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Long-wavelength modes of cosmological scalar fields
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We give a numerical analysis of long-wavelength modes in the WKB approximation of cosmological
scalar fields coupled to gravity via ��2R. Massless fields are coupled conformally at � � 1=6.
Conformality can be preserved for fields of nonzero mass by shifting �. We discuss implications for
density perturbations.
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I. INTRODUCTION

Scalar fields have played a major role in attempts to
model the early Universe. In particular, nearly every in-
carnation of the inflation scenario has relied on scalars to
generate vacuum energy and in turn exponential expansion
and density fluctuations. Many of these models rely on
slow roll potentials, i.e., potentials that are nearly flat
where the scalar masses can be very small.

Recently, horizon size and super horizon size density
perturbations have been studied intensively, because of
their importance for understanding low ‘ modes (see [1]
and references therein) in the WMAP data [2]. Long-
wavelength scalar-field modes have interesting properties
when the wavelength is on the order of the horizon size
cH�1

0 . One finds dispersion and diffraction effects that
depend on the scalar mass and its coupling to gravity.
The generic lagrangian for a scalar in a Friedmann-
Robertson-Walker (FRW) Universe is

L � g��@��@��� ��
2R� V���: (1)

If V��� contains no dimensionful parameters, then the
scalar field is conformally coupled when � � 1

6 .
Conformal invariance can be broken by including a mass
term in V���. Here we assume the local (Minkowski limit)
real �4 theory is renormalizable. While this is not com-
pletely general, it is sufficient for our purposes. One could
easily generalize our analysis to complex fields or fields in
irreducible representations of some continuous symmetry
group.

One expects the scalars to be an integral part of any
realistic model, so for instance, if the overarching theory is
based on strings with a global SUSY preserved down to
some scale, then the scalars will be components of some
superfield � contributing to the superpotential W���. This
will put constraints on V���. In particular, flat directions
could result (regions of moduli space where the scalar mass
vanishes) and lead to massless or nearly massless modes,
where, for example, SUSY could be broken by nonpertur-
bative effects. We give these comments as a justification
address: m.jankiewicz@vanderbilt.edu
address: thomas.w.kephart@vanderbilt.edu

06=73(12)=123514(8) 123514
for the study of scalar zero modes and modes of very small
positive mass or modes of very small imaginary mass
(where the field could be rolling). However, there could
be other reasons to study such modes.

As the wavelength approaches the horizon size, the
naive redshift formula no longer applies and one must
refine the flat space analysis of the scalar-field dispersion
relation [3,4], see also [5–8]. We will carry out a numerical
analysis of the behavior of long-wavelength scalar-field
modes and investigate the dependence of the redshift on
the scalar-field mass, and its coupling to gravity. We begin
with a summary of scalar fields coupled to gravity in an
FRW universe. We then review redshift and physical wave-
length formulas, after which we are in position to begin our
numerical analysis. We conclude with a discussion of the
implications of our results.

The interpretation and application of our results requires
some comments. The Universe has expanded through a
number of phases during its lifetime. We think we are now
transitioning from a matter-dominated phase to a vacuum-
dominated phase. Earlier there was radiation domination,
and before that, inflation, which occurred some time before
big bang nucleosynthesis, but it is not clear how much
before. Our task is to follow modes through these phases.

It is unlikely that long-wavelength modes can be mea-
sured directly so we are obliged to consider indirect mea-
surements. These involve the long-wavelength background
on which CMB or other short wavelength radiation prop-
agates, and a proper analysis would consist of comparing
observation with results predicted with and without
dispersion.

Our best guess for the relevant long-wavelength modes
that will lead to distortion of the CMB are those modes that
were produced during inflation, then pushed outside the
horizon during inflation, and have recently re-entered our
horizon. These are the lowest ‘modes. They will have their
distortion preserved due of the fact that they have spent the
time from which they left the horizon until the present
epoch frozen, and so unable to grow or dissipate. Being of
the order of the present horizon size, they will also display
the maximum distortion. We give generic results that can
be applied to any model, but since results are inflationary
model dependent, a full analysis would require specifying
model parameters �, m, etc.
-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.73.123514


