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Improved calculation of the primordial gravitational wave spectrum in the standard model
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We show that the energy density spectrum of the primordial gravitational waves has characteristic
features due to the successive changes in the relativistic degrees of freedom during the radiation era. These
changes make the evolution of radiation energy density deviate from the conventional adiabatic evolution,
�r / a

�4, and thus cause the expansion rate of the universe to change suddenly at each transition which, in
turn, modifies the spectrum of primordial gravitational waves. We take into account all the particles in the
standard model of elementary particles. In addition, free-streaming of neutrinos damps the amplitude of
gravitational waves, leaving characteristic features in the energy density spectrum. Our calculations are
solely based on the standard model of cosmology and particle physics, and therefore these features must
exist. Our calculations significantly improve the previous ones which ignored these effects and predicted a
smooth, featureless spectrum.
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I. INTRODUCTION

Detection of the stochastic background of primordial
gravitational waves has profound implications for the
physics of the early universe and the high energy physics
that is not accessible by particle accelerators [1–13]. The
basic reason why relic gravitational waves carry informa-
tion about the very early universe is that particles which
decoupled from the primordial plasma at a certain time,
t� tdec, when the universe had a temperature of T � Tdec,
memorize the physical state of the universe at and below
Tdec. Since gravitons decoupled below the Plank energy
scale, the relic gravitons memorize all the expansion his-
tory of the universe after they decoupled and thus would
probe deeper into the very early universe. Gravitational
waves act therefore as the time machine that allows us to
see through the entire history of the universe. Another
example of relic species is the cosmic microwave back-
ground (CMB) photons, which decoupled from matter at
T � 0:3 eV and can trace the physical state of the universe
back to 0.3 eV. On the other hand, the primordial gravita-
tional waves carry information on the state of the much
earlier universe than the CMB photons do.

The purpose of this paper is to study the evolution of
primordial gravitational waves through changes in the
physical conditions in the universe within the standard
model (SM) of elementary particles and beyond. For in-
stance, the quark gluon plasma (QGP) phase to hadron gas
phase transition causes a sharp feature in the gravitational
wave spectrum. The change of the number of relativistic
degrees of freedom affects the Hubble rate by reducing the
growth rate of the Hubble radius during the transition.
Thus, the rate at which modes re-enter the horizon is
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changed during the transition and a step in the spectrum
appears at frequencies on the order of the Hubble rate at the
transition. For the QGP phase transition this frequency is
�10�7 Hz today and the correction is about 30% [14].
Other large drops in the number of relativistic degrees of
freedom occur at electron-positron annihilation and possi-
bly at the supersymmetry (SUSY) breaking. Since the
gravitational wave spectrum is sensitive to the number of
relativistic degrees of freedom, one can search for evidence
of supersymmetry in the very beginning of the universe by
looking at the relevant frequency region (� 10�3 Hz). For
energy scales lower than neutrino decoupling (� 2 MeV
[15]) we shall also account for the damping effect from
neutrino free-streaming [16–18]. We show that a combi-
nation of these two effects gives rise to a highly nontrivial
shape of the gravitational wave spectrum.

The primordial gravitational wave spectrum will also
provide us with information about inflation. The energy
scale of inflation is directly related to the amplitude of the
spectrum. The modes which re-entered the horizon during
the radiation-dominated epoch show a nearly scale-
invariant spectrum if we do not consider the change of
the effective number of degrees of freedom. Typically the
amplitude of the spectrum is of order 10�15 for 1016 GeV
inflation energy scale in such a frequency region. Inflation
ends when the inflaton decays into radiation and reheats the
universe [19–21]. The energy scale of reheating could be
seen from the highest frequency end (� krh) of a nearly
scale-invariant energy density spectrum of the primordial
gravitational waves. The lowest frequency mode observ-
able today corresponds to the horizon size today, and the
interval between the lowest frequency and krh would give
the number of e-holdings, which tells us the duration of
inflation between the end of inflation and the time at which
fluctuations having the wavelength of the current horizon
-1 © 2006 The American Physical Society
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1In classic Refs. [27,28], hij � 2HTij and �ij � �p�Tij for
tensor perturbations, which are automatically gauge-invariant.
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size left the horizon during inflation. The slope of the
spectrum provides the power-law index of the tensor per-
turbation, nT [10,12]. nT � 0 corresponds to a scale-
invariant power spectrum from de Sitter inflation. In a
large class of inflationary models jnT j is not zero but
much smaller than unity, and its determination constrains
the inflationary models. As the effect of nT has been
investigated by many authors, e.g. [10–12,22,23], and is
easy to include, we shall assume de Sitter inflation (nT �
0) throughout this paper. Our result is general and easily
applicable to any kind of models which produce primordial
tensor perturbations. (e.g. ekpyrotic models [24]).

The primordial gravitational waves not only test and
probe the physics of inflation and reheating, but also can
provide the tomography of the SM of particle physics and
models beyond. The study of its spectrum enables us to
probe the very early universe in a truly transparent way.
The goal of this paper is to show how the constituents in the
early and very early universe would affect the primordial
gravitational wave spectrum, which is observable in prin-
ciple and may be observable in the future by the next
generation observational projects, such as the Big Bang
Observer (BBO) proposed to NASA [25] and the DECIGO
proposed in Japan [26]. We present a new, rigorous com-
putation of the primordial gravitational wave spectrum
from de Sitter inflation with the SM of particle physics.
It is easy to extend our results to non-de Sitter (e.g., slow-
roll) inflation models.

The outline of this paper is as follows. In Sec. II, basics
about the primordial gravitational waves from inflation are
reviewed. In Sec. III, a crucial quantity during radiation
domination, the effective relativistic degrees of freedom,
g�, is introduced and related to the primordial gravitational
wave spectrum in heuristic and intuitive manners to illus-
trate the underlying physics. In Sec. IV, we give an im-
proved calculation of the primordial gravitational wave
spectrum in the SM, employing de Sitter inflation. Our
final results are summarized in Figs. 4 and 5. In
Appendix A we give useful formulas for the Bessel-type
functions. In Appendix B we give analytical solutions of
gravitational waves in some limiting cases. We define
energy density of gravitational waves in Appendix C.
The effect of neutrino free-streaming on the spectrum is
formulated and explained in Appendix D. The numerical
solution to the integro-differential equation is also pre-
sented. In Appendix E we give more detailed analytical
accounts of numerical solutions of gravitational waves
when the effective number of relativistic species changes.
Units are chosen as c � @ � kB � 1 and

����������
8�G
p

is re-
tained. Indices �, �, �, . . . run from 0 to 3, and i, j, k,
. . . run from 1 to 3. Over-dots are used for derivatives with
respect to time throughout the paper. Primes are mainly
used for derivatives with respect to conformal time, but
sometimes with respect to arguments we are focusing on.
Barred quantities are unperturbed parts of variables.
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II. WAVE EQUATION, POWER SPECTRUM, AND
ENERGY DENSITY

In this section we define the power spectrum, �2
h�k�, and

relative spectral energy density, �h�k�, of the gravitational
wave background. We do this because some authors use
different conventions in the literature. For tensor perturba-
tions on an isotropic, uniform and flat background space-
time, the metric is given by

ds2 � a2�����d�2 � ��ij � hij�dx
idxj	; (1)

g�� � a2������� � h���; (2)

where

��� � diag��1;1;1;1�; h00 � h0i � 0; jhijj 
 1:

(3)

Here and after we shall work in the transverse traceless
(TT) gauge, which leaves only the tensor modes in pertur-
bations, i.e. hij;j � 0 and hii � 0. In the linear perturbation
theory the TT metric fluctuations are gauge-invariant.1 We
shall denote the two independent polarization states of the
perturbation as � � �, � and sometimes suppress them
when causing no confusion. We decompose hij into plane
waves with the comoving wave number, jkj � k, as

hij��;x� �
X
�

Z d3k

�2��3
h���; k�eik
x	�ij; (4)

where 	�ij is the polarization tensor and � � �, �. The
equation for the wave amplitude, h���; k� � h�;k, is ob-
tained by requiring the perturbed metric [Eq. (2)] to satisfy
the Einstein equation to O�h�. One finds that �Gij �

8�G�Tij in the linear order [29] yields

�
1

2
hij;�

;� � 8�G�ij; (5)

where �ij�t;x� is the anisotropic part of the stress tensor,
defined by writing the spatial part of the perturbed energy-
momentum tensor as

Tij � pgij � a2�ij; (6)

where p is pressure. For a perfect fluid �ij � 0, but this
would not be true in general. In the cosmological context,
the amplitude of gravitational waves is affected by aniso-
tropic stress when neutrinos are freely streaming (less than
�1010 K) [16–18,30–34]. As we only deal with tensor
perturbations, hij, we may treat each component as a scalar
quantity under general coordinate transformation, which
means e.g. hij;� � hij;�. The left-hand side of Eq. (5)
becomes
-2
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hij;�
;� � �g���hij;�� � �
��hij;
�;

� � �hij �
�
r2

a2

�
hij �

�
3 _a
a

�
_hij; (7)

where �0
0� � �0

�0 � 0, �0
ij � �ij _aa and �gij � a�2�ij have

been used. Commas denote partial derivatives, while semi-
colons denote covariant derivatives in Eqs. (5) and (7).
Transforming this equation into Fourier space, one obtains

�h �;k �
�
3 _a
a

�
_h�;k �

�
k2

a2

�
h�;k � 16�G��;k; (8)

where the Laplacian r2 in the second term of (5) has been
replaced by �k2 in the third term of (8). The second term
represents the effect of the expansion of the universe.
Using conformal time derivatives (0 � @

@� ), we may obtain

h00�;k �
�
2a0

a

�
h0�;k � k

2h�;k � 16�Ga2��;k: (9)

This is just the massless Klein-Gordon equation for a plane
wave in an expanding space with a source term. Thus, each
polarization state of the wave behaves as a massless,
minimally coupled, real scalar field, with a normalization
factor of

�������������
16�G
p

relating the two.
Next, let us consider the time evolution of the spectrum.

