
ISW effect, it will be important to quantify the number of
independent modes that can be probed. The detailed an-
swer will depend on the precise locations of the clusters to
be surveyed, but a simple estimate obtained by counting
modes in spherical harmonic space and scaling by f�1=2

sky

should provide valuable guidance.
Clusters are of course not randomly distributed ‘‘test

particles’’: they are overdensities. One might worry that
this would lead to biases in the modes recovered from such
a survey. A remote quadrupole survey (even a small-scale
one optimized for characterizing the ISW) primarily
probes scales of several hundred Mpc or more, which is
considerably larger than the scale associated with the for-
mation of individual clusters. One would therefore not
expect significant bias due to the locations of individual
clusters. On the other hand, the modes recovered from such
a survey would presumably be correlated with tracers of
large-scale structure on hundred-Mpc scales. In analyzing
the results of such a future survey, one would want to
characterize those correlations, presumably via N-body
simulations. For the gigaparsec-scale surveys that are the
primary focus of this paper, of course, clusters can be taken
as randomly distributed test particles.

In a detailed Fisher matrix analysis of a potential survey,
the real-space covariance matrix hp�ri�p�rj�i will be
needed, as will the correlation with the local CMB. The
formalism in this paper provides a useful way to compute
these quantities. The full covariance matrix can be com-
puted with and without the ISW effect, and Fisher matrix
estimates of the errors with which ISW parameters can be
reconstructed can be computed quickly and easily for any
desired survey geometry.
-8
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A survey of the sort considered here will surely be a
daunting task. The signals are submicrokelvin, and there is
unfortunately no shortage of confusing signals. Some sig-
nals (diffuse Galactic foregrounds and the kinematic signal
due to the cluster’s peculiar velocity) can be distinguished
by their spectral signature, assuming a multifrequency
survey, but detailed information on the spectral and spatial
properties of polarized foregrounds will be necessary. The
three-year WMAP data have advanced the state of knowl-
edge in this area considerably [5], and further information
will come from the Planck satellite [37] as well as ground-
based experiments.

Of potentially greater concern is the intrinsic CMB
polarization (both due to last scattering and reionization),
which will be lensed by the cluster itself. In order for the
remote quadrupole survey to be detectable, we will proba-
bly need detailed knowledge of the cluster optical depth as
a function of position on the sky, and possibly the projected
mass density as well. With this information, we can con-
struct a template for the remote quadrupole signal and use
it to fit for the two parameters that determine the remote
quadrupole at that cluster [Q andU or equivalently the real
and imaginary parts of p�r�]. Since the background polar-
ization is not expected to be spatially correlated with
this template, this will help in separating the signal from
the confusing background. In the near future, Sunyaev-
Zel’dovich surveys will provide a wealth of detailed cluster
data [38,39], so there is reason to hope that such an
approach may soon be feasible.

In any remote quadrupole survey, assessment of the
errors will be crucial. For instance, errors in determining
the optical depths � of the clusters can induce spurious
signals. Just as in the case of CMB polarization maps, a
valuable diagnostic can be obtained by considering the
decomposition of the data into E and B modes [35,36].
At any fixed redshift z, the remote quadrupole data consist
of a spin-2 field on the sphere that is derived from a scalar
perturbation (assuming that primordial tensor perturba-
tions can be neglected). As noted in Sec. II, the true
signal—everything calculated in this paper—should
therefore consist only of E modes, precisely as in the
case of scalar perturbations in the CMB. Noise and system-
atic errors, on the other hand, are likely to populate E andB
equally [40]. When analyzing results of an actual survey,
therefore, the B modes can be monitored to determine the
errors. In practice, for a partial-sky survey with sparse
sampling, there will be significant E-B mixing [41–44],
but this technique should still provide a valuable check.
ACKNOWLEDGMENTS

This work was supported by NSF Grants No. 0233969
and No. 0507395 and by the Research Corporation. I thank
Max Tegmark and the MIT physics department for their
hospitality during the completion of this work.
123517
APPENDIX

Here we derive some identities involving spherical har-
monics, coordinate transforms, and 3-j symbols.