MARCIN JANKIEWICZ AND THOMAS W. KEPHART PHYSICAL REVIEW D 73, 123514 (2006)
II. SCALAR FIELDS COUPLED TO GRAVITY IN
AN FRW UNIVERSE

We first review the properties of a real free massive
scalar fields coupled to gravity. The most general action
(to first order in R) for this case is [9]

S �
Z
d4x

�������
�g
p

�g��@��@��� ��
2R�m2�2�; (2)

where R is the scalar curvature and � is a dimensionless
coupling. We will work in FRW geometry, and use the
convenient conformal parametrization of this family of
spacetimes,

g�� � C���diag�1;�hij�x��; (3)

where C��� � a2�t� is the conformal scale factor related to
a conformal time via

��t� �
Z t cdt0

a�t0�
: (4)

The spacial part of the metric is

hij�x� � diag��1� �r2��1; r2; r2sin2��; (5)

with � � 0, 1, �1 corresponding to (flat), deSitter (posi-
tive) or anti–de Sitter (negative) curved spatial sections,
respectively.

The action (2) leads to the field equation

���m2�� ��R � 0; (6)

where � � 1�����
�g
p @��

�������
�g
p

g��@��. Because of the homoge-

neity and isotropy of the FRW metric, the solution to the
field equation factorizes to

�k��;x� � C�1=2���fk���Yk�x�; (7)

where Yk is an eigenfunction of the spatial Laplacian

1�������
�h
p @i�

�������
�h
p

hij@jYk�x�� � ��jkj2 � ��Yk�x�; (8)

and k � jkj. In the massive case, the temporal part of (7)
has to satisfy

�f k �
�
k2 �m2C��� � ��

1

6
R���C���

�
fk � 0; (9)

where the dot represents derivative with respect to confor-
mal time�. One can express the scalar curvature R in terms
of scale factor C and curvature constant � in the form

1

3
RC �

�C
C
�

1

2

� _C
C

�
2
� 2�: (10)

Thanks to this relation, Eq. (9) takes the form
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�fk�
�
k2 �m2C� 6

�
��

1

6

�
�

� 3
�
��

1

6

�� �C
C
�

1

2

� _C
C

�
2
��
fk � 0: (11)

The theory is conformally coupled if � � 1
6 and m2 � 0.

We will concentrate on two realistic cosmological regimes:
vacuum (VDU) and matter (MDU) dominated epochs. In
these cases (11) reduces to

�f k �
�
�2 �m2C�

�2 � 1
4

�2

�
fk � 0; (12)

where we have introduced the index � defined by

�2��; p� �
1

4
� �6�� 1�

p�2p� 1�

�p� 1�2
; (13)

with p � 2=3 for MDU and is also formally 2=3 for VDU.
We have also introduced a conformal wave number �,
corresponding to a mode k:

�2 �

�
4	2


2
0

� �6�� 1���0 � 1�H2
0

�
a2�t0�: (14)

Here 
0 denotes the physical wavelength, corresponding to
the wave number k, as measured today, �0 is the present
ratio of matter-energy density to critical density and H0 is
the present value of the Hubble parameter. Since all current
observational evidence points toward a flat universe, we set
� � 0 (�0 � 1) so that (14) reduces to

� � k �
2	

0
a�t0�: (15)
A. Massless case

In the massless case (12) reduces to Bessel’s equation

�f k �
�
�2 �

�2 � 1
4

�2

�
fk � 0: (16)

The solutions to this equation can be written in terms of
Hankel functions H�1�� ����, which in polar form are

H�1�� ���� � A����e�iS���;��; (17)

with A and S being real valued amplitude and phase
functions. These are easily expressed in terms of ordinary
Bessel functions J� and Bessel functions of the second
kind Y�. The phase is

S���;��� arctan
cot�	��J������csc�	��J������

J�����
;

(18)

for real ���; p�, i.e., for � < 3=16 in a case of p � 2=3 and

S���; �� � arctan
=�e�i�	J����� � J�������
<�e�i�	J����� � J�������

; (19)

for imaginary ���; p�, i.e., for � > 3=16 for both MDU and
VDU. The amplitude is
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TABLE II. Zeroth order result for frequency, scale factor and their derivatives, where a given epoch is characterized by: w, the
proportionality constant in the equation of state P�t� � w��t� appropriate for a given background, as well as the exponent of a power-
law type cosmologies, i.e. a�t� 	 tp.