After the fluctuations left the horizon, k
 aH, Eq. (9)
would become

h00�;k
h0�;k

� �
2a0

a
; (10)

whose solution is

h�;k��� � A� B
Z � d�0

a2��0�
; (11)

where A and B are integration constants. Ignoring the
second term that is a decaying mode, one finds that h�;k
remains constant outside the horizon. Note that we have
ignored the effect of anisotropic stress outside the horizon,
as this term is usually given by causal mechanism which
must vanish outside the horizon. Therefore, one may write
a general solution of h�;k at any time as

h�;k��� � hprim
�;k T ��; k�; (12)

where hprim
�;k is the primordial gravitational wave mode that

left the horizon during inflation. The transfer function,
T ��; k�, then describes the subhorizon evolution of gravi-
tational wave modes after the modes entered the horizon.
The transfer function is normalized such that T ��; k� ! 1
as k! 0. The power spectrum of gravitational waves,
�2
h�k�, may be defined as

hhij��;x�hij��;x�i �
Z dk

k
�2
h��; k�; (13)

which implies
123515
�2
h��; k� �

2k3

2�2

X
�

hjh�;k���j
2i: (14)

Using Eq. (12), one may write the time evolution of the
power spectrum as

�2
h��; k� � �2

h;prim�T ��; k�	
2; (15)

where

�2
h;prim �

2k3

2�2

X
�

hjhprim
�;k j

2i �
16

�

�
Hinf

mPl

�
2
: (16)

We have used the prediction for the amplitude of gravita-
tional waves from de Sitter inflation at the last equality, and
Hinf is the Hubble constant during inflation. One may
easily extend this result to slow-roll inflation models.

The energy density of gravitational waves is given by the
0-0 component of stress-energy tensor of gravitational
waves:

�h��� �
hh0ij��;x�h

ij0��;x�i

32�Ga2���
: (17)

The relative spectral energy density, �h��; k�, is then given
by the Fourier transform of energy density, ~�h��� �

d�h
d lnk ,

divided by the critical density of the universe, �cr��� (see
Appendix C for full derivation):

�h��; k� �
~�h��; k�
�cr���

�
�2
h;prim

12a2���H2���
�T 0��; k�	2: (18)

Note that �h�k� is often defined as �h��; k� �
���2

h;prim�=�12a2���H2����	k2�T ��; k�	2 �
�k2=�12a2���H2����	�2

h��; k� in the literature [10,22,35].
This definition is not compatible with the 0-0 component
of stress-energy tensor; however, it is a good approxima-
tion when the modes are deep inside the horizon, k� aH.
Let us briefly explain a relation between these two defini-
tions. The transfer function is usually given by Bessel-type
functions, T �x� � 1

xn �Ajn�x� � Byn�x�	. The conformal
time derivative of the transfer function is thus given by
d
d�T �x� � �

k
xn �Ajn�1�x� � Byn�1�x�	, where x � k�.

Therefore, in the limit that the modes are deep inside the
horizon, k� aH, one obtains �h�k� �
���2

h;prim�=�12a2���H2����	�T 0��; k�	2 �
���2

h;prim�=�12a2���H2����	k2�T ��; k�	2, which agrees with
the definition of �h�k� in [10,22,35]. The difference be-
tween �h and k2�2

h would affect the prediction only at the
largest scales, where both the overall amplitude and phases
are different. (The phases are shifted by �=2.)

Figure 1 shows a numerical calculation of Eq. (18) for
�m � 1��r, �rh

2 � 4:15� 10�5, and h � 0:7. We
ignored the contribution from dark energy, which is only
important at the lowest frequency regime that we are not
interested in in this paper. One may understand the basic
features in this numerical result as follows. Energy density
-3



FIG. 1. The primordial gravitational wave spectrum at present,
� � �0, as a function of the comoving wavenumber, k (or kc in
units of Hertz). The frequency of gravitational waves observed
today is related to k by f0 � kc=2�. The spectrum at large
wavenumber is exactly scale-invariant as we have assumed de
Sitter inflation. In this figure we have not taken into account the
effects of the change in effective relativistic degrees of freedom
or neutrino free-streaming.
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of gravitational waves evolves just like that of radiation
inside the horizon, ~�h��; k� / a

�4, for k� aH. This im-
plies that the relative spectral energy density, �h��; k�,
inside the horizon remains independent of time during
the radiation era while it decreases as �h��; k� / a�1 dur-
ing the matter era. Therefore, the modes that entered the
horizon during the matter era later would decay less. As
the low frequency modes represent the modes that entered
the horizon at late times, �h��; k� rises toward lower
frequencies. On the other hand, �h��; k� at k * 10�15 Hz
is independent of k. These are the modes that entered the
horizon during the radiation era for which �h��; k� was
independent of time. After the matter-radiation equality all
of these modes suffered the same amount of redshift, and
thus the shape of �h��; k� still remains scale-invariant at
k * 10�15 Hz.

These qualitative arguments may be made more quanti-
tative by using the following analytical solutions of
�h��; k� for three different regimes (see Appendix B for
derivation):

�h�� < �eq; k > keq� �
�2
h;prima

2

12H2
eqa4

eq

k2�j1�k��	
2; (19)

�h�� > �eq; k > keq� �
�2
h;prima

12H2
0a

3
0

k2
�2
eq

�2 �A�k�j2�k��

� B�k�y2�k��	
2; (20)

�h�� > �eq; k < keq� �
�2
h;prima

12H2
0a

3
0

k2

�
3j2�k��
k�

�
2
; (21)
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where �eq is the conformal time at the matter-radiation
equality, keq is the comoving wavenumber of the modes
that entered the horizon at equality, and j00�x� � �j1�x�
and �j1�x�

x 	
0 � � j2�x�

x have been used to compute T 0��; k�.
(Spherical Bessel functions are given in Appendix A.) The
first solution [Eq. (19)] describes �h��; k� during radiation
era for the modes that entered the horizon before �eq. This
solution is of course not relevant to what we observe today.
(We do not live in the radiation era.) The second [Eq. (20)]
and third [Eq. (21)] solutions describe �h��; k� during
matter era for the modes that entered the horizon before
and after �eq, respectively. The k-dependent coefficients
A�k� andB�k� are given in Eq. (B9) and (B10), respectively.
While the expression is slightly complicated, one can find
that the second solution is independent of k when the
oscillatory part is averaged out, which explains a scale-
invariant spectrum at high frequencies, k > keq �

10�15 Hz. On the other hand, the third solution gives
�h��; k� / k

�2, which explains the low frequency
spectrum.

Figure 1 (and its extension to slow-roll inflation which
yields a small tilt in the overall shape of the spectrum) has
been widely referred to as the prediction from the standard
model of cosmology. However, as we shall show in the
subsequent sections, the standard model of cosmology
actually yields much richer gravitational wave spectrum
with more characteristic features in it.
III. THE EFFECTIVE RELATIVISTIC DEGREES
OF FREEDOM: g�

It is often taken for granted that energy density of the
universe evolves as � / a�4 during the radiation era. This
is exactly what caused a scale-invariant spectrum of �h�k�
at k > keq. However, � / a�4 does not always hold even
during the radiation era, as some particles would become
nonrelativistic before the others and stop contributing to
the radiation energy density.