1. Rotation matrices and spin-2 spherical harmonics

For a given cluster location r, we adopt a primed coor-
dinate system obtained by rotating the z axis until it points
in the direction r̂. Let R be the rotation that relates the two
coordinate systems. The Euler angles associated with this
rotation are ��r̂; �r̂; 0�, using the same conventions as [41].
The spherical harmonic Y22 in the primed coordinate sys-
tem can be expressed in the unprimed coordinates as

Y22�k̂
0� �

X2

m��2

D2
m2�R�Y2m�k̂�; (A1)

whereDl
mm0 �R� is the Wigner matrix for the rotation R. The

Wigner matrices can be expressed in terms of spin-s
spherical harmonics [41]:

Dl
�ms��; �;� � � ��1�m

��������������
4�

2l	 1

s
sYlm��;��e

is : (A2)

The result is

Y22�k̂
0� �

�������
4�
5

s X
m

��1�m2Y2�m�r̂�Y2m�k̂�: (A3)
2. Integrals over spherical harmonics

The derivation in Sec. II contains an integral

I �
Z
d2r̂ 2Y2�m�r̂� 2Y

�
LM�r̂�e

ik�r: (A4)

To evaluate this integral, we expand the exponential in
spherical harmonics to get

I � 4�
X
�;


i�j��kr�Y�
�k̂�
Z
d2r̂ Y��
�r̂� 2Y2�m�r̂� 2Y

�
LM�r̂�:

(A5)

Next, we want to evaluate the integral over the three
spherical harmonics. Using the identity sY

�
lm �

��1�m	s�sYl�m, the integral we need can be written in
the form

J �
Z
d2 r̂ 2Yl1m1

�r̂� �2Yl2m2
�r̂�Yl3m3

�r̂�: (A6)

Equation (B3) of [41] tells us how to express all of the
spherical harmonics in terms of D matrices:

J�

�����������������������������������������������������
�2l1	1��2l2	1��2l3	1�

�4��3

s Z
d2r̂Dl1

�m12D
l2
�m22D

l3
�m30:

(A7)

Here the D matrices can be evaluated for any rotation
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R��; �;  � with the first two Euler angles being the spheri-
cal coordinates of r̂. Since the integrand does not depend
on the third Euler angle  , we can replace

R
d2r̂ with

1
2�

R
d3R, an integral over the entire rotation group. Zare

[45] (p. 103) gives this integral in terms of 3j symbols:

J �

��������������������������������������������������������
�2l1 	 1��2l2 	 1��2l3 	 1�

4�

s
l1 l2 l3
�m1 �m2 �m3

 !

�
l1 l2 l3
2 �2 0

 !
: (A8)

So we can write the integral in Eq. (A4) as

I �
X
�;


i���1�mj��kr�Y�
�k̂�

�
���������������������������������������������
20��2�	 1��2L	 1�

p 2 L �
2 �2 0

� �

�
2 L �
m M 


� �
: (A9)

We can use this result to write Eq. (10) as

pLM�r� � 4�N
Z
d3k�2�k; r����k�

�
X
�

i�
�������������������������������������
�2L	 1��2�	 1�

p
j��kr�

�
2 L �

2 �2 0

 !
K�k̂�; (A10)

where

K�k̂� �
X
m;


2 L �
m M 


� �
Y�
�k̂�Y2m�k̂�: (A11)

Expand K in spherical harmonics: K�k̂� �P
l0m0

Kl0m0
Yl0m0

�k̂�. The coefficients are

Kl0m0
�
X
m;


2 L �
m M 


� �Z
d2k̂ Y2m�k̂�Y�
�k̂�Y�l0m0

�k̂�

(A12)
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� ��1�m0

X
m;


2 L �
m M 


� �

�

���������������������������������������
5�2l0 	 1��2�	 1�

4�

s
2 l0 �
0 0 0

� �
2 l0 �
m �m0 


� �
(A13)
�
��1�m0

2L	 1

���������������������������������������
5�2l0 	 1��2�	 1�

4�

s
2 l0 �
0 0 0

� �
�Ll0�M;�m0

;

(A14)

using Eq. (3.119) in [45] to integrate the product of three
spherical harmonics, and then using the orthogonality of
the 3-j symbols (Eq. (2.32) in [45]). So K has only one
term in its spherical harmonic expansion: K�k̂� �
KL�MYL�M�k̂�. Substituting this into Eq. (A10), we get

pLM�r� � N
���������
20�
p X

�

i��2�	 1�
2 L �
2 �2 0

� �

�
2 L �
0 0 0

� �

�
Z
d3k �2�k; r����k�j��kr�Y�LM�k̂�: (A15)

The 3-j symbols vanish whenever the triangle inequality is
not satisfied, so � must be between L� 2 and L	 2.
Furthermore,

2 L �
0 0 0

� �
� 0 (A16)

when 2	 L	 � is odd. So the sum above contains only
three terms: � � L� 2, L, L	 2.
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