Epoch: �w; p� !�0�k _!�0�k a�t� C��� _C��� �C���

Vacuum: ��1; 2
3�

������������������������������������
�2 �m2� c

a0
vac
���2

q
� m2��3

!�0�k
expf�8	GN3 �0�

1=2tg � c
a0

vac
�2��2 �2� c

a0
vac
�2��3 6� c

a0
vac
�2��4

Matter: �0; 2
3�

��������������������������������������
�2 �m2 a

0
mat

81c4 �4�4
q

2 m2�3

!�0�k
�6	GN�0�

1=3t2=3 a0
mat

81c4 �4 4
a0

mat

81c4 �3 12
a0

mat

81c4 �2

TABLE I. Important factors for VDU and MDU.

a�t� ��a�t�� ��z�

VDU ea
0
vact a0

vac � �
8	GN

3 �0�w�jw��1�
1=2 a0

vac ’ 2:27
 10�18 s�1 c
a0

vaca�t�
ca0�1

vac �z� 1�

MDU a0
matt

2=3 a0
mat � �6	GN�0�w�jw�0�

1=3 a0
mat ’ 2:05
 10�18 s�1 3c

a0
mat
a�t� 2ca0

mat �1� z�
��1=2�
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A���; �� �
��������������������������������������
J2
����� � Y

2
�����

q
; (20)

for real �, and for imaginary � we find

A���; �� � j csc�	��j
��������������������������������������������������������������������������������������������������������������������������������������
f<�e�i	�J����� � J�������g2 � f=�e�i	�J����� � J�������g2

q
: (21)
TABLE III. Dictionary of conformal and physical variables.

Conformal Physical

space x xphy � a�t�x
time � �

R
t cdt0

0 t
The instantaneous angular frequency of FRW modes asso-
ciated with a wave number k is given by

!k �
@S
@�

; (22)

where S is the corresponding phase given by either (18) or
(19), depending on a value of coupling � and choice of
cosmology.

B. Massive case

We want to write (11) in the form �fk �!
2
kfk � 0.

Therefore using a WKB analysis one finds the frequency
(22) to second order �fk �!

�2�2
k fk � 0, where !�2�k is given

[4] by

!�2�k ��� � !�0�k �
3�� 1

2

2!�0�k

� �C
C
�

1

2

� _C
C

�
2
�

�
m2

8�!�0�k �
3

�
�C� _C

_!�0�k
!�0�k
�

3m2

4

_C2

�!�0�k �
2

�
; (23)

with

!�0�k �
�����������������������������
�2 �m2C���

q
: (24)

We have checked the validity of the WKB approxima-
tion (see Appendix A) by comparing with the massless
limit where exact solutions are available. The zeroth order
contributions to the frequency and conformal scale factor
and their derivatives for the cosmological cases of interest
are summarized in Table I.1
1In the following we take the value of the present energy
density to be �0 � �crit � 9:21
 10�27 kg

m�3 ) H�1
0 � a0�1

vac �
4:42
 1017 s.
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The scale factor and hence conformal time depends on
the given epoch, so for power-law expansions we have

a�t� � �6	GN�1� w�
2�0�w�t

2�1=�3�1�w�� (25)

as can be directly determined from the Friedmann equa-
tion, where w is the proportionality constant in the equa-
tion of state P�t� � w��t� appropriate for a given
background, and �0�w� is a present value of critical density
for a given epoch. Relevant choices of parameters for use
in (23) and (25) are given in Tables I and II.

C. Redshift formula

The classical redshift formula in terms of frequency � is

�0

�
�
a�t�
a�t0�

: (26)