During the radiation era many kinds of particles inter-
acted with photons frequently so that they were in thermal
equilibrium. In an adiabatic system, the entropy per unit
comoving volume must be conserved [36];

S�T� � s�T�a3�T� � constant; (22)

where

s�T� �
2�2

45
g�s�T�T3:

The entropy density, s�T�, is given by the energy density
and pressure; s � ��� p�=T. The energy density and
pressure in such a plasma-dominant universe are given by

��T� �
�2

30
g��T�T

4; (23)
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FIG. 2 (color online). Evolution of the effective number of
relativistic degrees of freedom contributing to energy density, g�,
as a function of temperature. The solid and dashed lines repre-
sent g� in the SM and in the minimal extension of SM, respec-
tively. At the energy scales above �1 TeV, gSM

� � 106:75 and
gMSSM
� ’ 220. At the energy scales below �0:1 MeV, g� �

3:3626 and g�s � 3:9091; g� � g�s otherwise.
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p�T� �
1

3
��T�; (24)

respectively, where we have defined the ‘‘effective number
of relativistic degrees of freedom’’, g� and g�s, following
[36]. These quantities, g� and g�s, count the (effective)
number of relativistic species contributing to the radiation
energy density and entropy, respectively. One may call
either (or both) of the two the effective number of relativ-
istic degrees of freedom. Eqs. (22) and (23) immediately
imply that energy density of the universe during the radia-
tion era should evolve as

� / g�g
�4=3
�s a�4: (25)

Therefore, unless g� and g�s are independent of time, the
evolution of � would deviate from � / a�4. In other
words, the evolution of � during the radiation era is sensi-
tive to how many relativistic species the universe had at a
given epoch. As the wave equation of gravitational waves
contains �a0=a�h0�;k, the solution of h�;k would be affected
by g� and g�s via the Friedman equation:

a0���

a2
� H0

������������������������������������������������������������������������������������
g�
g�0

��
g�s
g�s0

�
�4=3

�r

�
a
a0

�
�4
��m

�
a
a0

�
�3

s
:

(26)

Although the interaction rate among particles and anti-
particles is assumed to be fast enough (compared with the
expansion rate) to keep them in thermal equilibrium, the
interaction is assumed to be weak enough for them to be
treated as ideal gases. In the case of an ideal gas at
temperature T, each particle species of a given mass, mi �
xiT, would contribute to g� and g�s the amount given by

g�;i�T� � gi
15

�4

Z 1
xi

�u2 � x2
i �

1=2

eu � 1
u2du; (27)

g�s;i�T� � gi
15

�4

Z 1
xi

�u2 � x2
i �

1=2

eu � 1

�
u2 �

x2
i

4

�
du; (28)

where the sign is � for bosons and � for fermions.
Here, gi is the number of helicity states of the particle

and antiparticle. Note that an integral variable is defined as

u � E=T, where E �
���������������������
jpj2 �m2

p
. We assume that the

chemical potential, �i, is negligible. One might also define
a similar quantity for the number density,

n�T� �
��3�

�2 g�nT
3; (29)

where ��3� ’ 1:20206 is the Riemann zeta function of 3.
Each species would contribute to g�n by

g�n;i�T� � gi
1

2��3�

Z 1
xi

�u2 � x2
i �

1=2

eu � 1
udu: (30)

The effective number of relativistic degrees of freedom is
then given by the temperature-weighted sum of all particle
123515
contributions:

g��T� �
X
i

g�;i�T�
�
Ti
T

�
4
; g�s�T� �

X
i

g�s;i�T�
�
Ti
T

�
3
;

g�n�T� �
X
i

g�n;i�T�
�
Ti
T

�
3
; (31)

where we have taken into account the possibility that each
species i may have a thermal distribution with a different
temperature from that of photons. The most famous ex-
ample is neutrinos: T� � �

4
11�

1=3T�. Neutrinos are cooler
than photons at temperatures below MeV scale due to
photon heating from electron-positron annihilation.

Figure 2 shows the evolution of g� as a function of
temperature. We have included all the particles in the SM
of elementary particles, as listed in Table I. (Note that we
assume that the mass of Higgs bosons is 114 GeV, which is
the current lower bound from experiments.) We neglected
hadrons whose mass is heavier than pions. In addition to
the particles in the SM, one may also include particles in
supersymmetric models. Superpartners in the minimal ex-
tension of supersymmetric standard model (MSSM) would
carry almost the same g� as that carried by particles within
the SM. Figure 3 shows the evolution of a0. If g� and g�s
were constant, a0 would also be constant during the radia-
tion era; however, the evolution of a0 reveals a series of
jumps due to the change in g� and g�s.

Interactions between particles would change the ideal
gas result obtained above, and one cannot use Eqs. (27),
(28), and (31) to calculate g� or g�s. Instead, one needs to
extract g� and g�s directly from energy density and entropy
which would be calculated using detailed numerical simu-
-5



TABLE I. Particles in the SM and their mass and helicity
states.

Particle Rest mass [MeV] The number of
helicity states: gi

� 0 2
�, �� 0 6
e�, e� 0.51 4
��, �� 106 4
��, �� 135 2
�0 140 1
gluons 0 16
u, �u 5 12
d, �d 9 12
s, �s 115 12
c, �c 1:3� 103 12
��, �� 1:8� 103 4
b, �b 4:4� 103 12
W�, W� 80� 103 6
Z 91� 103 3
H 114� 103 1
t, �t 174� 103 12
SUSY particles �1� 106 �110
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lations of particle interactions. For example, above the
critical temperature of quark gluon plasma (QGP) phase
transition, most of g� is carried by color degrees of free-
dom. The dominant correction therefore comes from the
colored sector of the SM, whereas corrections from the
weak charged sector are suppressed by the masses of weak
gauge bosons. Since physics of QCD correction is still
uncertain and beyond the scope of this paper, we shall
ignore this effect and treat it as an ideal gas case. The
effects of particle interactions on g� have been investigated
by [15,37,38].
 0.02
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 0.04

 1e-08  1e-07  1e-06  1e-05 0.0001 0.001  0.01  0.1  1  10  100
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/d

τ
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FIG. 3 (color online). Evolution of a0 as a function of the
conformal time. If g� and g�s were constant, � / a�4 and a0

would also be constant.

123515
A. Heuristic argument based on background density

Before presenting the full numerical results, let us
briefly describe how g� and g�s would affect the shape of
�h��0; k�. In Sec. II, we discussed how the expansion of
the universe would affect �h��0; k�. While energy density
of the universe during the radiation era is affected by g�
and g�s as �cr / g�g

�4=3
�s a�4, energy density of gravita-

tional waves always evolves as ~�h��; k� / a
�4 inside the

horizon, k� aH, regardless of g� or g�s. (Gravitons are
not in thermal equilibrium with other particles.) This dif-
ference in the evolution of ~�h and �cr significantly modi-
fies a scale-invariant spectrum of �h��0; k� at k > keq.

Let us consider a gravitational wave mode with k which
entered the horizon at a given time, �hc < �eq and tempera-
ture, T � Thc, during the radiation era. After the mode
entered the horizon the amplitude of this mode would be
suppressed by the cosmological redshift. The relative spec-
tral density at present would then be given by

�h��0; k > keq� � �h��hc; k��r0

�
g�s�Thc�

g�s0

�
�4=3

�

�
g��Thc�

g�0

�
; (32)

where �r denotes the relative energy density of radiation
and the subscript ‘‘0’’ denotes the present-day value. This
equation helps us understand how g� and g�s would affect
�h��0; k�. For a given wavenumber, k, there would be one
horizon-crossing epoch, �hc. The amount by which the
relative spectral energy density of that mode would be
suppressed depends on g� and g�s at �hc. The mode that
entered the horizon earlier should experience larger sup-
pression, as g� and g�s would be larger than those for the
mode that entered the horizon later. (The effective number
of relativistic degrees of freedom is larger at earlier
times—see Fig. 2.) As g� and g�s are equal for T *

0:1 MeV and nearly the same otherwise (g� � 3:3626
and g�s � 3:9091 for T & 0:1 MeV), we expect that sup-
pression factor is given by �g�=g�0��1=3 to a good approxi-
mation. The modes that entered the horizon during the
matter era should not be affected by g� or g�s, as they do
not change during the matter era.

B. More rigorous argument using analytical solutions

In this subsection we derive Eq. (32) using a more
rigorous approach. Let us go back to the wave equation
[Eq. (9)], and rewrite it using a new field variable, �k �
ahk:

�00k �
�
k2 �

a00

a

�
�k � 16�Ga3�k: (33)

Note that we have suppressed the subscript for polariza-
tion, �. To find a solution for �k, we must solve the
Friedman equation as well:
-6
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�
a0

a2

�
2
�

8�G
3

�r � H2
0

g�
g�0

�
g�s
g�s0

�
�4=3

�
a
a0

�
�4

a0

a2 � H0

�
g�
g�0

�
1=2
�
g�s
g�s0

�
�2=3

�
a
a0

�
�2

a� a0

a0
� a0H0

Z �

�0

d�0
�
g�
g�0

�
1=2
�
g�
g�0

�
�2=3

; (34)

where the subscript 0 denotes some reference epoch during
the radiation era. (While 0 means the present epoch in the
other sections, we use it to mean some epoch during the
radiation era in this section only.) To proceed further, we
need to specify the evolution of g� and g�s. While we have
numerical data for the evolution of these quantities, we
make an approximation here to make the problem analyti-
cally solvable. Since g���� decreases monotonically as the
universe expands, one may try a reasonable ansatz, g� /
��6n, to obtain analytical solutions. We shall also assume
g� � g�s and �k � 0 for simplicity in this section. (At
temperatures below 2 MeV, free-streaming of neutrinos
generates anisotropic stress, �k � 0. Also, the tempera-
ture of neutrinos is different from that of photons below
electron-positron annihilation temperature, and thus g� �

g�s below �0:51 MeV.) This model gives

a00

a
’

g�7=6
� j g0� j

6
R
�
�0
d�0g�1=6

�

’
n

�2 �1� n�; (35)

where the primes denote derivatives with respect to �, and
the term n

�2
0
�1� n� has been neglected in the last line,

assuming �
 �0. This form of a00=a allows us to find an
analytical solution to Eq. (33):

hk��� �
�k���
a
� A�k�

jn�k��
�k��n

� B�k�
yn�k��
�k��n

; (36)

where A�k� and B�k� are the normalization constants that
should be determined by the appropriate boundary condi-
tions. Note that n � 0 and n � 1 correspond to the solu-
tions for the radiation era and the matter era, respectively.

Let us consider a model of the radiation-dominated
universe in which there was a brief period of time during
which g� suddenly decreased as a power-law in time, g� /
��6n. Outside of this period g� is a constant. Suppose that
g� changed between � � �2 and �1 > �2. (The change in
g� began at � � �2 and completed at �1.) The modes that
entered the horizon after �1 do not know anything about the
change in g�. The solution for such modes is therefore
given by the usual solution during the radiation era,

hout
k ��� � hprim

k j0�k��: (37)

How about the modes that entered the horizon before �2?
The solution for such modes is given by

hin
k ��� � hprim

k j0�k�� �� < �2�; (38)
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hin
k ��� �

hprim
k

�k��n
�A�k�jn�k�� � B�k�yn�k��	

��2 < �< �1�;

(39)

hin
k ��� � hprim

k

�
�2

�1

�
n
�C�k�j0�k�� �D�k�y0�k��	

��1 < ��:

(40)

It is convenient to define �� � ��1 � �2�=2 and �� � �1 �
�2 to characterize the time of transition and its duration,
respectively. Here, the superscript ‘‘in’’ denotes the modes
that have already been inside the horizon at ��, while
‘‘out’’ denotes the modes that are still outside the horizon
at ��. The coefficients, A�k�, B�k�, C�k�, and D�k�, are
given by Eqs. (E1)–(E4) in Appendix E. By taking a ratio
of Eqs. (37) and (40), we can find the amount of suppres-
sion in hin

k �� > �1� relative to hout
k �� > �1�:

hin
k �� > �1�

hout
k �� > �1�

�

�
�2

�1

�
n
�C�k� �D�k�y0�k��=j0�k��	

�

�
�2

�1

�
n
�C�k� �D�k�	; (41)

where we have ignored the oscillatory part of
y0�k��=j0�k��. While C�k� and D�k� have fairly cumber-
some expressions, the sum of the two has a simple limit,
�C�k� �D�k�	2 ! 1, for ��! 0, regardless of the value
of n (see Appendix E). The energy density in gravitational
waves then reflects the effect from the change of g� as

�in
h �� > �1; k�

�out
h �� > �1; k�

�

�
hin
k �� > �1�

hout
k �� > �1�

�
2
� 1� 2n

��
�1
; (42)

where we have used the subhorizon limit for �h�k� and
��
 �2 < �� < �1. On the other hand, g� / ��6n gives

gin
�

gout
�

�
g���2�

g���1�
�

�
�� ���=2

�� ���=2

�
�6n
� 1� 6n

��
��
: (43)

Hence, combining Eqs. (42) and (43), we finally obtain the
desired result

�in
h �k�

�out
h �k�

�

�
gin
�

gout
�

�
�1=3

; (44)

for ��
 ��. This result agrees with Eq. (32), which was
obtained in the previous section (Sec. III A) using a more
heuristic argument. (Note that we have assumed g� � g�s
in this section). In Eq. (32) there is an extra factor �r0,
which represents the time evolution of �h from matter-
radiation equality to the present epoch. We do not have this
factor in Eq. (44), as both �in

h and �out
h are evaluated

during the radiation era.
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FIG. 5. A blow-up of Fig. 4. Note that density of vertical lines
shows density of sampling points at which we evaluate
�h��0; k�. The dashed line shows the envelope of the spectrum
in the SM of elementary particles.

FIG. 4. The primordial gravitational wave spectrum at present,
�h��0; k�=10�10, as a function of the comoving wavenumber, k
(or kc in units of Hertz). The frequency of gravitational waves
observed today is related to k by f0 � kc=2�. We have assumed
a scale-invariant primordial spectrum and �m � 1��r, �r �
4:15� 10�5h�2, h � 0:7, and Einf � 1016 GeV. We have in-
cluded the effects of the effective number of relativistic degrees
of freedom and neutrino free-streaming. The dashed line shows
the envelope of the previous calculations which ignored the
change in the number of relativistic degrees of freedom and
neutrino free-streaming (Fig. 1).
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IV. PREDICTION FOR ENERGY DENSITY OF
GRAVITATIONAL WAVES FROM THE STANDARD

MODEL AND BEYOND

In Sec. III we have described how the evolution of the
effective number of relativistic degrees of freedom would
affect the shape of relative spectral energy density of
primordial gravitational waves at present, �h��0; k�. In
this section we present the full calculation of �h��0; k�,
numerically integrating the wave equation together with
the numerical data of g� and g�s (see Fig. 2).

Before we do this, there is another effect that one must
take into account. While we have ignored anisotropic stress
on the right-hand side of the wave Eq. (9) so far, free-
streaming of relativistic neutrinos which have decoupled
from thermal equilibrium at T & 2 MeV significantly con-
tributes to anisotropic stress, damping the amplitude of
primordial gravitational waves [18,32]. Calculations given
in Appendix D show that neutrino anisotropic stress damps
�h��0; k� by 35.5% in the frequency region between ’
10�16 and ’ 2� 10�10 Hz. The damping effect is much
less significant below 10�16 Hz, as this frequency region
probes the universe that is dominated by matter. One may
understand this by looking at the right-hand side of
Eq. (D23). Anisotropic stress is proportional to the fraction
of the total energy density in neutrinos, f����, which is
very small when the universe is matter dominated.

We show the results of full numerical integration in
Figs. 4 and 5. The latter figure is just a zoom-up of
interesting features in the former one. We find that
�h��0; k� oscillates very rapidly as sin2�k�� ’�, where
’ is a phase constant. The cross term, sink� cosk�, ap-
peared as a beat in Fig. 1, while they are too small to see in
Fig. 4. From observational point of view these oscillations
will not be detectable, as observations are only sensitive to
the average power over a few decades in frequency.

The damping effect due to neutrino free-streaming is
evident below 2� 10�10, while one might also notice a
minor wiggly feature at around 5� 10�10 Hz. This feature
is actually artificial. We implicitly assumed an instanta-
neous decoupling of neutrinos from the thermal plasma at
T� dec � 2 MeV, which resulted in the surface of decou-
pling that is extremely thin. This gave rise to dips and
peaks corresponding to the waveform of gravitational
waves at the decoupling time. (The envelope shape is
somewhat similar to �j1�k� at around 5� 10�10 Hz;
more details are given in Appendix D.) Physically speak-
ing, however, the last scattering surface of neutrinos is very
thick, unlike for photons. (There is no ‘‘recombination’’ for
neutrinos.) Therefore, the oscillatory feature would be
smeared out when thickness of the decoupling surface is
explicitly taken into account. To do this, one would need to
solve the Boltzmann equation for neutrinos separately,
including the effect of neutrino decoupling.

The effect of evolution of g� and g�s is also quite
prominent. For example, big changes in g� would occur
123515
at the electron-positron annihilation epoch, �0:51 MeV
(� 2� 10�11 Hz), as well as at the QGP to hadron gas
phase transition epoch, �180 MeV (� 10�7 Hz) within
the SM. The gravitational wave spectrum is suppressed by
roughly 20% and 30% above the electron-positron annihi-
lation and QGP phase transition scale, respectively. If
supersymmetry existed above a certain energy scale, e.g.,
�1 TeV (� 1� 10�4 Hz), the spectrum would be sup-
pressed by at least �20% (for N � 1 supersymmetry)
-8
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above that frequency. We also find additional features at
the QGP phase transition scale, �10�7 Hz, similar to the
features at �5� 10�10 Hz caused by our assumption
about instantaneous decoupling of neutrinos. The feature
at the QGP phase transition is nevertheless not artificial—
as the QGP phase transition is expected to have happened
in a short time period, the instantaneous transition would
be a good approximation, unlike for neutrinos.

One may approximately relate the horizon-crossing tem-
perature of the universe to the frequency of the gravita-
tional waves [13,39]. The horizon-crossing mode,
khc � ahcHhc, is related to the temperature at that time by
H2

hc �
8�3G

90 g�;hcT
4
hc. Then using entropy conservation,

g�s;hca
3
hcT

3
hc � g�s0a

3
0T

3
0 , one obtains the following conver-

sion factor from the temperature of the universe to the
frequency of gravitational waves observed today:

f0 � 1:65� 2�� 10�7

�
Thc

1 GeV

��
g�s�Thc�

100

�
�1=3

�

�
g��Thc�

100

�
1=2

Hz; (45)

which was derived in [13,39]. (If we take 	 � 1
2� in [39],

their equation (156) agrees with the one above.)
Throughout this paper we have been using the comoving
wavenumber, k (or kc in units of Hertz), which is related to
the conventional frequency by 2�f0 � kc=a0, where a0 is
the present-day scale factor and c is the speed of light. We
use k in this paper, rather than f0, as k is what enters into
the wave equation that we solve numerically.
V. DISCUSSION AND CONCLUSION

We have calculated the primordial gravitational wave
spectrum, fully taking into account the evolution of the
effective relativistic degrees of freedom and neutrino free-
streaming, which were ignored in the previous calcula-
tions. The formalism and results given in this paper are
based on solid physics and can be extended to primordial
gravitational waves produced in any inflationary models
and high energy particle physics models. As is seen in
Figs. 4 and 5, the spectrum is no longer scale-invariant,
but has complex features in it. Whatever physics during
inflation is, one must include the evolution of the effective
relativistic degrees of freedom and neutrino free-
streaming.