We want to find the correction factor to this naive redshift
formula where the correction is the result of the nontrivial
modifications to the dispersion relations for long-
wavelength modes i.e., wavelengths of the order of the
horizon size. To do this we have to take account of the
conformal angular frequency correction [3] so that we find
a�t �
wave vector k kphy �

k
a�t�

wavelength 
 � 2	
jkj 
phy � a�t�


frequency ! � @S
@� !phy �

!
a�t�
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�0

�
�
a�t�
a�t0�

!k�t0�
!k�t�

: (27)
Here for!k we use!�0�k � � in the massless case and!�2�k ,
given by Eq. (23), in the massive case. In the following
sections we are going to present the results for two differ-
ent cosmologies. The relations between physical and con-
formal variables are summarized in Tables I and III The
advantage of an analysis via the WKB method is that it is
simple and straightforward, and it usually gives the correct
trends when the corrections are moderate (	 5% to
	20%) (as we have shown in Appendix A). These obser-
vations can be verified by comparing with exact results
where they exist. In the cosmological regimes of relevance
(vacuum and matter domination), we find the dependence
of the dispersion relations on the value of the mass of the
scalar field. We formulate our discussion in terms of con-
formal invariance, i.e., in terms of the value of the mass and
wavelength where the conformal behavior is approxi-
mately preserved.

In all cases we findm	 10�33 eV (inverse Hubble size)
as the mass where nonconformal behavior starts to set in.
These masses should be nearly equal in the different re-
gimes, since differences are caused by numerical factors of
order one.

To proceed further, we first have to express all the
parameters present in Eqs. (23) and (24) in terms of red-
shifts
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z �
a�t0�
a�t�

� 1; (28)

and the parameter b0

b0 �

0

cH�1
0

; (29)

that can be interpreted as the fractional size of the physical
wavelength in the units of the present Hubble radius. We
will work in units where a�t� and hence C��� are dimen-
sionless. The wave number � does not depend on the
epoch, as can be seen from Eq. (15). We have now col-
lected all the necessary epoch specific input needed for our
numerical analysis that will be carried out in the next
section.

III. CORRECTION TO REDSHIFTS

In this section we are going to present corrections due to
the redshift formula (27) originating from the coupling of
the scalar fields to gravity. We consider massless as well as
massive cases in two different cosmologies, i.e., vacuum
and matter-dominated universes. In order to see the full
spectrum of possible behavior of the dispersion relations,
one has to discuss both real and imaginary masses. We plot
the ratio of initial to final frequencies in each epoch.
Sequentially through matter and vacuum domination, we
set zmat

i � 1100, next zmat
f � zvac

i � 0:4 (using correct
WMAP value of �� � 0:73 [10]) and finally zvac

f � 0. In
the case of vacuum domination, for real masses Fig. 1, the
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deviation from the classical redshift formula is very small
until length scales of the size 	0:6cH�1

0 . For imaginary
mass, when =�m� & 10�32 eV, the ratio of frequencies
exhibits similar behavior Fig. 2. In both cases, as the
magnitude of the mass of a scalar field gets larger than
roughly 10�32 eV, it dominates the effects of � if � & 1. In
the matter-dominated case, both real Fig. 3, and imaginary
Fig. 4 masses of order 	j1031j eV dominate effects when
� & 1. The corrections become substantial at smaller
length scales 	0:1cH�1

0 .
IV. WMAP FIT AND DISCUSSION

Now let us discuss the processing of the density pertur-
bation spectrum. As is well known, once a perturbation
comes within the horizon, it begins to oscillate. This phe-
nomenon is reflected in the observed large ‘ WMAP CMB
spectrum, where the first maximum (first acoustic peak) is
at ‘	 200, and higher order peaks are at larger ‘ value.
The low ‘ values have not been inside the horizon long
enough for much processing to have taken place. The
region from roughly ‘ � 20 to ‘ � 200 is just now begin-
ning to undergo its first plasma oscillation, while for ‘ &

20 very little has happened yet. But this is just the region of
interest for the dispersive effects we have been discussing,
and we are lucky that in this region (‘ & 20) we have a
pristine, unprocessed spectrum. (Recall for large ‘, we
have short wavelengths, and so virtually no dispersion.)
123514
Hence we can confine ourselves to the analysis of pertur-
bations with wavelengths of the order of or somewhat less
than the horizon size where we do not need to worry about
plasma oscillations. (There may be issues of reionization to
consider, but at the level we are working we choose to
ignore such effects.)