[14] studied the gravitational wave spectrum at the QGP
phase transition assuming the first order instantaneous
model as well as the second order crossover model, and
found 30% suppression of the energy density spectrum,
which is consistent with our calculation. [40] studied the
effect of entropy production from e.g., decay of massive
particles in the early universe on the energy density spec-
trum. We have not included this effect in our calculations,
as the late-time entropy production is not predicted within
the SM. [41] studied the effect of changes in the equation
123515
of state of the universe on the energy density spectrum.
While they included the effect of neutrino free-streaming,
they did not include the evolution of g�. Instead, they
explored general possibilities that the equation of state
might be modified by trace anomaly or interactions among
particles. They also considered damping of gravitational
waves due to anisotropic stress of some hypothetical par-
ticles. Our calculations are different from theirs, as we took
into account explicitly all the particles in the SM and the
minimal extension of the SM, but did not include any
exotic physics beyond that.

Let us mention a few points that would merit further
studies. At the energy scales where supersymmetry is
unbroken (if it exists), say TeV scales and above, the
number of relativistic degrees of freedom, g�, should be
at least doubled, and would cause suppression of the
primordial gravitational waves (Fig. 5 for N � 1 super-
symmetry). If, for instance, N � 8 is the number of inter-
nal supersymmetric charges, �250 copies of SM particles
would appear in this theory. This would suppress the
spectrum by 85% at the high frequency region (above
�10�4 Hz) compare to the SM, though the details depend
on models. Since we still do not have much idea about a
true supersymmetric model and its particle rest mass, the
search for the primordial gravitational waves would help to
constrain the effective number of relativistic degrees of
freedom g��T� above the TeV scales.

In an extremely high frequency region, krh, the gravita-
tional wave spectrum should provide us with unique infor-
mation about the reheating of the universe after inflation. If
the inflaton potential during reheating is monomial,
V�
� / 
n, the equation of state during reheating is given
by p
 � 
�n��
, where 
�n� � n�2

n�2 . Since the equation
of state determines the expansion law of that epoch, one
obtains the frequency dependence of the gravitational wave
spectrum as �h / k

�n�4�=�n�1�. In an extremely low fre-
quency region (below�10�18 Hz), on the other hand, dark
energy dominates the universe and affects the spectrum
[42]. Acceleration of the universe reduces the amplitude of
gravitational waves that enter the horizon at this epoch;
however, we will not be able to observe modes as big as the
size of the horizon today.

The signatures of the primordial gravitational waves
may be detected only by the CMB polarization in the
low frequency region, & 10�16 Hz. For the higher fre-
quency region, however, direct detection of the gravita-
tional waves would be necessary, and it should allow us to
search for a particular cosmological event by arranging an
appropriate instrument, as the events during the radiation
era are imprinted on the spectrum of the primordial gravi-
tational waves.
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APPENDIX A: SPHERICAL BESSEL-TYPE
FUNCTIONS

We present some formulas for Bessel-type functions
used in this paper.

d
dx

�
zn�x�
xn

�
� �

zn�1�x�
xn

;
d
dx
�xn�1zn�x�	 � xn�1zn�1�x�;

(A1)

where zn�x� can be spherical Bessel functions, spherical
Neumann functions, Bessel functions, and Neumann
functions.

Spherical Bessel functions and spherical Neumann func-
tions are related by

yn�x� � ��1�n�1j�n�1�x�: (A2)

Their asymptotic forms are

jn�x� �
sin�x� n�=2�

x
; yn�x� � �

cos�x� n�=2�

x
(A3)

for x� 1. If n is even, jn�x� � �j0�x� and yn�x� �
�y0�x�. If n is odd, jn�x� � �y0�x� and yn�x� � �j0�x�.
The first and second kinds of spherical Hankel functions
are defined as

h�1�n �x� � jn�x� � iyn�x�; h�2�n �x� � jn�x� � iyn�x�:

(A4)

Using elementary functions, we have

j0�x� �
sinx
x
; (A5)

j1�x� �
1

x

�
sinx
x
� cosx

�
; (A6)

j2�x� �
1

x

��
3

x2 � 1
�

sinx�
3

x
cosx

�
; (A7)
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y0�x� � �
cosx
x

; (A8)

y1�x� � �
1

x

�
1

x
cosx� sinx

�
; (A9)

y2�x� � �
1

x

��
3

x2 � 1
�

cosx�
3

x
sinx

�
; (A10)

h�1�1 �x� � �
1

x

�
1�

i
x

�
e�ix; (A11)

h�2�1 �x� � �
1

x

�
1�

i
x

�
e�ix: (A12)
APPENDIX B: ANALYTICAL SOLUTIONS OF
WAVE EQUATION

In this Appendix we shall discuss solutions of the equa-
tion of motion [Eq. (9)]. While we assume �ij � 0 in this
Appendix, we shall treat �ij � 0 in Appendix D.
Imposing appropriate boundary conditions [43], one ob-
tains simple analytical solutions for tensor modes of fluc-
tuations in the inflationary (de Sitter), radiation dominated
(RD) and matter dominated (MD) universe, as

hk��� �

�������������
16�G
p �����

2k
p

a

�
1�

i
k�

�
e�ik�
�k�;

� �
�
a

�������������
8�Gk
p

h�2�1 �k��
�k� inflation; (B1)

hk��� � �j0�k��	h
prim
k RD; (B2)

hk��� �
�

3j1�k��
k�

�
hprim

k MD; (B3)

where 
�k� is a stochastic variable satisfying
h
�k�
��k0�i � �3�k� k0�, and spherical Bessel-type
functions are given in Appendix A. We classify wave
modes by their horizon crossing time, �hc;
j k j� k
�
>keq the modes that entered the horizon during RD: �hc < �eq

<keq the modes that entered the horizon during MD: �hc > �eq
; (B4)
where �eq denotes the time at the matter-radiation equality, and �hc denotes the time when fluctuation modes crossed the
horizon, k�hc � 1. Notice that jhk���j2 for each solution (B1)–(B3) does not depend on time ( � jhprim

k j2) at the super-
horizon scale, jk�j 
 1.

The tensor mode fluctuations from the inflationary universe left the horizon and froze out. Its dimensionless spectrum is
given from Eq. (B1) as
-10
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FIG. 6 (color online). Numerical solutions of tensor perturba-
tions. The solid, dashed, and short-dashed lines show the high,
medium, and low frequency modes, respectively. The higher
k-modes enter the horizon earlier, and are damped more by the
cosmological redshift. Vertical lines define the horizon-crossing
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FIG. 7 (color online). Comparison between numerical solu-
tions and analytical solutions of tensor perturbations. The dashed
and short-dashed lines show numerical solutions of the high and
low frequency modes, respectively. The higher k-modes enter the
horizon earlier, and thus the numerical solution is well approxi-
mated by the analytical solution during the radiation era,
��k�� � j0�k�� (solid line). On the other hand, the lower
k-modes enter the horizon much later, and thus the numerical
solution is close to the analytical solution during the matter era,
��k�� � 3j1�k��=k� (dotted line).
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�2
h�k� � 4k3 jh

inf
k j

2

2�2 � 64�G
�
Hinfk�

2�

�
2
�
1�

1

k2�2

�

’
16

�

�
Hinf

mPl

�
2
� 4k3 jh

prim
k j2

2�2

�jk�j 
 1�;

(B5)

where Hinf is the Hubble parameter during inflation and
� � �1=�aHinf� is used in the second equality. Note that
the conventional factor 4 is from

R dk
k �2

h�k� � hhijh
iji �

2�hjh�j2i � hjh�j2i	 � 4jhj2, where jh�;kj � jh�;kj � jhj
is assumed [44]. From the Friedman equation during in-
flation, one obtains H2

inf �
8�

3m2
Pl
V�
�, which gives

�2
h;prim � 10V�
�=m4

Pl; thus �2
h;prim is sensitive to the

shape of inflaton potential [10,12]. The dimensionless
spectrum (B5) is nearly independent k. This is the famous
prediction of the inflationary scenario known as a nearly
scale-invariant spectrum. As long as we consider de Sitter
inflation, the spectrum is exactly scale-invariant, i.e. / k0

as 
 is at rest.
Using the transfer function [Eq. (12)], we obtain the time

evolution of the amplitude of gravitational waves as

T �� < �eq; k > keq� � j0�k��; (B6)

T �� > �eq; k > keq� �
�eq

�
�A�k�j1�k�� � B�k�y1�k��	;

(B7)

T ��; k < keq� �
3j1�k��
k�

; (B8)

where

A�k� �
3

2k�eq
�

cos2k�eq

2k�eq
�

sin2k�eq

�k�eq�
2 ; (B9)

B�k� � �1�
1

�k�eq�
2 �

cos2k�eq

�k�eq�
2 �

sin2k�eq

2k�eq
: (B10)

Their conformal time derivatives are given as

T 0�� < �eq; k > keq� � �kj1�k��; (B11)

T 0�� > �eq; k > keq� � �
k�eq

�
�A�k�j2�k��

� B�k�y2�k��	; (B12)

T 0��; k < keq� � �
3j2�k��
�

: (B13)

Equations (B6) and (B7) are the evolution of modes which
entered the horizon during the radiation era, while Eq. (B8)
is the evolution of modes which entered the horizon during
the matter era. Coefficients A�k� and B�k� are obtained by
equating a solution (B6) with (B7) and their first deriva-
tives [(B11) and (B12)] at the matter-radiation equality.
123515
The transfer function for the intermediate regime, Eq. (B7),
can be calculated numerically so that the two other limiting
solutions match smoothly (See Fig. 1). If the wavelength of
the gravitational waves is much shorter than the duration of
the cosmological transition, a WKB approximation may be
appropriate [32,45]. Here we just assumed the instanta-
neous transition to illustrate the main point. The analytical
solutions as well as numerical solutions are presented and
-11
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compared in Figs. 6 and 7. The higher k-modes enter the
horizon earlier, and their amplitudes are damped more by
the cosmological redshift.

APPENDIX C: THE RELATIVE SPECTRAL
DENSITY: �h�k�

In this Appendix we shall define the energy-momentum
tensor of gravitational waves following the argument and
the definition in x 35.7 and x 35.13 of [46]. The Ricci tensor
for the metric of the form given in Eq. (1) may be expanded
in metric perturbations, h:

R�� � �R�� � R
�1�
�� � R

�2�
�� �O�h3�; (C1)

where R�1��� �O�h� and R�2��� �O�h2�.
For the vacuum field equation, R�� � 0. As the Einstein

equation is nonlinear, �R�� is in general not linear in h��.
The linear term in Eq. (C1) must obey the vacuum equa-
tion,

R�1��� � 0: (C2)

This is an equation for the propagation of the gravitational
waves, which corresponds to Eq. (9) or more generally to
Eq. (D23) in the Friedman-Robertson-Walker (FRW) uni-
verse. The remaining part of R�� may be divided into a
smooth part which varies only on scales larger than some
coarse-graining scales,

�R�� � hR
�2�
��i � 0; (C3)

and a fluctuating part which varies on smaller scales

R�1�nonlinear
�� � R�2��� � hR

�2�
��i � 0; (C4)

up to the second order in h��. Here, R�1�nonlinear
�� is defined

by Eq. (C4) and represents the nonlinear correction to the
propagation of h��, Eq. (C2), which gives h�� ! h�� �
j��, where j�� �O�h2� [46]. Equation (C3) represents
how the stress energy in the gravitational waves creates
the background curvature. The Einstein equation in vac-
uum is then

�G�� � �R�� �
1

2
�R �g�� � 8�GT�GW�

�� ; (C5)

T�GW�
�� � �

1

8�G

�
hR�2���i �

1

2
�g��hR�2�i

�
; (C6)

where T�GW�
�� is a definition of the energy-momentum tensor

for the gravitational waves and h i denotes an average
over several wavelengths. The importance of the effective
energy-momentum tensor is that it tells us how backreac-
tion from energy density of gravitational waves would
affect the expansion law of the background universe.
Note that the effective energy-momentum tensor defined
by Eq. (C6) is different from that defined by the Neother
current of the Lagrangian density, TNeother

�� � 2�����
�g
p �S�2�

�g�� ,
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where S�2� is the second order perturbation in the
Einstein-Hilbert action. These definitions coincide only
deep inside the horizon. Note also that in the notation of
[46], G � 1, but in our notation, @ � c � 1, G � m�2

Pl ,
where mPl is the Plank mass. Since hR�2�i � 0 [46],

T�GW�
�� �

1

32�G
hh
�j�h
�j�i

�
1

32�G
hh
�;�h


�
;�i �O�h3�; (C7)

where j is the covariant derivative with respective to back-
ground metric, �g��. Note that we have employed the TT
gauge. In linear theory we neglect higher order terms in the
energy-momentum tensor.

The energy density of gravitational waves, �h, is defined
by the 0-0 component of the energy-momentum tensor.

�h��� � T�GW�
00 �

1

32�G
h _hij _hiji; (C8)

where hij is in the TT gauge. There are only two indepen-
dent modes for gravitational waves;

hij �
h� h� 0
h� �h� 0
0 0 0

0@ 1A; (C9)

where � and � denote two independent polarization
modes and their propagation direction is taken in ẑ direc-
tion. Hence,

�h��� �
2

32�G
h _h2
� � _h2

�i �
1

16�Ga2 hh
02
� � h

02
�i

�
1

16�Ga2

Z d3k

�2��3
Z d3k0

�2��3
h�h0�;kh

0
�;k0

� h0�;kh
0
�;k0 �e

i�k�k0�
xi; (C10)

where Fourier transformation was done and h��;k � h�;�k

in the last step. For stochastic modes, the spatial average
over several wavelengths, h i, is equivalent to the en-
semble average in k-space;

hh0�;kh
0
�0;k0 i � �2��

3��;�0��3��k� k0�jh0�;kj
2; (C11)

where � � �, �. Using (C10) and (C11), we obtain

�h��� �
1

16�Ga2

Z d3k

�2��3
�jh0�;k���j

2 � jh0�;k���j
2	:

(C12)

It is reasonable to assume that the primordial gravita-
tional waves are unpolarized, i.e. jh�;kj2 � jh�;kj2.
Whenever we express the time evolution of some quanti-
ties, it is convenient to express them in terms of the transfer
function,T �k��, and the primordial amplitude,�2

h;prim, de-
fined as (12);
-12
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�h��� �
1

32�Ga2

Z
d lnk�2

h;prim�T
0�k��	2; (C13)

where

�2
h;prim � 4

k3

2�2 jh
prim
k j2 �

16

�

�
Hinf

mPl

�
2
: (C14)

Here, jhprim
k j2 is the amplitude of gravitational waves out-

side the horizon, j k� j
 1, during inflation. Well inside
the horizon averaging over several periods, the leading

term of �T 0�k��	2 is proportional to ��2 / a�2 during
the radiation era and / ��4 / a�2 during the matter era.
Thus �h / a

�4, which is consistent with the fact that
graviton is massless and thus relativistic.

It is common to define the relative spectral density as the
normalized energy density per logarithmic scale.

�h��; k� �
~�h��; k�
�cr���

; ~�h��; k� �
d�h���
d lnk

; (C15)

where �cr��� is critical density of the universe, and ~�h��; k�
denotes energy density of the gravitational waves per
logarithmic scale. Inserting (C13) into (C15), we obtain

�h��; k� �
�2
h;prim

32�Ga2�c���
�T 0��; k�	2: (C16)

Recalling Friedman equation, H2 � 8�G�c=3, (C16) be-
comes

�h��; k� �
�2
h;prim

12H2���a2 �T
0��; k�	2: (C17)

In this paper, we shall evaluate this quantity exactly within
the SM of elementary particles. For an analytical model,
T 0��; k� is given by Eqs. (B11)–(B13).

APPENDIX D: COLLISIONLESS DAMPING DUE
TO NEUTRINO FREE-STREAMING

In this Appendix, we review the effect of collisionless
particles on gravitational waves. Treating relativistic neu-
trino gas by classical kinetic theory, the linearized
Einstein-Boltzmann equation (5) can be written as an
integro-differential equation (D23). The derivation of this
integro-differential equation is given in the literature, for
instance [16–18,30] for both scalar and tensor modes, [31]
for scalar modes, and will be reviewed briefly in this
Appendix.

At the temperature of �2 MeV, where neutrinos de-
coupled and became out of equilibrium with photons,
electrons, or positrons, the number of effective relativistic
species is g���2 MeV� � 10:75.2 The free-streaming neu-
trino gas after their decoupling satisfies the collisionless
Boltzmann equation, i.e. the Vlasov equation,
2We have assumed instantaneous decoupling of neutrinos, but
this is not true in general.
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dF�x; P�
dt

� 0; (D1)

where F�x; P� � �F�P� � �F�x; P� is a distribution func-
tion. The distribution function of relativistic neutrinos is
given by

�F�P0� �
g�

eP
0=T � 1

; (D2)

where g� denotes the number of helicity states for neutri-

nos and antineutrinos. Here, P� � dx�
d� and P0 �

����������������
gijP

iPj
q

,

which is implied by the constraint for relativistic particles;

g��P
�P� � 0: (D3)

Therefore, there are only three independent components of
the momentum vector. One can also relate Pi with P0 �
�P0 as

Pi � �
�iP0

a

�
1�

1

2
hjk�

j�k
�
; (D4)

where �i � �i’s are directional cosines and P0 is the
energy of neutrinos. We chose positive sign convention
for P0 � dt

d� . Note that �ij�i�j � 1, and Pi � C�iP0,
where the coefficient, C, is obtained from Eq. (D3);

0 � P0P
0 � a2PjPj � a2hijP

iPj;

0 � ��P0�
2 � a2C2P2

0 � a
2hij�

i�jC2P2
0;

1 � a2C2�1� hij�i�j�:

We consider tensor perturbations. Equation (D1) can be
expressed as

dF�t; xi; �i; P0�

dt
�
@F
@t
�
dxi

dt
@F
@xi
�
dP0

dt
@F

@P0 �
d�i

dt
@F
@�i

� 0: (D5)

The last term is negligible in the linear perturbation theory,
as @F

@�i is of the first order in perturbations and _�i �

� 1
2a hjk;i�

j�k.
For the second term @F

@xi is of the first order in perturba-
tions and

dxi

dt
�
dxi

d�
d�
dt
�
Pi

P0 : (D6)

Using Eq. (D4), one obtains

dxi

dt

@F
@xi
�
�i

a
@F
@xi

(D7)

in the leading order, as �F does not depend on xi; thus, @F@xi is
a perturbation.