Perturbations that are of the order of the horizon size
today have undergone an evolution from the time of their
production. A typical scenario would be: Perturbations are
produced during a vacuum-dominated epoch of inflation,
and are pushed outside the horizon. Inflation then ends, and
the universe becomes radiation dominated. Some pertur-
bations come back inside the horizon, are processed via
plasma oscillations, etc., until about z � 1100, when the
universe becomes matter-dominated. More perturbations
re-enter the horizon and are processed until around z � 0:4
when the universe again becomes vacuum-dominated and
perturbations again start to be pushed outside the horizon.
Ultimately, we would like to follow the entire evolution of
a perturbation from its production until today for modes
that are currently near horizon size (an ‘ & 20 mode).
However, this would require a detailed model of the early
universe. A less ambitious approach is to follow some
(better understood) fraction of the evolution to demonstrate
that dispersion can play a role in understanding the obser-
vational data, and leave it to future work, when a more
detailed understanding of the early Universe including de-
tails of early Universe phase transitions are known, to
-5



FIG. 5. Fit of the low ‘ part of WMAP spectrum to scalar fields
with dispersion. The thick line is for the best fit value, � �
0:166 434. We have added three other curves for comparison.
The upper thin line is for � � 0:169 492, the flat line is for � �
1=6, and the lower thin line is for � � 0:161 290.

FIG. 6. Deviation of � from the conformal value of coupling
� � 1

6 as seen on a plot of �2 vs ( 1
6� �).
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follow the complete evolution of the modes. To this end we
have shown in Fig. 5 (where we convert wavenumber k to
multipole moment ‘ using k � ‘=�cH�1

0 �) the results of
evolving modes from2 z � 1100 until today (i.e. from z �
1100 to z � 0:4 with matter domination, and from z � 0:4
until today (z � 0) with vacuum domination), and have fit
the results to the low ‘WMAP data. Since an ‘ � 20 mode
undergoes very little processing or dispersive evolution, we
have normalized our amplitude to this region of the spec-
trum. Once this is done, we have a single free parameter �
for massless scalar fields �. We then do a one-parameter
fit, as shown in Fig. 5, and find � ’ 1

6� 0:0002 see Fig. 6.
This is very close to the conformal value � � 1

6 and can be
shifted there, but only at the expense of introducing a small
negative mass squared for the scalar field as can be seen
from the field Eq. (12) evaluated for the VDU

�f k��� �
�
�2 �

�12�� 2� � �mc=a0
vac�

2

�2

�
fk � 0: (30)

It is clear that one can introduce the effective coupling ��
such that

12 �� � 12��
�
mc

a0
vac

�
2
; (31)

and by setting �� to the conformal value 1=6 we can find the
value of mass m corresponding to a field � with an
effective conformal coupling to gravity. Our conclusion
is that the evolution of large ‘ scalar modes can be used to
constrain the coupling of k-essence or holographic type
scalar fields to gravity, if they contribute substantially to
the density perturbations [12]. For such fields, if we set
m � 0 we find that minimally coupled field (� � 0) is
2For more precise z values see [11].
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easily excluded. Our fit is merely an example of how
constraints on � can arise. Specific models will give spe-
cific results. It is interesting that, with a few assumptions, a
value of � can in principle be extracted from a study of the
cosmic microwave background. The coupling of scalar
fields to gravity have other ramifications that would need
to be considered in any realistic model. Another reason for
being cautious about drawing sweeping inferences from
Fig. 5 is that the single scalar-field action given in (2) with
m2 � 0 leads to a spectral index in disagreement with the
data. Perhaps what one should conclude is that we need a
theory with a sufficiently complicated potential V��� that
density perturbations can be laid down when the � mass is
sufficiently large (see [13]), but where the late time effec-
tive theory is nearly conformally invariant, or a theory with
multiple scalar moduli field.
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APPENDIX: VALIDITY OF WKB
APPROXIMATION

The WKB approximation works best for couplings close
to the conformal case � � 1=6. For various choices of
parameters, we show the percent errors of the WKB ap-
proximation relative to the exact vacuum-dominated era
results Fig. 7(a) and 8(a), and to the matter-dominated
universe in Fig. 7(b) and 8(b).

In a matter domination universe represented in Fig. 8(b),
the WKB approximation is better (i.e. up to larger scales)
for positive couplings. However, the broad range of appli-
cability of the WKB method allows us to use the WKB
approximation to draw conclusions about trends in the
data.
-6
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