For the third term we use the geodesic equation,

dP�

d�
� ���
�P


P�; (D8)
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FIG. 9 (color online). Derivatives of modes which entered the
horizon before neutrino decoupling. The solid line shows an
analytical solution, �0 � �j1�u�, during the radiation era with-
out neutrino decoupling. The dotted, short-dashed, and dashed
lines show numerical solutions of �0�k�� for which neutrinos
decoupled at �� dec given by k�� dec � 1:25, 2.5, 3.75, respec-
tively. They are damped by giving energy to free-streaming
neutrinos. Vertical lines indicate the neutrino decoupling time
for each mode.
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��
� �
g��

2

�
@g
�
@x�

�
@g��
@x


�
@g
�
@x�

�
: (D9)

The time component of the geodesic equation is

dt
d�

dP0

dt
� ��0


�P

P�;

� �
g0�

2

�
2
@g
�
@x�

�
@g
�
@x�

�
P
P�;

� �
_a
a
�P0�2 �

1

2
a2
@hij
@t

PiPj;

(D10)

where g00 � �1, g0i � 0 were used from the second line
to the last line. Up to the first order in perturbations

1

P0

dP0

dt
� �

_a
a
�

1

2

@hij
@t

�i�j; (D11)

where we have used Eq. (D4) and neglected higher order
terms. This equation describes the change in the neutrino
energy as it propagates in a FRW universe with gravita-
tional waves. The first term accounts for the redshift of
energy due to an isotropic expansion. The second term tells
us that neutrinos lose energy if @hij

@t > 0, or gain energy if
@hij
@t < 0 from gravitational waves. This energy flow from

neutrinos to gravitational waves causes collisionless damp-
ing (Figs. 8 and 9) and amplification (Fig. 10) of gravita-
tional waves.
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FIG. 8 (color online). Comparison between numerical solu-
tions and analytical solutions of tensor perturbations. The effect
of neutrino free-streaming is included for numerical solutions,
but not for analytical solutions. The dashed and short-dashed
lines show numerical solutions of the high and low frequency
modes, respectively. The higher k-modes enter the horizon
during the radiation era after neutrino decoupling, and thus the
numerical solution is damped by neutrino free-streaming com-
pared to the analytical solution, ��k�� � j0�k�� (solid line). On
the other hand, the lower k-modes enter the horizon much later,
and thus the numerical solution is closer to the analytical
solution during the matter era, ��k�� � 3j1�k��=k� (dotted line).
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Finally, by combining Eqs. (D5), (D7), and (D11), the
Vlasov equation for the first order perturbations is obtained
as

�
dF
dt

�
first order

�
@�F
@t
�
�i

a
@�F
@xi
� P0 @�F

@P0

_a
a
� P0 @ �F

@P0

1

2

�
@hij
@t

�i�j � 0; (D12)
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FIG. 10 (color online). Derivative of a mode which entered the
horizon before neutrino decoupling. The solid line shows an
analytic solution,�0 � �j1�u�, during the radiation era without
neutrino decoupling. The dashed line shows numerical solutions
of �0�k�� for which neutrinos decoupled at �� dec given by
k�� dec � 5:0. The wave is amplified by gaining energy from
free-streaming neutrinos. The vertical line indicates the neutrino
decoupling time.
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3In the Refs. [18,33], K�u	��sinu
u3 �

3cosu
u4 �

3sinu
u5 �

1
15�j0�u��

10
7 j2�u��

3
7j4�u��, which is the same function as our kernel, i.e.

K�u	 � j2�u�
u2 .
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where F � �F� �F�t; xi; �i; P0� and �F is a tensor type
perturbation in a distribution function of neutrinos. The
zeroth order Vlasov equation merely gives cosmological
redshift, P0 / a�1, as explained above. Defining � �
�iki=k and Fourier transforming Eq. (D12), the first order
Vlasov equation in the momentum space is given as

@fk
@t
�

_a
a
P0 @fk
@P0 �

ik�
a
fk � P0 @ �F

@P0

1

2

@hk
@t

; (D13)

where we have used

hij�t;x� �
X

���;�

Z d3k

�2��3
h�;k�t�Q�

ij�x�; (D14)

�F �
X

���;�

Z d3k

�2��3
f�;k�t; P

0; ���i�jQ�
ij�x�: (D15)

Here, tensor harmonics Q�
ij�x� are solutions of the tensor

Helmholtz equation; Q�
ijja�x� � k

2Q�
ij�x� � 0, @lQ�

ij �

iklQ
�
ij. They are symmetric, traceless, and divergenceless;

Q�
ij � Q�

ji, �
ijQ�

ij � Q�
ij � 0, where �ij � a2 �gij and j

denotes the covariant derivative with respect to the spatial
metric �ij. Note that Fourier transformation here is the
generalization of Eq. (4) for arbitrary spatial geometry of
the universe. One can treat Q�

ij�x� as a plane wave in a flat
geometry case.

Because of the existence of the second term on the left-
hand side of Eq. (D13), we cannot solve this equation.
Thus following [31], we introduce the comoving momen-
tum, q� � aP�. Regarding F as a function of comoving
energy, q � q0, and conformal time, �, the third term in
Eq. (D5) may be replaced by dq

d�
@F
@q � �

1
2qh

0
ij�

i�j @ �F
@q up to

the linear order. Then the linearized Vlasov equation,
d
d� F��; x

i; �i; q� � 0, becomes

@fk
@�
� ik�fk � q

@ �F
@q

1

2

@hk
@�

; (D16)

where fk � fk��; q; ��. One finds the solution of
Eq. (D16) as

fk��; q;�� � e�i�k����� dec�fk��� dec; q; �� �
q
2

@ �F
@q

�
Z �

�� dec

d�0h0k��
0�e�i�k����

0�; (D17)

where the prime on hk��� denotes the derivative with
respect to the conformal time. As there is no primordial
tensor perturbations in the neutrino distribution function
before neutrino decoupling, fk��� dec; q; �� � 0.

The right-hand side of the linearized Einstein equation
includes anisotropic stress as in Eq. (5);

�T���ij � a2
X

���;�

Z d3k

�2��3
��;kQ

�
ij�x�; (D18)
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where T���ij denotes the stress-energy tensor of neutrinos.

Since T���ij �
1�����
�g
p

R d3q
q0 qiqjF�q�, its perturbation can be

expressed as

�T���ij � a�4
Z d3q

q0 � �qi �qj�F� ��qi �qj � �qi�qj� �F	;

�F �
X

���;�

Z d3k

�2��3
f�;k��; q; ���l�mQ�

lm�x�:
(D19)

The second and the third terms of (D19) cancel out in linear
perturbation theory. Thus

��;kQ�
ij�x� � a�4

Z d3q

q0 q
2�i�j�l�mf�;kQ�

lm�x�: (D20)

Inserting solution of the Vlasov Eq. (D17) into Eq. (D20)
and using equality

R
d�q�

i�j�l�me�i�̂
k̂uQ�
lm �

1
8 �

��il�jm � �im�jl�
R
d�qe

�i�u�1� 2�2 ��4�Q�
lm, one

obtains

�k �
1

4a4

Z
d3qq�1� 2�2 ��4�fk;

� �4 ������
Z �

�� dec

d�0
�
j2�k��� �0�	

k2��� �0�2

�
h0k��

0�:

(D21)

Here, �qi � aq�i and �qi � a�1q�i, and ������ �
a�4

R
d3qq �F�q� is the unperturbed neutrino energy den-

sity, and a negative sign appears on the right-hand side of
Eq. (D21) because integration by parts has been done.
Also, we have used the identity

1

16

Z 1

�1
d��1� 2�2 ��4�e�i�u �

j2�u�

u2 : (D22)

Note that j2��u�
��u�2

� j2�u�
u2 ,

R
1
�1

j2�u�
u2 du � �

8 , and

limu!0
j2�u�
u2 �

1
15 .3

Then the Einstein-Vlasov equation takes a form of an
integro-differential equation;

h00k ��� �
�

2a0���
a���

�
h0k��� � k

2hk���

� �24f����
�
a0���
a���

�
2 Z �

�� dec

d�0
�
j2�k��� �

0�	

k2��� �0�2

�
h0k��

0�;

(D23)

and the fraction of the total energy density in neutrinos is

f���� �
������
�����

�
���a0=a�

4

�M�a0=a�
3 � ��� �����a0=a�

4

�
f��0�

1� a���=aEQ
; (D24)
-15



YUKI WATANABE AND EIICHIRO KOMATSU PHYSICAL REVIEW D 73, 123515 (2006)
where

f��0� �
��

�� ���
� 0:40523: (D25)

The integro-differential Eq. (D23) was studied in [18,32–
34] in the cosmological context. Here we shall solve this
equation numerically with all the SM particles participat-
ing in the cosmic thermal plasma. Anisotropic stress, �k,
vanishes during the matter era, as f� ! 0. Therefore, the
damping effect is unimportant during the matter era.

Following [18], we write

h��u� � h��0���u�; (D26)

which gives

�00�u� �
�

2a0�u�
a

�
�0�u� � ��u�

� �24f��u�
�
a0�u�
a

�
2 Z u

u� dec

dU
�
j2�u�U�

�u�U�2

�
�0�U�;

(D27)

where u � k�, and derivatives are taken with respect to u.
After the end of inflation,�end, the amplitude of cosmologi-
cal fluctuations is conserved until the mode re-enter the
horizon, h��0� � h�;k��end�. Note that the right-hand side
of Eq. (D27) disappears on the superhorizon scales—neu-
trino free-streaming affects the tensor metric perturbation
only inside the horizon. The initial conditions are taken to
be

��0� � 1; �0�0� � 0: (D28)

We solve Eq. (D27) numerically by two steps; (i) we obtain
a��� and a0��� from the Friedman equation (26) with g����
in Sec. III [Fig. 3], and (ii) we solve Eq. (D27) with the
scale factor that we obtained in the step (i) The numerical
solutions as well as analytical solutions are presented and
compared in Fig. 8. The higher Fourier modes enter the
horizon during the radiation era, but after neutrino decou-
pling. Thus they are damped due to the presence of the
right-hand side of Eq. (D27).

In order to estimate the damping effect, let us consider
the radiation era after neutrino decoupling. During the
radiation era, a0�u�=a � 1=u, the analytical solution is
given by ��u� � j0�u� in the absence of neutrino free-
streaming in Eq. (D27). In the presence of neutrino free-
streaming, the solution becomes asymptotically (u� 1)

��u� ! A
sin�u� ��

u
; (D29)

where A � 0:80313 and � � 0 are obtained from our
numerical calculations. This asymptotic solution is valid
only for rather long wavelength modes which entered the
horizon well after the neutrino decoupling. The suppres-
sion factor A2 � 0:64502 applies to the gravitational wave
123515
spectrum of the modes that entered the horizon after neu-
trino decoupling but before matter domination.

In order to understand the shape of the spectrum, Figs. 4
and 5, we need to consider shorter wavelength modes as
well. This may be understood as follows. As we saw in
Eq. (D11), if the time derivative of the mode is negative
(positive), the mode is damped (amplified). Integrating the
amplitude of gravitational waves over time, the net effect
of neutrino free-streaming almost always damps gravita-
tional waves. This is because the contribution is mainly
from the first period of �0�u�, where the first trough is
larger than the first peak. In previous paragraph we have
considered the modes with k�� dec < 1. Now let us consider
the higher k-modes with k�� dec � 1, or k�
10�10–10�9 Hz. Note that k�� dec � 1 represents the
mode which entered the horizon at the neutrino decoupling
time, �� dec. The mode with larger wavenumbers would
enter the horizon earlier. Figure 9 shows numerical solu-
tions of �0�u� for which neutrinos decoupled at �� dec given
by k�� dec � 1:25, 2.5, or 3.75. For k�� dec � 1:25 and 2.5,
neutrinos decoupled at the first trough of �0�u�, where
�0�u� is negative. Thus their amplitudes are damped by
giving energy to free-streaming neutrinos (see Eq. (D11)
and discussion below it). For k�� dec � 3:75, neutrinos
decoupled right after the first trough of �0�u�, where
�0�u� is closer to zero. Thus its amplitude is unchanged,
but its phase is delayed. Figure 10 shows numerical solu-
tions of �0�u� with k�� dec � 5:0. For k�� dec � 5:0, neu-
trinos decoupled at the first peak of �0�u�, where �0�u� is
positive. Thus the amplitude of gravitational waves is
actually amplified by gaining energy from free-streaming
neutrinos, and we can see this feature on the spectrum,
Fig. 5, at �5� 10�10 Hz. Neutrino free-streaming makes
gravitational waves either damp or amplify depending on
their frequencies. Note that this feature is generic to in-
stantaneous decoupling of any kinds of particles, but not
realistic for neutrinos as we mentioned in Sec. IV.

For extremely short wavelength modes which have al-
ready been inside the horizon before neutrino decoupling,
k�� dec � 1 or k > 10�9 Hz, the suppression becomes
negligibly small; A! 1, but the phase delay, �, is nonzero.
These modes are undamped as positive and negative con-
tributions of �0 to the gravitational wave energy cancel out
each other after several periods of �0. No net energy
conversion from gravitational waves to free-streaming
neutrinos would occur.
APPENDIX E: OSCILLATION DUE TO DRASTIC
CHANGE OF g����

In this Appendix we explain the effect on the gravita-
tional wave spectrum from a sudden change in the number
of relativistic species, g�. To do this, we need to calculate
�out
h �k2�=�in

h �k1�, where k2 � k1. In Sec. IV we have al-
ready seen the numerical prediction of the gravitational
wave spectrum. In subsection III B we provided the way to
-16
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understand the relative suppression of gravitational waves
at a given k ( � k1 � k2) with and without changes in g�.
We shall discuss in a similar way what would happen to
different Fourier modes, in order to fully understand im-
prints of g� on the spectrum, such as oscillations, which are
from cosmological events that change g� instantaneously
or drastically.

In Fig. 5 we find an oscillatory feature at around
10�7 Hz, which corresponds to the mode entering the
horizon at the QGP phase transition. At this energy scale,
�180 MeV, the effective number of relativistic species
changes drastically, giving a sharp feature and oscillation
in �h. To understand this, let us consider the simple
analytical model employed in subsection III B.
Equation (40) is the mode which experienced such a
change of g� and its coefficients A, B, C and D are

A�s; n� �
�

4s3=2
��2sY1�

���������
1�4n
p

=2�s� sins� Y ���������
1�4n
p

=2�s�

� ��2s coss� �3�
���������������
1� 4n
p

� sins�	; (E1)

B�s; n� � �
�

4s3=2
��2sJ1�

���������
1�4n
p

=2�s� sins� J ���������
1�4n
p

=2�s�

� ��2s coss� �3�
���������������
1� 4n
p

� sins�	; (E2)

C�s; t; n� �
�

4
����
st
p secn���2tJ�n�3=2�t� cost�Jn�1=2�s�

� �s coss� sins� � sJn�3=2�s� sins�

� 2J�n�1=2�t��Jn�1=2�s��s coss� sins�

� sJn�3=2�s� sins��cost� t sint�

� 2�J�n�1=2�s��s coss� sins�

� sJ�n�3=2�s� sins���tJn�3=2�t�

� cost� Jn�1=2�t��cost� t sint��	; (E3)

D�s; t; n� �
�

4
����
st
p secn��2tJn�1=2�t� cost�J�n�1=2�s�

� ��s coss� sins� � sJ�n�3=2�s� sins�

� 2J�n�1=2�t��Jn�1=2�s��s coss� sins�

� sJn�3=2�s� sins��t cost� sint�

� 2 sint�tJ�n�3=2�t��Jn�1=2�s��s coss� sins�

� sJn�3=2�s� sins� � ��tJn�3=2�t�

� cost� Jn�1=2�t���sJ�n�3=2�s� sins

� J�n�1=2�s���s coss� sins���	; (E4)

where s � k�2, t � k�1 and s � t. Here, Jn�x� and Yn�x�
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are the Bessel function and Neumann function, respec-
tively. At this time, we are interested in different
k-modes, k1 < k2. (However we evaluate �h�k� at the
same time, �.) We obtain
�in�k2�

�out�k1�
’
k2

2h
2�k2��

k2
1h

2�k1��
;

�

�
k2

k1

�
2
�
�2

�1

�
2n
�
C�k2�

j0�k2��
j0�k1��

�D�k2�
y0�k2��
j0�k1��

�
2
;

�

�
k2

k1

�
2
�
�2

�1

�
2n
�
C�k2�

k1

k2
�D�k2�

k1

k2

�
2

�

�
�2

�1

�
2n
�C�k2� �D�k2�	

2 !

�
�2

�1

�
2n
�

�
s
t

�
2n
;

(E5)
where ’ denotes the subhorizon limit, � denotes the
asymptotic limit as k�! large, and ! denotes the limit
in �k � k2 � k1 ! 0. Equation (E5) tells us the exact ratio
between different k-modes. While we obtained only the
suppression factor, ��2=�1�

2n, in subsection III B, we now
also obtain the oscillatory factor, �C�D	2. Figure 11
shows that the factor, �C�D	2, oscillates and takes on
unity at ��! 0 regardless of n. Here, n � 5 represents
g� / �

�30, which is an extremely drastic change. This
gives us a complete analytical account of the shape of
Fig. 5.
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